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Most psychological scientists are trained in what is 
known as Kolmogorov (1933/1950) probability theory. 
This is also called “classical” probability theory, because 
it was originally developed with applications to classical 
physics in mind. However, in the 20th century, this theory 
was applied more broadly outside of physics to eco-
nomics, psychology, and social sciences in general. This is 
the basic probability theory taught in all the psychology 
statistics classes, and it forms the foundation for almost 
all the the statistical work presented in psychological 
research. It is also the basic foundation for many psycho-
metric test theories and cognitive psychology theories.

It may come as a surprise to many psychologists that 
there are other probability theories besides this classical 
theory! In fact, many other “generalized” probability the-
ories have been developed (see, e.g., Narens, 2015). It is 
interesting to ask the following question: If there is more 
than one probability theory, which one is most suitable for 
psychology? This is not such a strange question. Consider 
another example from geometry. For many centuries, 
scholars thought that there was only one geometry –
Euclidean. However, later developments by Lobachevsky, 
Gauss, Minkowsky, and others introduced new geome-
tries. Initially scholars thought that these new geometries 
were exotic, but later they became essential for physics 
(e.g., in general relativity theory). The same may be true of 
“generalized” probability theories for social sciences.

Von Neumann (1932/1955) probability theory is 
considered to be one of the “generalized” probability 
theories (Gudder, 1988). Von Neumann theory is called 
quantum probability, because it was developed for 
applications to the newer quantum mechanics that 
replaced classical mechanics and revolutionized physics. 
Quantum probability is considered to be a generaliza-
tion of classical probability, because the von Neumann 
axioms are less restrictive than the Kolmogorov axioms. 
Quantum probability has recently been applied to fields 
outside of physics in including psychology (Busemeyer & 
Bruza, 2012) and economics (Haven & Khrennikov, 2013) 
and social sciences more generally (Wendt, 2015).

Kolmogorov theory is based on the idea that events 
(e.g., predicting whether or not your opponent will 
defect in a prisoners’ dilemma game) are represented 
as subsets of a larger set called the sample space. This 
idea implies a logic of subsets, which is a Boolean logic 
that requires strict properties such as closure (if A, B 
are events in the same sample space, then A B∩  is an 
event), commutativity, ( ) ( )A B B A∩ = ∩ , and distribu-
tivity, ( ) ( () )A B B B A B A∩ ∪ = ∩ ∪ ∩ .

Quantum theory is based on the idea that events 
(e.g., deciding whether or not you intend to defect in a 
prisoners’ dilemma game) are represented as subspaces 
of a vector space called the Hilbert space. This idea 
implies a logic of subspaces, which is a “partial” Boolean 
logic: it relaxes the assumptions of closure, commuta-
tivity, and distributivity.

But of all the possible generalized probability theories, 
why pick quantum probability? The reason is that one 
of the main principles from quantum theory, Bohr’s 
famous principle of complementarity, is also a principle 
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shared by psychology (Wang & Busemeyer, 2015). It is an 
interesting twist of history that Bohr, who introduced the 
concept of complementarity to quantum theory, actually 
became aware of this idea by learning about similar 
issues in psychology. Edgar Rubin, a Danish psycholo-
gist and friend of Bohr, acquainted Bohr with the writ-
ings by William James (1890) about complementarity. 
Complementarity refers to the condition in which dif-
ferent measurements can only be applied one at a time, 
but they are all necessary for a comprehensive picture of 
the phenomena under investigation (Plotnitsky, 2012). 
An important consequence of the sequential nature 
of complementary measurements is that the specific 
sequence or order of the measurements may matter. The 
characteristics of the first measurement can change the 
context used to evaluate a subsequent measurement.

For example, consider two different measurement 
orders in a prisoners’ dilemma game. In one order, the 
player is first asked to predict what her opponent will 
do (before his move is revealed to her), and then decide 
what action she will take. In the opposite order, the 
player is first asked to decide what action she will take, 
and then predict what her opponent will do (before her 
play is revealed to him). The intuition is that the player 
can’t simultaneously think about what she will do and 
what her opponent will do. She may find it difficult to 
do these “measurements” at the same time, and instead 
she has to do this sequentially. She can first predict what 
her opponent will do and then decide what she will do, 
or she can decide what she will do and then predict 
what her opponent will do. But the order of measure-
ment matters. In fact, it has been empirically found that 
the relative frequencies of pairs of answers to these 
questions change depending on order (Tesar, 2019).

Order effects demonstrate a way that non- 
commutativity enters into quantum probability theory. 
If the measurement of two events (e.g., what actions 
you and your opponent will take in a prisoners’ dilemma 
game) are non-commutative, then they are called 
incompatible. Not all measurements are incompatible 
(e.g. asking how old you are and where you live pro-
duce the same answers regardless of order), and in this 
case they are called compatible. One way to think 
about the difference between classical and quantum 
theories is that quantum theory would be equivalent to 
classical theory if all measurements were compatible. 
The inclusion of incompatible measurements is what 
makes quantum theory different.

If two events, A, B in the same Hilbert space are non-
commutative, then there is no subspace equal to their 
intersection, which implies that there is no conjunction 
( )A B∩ , and so closure no longer holds. Also if A, B are 
non-commutative, then distributivity can fail because A 
does not necessarily equal (B and then A) or ( ∼ B and 
then A).

For these reasons, it turns out that quantum probability 
theory is not only useful in physics, but it also useful for 
psychology (Pothos & Busemeyer, 2013; Blutner & beim 
Graben, 2016; Bruza et al., 2015). Note that we are not nec-
essarily proposing that the brain is some kind of quan-
tum computer (see, e.g., Hameroff, 2013 for an example 
of this interpretation), and instead, we are only using the 
mathematical principles of quantum theory to account 
for human behavior. More importantly, as we illustrate 
below, quantum probability theory provides some sim-
ple accounts of puzzling findings from psychology.

Example applications of quantum probability to 
psychology

Below we present three applications of quantum theory 
to several different interesting phenomena in psychology. 
For each example application, we present a simple 
2-dimensional “toy” model to illustrate the essential 
ideas. After presenting each toy model, we also present 
the more general application of the theory. All of the 
articles to which we refer in this presentation are based 
on higher dimensional models. A very general formu-
lation for building quantum models of cognition is 
presented in Busemeyer & Wang (2018).1

Question order effects

We start out with an example based on an actual national 
survey of 1005 participants concerning racial hostility 
conducted in the United States in 1996 and reported in 
Moore (2002). Participants were asked the following two 
questions in different orders: The WB question asked 
whether or not the participant thought that many white 
people dislike black people (yes or no), and the BW ques-
tion asked whether or not the participant thought that 
many black people dislike white people (yes, no). The 
answers changed depending on the order producing a 
large and significant order effect. We start by illustrating 
how a quantum model produces order effects such as 
this. Although the reported results are based on aggrega-
tion, in the following, we will describe the model for a 
single participant. We begin with a ’toy’ example.

We assume that the two questions, WB, BW are  
incompatible. The intuition is that a person needs to put 
himself in the perspective of white person to answer 
the WB question, and he needs to put himself into the 
perspective of a black person to answer the BW question, 
and the person can’t view both perspectives at the 
same time. To make the model for this situation as sim-
ple as possible, we use a 2-dimensional vector space 
and one dimensional subspaces (rays) (see Figure 1). 

1Computer programs for building models of quantum cognition are 
located at http://mypage.iu.edu/∼jbusemey/quantum/Quantum%20
Cognition%20Notes.htm.
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Wang & Busemeyer (2013) present the actual N − 
dimensional model with multi-dimensional subspaces .

The first step that we need to make is the choice of a 
basis to represent events for each question. The choice of 
the first basis is arbitrary because it simply determines 
the coefficients assigned to each coordinate. We will start 
with the simplest, standard basis, by assuming that the 
answers to WB question are represented by two ortho-
normal basis vectors (see green lines in Figure 1):

0
1 0

, .
1n yV V  

 


= = 



 

The ray spanned by Vy is the subspace representing 
the answer “yes” and the ray spanned by Vn is the sub-
space representing the answer “no” to the W-B question. 
Each of these subspaces correspond to a projector:

( ) ( )† †0 0 1 0
, ,

0 1 0 0WB y y WB n nP y V V P n V V   
= ⋅ = = ⋅ =   

   
which projects vectors in the vector space onto the 
corresponding subspace († represents the Hermitian 
transpose).

The participant’s beliefs about the WB question is 
determined by their background knowledge of racism. 
These beliefs are represented by a unit length vector 
in this vector space. Suppose the coordinates for the 
belief state regarding racial issues, with respect to the 

WB basis, are defined by the following 2 × 1 column 
matrix (see blue line in Figure 1)

.4
.

.6RS
 

=  
  

In this case, the person is “superposed” between 
the two possible answers: The square of the first coor-
dinate (.4) gives the probability of answering no, and 
the square of the second coordinate (.6) gives the prob-
ability of answering yes. Even though the answers to 
be reported are mutually exclusive (the person can 
only pick one), both answers have non-zero proba-
bilities of being selected.

The rule for computing the probability of an event is 
simple: project the belief state onto the subspace for the 
event, and take the squared length. Using this rule, the 
probabilities for each answer are (see the arrow associ-
ated with sqrt(.6) in Figure 1)

2 2
2

2

00 0 .4
( ) ( ) · · .6.

0 1 .6.6

( ) ( ) · .4.

WB R

WB R

p WB y P y S

p WB n P n S

    
= = = = =    

      

= = =

If the answer to the first question turns out to be 
“yes,” then the belief state is “collapsed” to this sub-
space, and a new state is formed by normalizing the 
projection on the answer yes, which becomes

Figure 1: Two dimensional vector space. Green orthogonal axes represent WB answers, red orthogonal axes represent BW 
answers, blue line represents initial state.
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( ) 0 0
.6 .

1( ) .6
WB RP y S

Sy
p WB y

   
   

  

⋅
= = / =

=

with respect to the WB basis. Now, after answering 
“yes,” if asked again, the person is certain to say “yes” 
to the WB question.

What about the BW question? To represent these 
answers, we need to rotate from the original basis 
{Vn, Vy} used to represent the WB question to a new 
basis {Un, Uy} that provides this BW perspective. 
Suppose that the basis vectors used to represent the 
BW answers are obtained from the WB basis vectors 
by the unitary matrix

.8090 .5878
.

.5878 .8090BWU
 − 
 
 

=

The first column of U, i.e., 
.8090
.5878nU
 

=  
 

, represents 

the basis vector for “no;” the second column, i.e., 

.5878
.8090yU

 
 


−


= , represents the basis vector for “yes” for 

the BW question (see red lines in Figure 1).
Then the projectors for the answers to the BW question 

equal

( ) ( )( )

( ) ( )( )

†

†

,
.8090 .5878 0 0 .8090 .5878
.5878 .8090 0 1 .5878 .8090
.3455 .4755

,
.4755 .6545

.6545 .4755
.

.4755 .3455

BW BW WB BW

BW BW WB BW

P y U P y U

P n U P n U

     
     
    

= ⋅ ⋅
−

= ⋅ ⋅
− 

 
 

−
=

−

= ⋅

 
 



= 


⋅

If the person first said “yes” to the WB question, 
then the conditional probabilities of each answer to the 
BW question equal

( ) ( )
( ) ( )

2

2

| · .6545,

| · .3455.

BW y

BW y

p BW y WB y P y S

p BW n WB y P n S

= = = =

= = = =

Note that if the person answers “yes” to the WB ques-
tion (so that the state has collapsed to Sy, and the person 
is certain to say “yes” if asked again about the WB ques-
tion), then the person must be uncertain about the BW 
question, because the state Sy has non zero projections 
on both of the BW events. This illustrates how the quan-
tum uncertainty principle arises. Being certain about one 
event (the answer to WB is yes) must make one uncer-
tain about a different, incompatible event (the answer to 
BW is uncertain). A person cannot be certain about both 
incompatible measurements at the same time.

Finally the sequential probability of answering “yes” to 
the WB question and then “no” to the BW question equals 
(see the arrow associated with sqrt(.207) in Figure 1)

( ) ( ) ( )
( ) ( )

( ) ( )

22

2

, · |

.2073.

WB R BW y

BW WB R

p WB y BW n p WB y p BW n WB y

P y S P n S

P n P y S

= = = = = =

= ⋅ ⋅ ⋅

= ⋅ ⋅ =

The opposite order produces

( ) ( ) ( )
( ) ( )

2

, · |

.3231.WB BW R

p BW n WB y p BW n p WB y BW n

P y P n S

= = = = = =

= ⋅ ⋅ =

This produces an order effect.
Now we turn to the general model. We assume that 

events are represented as subspaces of a finite dimen-
sional Hilbert space H. A finite dimensional Hilbert space 
is a vector space defined on a complex field endowed 
with an inner product. The dimension of the vector 
space can be arbitrary, say N −dimensional. The state 
representing the beliefs of a person is a vector |S∈H . 
A projector for an event such as the answer “yes” to 
question A is an linear operator PA(y) in the Hilbert 
space that satisfies PA(y) = PA(y)† = PA(y) · PA(y). The 
projector for the complement, i.e., the answer to ques-
tion A is “no”, is PA(n) = I − PA(y), where I is the iden-
tify operator, and note that PA(y) · PA(n) = 0. If question 
A is asked before question B, then we denote the prob-
ability of observing the answer “yes” to question A 
(e.g., the WB question) and then the answer “no” to 
question B (e.g., the BW question) as p(A = y, B = n). 
The opposite order is denoted p(B = n, A = y). Then the 
general model for question order states simply that

( ) ( ) ( )
( ) ( ) ( )

2

2

, · · ,

, · · .
B A

A B

p A y B n P n P y S

p B n A y P y P n S

= = =

= = =

If we condition on the AB order, then the 2 × 2 joint 
frequencies for the A,B pair of questions can be 
described as a classical joint probability distribution; 
likewise. if we condition on BA order, then the 2 × 2 
joint frequencies for the A,B pair of questions also can 
be described as a classical probability distribution. 
This produces two classical joint distributions that can 
perfectly describe the empirical results. But these are 
two separate and unrelated distributions, which sim-
ply reproduce the empirical results. The advantage of 
the quantum probability model comes from providing 
a mathematical system that relates the two different 
joint distributions and makes a priori predictions about 
this relationship. Wang & Busemeyer (2013) proved 
the following theorem that makes an a priori prediction 
for any dimension N, and for any projectors represent-
ing questions A, B. The quantum probability model 
must predict a very special pattern of order effects that 
we call the QQ equality (Wang & Busemeyer, 2013):

( ) ( )( )
( ) ( )( )

, ,

, , 0

Q p A y B n p A n B y

p B y A n p B n A y

= = = + = =

− = = + = = =
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This theoretical prediction was established first, and 
then we empirically tested it later and we found it  
to be supported across a wide range of 70 national 
field experiments that examined question-order effects 
(Wang et al., 2014).

After we published our results, two other non-quantum 
and post hoc explanations were put forward to account 
for the QQ equality (Kellen et al., 2018; Costello & Watts, 
2018). However, these accounts of the QQ equality were 
put forth after the empirical finding and they were 
designed specifically for this particular application 
and empirical finding. The advantage of the quantum 
probability model is that it is more general, and it 
makes new additional predictions. The same general 
quantum model for order effects has been successfully 
applied to new applications including (a) multi-valued 
(more than 2) ratings scales (Wang & Busemeyer, 2016a), 
and (b) for the effects that the ordering of evidence has 
on inference (Yearsely & Trueblood, 2017). The non-
quantum post hoc accounts of the QQ (Kellen et al., 
2018; Costello & Watts, 2018) are unable to apply to 
these new situations.

Conjunction and disjunction probability judgment 
errors

Tversky & Kahneman (1983) reported what are called 
“conjunction errors,” which might be considered the 
strongest evidence that human reasoning under uncer-
tainty does not obey the Kolmogorov axioms. A conjunc-
tion error occurs when a person judges the probability of 
a conjunction of two events to be greater than one of 
the single events. One of the most famous examples is 
based on the “Linda” scenario (but there are many 
more examples and replications of this finding): Linda 
is initially described to appear to be a very strong and 
liberal and intellectual women. Then participants are 
asked to judge the likelihood of various statements 
about Linda, including the statement that “Linda is 
a bank teller” (B) and that “Linda is a feminist and a 
bank teller” (F and B). Participants typically judge the 
(F and B) event as more likely than the B event. 
Moreover, they also commit a “disjunction error:” they 
judge the likelihood of (F or B) to be less than the like-
lihood of F alone (e.g., Morier & Borgida 1984).

Below we begin with a “toy” quantum model to 
account for these probability judgment errors. To make 
the model for this situation as simple as possible,  
we again use a 2-dimensional vector space and one 
dimensional subspaces (rays). The actual full model 
for N −dimensional spaces and multi-dimension sub-
spaces is described in Busemeyer et al. (2011).

We assume that the two questions about bank teller 
and feminist are incompatible. The intuition is that a 
person rarely experiences these together, and so they 

had very few opportunities to learn a compatible repre-
sentation of features for the simultaneous occurrence of 
the two events. Instead, they need to view feminism rel-
ative to one set of attitude features, and then view bank 
teller relative to a different set of employment features.

The first step that we need to make is the choice of a 
basis to represent events for each question. The choice 
of the first basis is arbitrary and so we start with the 
standard basis. We will start by assuming that the 
(yes,no) answers to feminism question are represented 
by two orthonormal basis vectors:

0
1 0
, ,

1y nV V  
= = 




 
 

which produce projectors:

( ) ( )0 0 1 0
, .

0 1 0 0F FP n P y   
   
   

= =

The participant’s beliefs are initially determined  
by the Linda story. Given the story, it is plausible to 
assume that the coordinates for the belief state, with 
respect to the feminism basis, will have higher mag-
nitudes assigned to “yes.” For example, the initial 
beliefs can be represented by the following 2 × 1 col-
umn matrix

.9877
.

.1564LS

−


 
 

=

Using the quantum rule for computing probability 
of an event, the probabilities for each answer are

( ) ( )
( ) ( )

2

2

· .9755,

· .0245,
F L

F L

p F y P y S

p F n P n S

= = =

= = =

To represent the bank teller answer, we need to 
rotate to a new basis that provides this view. Suppose 
that the basis vectors used to represent the bank teller 
answers are obtained from the feminism basis vectors 
by the rotation matrix

.3090 .9511
.

.9511 .3090BFU  − 
 
 

=

The first column of U represents the basis vector 
for “yes” and the second column represents the basis 
vector for “no” for the bank teller question. Then the 
projectors for the answers to the BW question equal

( ) ( )( ) ( ) ( )( )† †, .B BF F BF B BF F BFP y U P y U P n U P n U= ⋅ ⋅ = ⋅ ⋅

Starting from the Linda story, the probabilities for 
the answers to the bank teller question are

( ) ( )
( ) ( )

2

2

· .0245,

· .9755.
B L

B L

p B y P y S

p B n P n S

= = =

= = =
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Finally the probability of answering “yes” to feminism 
and then “yes” to bank teller equals

( ) ( ) ( )
( ) ( ) 2

, · |

.0932.B F L

p F y B y p F y p B y F y

P y P y S

= = = = = =

= ⋅ ⋅ =

This last results reproduces the conjunction error 
because we have p(B = y) = .0245 which is less than 
p(F = y, B = y) = .0932.

The probability of the disjunction “feminist or bank 
teller” is computed from

( ) ( )
( ) ( ) 2

1 ,

1
.9069.

F B L

p F y or B y p B F

P n P n S

= = = −

= − ⋅ ⋅
=

This last results reproduces the disjunction error 
because we have p(F = y) = .9755 which is greater than 
p(F = y or B = y) = .9069. Thus the same rotation of basis 
reproduces both the conjunction and disjunction errors.

Now we turn to the general model. Once again, we 
assume that events are represented as subspaces of a 
finite dimensional Hilbert space H. The dimension of 
the vector space can be arbitrary, say N −dimensional. 
We define |S∈H  as the vector representing beliefs 
after hearing a experimental cover story (e.g. a story 
about Linda). Suppose A, B are two events and A is 
more likely than B. Define PA(y) as a projector oper-
ating in H representing the answer “yes” to question A 
(e.g., feminist) and define PB(y) as a projector oper-
ating in H representing the answer “yes” to question 
B (e.g. bank teller). According to quantum probability 
rules, the sequential probability of answering “yes” 
to question A and then “yes” to question B is

( ) ( ) ( ) 2
, | .B Ap A y B y P y P y S= = = ⋅ ⋅ 

The probability of answering “yes” to question B 
by itself is

( ) ( )
( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

2

2

2 2

|

|

|

| |

| | ,

B

B

B A A

B A B A

B F B F

p B y P y S

P y I S

P y P y P n S

P y P y S P y P n S

P y P y S P y P n S Int

= = ⋅ 

= ⋅ ⋅ 

= ⋅ + ⋅ 

= ⋅ ⋅  + ⋅ ⋅ 

= ⋅ ⋅  + ⋅ ⋅  +

where Int is called the interference term, which con-
tains the remaining crossproduct terms produced by 
squaring the length of a sum of two parts. This interfer-
ence term can be positive or negative or zero. According 
to this model, the conjunction fallacy occurs whenever 

( ) ( )
2

|B F LInt P y P n S< − ⋅ ⋅  .
Although this account of the conjunction fallacy  

is very general (it does not depend on any specific 
dimension N. and it does not depend on any specific 

unitary matrix) it is post hoc. However, the quantum 
model makes many additional a priori predictions.  
In particular, if p(A = y, B = y) > p(B = y), then this 
model must predict that ( ) ( )|p B y A y p B y= = > = . 
There is supporting evidence for this prediction 
(see Busemeyer et al. 2011). Also, this model cannot 
predict that p(A = y, B = y) > p(A = y) and p(A = y,  
B = y) > p(B = y) both occur. Although there is some 
debate about this issue, double conjunction errors are 
rare (see Busemeyer et al. 2011). In addition, this model 
predicts that p(B = y) > p(B = y, A = y). That is, the model 
predicts conjunction fallacies depend on the order of 
evaluating questions. Some researchers (Costello et al., 
2017) do not find empirical evidence for this prediction, 
whereas others (Yearsely & Trueblood, 2017) report 
empirical evidence for a predicted correlation between 
order effects and conjunction errors.

Interference of categorization on decision

Another interesting application of quantum cognition 
concerns some puzzling findings obtained from a 
categorization - decision task (Busemeyer et al., 2009). 
In these experiments, participants are shown faces. 
On some trials they categorize the faces as “good guys” 
or “bad guys”, and then decide to “attack” or “withdraw” 
(this is called the categorization-decision condition); on 
other trials they only decide to “attack” or “withdraw” 
without making any categorization (this is called the deci-
sion-alone condition). Participants are usually rewarded 
for “attacking” the “bad guys” and for “withdrawing” 
from the “good guys.” These experiments allow a test 
to see if the total probability of an action obtained from 
the categorization-decision condition

( ) ( ) ( ) ( ) ( )| |Tp A p G p A G p B p A B= ⋅ + ⋅

equals the probability to attack p (A) under the decision 
alone condition. The difference Int = p(A) − pT(A) is 
called an interference effect, which indicates an effect 
of measurement about the category on the final action 
decision. Several experiments reported positive  
interference effects (Busemeyer et al., 2009; Wang & 
Busemeyer, 2016b). Even more interesting, Busemeyer 
et al. (2009) found the largest interference effect, and 
in this experiment, the probability to “attack” after 
categorizing the face as “bad” was lower than the 
probability to “attack” when no categorization was 
made at all!

Below we show how a “toy” quantum model easily 
accounts for these interference effects. To make the 
model for this situation as simple as possible, we again 
use a 2-dimensional vector space and one dimensional 
subspaces (rays). The actual model used in Wang & 
Busemeyer (2016b) was a 4 −dimensional model with 
2-dimensional subspaces.
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In this application, the incompatibility between the 
categorization and decision events arises from a dynamic 
process that first views the face from an evidence basis 
to select a category, and then rotates to an evaluation 
basis to choose an action. The first step that we need 
to make is the choice of a evidence basis to represent 
events for categorization. We will start by assuming 
that the (good,bad) answers to categorization question 
are represented by two orthonormal basis vectors:

0 1
, ,

1 0G BV V   
   
   

= =

which produce projectors:

( ) ( )
0 0 1 0

, .
0 1 0 0C CP g P b   
   
   

= =

The participant’s beliefs about the categories depends 
on the face. Suppose the face looks like a “bad guy,” 
and so coordinates for the belief state, with respect to 
the evidence basis, are defined by the following 2 × 1 
column matrix

.9491
.

.3150FS

−


 
 

=

Using the quantum rule for computing the probability 
of an event, the probabilities for each answer are

( ) ( )
( ) ( )

2

2

· .10,

· .90.
C F

C F

p C g P g S

p C b P b S

= = =

= = =

If the face is categorized as “good,” then the state 
collapses to †[0 1]gS =  in the evidence basis; and if 
face is categorized as “bad,” the state collapses to 

†[1 0]bS =  in the evidence basis.
To represent the decision, we need to rotate to a new 

basis that evaluates the payoffs for actions. Suppose 
that the evaluation basis is obtained from the evidence 
basis vectors by the rotation matrix

.7765 .6301
.

.6301 .7765DCU 
=


 
 −

The first column of U represents the basis vector for 
“attack” and the second column represents the basis 
vector for “withdraw” for the evaluation basis. Then the 
projectors for the answers to the action decision equal

( ) ( )( ) ( ) ( )( )† †, .D DC C DC D DC C DCP a U P b U P w U P g U= ⋅ ⋅ = ⋅ ⋅

Starting from the face, the probabilities for the 
decisions (when it is made alone) are

( ) ( )

( ) ( )

2

2

· .8751,

· .1249.
D F

D F

p D a P a S

p W w P w S

= = =

= = =

The probability of the decision to “attack” condi-
tioned on each category response equal

( )
( )

2

2

| ( ) · .3971

| ( ) · .6029.

D g

D b

p D a C g P a S

p D a C b P a S

= = = =

= = = =

Note that the probability to “attack” in the decision 
alone condition equals .8751, which exceeds both of 
the above conditional probabilities. Therefore, this toy 
model produces both a positive interference effect  
as well as producing a higher “attack” rate for the 
decision alone condition as compared to the decision 
after categorizing the face as “bad.”

Now we turn to the general model again. As before, 
we assume that events are represented as subspaces of 
a finite dimensional Hilbert space H. The dimension of 
the vector space can be arbitrary, say N −dimensional. 
We define |S∈H  as the vector representing beliefs 
about the category after seeing the face stimulus. Define 
Pc (b) as a projector operating in H representing the 
answer “bad guy” to the categorization question, and 
define Pc (g) as a projector operating in H representing 
the answer “good guy” to the categorization question. 
According to quantum probability rules, probability 
of deciding to “attack” in the decision alone condition 
equals

( ) ( )

( ) ( ) ( ) ( )

2

2 2

|

| | ,

D

D C D C

p D a P a S

P a P g S P a P b S Int

= = ⋅ 

= ⋅ ⋅  + ⋅ ⋅  +

and again the interference term, Int, can be positive so that

( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( )

2 22
| | |

|
| .

D D C D CP a S P a P g S P a P b S

p C g p D a C g
p C b p D a C b

⋅  > ⋅ ⋅  + ⋅ ⋅ 

= = ⋅ = =

+ = ⋅ = =

Wang & Busemeyer (2016a) go further by quantita-
tively testing and comparing quantum versus Markov 
models with respect to their abilities to make new 
predictions for the categorization-decision task. They 
used a generalization criterion method: they estimated 
the parameters from both the quantum model and a 
classical Markov model using data obtained from a 
first set of payoff conditions. For this first set of condi-
tions, the same number of parameters were estimated 
from the data for each model. Then they used the 
parameters estimated from the first set of payoff condi-
tions to make generalization predictions for two new 
payoff conditions. The results supported the quantum 
model, which made more accurate generalization pre-
dictions than the Markov model.

Summary

In this article, we first provided psychological rea-
sons for exploring the applications of quantum proba-
bility theory to human judgment and decision making 
behavior. Second, we presented three very different 
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applications to puzzling findings from psychology 
using the same principles. The applications used “toy” 
models designed to illustrate how the theory works. 
The general models were briefly described, but more 
details can be found in the articles that we referenced. 
Finally, we presented summaries of actual empirical 
tests and evidence supporting the applications of quan-
tum probability to these examples. There are numerous 
other applications of quantum cognition to similarity 
judgments (Pothos et al., 2013), conceptual combina-
tions (Aerts et al., 2013), causal reasoning (Trueblood 
et al., 2017), violations of rational decision making 
(Pothos & Busemeyer, 2009), confidence judgments 
(Kvam et al., 2015), memory recognition (Brainerd et al., 
2013), and perception (Atmanspacher Filk, 2010). Of 
course, non-quantum models can be devised to explain 
any one of the phenomena that we discussed. However, 
the power of quantum models comes from using the 
same principles across a wide range of different exam-
ples, rather than designing a completely different model 
for each example. In sum, we hope the reader finds 
quantum cognition to be an interesting and viable 
new approach to understanding human judgment 
and decision making behavior.
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