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Log-concavity [log-convexity] and their various properties play an increasingly important
role in probability, statistics, operations research and other fields. In this paper, we first
establish general preservation theorems of log-concavity and log-convexity under operator
φ �−→ T (φ, θ) = E[φ(Xθ)], θ ∈ Θ, where Θ is an interval of real numbers or an interval of
integers, and the random variable Xθ has a distribution function belonging to the family
{Fθ, θ ∈ Θ} possessing the semi-group property. The proofs are based on the theory of
stochastic comparisons and weighted distributions. The main results are applied to some
special operators, for example, operators occurring in reliability, Bernstein-type operators
and Beta-type operators. Several known results in the literature are recovered.
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1. INTRODUCTION

A nonnegative function φ defined on an interval D ⊆ R is said to be log-concave on D if

φ(αx+ (1 − α)y) ≥ [φ(x)]α[φ(y)]1−α for all x, y ∈ D and α ∈ (0, 1).

If φ(x) > 0 for all x ∈ D, then an equivalent condition is that logφ(x) is concave on D. φ is
said to be log-convex if the above inequality is reversed. A log-concave or log-convex function
φ on D does not have internal zeros, that is, there does not exist three points x, y, z ∈ D
such that x < y < z, φ(y) = 0 and φ(x)φ(z) > 0. Similarly, a sequence {an, n ∈ N} is said
to be log-concave, if an ≥ 0 for n ∈ N ≡ {0, 1, . . .}, and

a2
n ≥ an+1an−1 for all n ∈ N+ ≡ {1, 2, . . .}.

{an} is said to be log-convex on N if the above inequality is reversed. A log-concave or
log-convex sequence {an} does not have internal zeros.
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Log-concave [log-convex] functions have many nice analytical properties and play an
important role in statistics, probability, operations research, reliability, economics and other
fields. Saumard & Wellner [30] is a comprehensive review of log-concavity in the statistics
literature, which also includes some connections between log-concavity and other areas of
mathematics and statistics. An [2] and Bagnoli & Bergstrom [7] are two other reviews of log-
concavity in econometrics. For more on log-concavity, we refer the reader to Dharmadhikari
& Joag-dev [14], Finner & Roters [15], Finner & Roters [16], Liggett [21], Sengupta &
Nanda [31], Wang & Yeh [34], Kahn & Neiman [19], Yu [35], Bobkov & Madiman [9], Bad́ıa
& Sangüesa [5,6] and references therein.

Let C be a class of functions φ : D → R, satisfying certain Property-P, and define an
operator:

φ �−→ Tt(φ, θ), θ ∈ Θ,

where t is a (possible) parameter, and Θ is an interval of real numbers or an interval
of integers. What conditions must the function φ and the operator Tt satisfy in order
that Tt(φ, ·) has Property-P? This is a preservation problem, that is, the operator Tt as a
function of θ possesses or inherits Property-P of the function φ. Property-P can, for example,
be increasing, concave, Schur-concave and so on. There is a long history of preservation
theorems in the literature (see, e.g., [22] and references therein). Preservation theorems
have generally enabled one to understand the property preserved and to generate other
functions with the same property.

In this paper, we consider preservation properties of log-concavity and log-convexity of
function φ under the operator Tt. The semi-group property plays an important role in the
whole paper. Let Θ be an interval of real numbers or an interval of integers. A family of dis-
tribution functions {Fθ, θ ∈ Θ} is said to possess the semi-group property (see [28]) if Fθ1 ∗
Fθ2 = Fθ1+θ2 whenever θ1, θ2 ∈ Θ and θ1 + θ2 ∈ Θ, where * denotes convolution; that is,

Fθ1+θ2(x) =
∫

R

Fθ1(x− t) dFθ2(t), x ∈ R.

If {Fθ, θ ∈ Θ} has the semi-group property, there exists a stochastic process {Xθ, θ ∈ Θ}
with independent increments and Xθ has the distribution Fθ for all θ ∈ Θ.

The rest of the paper is organized as follows. In Section 2, we present general
preservation theorems of log-concavity and log-convexity under the operator

φ �−→ T (φ, θ) = E[φ(Xθ)], θ ∈ Θ,

where the random variable Xθ has a distribution function belonging to the family {Fθ, θ ∈
Θ} possessing the semi-group property. The proofs are based on the theory of stochastic com-
parisons and weighted distributions. In Section 3, the main results of Section 2 are applied
to some special operators, for example, operators occurring in reliability, Bernstein-type
operators and Beta-type operators. Several known results in the literature are recovered.

Throughout, the terms “increasing” and “decreasing” mean “nondecreasing” and “non-
increasing”, respectively. a/0 is understood to be ∞ whenever a > 0, and 0/0 is not defined.
All ratios are well defined. All expectations and integrals are implicitly assumed to exist
whenever they are written.

2. GENERAL PRESERVATION THEOREMS

First, we recall the definitions of some stochastic orders from Shaked & Shanthikumar [32].
Let X and Y be two random variables with respective survival functions F and G. Then,
X is said to be smaller than Y
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• in the usual stochastic order, denoted by X ≤st Y , if F (t) ≤ G(t) for all t ;
• in the hazard rate order, denoted by X ≤hr Y , if G(t)/F (t) is increasing in t ;
• in the reversed hazard rate order, denoted by X ≤rh Y , if G(t)/F (t) is increasing in

t ;
• in the likelihood ratio order, denoted by X ≤lr Y , if X and Y have respective density

(mass) functions f and g, and if g(t)/f(t) is increasing in t.

The relationships among these orders are shown in the following diagram:

X≤lrY ⇒ X≤hrY
⇓ ⇓

X≤rhY ⇒ X≤stY

To prove the main results, Theorems 2.4 and 2.5, we need three useful lemmas.

Lemma 2.1 ([17,24]): Let Θ be a subset of the real line R, and let Xθ be a nonnegative
random variable having a distribution function Fθ belonging to the family P = {Fθ, θ ∈ Θ},
which satisfies that Fθ1 ≤st Fθ2 whenever θ1, θ2 ∈ Θ and θ1 < θ2. Let Ψ(x, θ) be a real-valued
function defined on R × Θ, and be measurable in x for each θ. Then,

(i) E[Ψ(Xθ, θ)] is increasing in θ, if Ψ(x, θ) is increasing in θ and increasing in x;
(ii) E[Ψ(Xθ, θ)] is decreasing in θ, if Ψ(x, θ) is decreasing in θ and decreasing in x.

Let φ : R → R+ ≡ [0,∞) be a measurable function. For a random variable Xθ with
distribution function Fθ, θ ∈ Θ, we define the weighted distribution corresponding to Fθ as

Gφ(x | θ) =
∫ x

−∞

φ(u)
E[φ(Xθ)]

dFθ(u), ∀ x ∈ R. (2.1)

We use the notation Hφ[Xθ] to denote a random variable having distribution function
Gφ(x|θ). The weighted distributions have been applied in several areas, such as reliability,
renewal theory, biometry, ecology and wildlife population studies. We refer to Patil [27]
and Patil & Rao [26] for a survey of weighted distributions. Under the assumption that the
underlying random variables are independent and have marginal density or mass functions,
Li et al. [20] in their Theorem 2.3 established the subadditivity [superadditivity] property of
weighted distributions for log-concave [log-convex] weight functions in the sense of the usual
stochastic order. However, this subadditivity [superadditivity] property also holds when the
underlying random variables do not have density or mass functions. We state it here as a
lemma.

Lemma 2.2: Let X1,X2, . . . , Xn be independent and nonnegative random variables, and
let φ : R+ → R+ be a measurable function. Assume that Hφ[X1],Hφ[X2], . . . , Hφ[Xn] are
independent.

(i) If φ is log-concave, then Hφ [
∑n

i=1Xi] ≤st

∑n
i=1Hφ[Xi];

(ii) If φ is log-convex, then Hφ [
∑n

i=1Xi] ≥st

∑n
i=1Hφ[Xi] and, hence, Hφ[X1 +X2] ≥st

Hφ[X1].

Proof: We use an idea similar to that in the proof of Theorem 2.3 in Li et al. [20]. We give
the proof of part (i); the proof of part (ii) is similar. First, assume n = 2, suppose that φ
is log-concave on R+and denote by Fi the distribution function of Xi for each i. It can be
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checked that there exist nonnegative random variables Y1 and Y2 with the joint distribution
function given by

G(y1, y2) =
∫ y1

0

∫ y2

0

φ(x1 + x2)
E[φ(X1 +X2)]

dF1(x1) dF2(x2), ∀ (y1, y2) ∈ R
2
+, (2.2)

such that

Hφ[X1 +X2] =st Y1 + Y2.

From (2.2) and the independence of X1 and X2, it follows that Y1 has the marginal
distribution function

G1(y1) =
∫ y1

0

∫ ∞

0

φ(x1 + x2)
E[φ(X1 +X2)]

dF1(x1) dF2(x2) =
∫ y1

0

E[φ(x1 +X2)]
E[φ(X1 +X2)]

dF1(x1).

Note that Hφ[Xi] has the distribution function

Gφ(y|i) =
∫ y

0

φ(u)
E[φ(Xi)]

dFi(u), ∀ y ∈ R+, i = 1, 2.

The remaining proof involves the following two steps.

(a) We first show Y1 ≤rh Hφ[X1], which implies

Y1 ≤st Hφ[X1]. (2.3)

To show it, it suffices to verify that G1(y)/Gφ(y|1) is decreasing in y ∈ R+, that is,
for 0 ≤ y1 < y2,

∫ y1

0

E[φ(x+X2)]dF1(x) ·
∫ y2

0

φ(u) dF1(u) ≥
∫ y2

0

E[φ(x+X2)] dF1(x)

×
∫ y1

0

φ(u) dF1(u)

or, equivalently,

∫ y1

0

E[φ(x+X2)] dF1(x) ·
∫ y2

y1

φ(u) dF1(u)

≥
∫ y2

y1

E[φ(u+X2)] dF1(u) ·
∫ y1

0

φ(x) dF1(x)

⇐⇒
∫ y1

0

∫ y2

y1

E

[
φ(x+X2)φ(u) − φ(x)φ(u+X2)

]
dF1(x) dF1(u) ≥ 0. (2.4)

This is true since the integrand in (2.4) is nonnegative by using the log-concavity of
φ. Hence, (2.3) follows.
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(b) For any Δ > 0 and y1 ∈ R+, denote A = [y1, y1 + Δ). We then aim to show

[
Y2|Y1 ∈ A

] ≤rh Hφ[X2]. (2.5)

Note that the conditional distribution function of Y2 given Y1 ∈ A is

G2|1(y|A) = P(Y2 ≤ y|Y1 ∈ A) =

∫ y1+Δ

y1

∫ y

0
φ(x1 + x2) dF1(x1) dF2(x2)∫ y1+Δ

y1

∫∞
0
φ(x1 + x2) dF1(x1) dF2(x2)

.

It requires to prove that G2|1(y|A)/Gφ(y|2) is decreasing in y ∈ R+. Note that

G2|1(y|A)
Gφ(y|2)

∝
∫ y1+Δ

y1

∫ y

0
φ(x1 + x2) dF1(x1) dF2(x2)∫ y

0
φ(x) dF2(x)

= [F1(y1 + Δ) − F1(y1)] ×
∫ y

0
E[φ(x+X∗

1 )] dF2(x)∫ y

0
φ(x) dF2(x)

,

where X∗
1 has the same distribution as that of X1 given X1 ∈ A. A similar argument

to that of Case (a) yields that G2|1(y|A)/Gφ(y|2) is decreasing in y ∈ R+ and, hence,
(2.5) follows.

Observing (2.3) and (2.5), by Theorem 6.B.3 in Shaked & Shanthikumar [32], we have
(Y1, Y2) ≤st (Hφ[X1],Hφ[X2]). Then by Theorem 6.B.16 (a) in Shaked & Shanthikumar
[32], we obtain

Hφ[X1 +X2] =st Y1 + Y2 ≤ Hφ[X1] +Hφ[X2].

For n > 2, the general result follows by induction. This completes the proof of the
lemma. �

Based on part (ii) of Lemma 2.2, we have the following result for a family of distribution
functions with the semi-group property.

Lemma 2.3: Let Xθ be a nonnegative random variable having a distribution function belong-
ing to the family {Fθ, θ ∈ Θ}, which possesses the semigroup property. If φ : R+ → R+ is
log-convex, then

Hφ[Xθ1 ] ≤st Hφ[Xθ2 ]

whenever θ1, θ2 ∈ Θ and θ1 < θ2.

By Lemma 2.3, we can establish the following preservation property of log-convexity.

Theorem 2.4: Let Xθ be a nonnegative random variable having a distribution function
belonging to the family {Fθ, θ ∈ Θ}, which possesses the semi-group property. Then, for a
function φ : R+ → R+, T (φ, θ) = E[φ(Xθ)] is log-convex in θ ∈ Θ if φ is log-convex on R+.

https://doi.org/10.1017/S0269964820000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000042


456 W. Xia et al.

Proof: Assume that φ is log-convex. To prove the desired result, it suffices to prove that

T (φ, θ1 + δ)
T (φ, θ1)

≤ T (φ, θ2 + δ)
T (φ, θ2)

(2.6)

whenever θ1 < θ2 and δ > 0 such that θi, θi + δ ∈ Θ. Denote by Wi = Xθi+δ −Xθi
for i =

1,2. Then W1 =st W2 and W2 is independent of Xθi
. First, note that

T (φ, θi + δ)
T (φ, θi)

=
E[φ(Xθi

+W2)]
E[φ(Xθi

)]
= E

{
E

[
φ(Xθi

+W2)
E[φ(Xθi

)]

∣∣∣∣W2

]}

= E

[∫
R

φ(x+W2)
φ(x)

dGφ(x|θi)
]

= E
{
E[Ψ(Ui,W2)|W2]

}
, (2.7)

where Ψ(u,w) = φ(u+ w)/φ(u) for (u,w) ∈ R
2
+, and Ui is a nonnegative random vari-

able, independent of W2, which has a distribution function belonging to the family
P = {Gφ(·|θi), i = 1, 2} with Gφ(·|θ) defined by (2.1).

Observe that the following two facts hold.

• Ψ(u,w) = φ(u+ w)/φ(u) is increasing in u ∈ R+ for each w ∈ R+ since φ is log-
convex;

• By Lemma 2.3, we have U1 ≤st U2 since θ1 < θ2.

Applying Lemma 2.1 yields that E[Ψ(U1, w)] ≤ E[Ψ(U2, w)] for all w ∈ R+. Therefore,
it follows from (2.7) that

T (φ, θ1 + δ)
T (φ, θ1)

= E{E[Ψ(U1,W2)|W2]} ≤ E{E[Ψ(U2,W2)|W2]} =
T (φ, θ2 + δ)
T (φ, θ2)

.

This proves the log-convexity of T (φ, θ) with respect to θ. �

Next, we investigate the preservation property of log-concavity.

Theorem 2.5: Let Xθ be a nonnegative random variable having a distribution function
belonging to the family {Fθ, θ ∈ Θ}, which possesses the semi-group property. For a function
φ : R+ → R+, define an operator T (φ, θ) = E[φ(Xθ)].

(i) If φ is log-concave, and if

Xθ1 ≤lr Xθ2 whenever θ1, θ2 ∈ Θ and θ1 < θ2, (2.8)

then T (φ, θ) is log-concave in θ ∈ Θ;
(ii) If φ is increasing and log-concave, and if

Xθ1 ≤hr Xθ2 whenever θ1, θ2 ∈ Θ and θ1 < θ2, (2.9)

then T (φ, θ) is increasing and log-concave in θ ∈ Θ;
(iii) If φ is decreasing and log-concave, and if

Xθ1 ≤rh Xθ2 whenever θ1, θ2 ∈ Θ and θ1 < θ2, (2.10)

then T (φ, θ) is decreasing and log-concave in θ ∈ Θ.
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Proof: We proceed the proof by using a similar argument to that in the proof of Theorem
2.4. Assume that φ is log-concave. To prove the desired result, it suffices to prove that

T (φ, θ1 + δ)
T (φ, θ1)

≥ T (φ, θ2 + δ)
T (φ, θ2)

(2.11)

whenever θ1 < θ2 and δ > 0 such that θi, θi + δ ∈ Θ. Let W1,W2 and U1, U2 be as defined
in the proof of Theorem 2.4. Now we consider three cases as follows.

(i) Suppose that φ does not possess the monotonicity. We consider the subcase that
Xθ has a density function fθ (the proof of the discrete case is similar). In this case,
Gφ(·|θ) has a density function given by

gφ(u|θ) =
φ(u)fθ(u)
E[φ(Xθ)]

, ∀u ∈ R+. (2.12)

Since Xθ1 ≤lr Xθ2 , it follows that U1 ≤lr U2 and, hence, U1 ≤st U2.
(ii) Suppose that φ is increasing. Then, by the characterizations of the hazard rate order

(see Theorem 3.1 of [18]), (2.9) implies that Gφ(·|θ1) ≤st Gφ(·|θ2), that is, U1 ≤st U2.
(iii) Suppose that φ is decreasing. Then, we know from Capéraá [11] that (2.10) also

implies U1 ≤st U2.

Thus, for all three cases, we have that U1 ≤st U2 and Ψ(u,w) = φ(u+ w)/φ(u) is
decreasing in u ∈ R+ for each w ∈ R+. By Lemma 2.1, we get that E[Ψ(U1, w)] ≥
E[Ψ(U2, w)] for all w ∈ R+. Therefore, from (2.7), it follows that (2.11). Thus, we complete
the proof. �

Remark 2.6: It is worthnoting that Theorem 3.7 of Bad́ıa & Sangüesa [5] established similar
results to Theorem 2.5. We point out the difference between Theorem 2.5 and Theorem 3.7
of Bad́ıa & Sangüesa [5]. First, our proof is different from theirs. Second, Bad́ıa & Sangüesa
[5] constrains the operator T (φ, θ) to be continuous in θ ∈ R+ and the parameter space
to be Θ = R+. In order to ensure that T (φ, θ) is continuous in θ ∈ R+, they imposed the
assumption of continuity in probability of the process {Xθ, θ ∈ R+} as follows:

lim
s→t

P(|Xt −Xs| > ε) = 0, for all ε > 0 and t > 0.

Note that the semi-group property of {Xθ, θ ∈ Θ} is equivalent to the property of indepen-
dent and stationary increments. Hence, Theorem 2.5(i) generalizes Theorem 3.7(c) of Bad́ıa
& Sangüesa [5] by dropping off the assumption that T (φ, θ) is continuous in θ ∈ R+. How-
ever, the results of Theorem 2.5(ii) and (iii) and those of Theorem 3.7(a) and (b) of Bad́ıa
& Sangüesa [5] do not include each other as they consider a slightly more general class
of distributions called the class IPII [IPDI] (independent positive increasing [decreasing]
increments) under the additional assumption that T (φ, θ) is continuous in θ ∈ R+.

An immediate consequence of Theorems 2.4 and 2.5 is the following proposition, which
is interesting in itself. Let Z be a random variable with distribution function H. Recall that
Z is said to be ILR (increasing likelihood ratio) if Z has a log-concave density or mass
function; Z is IFR (increasing failure rate) if H(x) is log-concave in x ∈ R, and Z is DRHR
(decreasing reversed hazard rate) if H(x) is log-concave in x ∈ R. It is well known (see [8])
that ILR implies both IFR and DRHR.
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Proposition 2.7: Let {Vn, n ∈ N+} be a sequence of independent and identically distributed
nonnegative random variables, and let φ : R+ → R+. Denote Sn =

∑n
i=1 Vi for n ∈ N+, and

set S0 = 0.

(i) If φ is log-concave and V1 is ILR, then E[φ(Sn)] is log-concave on N;
(ii) If φ is increasing and log-concave, and V1 is IFR, then E[φ(Sn)] is log-concave on

N;
(iii) If φ is decreasing and log-concave, and V1 is DRHR, then E[φ(Sn)] is log-concave on

N;
(iv) If φ is log-convex, then E[φ(Sn)] is log-convex on N.

Proof: (i) Since 0 ≤lr Xn+1, it follows from Theorem 1.C.9 of Shaked & Shanthikumar
[32] that Sn ≤lr Sn+1 for n ∈ N. Thus, the desired result follows from Theorem 2.5(i).

(ii) By Theorem 1.B.4 of Shaked & Shanthikumar [32], the IFR property of V1 implies
Sn ≤hr Sn+1 for n ∈ N. The rest proof follows from Theorem 2.5(ii).

(iii) By Theorem 1.B.45 of Shaked & Shanthikumar [32], the DRHR property of V1

implies Sn ≤rh Sn+1 for n ∈ N. The rest proof follows from Theorem 2.5(iii).
(iv) It trivially follows from Theorem 2.4. This completes the proof of the proposition.

�

Bad́ıa [3] proved part (iv) of Proposition 2.7 by using a different method. However, his
method does not apply to the case of log-concavity.

For any interval A ⊂ R+, the indicator function 1A is log-concave. Thus, under the
condition of Proposition 2.7, if V1 is ILR, then P(Sn ∈ A) is log-concave on N; if V1 is IFR,
then P(Sn > b) is log-concave on N for any b ∈ R+; and if V1 is DRHR, then P(Sn ≤ b) is
log-concave on N for any b ∈ R+.

Choose the special parameter space Θ = N+, and let Xn denote the partial sum Sn of
random variables {Vn, n ∈ N+}. Checking the proofs of Theorems 2.4 and 2.5 carefully, we
know that Proposition 2.7 can be generalized by dropping off the assumption that V1 has
the same distribution as V2. We state it in the following proposition without the proof.

Proposition 2.8: Let {Vn, n ∈ N+} be a sequence of independent nonnegative random vari-
ables such that Vk ∼ F for k ≥ 2(V1 may have a different distribution from V2), and let
φ : R+ → R+. Denote Sn =

∑n
i=1 Vi for n ∈ N+, and set S0 = 0.

(i) If φ is log-concave, and V1 and V2 are ILR, then E[φ(Sn)] is log-concave on N;
(ii) If φ is increasing and log-concave, and V1 and V2 are IFR, then E[φ(Sn)] is log-

concave on N;
(iii) If φ is decreasing and log-concave, and V1 and V2 are DRHR, then E[φ(Sn)] is

log-concave on N;
(iv) If φ is log-convex, then E[φ(Sn)] is log-convex on N.

We end this section with a remark concerning the preservation of convexity and
concavity for some operators.

Remark 2.9: Let Xθ be a nonnegative random variable, on a complete probability space
(Ω,F ,P), having a distribution function belonging to the family {Fθ, θ ∈ R+}, which pos-
sesses the semi-group property. It was shown in Adell et al. [1] that if φ is convex on R+,
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then the operator T (φ, θ) = E[φ(Xθ)] is also convex in θ ∈ R+, and the operator

Tt(φ, s) = E

[
φ

(
Xst

Xt

)]
(2.13)

is convex in s ∈ [0, 1] for any t > 0. Clearly, these two operators also preserve concavity.
The proof is based on the construction of reverse martingale,

(
Xt −Xs

t− s
,F t

s

)
, 0 ≤ s < t <∞,

where F t
s is a σ-field generated by {Xu : ∀u ∈ [0, s] ∪ [t,∞)} with respect to (Ω,F ,P).

3. APPLICATIONS

3.1. Preservation of Reliability Properties under Renewal Processes

Consider a renewal process {N(t), t ∈ R+} with independent interarrival times {Xn} with
a common distribution function F, that is,

N(t) = max{n : Sn ≤ t, n ∈ N}, t ∈ R+,

where S0 = 0, Sn =
∑n

i=1Xi for n ∈ N+, and F (0) < 1. Let T be another nonnegative
random variable, independent of {Xn, n ∈ N+}, with distribution function G. Denote by
G∗ = 1 −G∗ and G∗(x) = limt↑xG(t) for all x ∈ R. Then

P(N(T ) ≥ n) = P(Sn ≤ T ) = E
[
G∗(Sn)

]
, n ∈ N, (3.1)

and

P(N(T ) ≤ n) = P(Sn+1 > T ) = E
[
G∗(Sn+1)

]
, n ∈ N. (3.2)

It is easy to see that if G [resp. G] is log-concave on R+, then so is G∗ [resp. G∗], and that
if G is log-convex on R+, then so is G∗.

An immediate consequence of Proposition 2.7 is the following corollary.

Corollary 3.1: Let {N(t), t ∈ R+} and T be described as above.

(i) If T is IFR, and if F is DRHR, then P(N(T ) ≥ n) is log-concave in n ∈ N;
(ii) If T is DRHR, and if F is IFR, then P(N(T ) ≤ n) is log-concave in n ∈ N;
(iii) If T is DFR, then P(N(T ) ≥ n) is log-convex in n ∈ N.

Bad́ıa & Sangüesa [4] proved Corollary 3.1 by using a different method under the
assumption that the distribution function of T has no common discontinuity points with
the distribution functions corresponding to Sn for all n. Corollary 3.1(iii) was also recovered
by Bad́ıa [3] under the same assumption. Corollary 3.1(i) can also be derived from Ross et
al. [29]. Note that T is IFR and DRHR if T is a constant. From Corollary 3.1, it follows that
if F is DRHR, then P(N(t) ≥ n) is log-concave in n ∈ N, and if F is IFR, then P(N(t) ≤ n)
is log-concave in n ∈ N.

By Proposition 2.8, Corollary 3.1 can be generalized to the delayed renewal process.
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3.2. Preservation under Bernstein-Type Operators

Throughout this subsection, let {N(t), t ∈ R+} be a standard Poisson process, that is, a
counting process with independent and stationary increments such that N(0) = 0 and N(t)
follows the Poisson distribution with parameter t. Let {M(t), t ∈ R+} represent a standard
Gamma process, that is, a process with independent and stationary increments such that
M(0) = 0 and M(t) follows the Gamma distribution with shape parameter t. Also, we
assume that {N(t), t ∈ R+} and {M(t), t ∈ R+} are independent.

Consider the following Bernstein-type operators [3,5,12,13]:

• Bernstein operator

Bn(φ, x) =
n∑

k=0

φ

(
k

n

)(
n

k

)
xk(1 − x)n−k, x ∈ [0, 1], (3.3)

with φ : [0, 1] → R. Denote by Jx ∼ B(n, x), where B(n, x) is the binomial distri-
bution with parameters (n, x). Then, Bn has the stochastic representation given
by

Bn(φ, x) = E

[
φ

(
Jx

n

)]
= E

[
φ

(
N(tx)
N(t)

) ∣∣∣N(t) = n

]
, ∀x ∈ [0, 1], t > 0.

• Szász–Mirakyan operator

St(φ, x) =
∞∑

k=0

φ

(
k

t

)
e−tx (tx)k

k!
, x ≥ 0, t > 0,

which has the stochastic representation given by

St(φ, x) = E

[
φ

(
N(tx)
t

)]
, x ≥ 0, t > 0. (3.4)

The generalized phase-type distribution introduced in Shanthikumar [33] can be
derived via Szász–Mirakyan operator.

• Szász–Mirakyan–Kantorovich operator

S∗
t (φ, x) =

∞∑
k=0

te−tx (tx)k

k!

∫ (k+1)/t

k/t

φ(u) du, x ≥ 0, t > 0,

which has the stochastic representation given by

S∗
t (φ, x) = E

[∫ N(tx)+1

N(tx)

φ
(u
t

)
du

]
= E[φ∗t (N(tx))], x ≥ 0, t > 0, (3.5)

with

φ∗t (x) =
∫ x+1

x

φ
(u
t

)
du =

∫ 1

0

φ

(
x+ u

t

)
du, x ≥ 0. (3.6)

• Gamma-star operator

Gt(φ, x) =
∫ ∞

0

φ

(
θ

t

)
e−θ θ

tx−1

Γ(tx)
dθ, x ≥ 0, t > 0, (3.7)

which has the stochastic representation given by

Gt(φ, x) = E

[
φ

(
M(tx)
t

)]
, x ≥ 0, t > 0. (3.8)
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A counterexample was given in Bad́ıa [3] to illustrate that Bernstein operator doses not
preserve the log-convexity. Bad́ıa [3] gave a wrong counterexample with φ(x) = (x− 1/2)2

to show that Bn does not preserve the log-concavity because φ is not log-concave on [0, 1].
This was also pointed out in Bad́ıa & Sangüesa [5]. A log-concave function on R+ can not
have any internal zero. In fact, it was shown by Mu [25] that Bernstein operator preserves
the log-concavity.

By Remark 2.9, Szász–Mirakyan and Gamma-star operators preserve the convexity and
concavity. Note that N(t1) ≤lr N(t2) and M(t1) ≤lr M(t2) for all t2 > t1 > 0. Applying
Theorems 2.4 and 2.5 to (3.4), (3.5) and (3.8), we have the following corollary.

Corollary 3.2: The Szász–Mirakyan, Szász–Mirakyan–Kantorovich and Gamma-star
operators preserve the log-concavity and log-convexity. That is, if φ is log-concave [log-
convex] on R+, then St(φ, x), S∗

t (φ, x) and Gt(φ, x) are log-concave [log-convex] in x ∈
R+.

Proof: The proof of St(φ, x) and Gt(φ, x) are trivial. We only show the result for S∗
t (φ, x).

It suffices to show that φ∗ defined by (3.6) is log-concave [log-convex] when φ is log-
concave [log-convex]. The log-convexity follows immediately from Theorem 9.3 in Saumard
& Wellner [30]. Here, we give a proof for log-concavity. Since t is fixed, it suffices to show
that

φ(x) is log − concave =⇒ φ∗(x) =
∫ 1

0

φ(x+ u) du, is log − concave. (3.9)

It is trivial to see that the log-concavity of φ implies that φ(x+ u) is log-concave in (x, u) ∈
R+ × [0, 1]. Then, by Prékopa’s Theorem (see also Theorem 3.3 in Saumard & Wellner [30]),
which says log-concavity is preserved under marginalization, we get that (3.9) holds. �

The preservation of log-convexity in Corollary 3.2 was also established by Bad́ıa [3].
Bad́ıa [3] gave a counterexample with φ(x) = (x− d)2 (d is a positive constant) to illustrate
that Szász–Mirakyan and Gamma-star operators do not preserve the log-concavity. However,
this counterexample is wrong because φ(x) = (x− d)2 is not log-concave on R+.

In fact, the preservation of log-concavity for Szász–Mirakyan operator can be proved
directly as follows. Assume that φ is log-concave on R+. Then, αk = φ(k/n) is log-concave
in k ∈ N. To prove that St(φ, x) is log-concave in x ∈ R+, it suffices to verify that S(x) =∑∞

k=0 αkx
k/k! is log-concave on R+. To this end, note that

S′(x) =
∞∑

k=0

αk+1
xk

k!
, S′′(x) =

∞∑
k=0

αk+2
xk

k!
.

Then, for any x ∈ R+,

[S′(x)]2 − S(x)S′′(x) =

( ∞∑
k=0

αk+1
xk

k!

)2

−
( ∞∑

k=0

αk
xk

k!

)( ∞∑
k=0

αk+2
xk

k!

)

=
∞∑

�=0

x�

i!(�− i)!
· [αi+1α�−i+1 − αiα�−i+2] ≥ 0.

This means that S(x) is log-concave on R+.
A special consequence of Corollary 3.2 concerning Gamma-star operator is the next

proposition, which is well known in convex geometry. Marsiglietti & Kostina [23] exploited
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Proposition 3.3 to derive a lower bound on the differential entropy of log-concave random
variables.

Proposition 3.3 ([10]): The function

H(r) =
1

Γ(r)

∫ ∞

0

xr−1ψ(x) dx (3.10)

is log-concave [log-convex] on R+, whenever ψ : R+ → R+ is log-concave [log-convex].

Proof: The proof follows by observing H(r) = G1(φ, r), where Gt(φ, r) is given by (3.7)
with φ(x) = ψ(x)ex. �

3.3. Preservation under Beta-Type Operators

Beta-type operators are associated with beta-type probability distributions, two of which
are as follows ([1]):

• Beta operator

At(φ, x) =
∫ 1

0

φ(θ)
θtx−1(1 − θ)t(1−x)−1

B(tx, t(1 − x))
dθ, t > 0, x ∈ (0, 1),

which has the following stochastic representation

At(φ, x) = E

[
φ

(
M(tx)
M(t)

)]
, (3.11)

where {M(t), t ∈ R+} is a standard gamma process.
• Inverse Beta operator

Dt(φ, x) =
∫ ∞

0

φ(θ)
1

B(tx, t)
· θtx−1

(1 + θ)tx+t
dθ, t > 0, x > 0,

which has the following stochastic representation

Dt(φ, x) = E

[
φ

(
M(tx)
V (t)

)]
, (3.12)

where {M(t), t ∈ R+} and {V (t), t ∈ R+} are two independent standard gamma
processes. Here,

f(θ|tx, t) =
1

B(tx, t)
· θtx−1

(1 + θ)tx+t
, θ ∈ R+,

is the density of an inverse Beta distribution with parameters tx and t.

Both Beta and inverse Beta operators preserve the convexity and concavity (see Remark
2.9 or [1]). Since log-convexity is closed under mixture, it follows from (3.12) and Theorem
2.4 that the inverse Beta operator preserves the log-convexity.
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Table 1. Preservation of log-concavity and log-convexity under operators

Operators Log-concavity Log-convexity

Bernstein operator Bn Preserved Not preserved
Szász–Mirakyan operator St Preserved Preserved
Szász–Mirakyan–Kantorovich operator S∗

t Preserved Preserved
Gamma-star operator Gt Preserved Preserved
Beta operator At ? ?
Inverse Beta operator Dt Not preserved Preserved

Counterexample 3.4 (The inverse Beta operator does not preserve the log-concavity):
Choose φ(x) = e−x, which is both log-concave and log-convex. Define Zt = 1 + 1/V (t). Then,
Dt(φ, x) = E[Zt]−tx, and

∂

∂x
Dt(φ, x) = −tE[(Zt)

−tx logZt],
∂2

∂x2
Dt(φ, x) = t2E[(Zt)

−tx log2 Zt].

By Hölder’s inequality, it follows that

[
∂

∂x
Dt(φ, x)

]2
−Dt(φ, x)

∂2

∂x2
Dt(φ, x) < 0, ∀x > 0.

Therefore, Dt(φ, x) is not log-concave.

It is unknown whether Beta operator preserves the log-concavity or log-convexity. More
generally, it is still unknown whether Tt(φ, s), defined by (2.13), is log-concave or log-convex
in s ∈ [0, 1] for each t > 0 under the assumptions in Remark 2.9.

We may summarize in Table 1 the results obtained concerning preservation of log-
concavity and log-convexity under different operators in subsections 3.2 and 3.3.
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