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Abstract

Prolonged sitting in a fixed or constrained position exposes aircraft passengers to long-term
static loading of their bodies, which has deleterious effects on passengers’ comfort throughout
the duration of the flight. The previous studies focused primarily on office and driving sitting
postures and few studies, however, focused on the sitting postures of passengers in aircraft.
Consequently, the aim of the present study is to detect and recognize the sitting postures
of aircraft passengers in relation to sitting discomfort. A total of 24 subjects were recruited
for the experiment, which lasted for 2 h. Furthermore, a total of 489 sitting postures were
extracted and the pressure data between subjects and seat was collected from the experiment.
After the detection of sitting postures, eight types of sitting postures were classified based on
key parts (trunk, back, and legs) of the human bodies. Thereafter, the eight types of sitting
postures were recognized with the aid of pressure data of seat pan and backrest employing
several machine learning methods. The best classification rate of 89.26% was obtained from
the support vector machine (SVM) with radial basis function (RBF) kernel. The detection
and recognition of the eight types of sitting postures of aircraft passengers in this study
provided an insight into aircraft passengers’ discomfort and seat design.

Introduction

In recent years, the competition among airlines has become increasingly fierce in relation to an
increasing demand for air travel. In this regard, improving passengers comfort has become the
primary strategy for airlines to increase competitiveness (Hiemstra-van et al., 2016; Li et al.,
2017). During the flight, the most imperative part of an aircraft cabin is the seat, owing to
the fact that aircraft passengers spend most time of their trips sitting on their seats (Ciaccia
and Sznelwar, 2012). Sitting in a restricted or fixed position for a long time could result in
long-term body static load, which is regarded as a risk factor for discomfort, musculoskeletal
complaint and disorder (Fazlollahtabar, 2010; Luttmann et al., 2010; Cascioli et al., 2011).
Besides, in terms of the human perception, aircraft passengers are affected by the psychological
invasion of personal space in the narrow and enclosed environment (e.g., the small seat space
and active areas), which is often a contributory factor to the ordeal of discomfort (Lewis et al.,
2017). This discomfort induced by invasion will also reflect on passengers’ sitting postures;
thus, passengers tend to lean to the side of the empty seat. Consequently, research on passen-
gers’ sitting postures has been an important strategy to reduce passengers’ discomfort and can
be employed to measure emotions, discomfort, physical wellness, and healthy sitting behavior
(Tan et al., 2001; Tessendorf et al., 2009; Lan et al., 2010; Foubert et al., 2012).

In terms of sitting postures studies, Mastrigt et al. (2016) discussed the relationship among
context, seat, behavior, sitting posture, cushion pressure, and discomfort in aircraft (Fig. 1).
According to Mastrigt et al. (2016), the sitting postures of aircraft passengers were influenced
by three factors: (1) human anthropometry, such as height, body mass, and hip circumference;
(2) seat, such as dimensions, shape, and reclined backrest angle; and (3) context, which include
activities and the environment. A similar research by Vanacore et al. (2019) on posture
induced by activity (Kamp et al., 2011; Ellegast et al., 2012; Groenesteijn et al., 2012), and
effect of posture on seat-interface pressure distribution (Vos et al., 2006; Moes, 2007;
Tessendorf et al., 2009; Kyung and Nussbaum, 2013), showed the closest correlation between
objective measure and subjective (dis-)comfort rating. Thus, human anthropometry, seat, and
context should be involved in the study of sitting postures.

Recent advancement in machine learning has culminated in the application of machine
learning algorithms in many studies, such as prediction of the three-dimensional posture of
the spine in various activities (Gholipour and Arjmand, 2016), prediction of the subjective per-
ceptions of drivers’ comfort (Kolich, 2004) and classification of sitting postures (Zhu et al.,
2003; Meyer et al., 2010; Zemp et al., 2016; Ma et al., 2017). Machine learning has also
been applied in research bordering on aircraft passengers’ discomfort as well as seat design
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and manufacturing. Aircraft seat sensors can provide some feed-
back information, which can help to identify passengers’ status
and comfort in the near future with machine learning. Airbus
commercial laboratory pointed out that the measurement of the
lifting frequency of intelligent seat armrest employing sensors can
provide guidance for design engineers on how to carry out armrest
durability design. Thus, the detection and recognition of sitting pos-
tures employing machine learning methods have been widely stud-
ied because of its potential in improving people’s comfort and
forestalling the occurrence of related diseases. It can adequately edu-
cate chair users about their sitting postures (Zubic, 2007) and guide
them in adopting beneficial postures that could efficaciously prevent
workplace musculoskeletal diseases (Yoo et al., 2006). According to
Mutlu et al. (2007), posture recognition could help infer emotional
states, detect irregular behaviors, and control human–computer
interaction applications. The research above provided a theoretical
basis and foundation for the adoption of machine learning methods
to study aircraft passengers’ sitting postures. Consequently, machine
learning methods will be exploited in this study to detect and recog-
nize the sitting postures of aircraft passengers.

There are two main types of sitting posture measurement:
image processing technology (Lan et al., 2010; Song-Lin and
Rong-Yi, 2010) and sensor-based technology (Li et al., 1999;
Tan et al., 2001; Kamiya et al., 2008; Tessendorf et al., 2009;
Foubert et al., 2012). Image recognition is easy, noninvasive,
and user-friendly, but be complicated by variations in the lighting
or background condition, camera or subject positions, and subject
appearance (Mota and Picard, 2008). In addition, passengers’
privacy will be violated if cameras are installed in aircraft.
Compared with image processing technology, pressure sensors
can accurately collect the pressure information between passen-
gers and seat in real-time, which will aid research on the discom-
fort of aircraft passengers. Furthermore, passengers’ sitting
postures can be detected in real-time employing pressure sensors
which could help detect (1) the duration of their static sitting
postures, (2) the frequency of changes in their sitting postures

and muscle force, and (3) load on specific body parts, etc. Thus,
pressure sensors were exploited to detect and recognize sitting
postures in many researches.

The recognition of sitting posture employing pressure sensors
that has long been studied by researchers. The concept of instru-
mented or sensing chairs was first introduced by Tan and
co-workers (Tan et al., 2001; Tan and Ebert, 2002). The authors
placed surface-mounted pressure distribution sensor mats over
the seat pan and the backrest to obtain real-time information of
the chair–user interaction. Mota and Picard (2008) employed the
same measuring system to analyze nine different sitting positions
but in a dynamic setup. In order to teach the pattern recognition
algorithm, two observers labeled the different sitting positions
employing video analysis, which produced an overall classification
accuracy of 87.6% in new subjects. Tessendorf et al. (2009)
employed pressure distribution patterns acquired from a pressure
mat to generate 16 prototype sitting postures which they used to
classify incoming pressure data. Similarly, Xu et al. (2012) devel-
oped a technique to recognize nine different sitting postures
based on binary pressure distribution data. Meanwhile, in order
to reduce the complexity and cost of the measurement system,
some studies focused on the analysis of sitting postures using sev-
eral single axis force or pressure sensors apart from the pressure
distribution sensor mat. Schrempf et al. (2011) proposed a method
based on a regular adjustable office chair which was equipped with
four independent, specially designed force transducers; Meyer et al.
(2010) employed a textile pressure sensor mat with 96 elements on
the seat pan and 1 element on the backrest to classify 16 different
static sitting positions. The Smart Cushion system introduced by
Xu et al. (2013) consists of a 16 × 16 textile pressure sensor mat
placed at the seat pan of a conventional chair. By applying a
time warping-based classification algorithm, an accuracy level of
almost 86% was achieved for seven different postures. Zemp
et al. (2016) developed an instrumented chair with force and accel-
eration sensors to determine the accuracy of automatic identifica-
tion of the user’s sitting position by applying five different machine

Fig. 1. Overview of relationships between the variables.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 285

https://doi.org/10.1017/S0890060421000135 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000135


learning methods. The classification accuracy varied between 81%
and 98% for the seven different sitting positions. Jongryun et al.
(2018) developed a system that measured a total of six sitting postures
and demonstrated the possibility of classifying the sitting postures
even though the number of sensors was reduced. The above-reported
studies demonstrate that it is possible to detect different sitting pos-
tures with considerable accuracy by means of conventional and single
axis force sensor mats. In this study, pressure sensors [Body Pressure
Measurement System (BPMS) of Tekscan] were employed to ensure
a flawless and precise recognition accuracy.

Among the studies conducted on sitting postures, we found that
passengers’ sitting postures play an important role in the discom-
fort of aircraft passengers. However, there are few studies that have
analyzed the sitting postures of aircraft passengers to the best of
our knowledge. Most of the studies focused on the discomfort
induced by office chairs and driver’s seats (Mastrigt et al., 2016).
Furthermore, the sitting postures adopted in previous studies did
not involve factors of human anthropometry, seat, and context
and was inconsistent with the actual sitting postures. In addition,
pressure sensors could detect different sitting postures with consid-
erable accuracy, making them a suitable method for detecting pas-
sengers’ sitting postures. Thus, the aim of this study is to detect the
sitting postures of aircraft passengers and recognize these postures
employing several machine learning methods. Based on the above
studies, two hypotheses were constructed in this paper: (1) Several
types of specific sitting postures of aircraft passengers would be
obtained from the flight simulated experiment. (2) The sitting
postures classified above would be recognized with pressure sensor
data using machine learning methods with ideal accuracy.

In this study, the term sitting posture is used to connote posture
that is related to movement of the trunk, back, and legs of passen-
gers’ body when they were strapped to the seat. Activities refer to
the specific behavior of passengers such as eating, working, and
sleeping, while behavior refer to an action in a general sense.

Materials and methods

Subjects

A total of 24 Chinese subjects (16 females and 8 males) in the age
bracket of 22–30 were recruited. The demographic characteristics
are presented in Table 1. It shows the subjects’ indicators [age,
height, body mass, and body mass index (BMI)] and their related
descriptive statistics, expressed as mean ± standard deviation. The
sample of 16 females and 8 males (height ranging from 1.56 to
1.80 m) may represent the mean and larger percentiles of
Chinese people (Li et al., 2017). Participants were carefully
selected; the subjects were pain free and healthy. Informed con-
sent was obtained from participants and the study was approved
by the Ethics Committee of Northwest Polytechnic University.

Experimental design

We conducted our experiment in a laboratory situated in
Northwest Polytechnic University. The room temperature of the

laboratory was 23 ± 2°C, the relative humidity was between 48%
and 60% (Li et al., 2017), and the environment noise level was
set to 40–60 dB.

Before the experiment, participants had about 10 min to relax
and prepare and were fully informed of the content, duration of
the experiment, the purpose of the study, and the methods for
analysis of the collected data. In order to make subjects exhibit
real feelings and behaviors during the experiment, we had a
conversation with them about their previous feelings before the
experiment, in a bid to evoke their flying experiences.

During the experiment, subjects took turns to complete the fol-
lowing activities according to the instruction of the experimenter:
used mobile phone for 10 min, chatted for 20 min, worked for
25 min, ate for 15 min, and slept for 50 min. Subjects were not
given any additional guidance or feedback except five predefined
sequential activities as our goal was to obtain subjects’ natural sit-
ting postures. During the 2 h experiment, subjects’ sitting postures
data was recorded with two pressure sensors [Body Pressure
Measurement System of Tekscan (BPMS), South Boston, MA,
USA] and a video camera in real-time. Pressure data was recorded
at 5 Hz with the BPMS software matched with the pressure mat in
order to obtain more precise data from the two pressure sensors.
The movements and postures of participants were recorded by a
video camera during the whole experiment. The experiment
involving human subjects carried out in the laboratory is shown
in Figure 2. The experiment would be terminated once an anomaly
is observed in the data of the two pressure sensors and camera dur-
ing the experiment. It should be noted that the 2 h duration setting
of this experiment was aimed at studying the sitting posture of
regional airliner in short and medium-haul flight.

After the experiment, participants’ demographics (gender, age,
height, body mass, and BMI) were measured and the participants
were thanked for their participation. The flowchart of the experi-
ment is shown in Figure 3.

Sitting postures detection

The sitting postures reported in previous studies are summarized in
Table 2. As can be seen from the table, the sitting postures reported
in different studies were completely different. Moreover, these
sitting postures adopted by many studies emanated from either
the earlier studies or defined by the authors with less contextual
information. For example, the sitting postures reported in Zemp
et al. (2016) emanated from previous studies (Mota and Picard,
2003; Haller et al., 2011; Xu et al., 2013). Furthermore, the sitting
postures reported by Haller et al. (2011) were predefined directly by
them. However, as mentioned above, sitting postures were influ-
enced by human anthropometry, seat, and context. Thus, this
study went a step further in the classification of passengers’ sitting
postures.

In our experiment, flight scenario was simulated with subjects
of a variety of human anthropometry. The five most common
activities were set, which basically covered the three factors
(human anthropometry, seat, and context) that influenced the sit-
ting postures of passengers. After the analysis of sitting posture
data, we found that the sitting postures of each subject varied a
little due to individual differences and personal habit, and each
subject exhibited only a limited number of specific sitting
postures. Although the sitting posture of each subject was not
the same, they still had something in common.

In the experiment, it was found that activities had a great influ-
ence on the sitting postures and the postures of different activities

Table 1. Demographic characteristics of the participants (n = 24)

Age (years)
Male:
Female

Height
(m)

Body mass
(kg)

BMI
(kg/m2)

25.29 ± 2.64 1:2 1.69 ± 0.07 61.21 ± 11.64 21.45 ± 3.27
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were different. Specifically, subjects exhibited a proclivity for lean-
ing forward when they worked. Contrarily, they leaned backward
when they assumed a relaxed and resting posture (i.e., chat, use
mobile phone, eat, and sleep). Besides, subjects changed several
postures owing to the long duration of sleep. Also, subjects main-
tained one posture for a long time because of the inactive state of
the body. All the changes associated with the five activities
mentioned above reflected on the positions of three key parts of
the subjects’ body (i.e., trunk, back, and legs). Thus, the three
key parts of the subjects’ body were the most imperative body
parts that affected passengers’ sitting postures. For example,
when subjects leaned forward, their trunks moved forward; when
they leaned backward, the position of their trunks was opposite.
The same situation was observed when subjects leaned to the
right and left. In addition, when subjects crossed their legs, there
was a significant change in the sitting postures. Based on the
above analysis, the sitting postures were classified according to
the positions of the three key parts of the body, which we described
further in the “The recognition of sitting posture” section.

Sitting postures recognition methods

In the data analysis, we discovered that each posture of the 24 sub-
jects was maintained for a period of time and then changed into
another posture. In other words, although the experimental time
lasted for 2 h, each subject exhibited only about 20 postures. Thus,

489 sitting postures were extracted from the experimental video
and the pressure data of the 489 sitting postures was employed
to construct machine learning models. Each pressure data of the
489 sitting postures contained 16 dimensions pressure data,
while the whole model involved 7824 pressure data. The 16
dimensions pressure data refers to the 8 dimensions pressure
data (i.e., object pressure, peak object pressure, peak contact pres-
sure, peak force, contact area, contact pressure, force, and force
center) of the backrest and seat pan, respectively.

Previous studies showed that several different machine
learning methods were exploited for the classification of sitting
postures (Zemp et al., 2016; Jongryun et al., 2018). In this
study, five algorithms [K-nearest neighbor, support vector
machine (SVM), random forest, decision tree, and Naïve Bayes]
were compared to obtain the highest classification accuracy.

(1) K-nearest neighbor

K-nearest neighbor algorithm categorizes different classes by
measuring the distance between different eigenvalues (Cover
and Hart, 2003). Its working principle is hinged on the existence
of a sample data set, also known as the training sample set, and
each data in the sample set has a label that shows the correspond-
ing relationship between each data in the sample set and its
classification. After inputting the new data without labels, each
feature of the new data was compared with several corresponding

Fig. 2. Experiment of subjects in the laboratory (the length, width, height, and seat pitch of the seat are 53, 52, 116, and 98 cm, respectively).

Fig. 3. Flowchart of the experiment.
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features of the sample data, and then the classification labels of
the most similar data (nearest neighbor) of the sample were
extracted. In this study, the best classification performance was
achieved when n_neighbors were set to 6 after grid searching
for different parameters.

(2) Support vector machine

Support vector machine is a group of supervised learning
methods that can be used for classification or regression purposes
(Burges, 1998; Gao et al., 2010). It is a two class classification
model. Its basic model is defined as the linear classifier with the
largest interval in the feature space. Its learning strategy is to
maximize the interval, which can be transformed into a convex
quadratic programming problem. In this study, the best classifica-
tion performance was achieved when radial basis function (RBF)
kernel was employed and the regularization coefficient was set to
5 after the trial of different parameters.

(3) Random forest

In machine learning, random forest is a classifier with multiple
decision trees, and the output category is determined by the mode
of the output category of individual trees (Breiman, 2001).
Random forest integrates multiple trees by exploiting the idea of
ensemble learning into an algorithm. Its basic unit is decision
tree, and its core essence is tied to a big branch of machine learning
ensemble learning method. The best classification performance
was achieved when n_estimators were set to 800, max_depth was
set to 5 after the trial of different parameters in this study.

(4) Decision tree

Decision tree classification algorithm is an inductive learning
method that is based on instances in which tree classification
models can be extracted from given disordered training samples
(Safavian and Landgrebe, 2002). The decision tree algorithm
first divides a pile of data into subsets according to a certain con-
dition (feature) to construct a tree. Thereafter, a new data emerges
for comparison of the new data one after the other according to

the conditions specified during construction of the tree, until
the leaf node is found to determine the category. The best classi-
fication performance was achieved when the criterion was set to
entropy, and random_state was set to 5 after the trial of different
parameters.

(5) Naïve Bayes

Naïve Bayes is a classification method based on the Bayes
theorem and independent assumption of feature conditions
(Bermejo et al., 2014). For a given training data set, the joint prob-
ability distribution of input/output is learned based on the inde-
pendent presumption of characteristic conditions. According to
this model, the output with the maximum a posteriori probability
for a given input is obtained employing the Bayesian theorem. In
this study, the model of the algorithm was set to GaussianNB.

In the construction of the machine learning model, the data set
of training and test were classified randomly based on the 24 sub-
jects’ pressure data (totaling 8313 data), of which 6256 data
belonged to the training set and 2057 data belonged to the test set.

In the algorithm analysis, principal component analysis (PCA)
was exploited to reduce the dimensionality of the data as well as
extract the features (principal components) that represented the
most informative data due to the redundancy of the 16 dimensions
pressure (Tan et al., 2001). Finally, 16-dimensional pressure data
were reduced to 4-dimensional pressure data with 95% of the ori-
ginal data retained. In this regard, on the basis of ensuring the
seamless performance of the algorithm, the calculated amount of
the model was reduced. In this study, scikit-learn algorithm toolkit
based on Python was used to build the machine learning models.

Results

The detection of sitting postures

As mentioned in the “Sitting postures detection” section, the three
key parts of the human body (i.e., trunk, back, and legs) were the
basis for our classification of the sitting postures of aircraft pas-
sengers. Based on the above analysis, and report of previous stud-
ies (Zemp et al., 2016; Jongryun et al., 2018), we finally classified

Table 2. Summary of previous studies on sitting postures definition and recognition

Authors and year Posture resources Posture context Postures

Tan et al., 2001 Author predefined with
previous studies

In the office 1. Seated upright; 2. Leaning forward; 3. Leaning left; 4. Leaning right; 5. Right leg
crossed (with knees touching); 6. Right leg crossed (with right foot on left knee);
7. Left leg crossed (with knees touching); 8. Left leg crossed (with left foot on
right knee); 9. Left foot on seat pan under right thigh; 10. Right foot on seat pan
under left thigh; 11. Leaning left with right leg crossed; 12. Leaning right with left
leg crossed; 13. Leaning backward; and 14. Slouching

Haller et al.,
2011

Author predefined with no
previous studies

In the office 1. Upright; 2. Leaning back; 3. Leaning forward; 4. Sitting at the front edge;
5. Leaning right; 6. Right leg crossed over left leg; 7. Left leg crossed over
right leg; and 8. Slouching

Huang and
Ouyang, 2013

Author predefined with no
previous studies

None 1. Sitting on chair surface and backrest; 2. Sitting on chair surface, but not
touching backrest; 3. Crossing legs; 4. Crossing legs; and 5. Crooked sitting posture

Zemp et al., 2016 Author predefined postures
with previous studies

In the office 1. Upright position; 2. Reclined position; 3. Forward inclined position; 4/5.
Laterally tilted right/left position; and 6/7. Crossed legs, the left leg over the right
one/the right leg over the left one

Jongryun et al.,
2018

Author predefined with
previous studies

In the office 1. Upright sitting with backrest; 2. Upright sitting without backrest; 3. Front
sitting with backrest; 4. Front sitting without backrest; 5. Left sitting; and
6. Right sitting
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passengers’ sitting postures into eight types, as seen in Table 3.
These eight sitting postures were the most prevalent and represen-
tative sitting postures of airplane passengers.

As discussed above, the sitting postures in aircraft were differ-
ent from that of office and driving sitting postures (see Table 2).
The uniqueness of aircraft passengers’ sitting postures is hinged
on: (1) the fact that sitting space is very narrow; (2) passengers
will spend several hours in the journey, and most of the time

they are strapped to their seats; and (3) passengers perform
only a few specific activities, while most people will sleep during
the journey. The uniqueness of the above sitting postures induced
special sitting postures during the flight. Thus, the eight sitting
postures which emanated from the simulation flight experiment
could fully reflect the uniqueness (affected by human anthropo-
metry, seat, and context) of aircraft passengers’ sitting postures.
In this regard, the hypothesis (1) was confirmed.

Table 3. The eight types of sitting postures of aircraft passengers

Lean backward Lean backward, crossed legs right over left

Lean backward, crossed legs left over right

Lean forward

Lean forward, crossed legs right over left

Lean forward, crossed legs left over right

Lean leftward

Lean rightward
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The recognition of sitting posture

In this section, the sitting postures classified above were recognized
by five machine learning models mentioned in the “Sitting pos-
tures recognition methods” section. Regarding the recognition of
the sitting postures, the output was eight sitting postures men-
tioned in the “The detection of sitting postures” section, and the
input was the pressure data of the two pressure sensors installed
on the backrest and seat pan of the 24 subjects for 2 h. The recog-
nition results were analyzed from four dimensions: accuracy, pre-
cision, recall, and F1-score. After loading the pressure data into
different machine learning models and debugging different

parameters for the best results, we were able to compare several
machine learning models. The SVM with RBF kernel attained
the best classification accuracy of 89.26%, as shown in Table 4.
The results revealed that the random forest model also achieved
satisfactory classification results. Thus, the hypothesis (2) was
also confirmed.

The confusion matrix of SVM with RBF kernel is presented in
Figure 4. From the confusion matrix of SVM, sitting postures 1
(leaning backward) and 4 (leaning forward) were the two most
accurate postures predicted by the model.

Discussion

This study focused on sitting posture detection and recognition of
aircraft passengers. A total of eight types of sitting postures of
subjects were classified through the flight simulation experiment
and recognized according to the seat pressure sensors data
employing machine learning models. Among several machine
learning methods, SVM with RBF kernel attained the best classi-
fication performance of 89.26%, which showed that seat pressure
sensors data had good classification capacity for the recognition of
aircraft passengers’ sitting postures. Based on the classification
results, we can distinguish passengers’ sitting postures employing
the pressure data of seat in order to improve the comfort and
experience of aircraft passengers.

As discussed above, sitting postures were affected by human
anthropometry, seat, and context. However, the sitting postures of
previous studies did not involve these three factors, as seen in

Fig. 4. Confusion matrix of SVM with RBF kernel. Rows indicate predicted labels, columns refer to true classes. Class labels represent 1: lean backward; 2: lean
backward, crossed legs right over left; 3: lean backward, crossed legs left over right; 4: lean forward; 5: lean forward, crossed legs right over left; 6: lean forward,
crossed legs left over right; 7: lean leftward; and 8: lean rightward.

Table 4. Comparison of sitting postures recognition of different machine
learning models based on the pressure data

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

KNN 82.65 77.33 82.65 79.77

SVMRBF 89.26 85.16 89.26 86.80

SVMlinear 83.47 79.07 83.41 81.02

Random forest 85.95 82.61 85.95 83.03

Decision tree 77.69 80.74 77.69 78.12

Naïve Bayes 79.34 77.53 79.34 77.94

These bold values are the best performance data among all the models.
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Table 2. In our experiment, the sitting postures obtained fully
reflected the three factors and therefore were more in line with the
real scene. Furthermore, we found that the three factors that affected
sitting postures would ultimately be reflected in trunk, back, and legs
of the human body. Based on the above analysis, all the sitting pos-
tures in our experiment (totaling 489 sitting postures) were classified
into eight types, which were the most prevalent and representative
sitting postures of airplane passengers. Thus, the sitting postures
classification method demonstrated in this study provides a insight
for the study of sitting postures that sitting postures are not isolated,
but closely related to human activities and context.

There were two methods employed for the recognition of sitting
postures. One was to induce the corresponding sitting posture.
Another method was to collect the pressure data of subjects’ sitting
postures in real context, which we adopted in this study. In the first
method, their effect has focused on recognition of static postures
made by participants who intentionally position themselves into
postures as requested and predefined by the experimenter. Then,
the experimenter collected the cushion pressure data which was
used to recognize the sitting postures. This kind of research could
generally produce a high recognition accuracy, but the disadvantage
is that these postures are deliberately made by the subjects, with no
real context information. However, as mentioned above, passengers’
sitting postures were greatly influenced by the context and other
factors. These isolated postures did not match passengers’ real
sitting postures. Table 5 shows the comparison of sitting posture
classification between previous studies and the proposed method.
Although the classification accuracy of this study was not the high-
est, the recognition of sitting postures in this study was still valuable.
Firstly, we gathered data of naturally occurring postures, as opposed
to the other studies presented in Table 5, in which their postures
were deliberately made and with few context factors. Secondly, the
sitting postures of other studies presented inTable 5were all in office
context, with no aircraft passengers’ sitting posture. Hence, the eight
types of sitting postures we classified in this study provided founda-
tion for aircraft passengers’ sitting postures. It should be noted that
the purpose of this study was not to achieve the highest classification
accuracy, but to demonstrate and prove the feasibility of our research
method. In other words, the acceptable high recognition accuracy
could still be obtained through the natural sitting postures.
Therefore, this study provides a new idea that sitting postures should
be detected within their specific scene, rather limited to the deliber-
ately setting. This type of recognition of sitting postures holds high
practical application value for passengers’ comfort (Zhu et al., 2003;
Zemp et al., 2016).

The detection and recognition with machine learning methods
of passengers’ sitting postures promises potential advancement in
terms of passengers’ discomfort as well as seat design and manu-
facturing. Passengers’ discomfort could be measured by the pres-
sure data of the sitting postures. According to Arnrich et al.
(2010b), sitting posture could be used for measuring healthy
sitting behaviors. Passengers’ sitting postures could be detected
in real-time with seat pressure sensors, which could help detect
the duration of their static sitting postures, change frequency of
their sitting postures, muscle force and load on specific body
parts, etc. During the flight, passengers may change their postures
owing to cumulative fatigue when they maintain a stationary pos-
ture for a period of time. This type of change in posture could be
detected by pressure data. A similar research by Le et al. (2014)
showed that frequent movements by the driver over time helped
reduce stress from discomfort. In this regard, passengers’ discom-
fort could further be reduced by seat design. The studies of De
Looze et al. (2003), Franz et al. (2011), and Zemp et al. (2015)
indicated that a large contact area between the seat and human
body decreased the effect of discomfort perception. Therefore,
Smulders et al. (2016) presumed that developing an aircraft seat
based on human contour could ameliorate pressure distribution
and accordingly decrease discomfort perception. Also, the seat
could be designed to adjust automatically or be realigned to pre-
vent muscle fatigue and even diseases induced by long-term
fatigue and static sitting in relation to the detection and recogni-
tion of sitting postures. Furthermore, passengers’ potential needs
could be satisfied by seat design that permits automatic adjust-
ment of seat’s angle to promote healthier sitting behaviors for
passengers, and facilitate the turning off of lights when passengers
fall asleep, etc. Posture channel also contains affective information
related to passengers’ experience. With posture recognition, pos-
ture sequences could be conducted to discover affective interpre-
tations associated with postural behaviors. Bull presented results
showing that both body movements and positions transmit infor-
mation about emotions. For example, the upsetting passengers
may reveal higher variance of movements. In a further study,
Arnrich et al. (2010a) incorporated sensor technology into an air-
plane seat with the aim of unobtrusively measuring physiological
signals to recognize passengers’ emotion with reliable and unob-
trusive recording of relevant physiological signals. Therefore, the
integration of multiple physiological measures (near-infrared
spectroscopy, electromyography, electrocardiography, skin elec-
tricity, etc.) into the sensing chair to measure the discomfort
and experience of passengers is also a direction of seat design.

Table 5. Comparison of sitting posture classification of previous studies and this study

Author and year Number of sensors Location of sensors
Number of
subjects

Classification
algorithm

Number of
postures

Classification
accuracy (%)

Zhu et al., 2003 Pressure sensor sheets
(42 × 48 pressure sensor)

Seat plate and
backrest

50 Slide inverse
regression

10 86

Zemp et al., 2016 16 pressure sensors Seat plate,
backrest, and
armrest

41 Random forest 7 90.9

Meyer et al., 2010 96 pressure sensors Seat plate 9 Naïve Bayes 16 82

Jongryun et al., 2018 4 load cells Seat plate 9 SVM using RBF
kernel

6 97.20

Proposed method Pressure sensor sheets
(32 × 32 pressure sensor)

Seat plate and
backrest

24 SVM using RBF
kernel

8 89.26
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On the basis of previous studies, several existing classical
machine learning methods were compared in this study. After
comparing KNN, SVM with linear kernel and RBF kernel,
Random Forest, Decision Tree, and Naïve Bayes with the trial
of different parameters on the four indexes (i.e., accuracy, preci-
sion, recall, and F1-score), SVM with RBF kernel was found to
have the highest recognition accuracy. Compared with other stud-
ies presented in Table 5, it was found that the algorithm attained
the highest recognition accuracy was different in terms of differ-
ent types of sitting postures. Consequently, different machine
learning methods should be explored to achieve the highest recog-
nition accuracy of sitting postures in follow-up studies. In this
study, the posture that achieved the highest classification accuracy
was sitting posture 1 (leaning backward). Interestingly, according
to Zemp et al. (2016), sitting posture 4 (leaning forward) had the
highest classification accuracy. The reason for this difference can
be attributed to the different sitting contexts. In Zemp et al.
(2016) study, people tended to lean forward when they were
working in office, while in this study, passengers tended to lean
backward for relaxation in flight. This difference also confirmed
that sitting postures were affected by the context.

There were some limitations associated with this study. Limited
to the experimental environment, we could only simulate passen-
gers sitting activities in the simulated laboratory. In addition, the
ages of our experimental subjects varied from 22 to 30; so, the
results are only suitable for Chinese in the same age bracket.
Mastrigt et al. (2016) reported that sitting postures and pressure dis-
tribution are also influenced by age. Seat surface temperature is also
a factor that affects the sitting postures of passengers. Sitting on the
seat for a long time will cause the skin surface temperature of the
human body parts in contact with the seat to rise, causing discom-
fort (Hales and Bernard, 1996; Lengsfeld et al., 2000; Konz, 2002;
Szeto et al., 2002). In this scenario, passengers would change
their sitting postures to relieve discomfort. In this study, although
we used the seat in the plane to conduct the experiment, subjects’
buttock and back were not directly in contact with the seat surface
and backrest, but with the pressure cushion. Consequently, the sit-
ting postures of subjects were also affected by the pressure sensors.

Conclusion

This study has explored the detection and recognition of aircraft pas-
sengers’ sitting postures. In the flight simulated experiment, eight
types of sitting postures were detected based on the trunk, back,
and legs of the human body and recognized with pressure sensors
by SVM with RBF kernel that achieved the classification rates of
89.26%. The recognition of aircraft passengers’ sitting postures
provided some reference point and baseline information on aircraft
passenger discomfort. Furthermore, intelligent seat can be designed
by the recognition of passengers’ sitting posture, which could be
employed to detect passengers’ sitting postures at any time and
respond automatically to passenger’s potential needs in aircraft.
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