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SUMMARY
In this paper, an optimal kinematic design method of a three
translational DoFs parallel manipulator is presented. The
design is based on the concept of performance chart, which
can show the relationship between a criterion and design
parameters graphically and globally. The normalization on
the design parameters of the studied manipulator makes
it possible that the design space, which is made up of the
normalized parameters, is limited. The design space includes
of all possible basic similarity manipulators (BSMs). As any
one of the BSMs represents all of its similarity manipulators
(SMs) in terms of performances, if one BSM is optimal, its
SMs are optimized as well. The said optimal BSM is from the
optimum region, which is the intersecting result of involved
performance charts. In this paper, the related performance
criteria are good-conditioning workspace (GCW), global
conditioning index (GCI) and global stiffness index (GSI).
As an applying example, a design result of the parallel
manipulator with a desired task workspace is presented.
The results of the paper are very useful for the design and
application of a parallel manipulator.

KEYWORDS: Optimum design; Parallel manipulators;
Design space; Singularity.

I. INTRODUCTION
In the past two decades, parallel manipulators have attracted
more and more researchers’ attention in terms of industrial
applications, especially in the field of machine tools, due to
their relative advantages, e.g., high stiffness, high accuracy,
low moving inertia, and so on. For such reasons, more and
more parallel manipulators with specified number and type
of degree of freedom (DoF) have been proposed. Especially,
parallel manipulators with less than 6 DoFs are becoming
increasingly popular in the machine tool industry.

In the family of 3-DoF parallel manipulators, the mani-
pulators with three translational DoFs are attractive. As most
industrial applications need the translations along three nor-
mal axes, such parallel manipulators have been studied and
used extensively. There is no doubt that the DELTA robot1

and its topologies are the most successful parallel mani-
pulator designs. The DELTA robot is such a parallel mani-
pulator that is built using spatial parallelogram mechanisms.
The robot came up firstly at 1986 by means of a WIPO

patent.2 Since then, many studies have been contributed to
the kinematics, dynamics and design of the DELTA robot
and its topology architectures.3–12

It is worth mentioning that there is another parallel
manipulator with three translational DoFs proposed by Tsai
and Stamper,13 which consists of only revolute joints and
is made up of planar parallelograms. Without multi-DoF
joints in it, the parallel manipulator has larger workspace
than the DELTA robot. Both Tsai’s manipulator and DELTA
robot with linear actuators can be applied in the field of
machine tools. Although, some papers (see Refs. [8,14])
have addressed the optimal design of the manipulators, it
is necessary to develop a multi-criterion design method that
can be more precise and effective. This paper addresses
the optimum design of the Tsai’s manipulator with linear
actuators.

A parallel manipulator is such a system that the moving
platform is connected to the base by at least two legs,
which leads to complex kinematics and interference between
legs. For such reasons, parallel manipulators have the
disadvantages in terms of relatively small useful workspace.
Workspace is one of the most important issues because it
determines the region where the manipulator can reach. The
workspace is, therefore, the most important index to design
a manipulator.15–17

For the issue of optimal design of parallel manipulators,
most methods are first to develop an objective function
and then to reach the result using the numerical method
with an algorithm.9,15–18 These methodologies have the
disadvantages in common, i.e. the objective function is
highly non-linear and the process is iterative and time
consuming. These methods can provide an optimal result.
But, the consumer cannot know how optimal the result is;
at least, they did not give us any proof about it. One of
the most convictive designs is maybe that achieved from
comparison. This method needs the tool of performance
chart, which is widely used in the classical design and most
design manuals. A manipulator usually has several design
parameters, and each of them, especially link lengths, can
have any value between zero and infinite. In order to present
the performance chart in a finite space, it is necessary to
normalize the involved design parameters. There are two
approaches about the parameter normalization. One is that
dividing all parameters by one of them.19 However, this
kind of normalization cannot make sure that the normalized
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parameters are finite. Thus, the developed design space
cannot be used to plot performance charts. Another one is
that dividing all parameters by their average,11,20,21 which
is referred to as the normalization factor. This normalization
makes sure that not only the normalized parameters are finite
but the sum of all parameters is constant as well. This is
very useful for the representation of a performance chart
and the performance comparison of different manipulators.
This paper extends the concept to the design of the three
translational DoFs parallel manipulator. The analysis in this
paper will show that the normalization factor doesn’t change
the similarity of manipulators’ performances. This is the most
important point in the kinematic design.

Generally, the workspace oriented optimal design of a
parallel manipulator is usually the determination of param-
eters with respect to a desired task workspace, in which
some other performances should be satisfied. This method
is usually implemented by specifying the task workspace
and searching the suitable parameter values using some
numerical algorithm. This method has the GCI definition
problem, which will be presented in the subsequent text. In
this paper, our method is proposed as follows: (a) normal-
ization of the involved design parameters and development
of a design space; (b) illustration of relationships between
involved performance indices and the normalized parameters
graphically; (c) use of performance charts to identify the
optimum region meeting kinematic performance constraints;
(d) selection of a candidate from the optimum region; (e) in-
vestigation of the local performance indices of the candidate
to determine the workspace, which is defined as the good-
conditioning workspace (GCW); (f) calculation of the nor-
malization factor by comparing the GCW and the desired task
workspace; and finally, (g) determination of the parameters
using the factor. Here, the normalized manipulator is defined
as the basic similarity manipulator (BSM). All manipulators
with the parameters multiplying the normalized parameters
with the normalization factor are referred to as the similarity
manipulators (SMs). The most important advantages of the
design method are that the developed design space includes
all possible BSMs and, due to the fact that the normalization
factor doesn’t change the global performance index and
distribution of local index in the workspace, any one of the
BSMs represents all of its SMs in terms of performances.
The design method shows graphically the process how
to reach the optimal result and the fact how optimal the
result is.

The local conditioning index (LCI), which is the reciprocal
of the condition number of the Jacobian matrix, has been
widely utilized in the design of a parallel manipulator.
The global conditioning index (GCI), which is the average
of LCI over a workspace, was defined to evaluate the
kinematic performance globally.22 It is noteworthy that,
as the average cannot describe the deviation between the
maximum and minimum values of LCI, the GCI itself cannot
give a full-scaled description of the overall global kinematic
performance. To solve the problem, Huang et al.23 defined a
comprehensive index concerning both the mean value and
range of the LCI in the task workspace. This definition
was proposed with respect to the assumption that volumes
of the task workspaces are the same. Another solution to

this problem can be that based on the assumption that the
minimum LCI values are the same but the task workspaces
are different. The minimum LCI can be specified with
respect to the design specification. And the set of points
where the LCI values are greater than or equal to (GE) the
minimum LCI is defined as the good-conditioning workspace
(GCW). The GCI is then the average of LCI over the GCW.
Therefore, if such a GCI value is bigger, we can conclude
that the manipulator has a better kinematic performance
in its workspace. The design method used in this paper is
based on the concept that manipulators with different link
lengths, the sum of which are the same, have different GCWs
and different GCI values. An optimal design result can be
achieved considering both the GCW and GCI. The design
with respect to the stiffness criterion can be also implemented
using this concept, and so others.

The basic concept of the optimal kinematic design used
in this paper is the determination of the parameters of
each leg length and the balance between the radii of
the moving platform and the base platform with respect
to desired task workspace and other related performance
indices. The input limit parameters will be achieved finally.
That means the input parameters are not involved in the
performance analysis. As the Jacobian matrix of the studied
parallel manipulator is independent of the z coordinate,
the optimal kinematic design can be implemented with
respect to the workspace in the O − xy plane. In such a
plane, the theoretical workspace is the intersection of three
identical circles. There exists a maximal inscribed circle
(MIC) in the workspace. Therefore, the task workspace
of the manipulator can be a cylinder. The desired task
workspace that is the design specification for an example is
also given as a cylinder. The said GCW for this manipulator is
actually the good-conditioning maximal inscribed workspace
(GCMIW), which is represented by the good-conditioning
maximal inscribed circle (GCMIC). After the normalization
on the design parameters, the performance charts of the
GCMIC, GCMIW-volume ratio, GCI and global stiffness
index (GSI) are plotted. Some typical optimum regions
about the normalized parameters are achieved with respect
to desired performances. Such regions contain optimal
candidates, from which one can pick up a suitable one
according to the design condition. Given the radius of
the desired task workspace, the link lengths of the design
parameters can be determined by multiplying the normalized
parameters with the normalization factor, which is the ratio
of the radius to the GCMIC of the selected candidate. The
input parameters that are needed for the manipulator to reach
the task workspace can be finally achieved.

II. INVERSE KINEMATICS PROBLEM
The three translational DoFs parallel manipulator, which is
an adaptation of Tsai’s parallel manipulator,13 is shown in
Figure 1, where the moving platform is connected to the base
by three identical serial chains, each of which is connected
to the base by prismatic joint. Each of the three chains
contains one parallelogram. The three parallelograms are
connected to the moving platform and the sliders by revolute
joints, respectively. The moving platform of the manipulator
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Fig. 1. Three translational DoFs parallel manipulator.

Fig. 2. Kinematic model of the manipulator with one leg.

has three translational DoFs with respect to the base. And
the output can be achieved through the combination of the
actuation to the three prismatic joints.

Kinematically, the studied parallel manipulator is identical
with that of the Delta parallel robot with linear
actuators.8,12,14 Closed-form solutions for both the inverse
and forward kinematics for the manipulator have been
developed.8 Here, for convenience, we recall the inverse
kinematics problem briefly. A kinematics model of the
manipulator is developed as shown in Figure 2. The center
of the revolute joint that connects the parallelogram with the
slider in each of the three chains is denoted as Bi (i = 1, 2, 3),
and the center of the revolute joint connected to the moving
platform in each chain is denoted as Pi(i = 1, 2, 3). A fixed
global reference system � : O − xyz is located at the center
of the regular triangle b1b2b3 with the z-axis normal to
the base and the x-axis directed along Ob1, as shown
in Figure 3. Another reference system �′ : O ′ − x ′y ′z′ is
located at the center of the regular triangle P1P2P3. The
z′-axis is perpendicular to the output platform and x ′-axis
directed along O ′P1, as shown in Figure 3. Related geometric
parameters are Obi =R, O ′Pi = r and BiPi =R1, where
i = 1, 2, 3. The objective of the inverse kinematics is to
find the inputs of the manipulator with the given position
of reference point O ′.

Fig. 3. Top view of the base frame and the moving platform.

The position vector [c]� of point O ′ in frame � can be
written as

[c]� = (x y z)T (1)

As shown in Figure 3, The coordinate of the point Pi in the
frame �′ can be described by the vector [P i]�′ (i = 1, 2, 3),
which can be expressed as

[P i]�′ = (r cos φi r sin φi 0)T, i = 1, 2, 3 (2)

where

φi = 2(i − 1)

3
π, (i = 1, 2, 3) (3)

which is the angle from the x ′-axis to the line O ′Pi , as
shown in Figure 3. Then vectors [P i]� (i = 1, 2, 3) in frame
O − xyz can be written as

[P i]� = (r cos φi + x r sin φi + y z)T (4)

As shown in Figure 3, vectors [Bi]� (i = 1, 2, 3) will be
defined as the position vectors of points Bi in frame �, and

[Bi]� = (R cos φi R sin φ zi)
T, i = 1, 2, 3 (5)

Then the inverse kinematics of the translational mani-
pulator can be solved by writing following constraint
equation

‖[P i − Bi]�‖ = R1, i = 1, 2, 3 (6)

that is

(x − xi)
2 + (y − yi)

2 + (z − zi)
2 = R2

1 (7)

in which, xi =R2 cos φi , yi = R2 sin φi , R2 = R − r and zi

are the inputs of the manipulator and can be rearranged from
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Eq. (7) as

zi = ±
√

R2
1 − (x − xi)2 − (y − yi)2 + z (8)

from which one can see that there are eight inverse kinematics
solutions for a given position of the parallel manipulator. The
eight solutions correspond to eight kinds of assembly modes
of the manipulator. Hence, for a given manipulator and for
prescribed values of the position of the moving platform,
the required actuated inputs can be directly computed from
Eq. (8). The assembly configuration shown in Figure 1 cor-
responds to the kinematic mode that the “±” in Eq. (8) is
“+”.

III. JACOBIAN MATRIX AND SINGULARITY
The Jacobian matrix is defined as the matrix that maps the
relationship between the velocity of the moving platform
and the vector of actuated joint rates. Then we should firstly
consider the velocity equation of the manipulator to obtain
the Jacobian matrix. Equations (7) can be differentiated
with respect to time to obtain the velocity equations, which
leads to

(z − zi)żi = (x − xi)ẋ + (y − yi)ẏ + (z − zi)ż, i = 1, 2, 3
(9)

Rearranging Eq. (9) leads to an equation of the form

Aρ̇ = B ṗ (10)

where ṗ is the vector of output velocities defined as

ṗ = (ẋ ẏ ż)T (11)

and ρ̇ is the vector of input velocities defined as

ρ̇ = (ż1 ż2 ż3)T (12)

In Eq. (10), A and B are, respectively, 3 × 3 matrices of
the manipulator and can be expressed as

A =

z − zi 0 0

0 z − z2 0
0 0 z − z3


,

B =

x − x1 y − y1 z − z1

x − x2 y − y2 z − z2

x − x3 y − y3 z − z3


 (13)

If matrix A is nonsingular, the Jacobian matrix of the
manipulator can be obtained as

J = A−1 B =




x − x1

z − z1

y − y1

z − z1
1

x − x2

z − z2

y − y2

z − z2
1

x − x3

z − z3

y − y3

z − z3
1




(14)

For the assembly mode shown in Figure 1, the Jacobian
matrix can be rewritten as

J =




x − R2 cos φ1

q1

y − R2 sin φ1

q1
1

x − R2 cos φ2

q2

y − R2 sin φ2

q2
1

x − R2 cos φ3

q3

y − R2 sin φ3

q3
1




(15)

in which, q1 =
√

R2
1 − (x − R2 cos φi)2 − (y − R2 cos φi)2

(i = 1, 2, 3).
The singularity can be achieved from Jacobian matrices A

and B.24 When |A| = 0 and |B| �= 0, from Eq. (13), there
is z = zi (i = 1, 2, 3), which means that the firs kind of
singularity occurs when any one of the three legs is in a
plane parallel to the O − xy plane. If |B| = 0 and |A| �= 0,
the second kind of singularity arises. This leads to x = xi

or y = yi . Physically, the three legs should be parallel to
each other. Then, if R − r �= 0, the singularity cannot occur.
|B| = 0 and |A| = 0 lead to the third kind of singularity. The
singularity is a particular case that the three legs are all in a
plane parallel to the O − xy plane. Only |R − r| = R1 will
result in this kind of singularity.

Therefore, in order to make the manipulator be assembled
and work freely, there should be R > r and R − r <R1 or
r >R and r − R <R1. In this paper, we are concerned about
the case that R >r and R − r <R1.

IV. LOCAL CONDITIONING INDEX
Mathematically, the condition number of a matrix is used
in numerical analysis to estimate the error generated in the
solution of a linear system of equations by the error on the
data.25 The condition number of the Jacobian matrix can be
written as

κ = ‖J‖‖J−1‖ (16)

where ‖·‖ denotes the Euclidean norm of the matrix, which
is defined as

‖J‖ =
√

tr( JT W J); W = 1

n
1 (17)

in which n is the dimension of the Jacobian matrix and 1 the
n× n identity matrix. Moreover, one has

1 ≤ κ ≤ ∞ (18)

and hence, the reciprocal of the condition number, i.e. 1/κ ,
is always defined as the local conditioning index (LCI)
to evalute the control accuracy, dexterity and isotropy of
a manipulator.26–29 This number is to be kept as large as
possible. If the number can be unity, the matrix is an isotropic
one, and the manipulator is in an isotropic configuration.
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Fig. 4. The maximal workspace in the O − xy plane.

V. WORKSPACE ANALYSIS

V.1. The maximal workspace in the O − xy plane
Equation (15) indicates that the Jacobian matrix is in-
dependent of z value. That means the LCI 1/κ will be same
if x and y are constant and whatever the z value is. As
most of the performance indices are defined based on the
Jacobian matrix, they also have such a characteristic on every
z workspace section. Therefore, in the design process we can
let z alone. To investigate the workspace performance and
define global indices, we can only be concerned about the
workspace at the z-section.

Disregarding the input, the maximal region that the
manipulator can reach in the O − xy plane is determined
by the singularity, i.e. the first kind of singularity where any
one of the three legs BiPi is parallel to the O − xy plane.
The maximal workspace in the O − xy plane, referred to be
as Wxy shown as the shade region in Figure 4, is actually the
intersection of three circles Ci , which can be written as

Ci : (x − xi)
2 + (y − yi)

2 = R2
1, i = 1, 2, 3 (19)

If the volume of the maximal workspace is denoted as VW−xy ,
there is

VW−xy = 3R2
1 tan−1




√
3

(√
4R2

1 − 3R2
2 − R2

)

3R2 +
√

4R2
1 − 3R2

2




− 3
√

3

4
R2

(√
4R2

1 − 3R2
2 − R2

)
(20)

From Figure 4, one can see that there exists a maximal
inscribed circle12 (MIC) within the maximal workspace Wxy .
The MIC defines a workspace, which is referred to as the

maximal inscribed workspace (MIW). The task workspace
of the manipulator is usually a cylinder, the section of which
can be the MIC. The radius of the MIC can be written as

RMIC = R1 − R2 (21)

One can see that the larger the maximal workspace Wxy , the
longer the MIC radius. Therefore, the MIC radius can be
used to measure the volume size of Wxy .

V.2. Good-conditioning workspace in the O − xy plane
As the maximal workspace Wxy is bounded by the singu-
larities, one can imagine that there exist some points within
the workspace where the LCI will be zero or very small. At
these points, the control accuracy of the manipulator will be
very poor. Practically, these points will not be used. And in the
design process, they should be excluded. The left workspace
that will be used in practice can be referred to as the good-
conditioning workspace (GCW), which can be bounded by
locus where the LCI is equal to a specified LCI value, i.e.
1/κ . Then, the set of points where the LCI is greater than
or equal to (GE) a specified LCI is defined as the GCW. As
the manipulator is symmetric in structure, the distribution
of some performances, e.g. LCI, should be symmetric as
well. Therefore, there should exist a MIC in the GCW. Here,
the MIC is defined as good-conditioning maximal inscribed
circle (GCMIC), and the MIW bounded by such a MIC
is referred to as the good-conditioning maximal inscribed
workspace (GCMIW). Since the task workspace is usually
a cylinder, the GCMIW is actually the section of the task
workspace. And the optimal design of the manipulator can
be implemented with respect to the GCMIW.

The LCI value indicates the distance of a point to the
singularity. Figure 5 illustrates the distribution of LCI within
the maximal workspace Wxy . It shows that the distribution
is symmetry about the three lines y = 0, y =√

3x and

Fig. 5. Investigation of the LCI on the maximal workspace.
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Fig. 6. Input limits of each leg within the GCMIW.

y =−√
3x. On the boundary of the workspace, the LCI is

zero. The nearer the distance to the origin point, the better
the LCI, and at the origin point the LCI is best. It also implies
that, within a circle centered at the origin point, the LCI at the
three points that is nearest to the boundary of the maximal
workspace Wxy is worst. The three points are located at the
lines y = 0, y =√

3x and y = −√
3x. Their distances to the

origin point are same. The distance is, in fact, the radius
of the GCMIC. Then, in order to find out a GCMIW of a
given manipulator, one can search numerically the value of
x within the domain [−RMIC, 0] using Eq. (16) with respect
to a specified LCI by letting y = 0. If the expected x value
for a specified LCI is denoted as xGC (xGC ≤ 0), the GCMIC
radius RGCMIC can be written as

RGCMIC = −xGC (22)

V.3. Workspace-volume ratio
The input limits of each leg can be achieved when the leg
reaches its nearest and farthest points. For example, as shown
in Figure 6, the input limits zmax−xy and zmin−xy for the first
leg within the GCMIW can be obtained as

zmax−xy =
√

R2
1 − (R2 − RGCMIC)2 and

zmin−xy =
√

R2
1 − (R2 + RGCMIC)2 (23)

Thus, disregarding the workspace along z-axis, the basic
volume of the manipulator can be written as

Vb = πR2
2zmax−xy = πR2

2

√
R2

1 − (R2 − RGCMIC)2 (24)

The GCMIW to the basic volume ratio, here, for short,
GCMIW-volume ratio, can be expressed as

RAW−V = R2
GCMIC

R2
2

√
R2

1 − (R2 − RGCMIC)2
(25)

VI. PERFORMANCE CHARTS OF THE GCMIC
AND THE GCMIW-VOLUME RATIO

VI.1. Normalization on the geometric parameters
As well known, the performance of a parallel manipulator
depends on not only the pose of the moving platform but also
the link lengths (dimensions). In order to study a performance
of the manipulator in detail, it is necessary to investigate the
relationships between the performance evaluating index and
the link lengths of the geometric parameters.

According to the analysis in section V, the Jacobian matrix
J , the maximal workspace Wxy and the GCMIW of a
manipulator are heavily related to parameters R1 and R2.
Theoretically, each of the parameters R1 and R2 can have
any value between 0 and infinite. This is the biggest problem
to study the relationship between a performance and link
lengths in a finite space. For this reason, we must eliminate
the physical link size of the manipulator. Let

D = (R1 + R2)/2 (26)

which is defined as the normalization factor. One can obtain
two non-dimensional parameters ri by means of

r1 = R1/D and r2 = R2/D (27)

Then there is

r1 + r2 = 2 (28)

Theoretically, from Eq. (28), the two non-dimensional
parameters r1 and r2 can have any value between 0 and 2.
For the three translational DoFs parallel manipulator studied
here, the analysis on the workspace and singularity shows
that the two parameters should be

r2 < r1 (29)

Considering Eq. (28) and relationship r2 > 0, condition
Eq. (29) can be rewritten as

2 > r1 > 1 (30)

Therefore, the normalized parameters are limited. Eq. (30)
defines a design space of the manipulator. This makes it
possible to show the relationship between a performance
index and the geometric parameters graphically. The
subsequent sections study the manipulators with non-
dimensional parameters r1 and r2. In Eqs. (6)–(25), Rj should
be replaced by rj (j = 1, 2). The MIC and GCMIC radii of a
normalized manipulator are accordingly denoted as rMIC and
rGCMIC, respectively.

VI.2. Performance charts
For the non-dimensional parallel manipulators, the MIC of
the maximal workspace in the O − xy plane can be writes as

rMIC = r1 − r2 = 2(r1 − 1) (31)

which is proportional to the parameter r1.
For a given normalized manipulator with parameters r1

and r2, the GCMIC radius can be achieved numerically from
Eq. (16) by searching the expected x value within the domain
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Fig. 7. Chart of the GCMIC radius when LCI is specified as 0.3.

Fig. 8. Chart of the GCMIW-volume ratio when LCI is specified as
0.3.

[−rMIC, 0] with respect to a specified LCI when y = 0. If
the LCI is specified as 0.3, the relationship between the
rGCMIC and the normalized parameter r1 is shown in Figure 7,
from which one can see that there is the GCMIW for the
normalized manipulator when r1 ∈ [1.0120, 1.4380], and the
rGCMIC reaches its maximum when r1 = 1.3420.

Replacing Rj (j = 1, 2) and RGCMIC in Eq. (25) by rj

and rGCMIC, respectively, the GCMIW-volume ratio, denoted
as raW−V , of a normalized manipulator can be obtained.
Figure 8 illustrates the relationship between the GCMIW-
volume ratio and the normalized parameter r1. It shows
that the GCMIW-volume ratio reaches its maximum when
r1 = 1.3610. The comparison between Figures 7 and 8 in-
dicates that a manipulator with longer GCMIC usually has
better GCMIW-volume ratio.

VII. PERFORMANCE CHARTS OF SOME
GLOBAL INDICES
As the GCW or GCMIW-volume ratio is incapable of
representing the global kinematic performance in the
workspace, in the optimal design of a manipulator, it cannot
be the only criterion. Some other performances, such as the
average of the LCI over the GCMIW and stiffness, must be
involved. In this section, being as the examples, the global

conditioning and stiffness indices will be investigated and
presented graphically by their charts.

VII.1. Global conditioning index
The condition number κ is configuration-dependent. The LCI
1/κ is a local performance index. In section V.2, the GCW
is defined with respect to a specified LCI. According to the
definition, the GCW is such a region where the LCI at every
point is GE the specified LCI. Therefore, one cannot be sure
that a manipulator with a larger GCMIW has a better LCI
average over the GCMIW, i.e. the better global behavior. In
order to evaluate the global behavior of a manipulator on
a workspace, a global index was defined by Gosselin and
Angeles22 as

η =
∫

W

1/κ dW

/∫
W

dW (32)

which is the global conditioning index (GCI). In Eq. (32), W
is the GCMIW when LCI ≥ 0.3. In particular, a large value
of the index ensures that the manipulator can be precisely
controlled.

It is noteworthy that the mathematic meaning of Eq. (32) is
particular. Although the GCMIWs for different manipulators
are different, the minimum LCIs (0.3) are the same.
Therefore, the GCI defined here can give a full-scaled
description of the overall global kinematic performance to
compare the performance for different manipulators, and so
is the stiffness index defined in next section.

The chart of GCI for the manipulator is shown in Figure 9,
from which one can see that:

• The index reaches its maximum when r1 = 1.1010.
• When r1 is less than 1.1010 and greater than 1.0120, GCI is

proportional to the parameter r1. It is inverse proportional
to r1, when r1 is more than 1.1010 and less than 1.4380.

Comparing the chart of GCI with those of GCMIC radius
and GCMIW-volume ratio, it is not difficult to find out that a
manipulator with larger GCMIW or better GCMIW-volume
ratio usually has worse GCI, and a manipulator with better
GCI usually has smaller GCMIW or worse GCMIW-volume
ratio.

Fig. 9. Chart of the GCI with respect to the GCMIW when LCI is
specified as 0.3.
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VII.2. Global stiffness index (GSI)
There will be deformation on the end-effector if the external
force acts on it. The deformation is depended on the
manipulator stiffness and the external force. The manipulator
stiffness affects the dynamics and the position accuracy of the
device, for which stiffness is an important performance index.
Especially, the static stiffness (or rigidity) of the manipulator
can be a primary consideration in the design of a parallel
manipulator for certain applications, e.g., machine tools.

In the operational coordinate space, we define a stiffness
matrix K that relates the external force vector τ at the moving
platform to the output displacement vector D of the moving
platform according to

D = K−1τ (33)

where the stiffness matrix K is expressed as

K = JT Kp J (34)

with

Kp =
[

kp1

kp2

]
(35)

in which kpi is a scalar representing the stiffness of each of
the actuators.

If kp1 = kp2 = 1 and ‖τ‖2 = 1, by establishing the
Lagrange equation,20 the maximum and minimum
deformations can be obtained as

‖Dmax‖ =
√

max(|λDi |) and ‖Dmin‖ =
√

min(|λDi |) (36)

where λD i (i = 1, 2) are the eigenvalues of the matrix
(K−1)T K−1 · ‖Dmax‖ and ‖Dmin‖ are actually the maximum
and minimum deformations on the end-effector when both
the external force vector and the matrix Kp are unity. The
maximum and minimum deformations form a deformation
ellipsoid, whose axes lie in the directions of the eigenvectors
of the matrix (K−1)T K−1. Its magnitudes are the maximum
and minimum deformations given by Eq. (36). Usually, the
deformation ‖Dmax‖ can be used to evaluate the stiffness of
a manipulator, which is defined as the local stiffness index
(LSI). The smaller the deformations, the better the stiffness.

Similarly, based on Eq. (36), the global stiffness index
(GSI) that can evaluate the stiffness of a manipulator within
the workspace is defined as

ηD =

∫
W

‖Dmax‖dW

∫
W

dW

(37)

where, for the manipulator studied here, W is the GCMIW
when LCI ≥ 0.3. Usually, ηD can be used as the criterion
to design the manipulator with respect to the stiffness.
Normally, we expect that the index value should be as small
as possible.

Figure 10 shows the relationship between the GSI ηD and
the normalized parameter r1. The chart indicates that ηD is

Fig. 10. Chart of the GSI with respect to the GCMIW when LCI is
specified as 0.3.

proportional to r1, i.e. the global stiffness of a manipulator is
inverse proportional to r1.

VIII. OPTIMUM DESIGN EXAMPLE BASED ON
THE CHARTS

VIII.1. Optimum region with respect
to desired performances
In the last sections, the parameters of the three translational
DoFs parallel manipulator were normalized. The normaliza-
tion makes it possible to illustrate the relationship between a
performance index and the normalized parameters in a limi-
ted space. And the indices for workspace, control accuracy
(isotropy, dexterity), and stiffness of the manipulator have
been studied and corresponding performance charts have
been plotted. These charts can be used in the optimum design
of the manipulator in this section.

Here, the optimum region with non-dimensional para-
meter with respect to desired performances will be first
given.

VIII.1.1. GCMIW-volume ratio and GCI. In almost all
designs, the workspace and GCI are usually considered. In
terms of the workspace performance, a high GCMIW-volume
ratio is always welcome. At the same time, a good GCI per-
formance within the workspace is preferred. From Figure 8,
we can see that, within the region r1 ∈ [1.0120, 1.4380],
the relationship between the GCMIW-volume ratio and
the parameter r1 is non-monotone, and so is that between
GCI and the parameter. Therefore, it is impossible to find
a manipulator with best GCI and, at the same time, highest
GCMIW-volume ratio. This is also the universal problem
in the issue of optimum design, especially, with multi-
performances. Undoubtedly, in some applications, if it is not
necessary to care about the GCI but only the GCMIW-volume
ratio, the designer can select candidates near r1 = 1.3610.
Similarly, if the designer is just concerned about the GCI
and let the GCMIW-volume ratio alone, he can pick up an
optimal candidate near r1 = 1.1010. But, for the problem
considered here, if the GCMIW-volume ratio is specified as
raW−V ≥ 0.2 and GCI η ≥ 0.45, we can obtain a common
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Fig. 11. One optimum region with desired raW−V and GCI.

region �RA-GCI = [r1|1.2198 ≤ r1 ≤ 1.2639], as shown in
Figure 11, subjected to both of the specifications. Such a
region can be one optimum design region if both GCMIW-
volume ratio and GCI performances are considered. This
region gives the possible geometric parameters r1 and
r2 (r2 = 2 − r1) of the manipulator, which has desired
GCMIW-volume ratio and GCI performances. For example,
the manipulator with r1 = 1.23 and r2 = 0.77 can be one
candidate of the optimum design. The two performance
indices are raW−V = 0.2185 and η = 0.4939, respectively.
And its GCMIC radius is rGCMIC = 0.3893 when LCI ≥ 0.3.

VIII.1.2. GCMIW-volume ratio, GCI and GSI. In this
paper, the stiffness is evaluated by the maximum deformation
of the end-effector when the external force and the stiffness
of each of the actuators are unit. Taking into account the
stiffness, usually, we expect the index ηD to be as small as
possible. To achieve an optimum region with respect to the
three indices, the GCMIW-volume ratio can be specified as
raW−V ≥ 0.2, GCI η ≥ 0.45 and GSI ηD ≤ 1.3. The optimum
region will be �RA-GCI-GSI = [r1|1.2198 ≤ r1 ≤ 1.2523].
For example, the evaluating criterion of the GSI of the
manipulator with parameters r1 = 1.23 and r2 = 0.77 is
ηD = 1.1333.

VIII.1.3. GCI and GSI. In the micro application where
large workspace is not needed, the GCI and GSI can be
considered only. Figure 10 shows that a shorter r1 will lead
to better stiffness performance. Comparing Figures 9 and 10,
one can find out that a manipulator with better GCI usually
has higher stiffness. For instance, the manipulator in the
region �GCI- GSI = [r1|1.0769 ≤ r1 ≤ 1.1180] has very good
GCI and stiffness performances. For example, the GCI and
GSI the manipulator with parameters r1 = 1.1 and r2 = 0.9
are η = 0.7006 and ηD = 0.4323, respectively.

VIII.2. Dimension determination based on the obtained
optimum example with respect to a desired task workspace
The final objective of optimum design is to determine the link
lengths of a manipulator. In the last section, some optimum
regions have been presented as examples. These regions
consist of manipulators with non-dimensional parameters.

The selected optimum manipulators with non-dimension are
comparative results. They are not the final results. In this
section, the dimension of an optimal manipulator will be
determined with respect to a desired task workspace.

As an example to present how to determine the dimensional
parameters of a non-dimensional optimum manipulator
achieved in section VIII.1. we consider the manipulator with
r1 = 1.23 and r2 = 0.77 selected in section VIII.1.2. The
manipulator is from the optimum region �W-GCI-GSI , where
the workspace, GCI and stiffness are involved in the design
objective.

Supposing that the desired task workspace of a three
translational DoFs parallel manipulator is a cylinder with
φ30 mm × 20 mm, the process to reach the dimension with
respect to the workspace can be summarized as following:

Step 1: Investigating the distribution of LCI and LSI in the
GCMIW. For the aforementioned example, the distribution
is shown in Figure 12 (a) and (b), respectively, from which
one can see that the LCI reaches it’s maximum at the origin
point (x = 0, y = 0), where the stiffness is also best.

Step 2: Determining the normalization factor D, which
was used to change the dimensional geometric parameters of
a manipulator to those with non-dimension. From Eq. (21),
we can see that the MIC of a manipulator with parameters Rj

(j = 1, 2) is D-time that of its normalized manipulator with
parameters rj . As the normalization factor D cannot change
the Jacobian matrix J (check Eq. (15)), it cannot result
the LCI in different as well. Therefore, the GCMIC of the
manipulator with Rj must be D-time that of its normalized
manipulator, i.e.,

RGCMIC = DrGCMIC (38)

Once the GCMIC radius of a normalized manipulator
is determined, the normalization factor D can be achieved
using Eq. (38). For example, if the investigation on the LCI
and LSI is available, the GCMIC of the example remains
0.3893. Based on Eq. (38), the factor D can be obtained as
D = 15

/
0.3893 ≈ 38.5307 mm.

Step 3: Achieving the dimensional parameters of the
optimum manipulator using the normalization factor D. As
given in Eq. (27), the relationship between a dimensional
parameter and a non-dimensional one is Rj =Drj . Then,
if D is determined, Ri can be achieved accordingly. For
the above example, there are R1 ≈ 47.40 mm and R2 ≈
29.67 mm.

The investigation in Step 1 shows that the stiffness at
points (x =−15, y = 0) and its two symmetric points is
worst. Therefore, the stiffness at the point of the designed
manipulator should be checked. Note that in the definition of
the LSI, the stiffness of each of the actuators and the norm of
the external force vector are both supposed to be unit. In this
step, one should use the real stiffness of each actuator and
the external force in the application to check the stiffness
at the stiffness worst point. The examination determines
whether it should adjust the GCMIC radius rGCMIC or not.
For example, if the stiffness at the stiffness worst points
and their neighborhoods cannot satisfy the specification on
stiffness, one can increase the specified LCI value to decrease
the GCMIC radius. In contrary, if the stiffness and control
accuracy are allowed, one can decrease the specified LCI
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Fig. 12. Distribution of the LCI and LSI in the GCMIW of the non-dimensional manipulator: (a) LCI; (b) LSI.

value to increase the GCMIC radius. If the GCMIC radius
rGCMIC should be adjusted, calculate its new value using
Eq. (16) by changing the specified LCI value and jump to
Step 2, otherwise, go to Step 4.

Step 4: Calculating the input limit for each actuator. If
we put the bottom section of the cylinder workspace on the
O − xy plane, the input limits of the designed manipulator
can be written as

zmax = zmax−xy + H and zmin = zmin−xy (39)

where, H is the height of the cylinder workspace and zmax−xy

and zmin−xy can be achieved from Eq. (23), in which the
RGCMIC is actually the radius of the cylinder workspace. For
the example, if it is not necessary to adjust the GCMIC
radius rGCMIC in Step 3, there are zmax = 65.0727 mm and
zmin = 15.8541 mm for the design manipulator.

For the manipulator studied here, the final objective
of the optimal kinematic design is the determination of
parameters R1, R − r =R2 and the input limits zmax and
zmin. By now, the parameters are all achieved. Practically,
we are concerned about the parameters R and r but not
R2 itself. Actually, the determination of r depends on the
practical design of the device. As we cannot predict any
design condition, this is not the content of the paper. As an
example, letting r = 12 mm, the parameters of the designed
manipulator are R1 = 47.40 mm, R = 41.67 mm, r = 12 mm,
zmax = 65.0727 mm and zmin = 15.8541 mm.

IX. SIMILARITY MANIPULATORS
In the proposed design method described in section VIII, we
take it for granted that the designed manipulator is optimal
if its normalized manipulator is optimal. Why? Firstly,
let’s check the performances of the designed manipulator.
Figure 13 (a) shows the distribution of LCI in the z-section
of the desired task workspace, from which one can see that

the distribution is the same as that shown in Figure 12 (a) of
the normalized manipulator. The GCI is still equal to 0.4939.
Figure 13 (b) illustrates the distribution of LSI in the work-
space section. Comparing Figure 13 (b) with Figure 12 (b),
it is not hard to see that the distributions of LSI are the same
as well. What is more, quantitatively, the GSI value is also
1.1333. Then, the factor D doesn’t change the GCI and GSI
and the distributions of LCI and LSI in the workspaces. For
such reasons, all manipulators with parameters Rj =Drj

are defined as the similarity manipulators (SMs). The
normalized manipulator with parameters rj are referred to
as the basic similarity manipulator (BSM). Thus, all SMs
are similar in terms of performances. As the parameters of
any one of the SMs can be expressed by those of the BSM,
the BSM stands for not only itself but also all of its SMs in
terms of performances. All BSMs are embodied in a limited
design space. The optimal normalized manipulator, which is
one of the BSMs in the design space, is from the optimum
region, which is the intersection considering desired criteria.
We can conclude that the designed manipulator that is one of
its SMs is also optimal.

X. CONCLUSION
This paper proposes an optimal kinematic design method to
determine the geometric parameters of a three translational
DoFs parallel manipulator. The key issue of this design
method is to establish a geometric design space based on
the involved geometric parameters, which can embody all
basic similarity manipulators. Then, performance charts of
desired indices can be plotted. These charts can be used to
identify an optimal region, from which an ideal candidate
can be selected. The real-dimensional parameters can be
achieved by comparing the desired task workspace and
the good-conditioning maximal inscribed workspace of the
basic similarity manipulators. Compared with other design
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Fig. 13. Distribution of the LCI and LSI in the workspace section along z-axis of the designed manipulator: (a) LCI; (b) LSI.

methods, the proposed methodology has some advantages
as follows: (a) one performance criterion corresponds to
one chart, which can graphically and globally show the
relationship between the criterion and design parameters;
(b) for such a reason in (a), the fact that some performance
criteria are antagonistic is no longer a problem in the design;
(c) the optimum design process can consider multi-objective
functions or multi-criteria, and also guarantees the optimal
result; and finally, (d) as the optimum design can be carried
out by using performance charts, this methodology shall be
said to be acceptable in practice.
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