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1. Introduction. In the classical theory of representations of a finite group by
matrices over a field Qf, the concept of the group algebra (group ring) over % is of
fundamental importance. The chief property of such an algebra is that it is semi-
simple, provided that the characteristic of g is zero or a prime not dividing the order
of the group. As a consequence of this, the representations of the algebra, and hence
of the group, are completely reducible.

In the present paper we discuss a more general concept, the algebra of a finite semi-
group over a given field. Our main task is to find necessary and sufficient conditions
for such an algebra to be semisimple, and to interpret some of the results of this
investigation in terms of representation theory.

Since we shall be concerned mainly with so-called 'semisimple' semigroups, we
give a brief account of these in § 2; there we do not restrict ourselves to finite semi-
groups, but we do assume the existence of a 'principal series'. In §3 we give the
formal definition of the algebra of a finite semigroup 8 over a field g • In the case where
S has a zero, we usually find it convenient to identify this element with the zero of
the algebra, thus forming the ' contracted' algebra of S over ^ • The problem of finding
necessary and sufficient conditions for the semisimplicity of the algebra of an arbitrary
semigroup is then reduced to that of finding these conditions for the contracted algebra
of a simple semigroup.

A new class of algebras is defined in § 4. An algebra of this class consists of all
rectangular matrices of given dimensions with entries from an algebra 91 with an iden-
tity; multiplication is defined by means of a fixed 'sandwich' matrix P. In particular
the contracted algebra of a simple semigroup has this structure. Necessary and
sufficient conditions are found for the semisimplicity of such an algebra in 4-7; these
are that 91 is semisimple and P non-singular. Tests for the non-singularity of P are
given in § 5.

In §6 we combine the results of the previous sections. The notion of a 'c-non-
singular' simple semigroup is introduced, and is used in the formulation of the main
result (6-4). §7 is devoted to a discussion of the simplicity of a semigroup algebra,
while in § 8 we outline Clifford's representation theory for a simple semigroup, and
show how it links up with the results of § 6 when the semigroup algebra is semisimple.

Finally, in § 9 we discuss semigroups of an important type to which our results may
readily be applied, namely, those which admit relative inverses. These semigroups are
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2 W. D. MTTNN

first characterized in terms of their principal series (9-2). The algebra of a finite semi-
group 8 of this type over a field Qf is shown in 9- 5 to be semisimple if and only if all the
idempotents of S commute (with a restriction on the characteristic of Qf). The structure
of such an S has been determined by Clifford, and in 9-6 we obtain a complete set of
inequivalent irreducible representations of S over $.

2. Semisimple semigroups. A semigroup is a set which is closed with respect to a
uniquely defined associative binary operation. For the definitions of 'ideal' (left,
right., and two-sided), 'zero', 'idempotent', and 'difference semigroup' we refer the
reader to (9).

Let S b e a semigroup which possesses a minimal ideal K (an ideal which contains
no ideal of 8 other than itself). Then K is readily seen to be unique, and, following
Clifford (4), we call it the kernel of S. K may consist of a single element, which is the
case if and only if S has a zero. A subsemigroup T of S is termed K-potent if Tr sJT
for some r. In particular, if 8 has a zero z and if 82 = (z) then 8 is termed a zero
semigroup.

Rees (9) has called a semigroup simple if (i) it has no ideals except itself, and possibly
the ideal consisting of zero alone, and (ii) it is not the zero semigroup of order 2. In
particular, a semigroup is called simple without zero if its only ideal is itself. From this
definition it follows that a semigroup of order 1 must be regarded as being simple
without zero. As has been pointed out by Clifford ((4), Theorem 1-1), the kernel of a
semigroup is simple without zero.

A series for a semigroup S is a finite descending sequence of subsemigroups
S = <S12S22.. .2Sn = <SfH.1 = 0

(where 0 is the empty set), such that Si+1 is an ideal of St (i = 1,..., n — 1). The series
will be called proper if each inclusion is strict; the symbol => will always be used to
denote strict inclusion. A refinement of a series is a series containing every term of the
given series, and a proper refinement of a proper series is a refinement which is a proper
series containing strictly more terms than the given series.

Now consider the proper series
S = S1^S2^...=>Sn=>Sn+1 = 0. (2-1)

The semigroups $f — 8i+1 (i = 1, ...,n) are called the factors of the series (with the
convention that Sn — Sn+1 = 8n). If (2-1) has no proper refinement it is called a com-
position series for 8. Rees (9) has shown that any two composition series for a semi-
group are isomorphic; that is, the factors of the two series may be put in 1-1 corre-
spondence in such a way that corresponding factors are isomorphic. The factors of
a composition series are called the composition factors of S. A composition factor is
either simple or is a zero semigroup of order 2.
• If in (2-1) each 8t is an ideal of S, and if the series has no proper refinement each

term of which is an ideal of S, then (2-1) is called a principal series for 8. I t may be
shown that any two principal series for S are isomorphic. The factors of a principal
series are called the principal factors of S, and, as remarked by Green ((7), pp. 168-
169), a principal factorf is either simple or is a zero semigroup. Clearly if a semigroup

t Green has defined a principal factor of a semigroup without reference to a principal series.
The principal factors defined above are also principal factors in this more general sense.
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has a principal series, then it has a kernel, and this is the last non-empty term in every
such series.

As examples, consider the semigroups with the multiplication tables shown (the

z
a
b
c
e

z

z
z
z

z
z

a

z
z
z
b
a

b

z
z
z
a
b

c

z
b
a
e
c

e

z
a
b
c
e

(i)

z
a
b
c

z

z
z
z
z

a

z
z

z
z

b

z
z
z
a

c

z
z
a
z

(ii)

associative law is readily verified in both cases). In case (i) we have the principal series
S=>(z, a, 6)=>(z), so that this semigroup has a zero principal factor of order 3. On
the other hand, 8 = (z, a, b) => (z, a) => (z) and 8 => (z, a, b) => (z, b) => (z) are com-
position series. In case (ii) 8 => (z, a, b) => (z, a) => (z) is both a principal series and a
composition series, while S => (z, a, b) => (z, b) => (z) is a composition series but not a
principal series. This shows that a composition series need not be a refinement of some
principal series.

Whereas the existence of a composition series for a semigroup implies the existence
of a principal series, the converse is not true.

A semigroup S will be called idempotent if Sz = S.

2-2. LEMMA. Let (2-1) be a composition series for S. Then if St is idempotent it is
an ideal of 8.

Proof. The result is certainly true if i = 1,2: hence assume that i > 2. Suppose we
have proved that St is an ideal of St_j for some j^i — 2. Then *Sl_^(Si/8'i_3£^l

i. But
/8f_jiSijS<_^2jS| = S{ by hypothesis, so that St = / S ^ J S J / S ^ , which is an ideal of
Si-j-i- Now St is an ideal of S ^ ; hence the result follows by induction on j .

In particular, since S% is an ideal of Sn, we have S% = Sn and so Sn is an ideal of S.
I t is minimal, and hence is the kernel of S.

A semigroup is said to be semisimple if it has a principal series all of whose factors
are simplef.

2 • 3. THEOBEM. Every principal series of a semisimple semigroup is also a composition
series, and conversely.

Proof. Let (2-1) be a principal series for a semisimple semigroup 8. Suppose that
Tt is an ideal of 8i such that Si^Ti^8i+1 for some i. Then since 8t — 8i+1 is simple it
follows that ^ = 8i+1. Hence (2-1) is also a composition series for S, and in particular
the composition factors of S coincide with the principal factors, and are all simple.

Conversely, let (2-1) be acompositionseriesfor#. By 2-2, to prove that it is a principal
series it is sufficient to show that #f = St for i = 1,...,». Suppose we have proved that
8?+1 = Si+1 for some i. Then #f 2/S| 2 iSf+x = Si+1, and so since $f is an ideal of St we
have either S\ = 8t or S\ = Si+1. But the latter contradicts the simplicity of the
factor 8t — Si+1. Hence *S| = 8t, and since 8% = Sn the result follows by induction on i.

t Green uses his generalized definition of a principal factor to define a semisimple semigroup
whether or not a principal series exists.
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4 W. D. MUNN

The second part of the proof shows that we could equally well have defined a semi-
simple semigroup to be a semigroup with a composition series, all of whose factors
are simple.

We mention two further results:

2-4. LEMMA. Let Sbea semigroup, and M an ideal of 8. Then 8 is semisimple if and
only if M and S — M are semisimple.

In the proof of this, which is omitted, it is convenient to use our second definition
of semisimplicity.

2-5. THEOREM. Let 8 be a semigroup with a principal series. Then the set of all ideals
M of 8 such that 8 — M is semisimple has a unique minimal member.

Proof. It suffices to prove that if M, N belong to the set, then so does M r\N. Let
A = MvN,B = Mr\N{^0, since M nNs MN). A — M is an ideal of S — M, and so
is semisimple by 2-4. But A — M~N — B, and 8 — N is semisimple; hence since
(S-B)-(N-B)^S-Nit follows from 2-4 that S-B is semisimple.

We call the unique ideal U whose existence is established in 2-5 the upper radical
oiS.

If K is the kernel of 8, then we call the union L of all the impotent left, right, and
two-sided ideals of 8 the lower radical oiS. This radical has been discussed by Clifford (5).

Clearly U^L. However we need not have U = L, as the following trivial example
shows: let S have the multiplication table given below; then U = S and L = (z).
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3. Semigroup algebras. We shall assume for the remainder of the paper, with the
exception of the first part of § 9, that the semigroups with which we are dealing are
finite.

Let 8 be a semigroup and f£ a field. We define the algebra §lff(#) of 8 over % as follows:
n

The vector space of Stg=('S) is the space whose elements are the formal sums 2 ^si>
t=i

where su ...,sn are the elements of S, and A^eg (» = 1,...,»). Multiplication is then
defined by the rule ._, , . ._, .

i j i

where s^ ^ is the product st8j in S. The associative law in §%($) follows from that
in S. We identify st with lsi ; where 1 is the identity of gr, so that S is embedded in the
multiplicative semigroup of $%($).

When there is no risk of ambiguity we shall write §l($) for ̂ (8). If T is any subset
of 8, then §l(T) will denote that subspace of 2t($) which has T as basis. In particular,
if M is an ideal of S then 2l(Jf) is an ideal of 2l(£).

3-1. If 8 has a zero z, then it is usually convenient to discuss 2t($) — Sl(z)f instead
of SH(S), and we call this algebra the contracted algebra of 8 over g. If if is an ideal of

t We write %(z) in place of
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Semigroup algebras 5

a semigroup S, then there is a natural isomorphism between 21(5) — %{M) and the
contracted algebra of S — M over Qf.

The term ' algebra' will always be used to mean ' associative linear algebra of finite
order'. We require the following result, which is the analogue of 2-4:

3-2. LEMMA. Let 93 be an algebra over afield %, and let 92 be any ideal of 93. Then 93
is semisimple if and only if 92 and 93 — 92 are semisimple.

Proof. The result is trivial if 92 = 93 or (0); hence suppose 92 is a proper ideal. First
let 92 and 93 — 92 be semisimple, and let a be any properly nilpotent element of 93.
Let x^-x denote the natural homomorphism of 93 onto 93 — 92. For any given xe93
we can find r such that (xa)r = 0. Hence (xa)r = 0, and so a is a properly nilpotent
element of 93 — 92. Thus by hypothesis a = 0, and hence ae 92. But then a is a fortiori
properly nilpotent in 92, and so a = 0. Hence 93 is semisimple.

The converse is an immediate consequence of Wedderburn's Theorem. Let

be the expression for 93 as a direct sum of simple algebras. This decomposition is
unique apart from the numbering of the components, and this can be done in such a

r k
way that 92 = © 934 where l^r^k—l. Hence we also have 93 — 92 = © 93̂ . Thus by

i=l i=r+l

the converse of Wedderburn's Theorem both 92 and 93-92 are semisimple.
The number of simple components in a semisimple algebra 93 will be called its

class number, and will be denoted by Cl 93. This is also the number of inequivalent
irreducible representations of 93 over its ground field. From the above proof we see
that Cl 93 = C192+ 01(93-92).

As a corollary of 3-2 we see that if S is a semigroup with a zero z, and if $ is any
field, then 2l(£) is semisimple if and only if 21(5) — 2l(z) is semisimple; for 2I(z) ^ %,
which is semisimple qua algebra over £$f.

3-3. LEMMA. Let 21(5) be the algebra of a semigroup 5 over a field Qf. Then 21(5) is
semisimple if and only if the algebra of each of the principal factors of 5 over $ is semi-
simple.

Proof. Let 5 = 5X => S2 =>... => Sn => Sn+1 = 0 be a principal series for S. Then we have
a corresponding series of ideals of 2l($), namely

9i(5) = m ) => nst) =>...=> nsj => (0).
We adopt the convention that 31(0) = (0). As remarked in 3-1 91(5̂ ) — 9l($i+1) is iso-
morphic with the contracted algebra of Si — Si+1 over Qf (i = 1, •••,n—l), and it is
enough to show that ^(S) is semisimple if and only if S l^ ) — 2l(*Si+1) is semisimple
for i = 1,..., n. But this is a consequence of 3-2.

3-4. COROLLARY. / / 2t(<S) is semisimple, then S is semisimple.
Proof. Each principal factor of S is either simple or is a zero semigroup. Suppose

one of the factors is a zero semigroup. Then its contracted algebra over ^ is a zero
algebra, and so by 3-3 21(5) cannot be semisimple.
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6 W. D. M U N N

3-5. COROLLARY. / / 2i($) is semisimple, then

As a result of 3-3 and 3-4, to find necessary and sufficient conditions for 2t(£) to be
semisimple we need only consider the case in which S is simple.

3-6. Let S be a simple semigroup with a zero. Rees(9) has shown that the structure
of S is completely determined to within isomorphism by a certain (finite) group G,
two integers m and n, and annxm array P of elements pir e G(z) (the group-with-zero
formed by adjoining a zero element z to (?). P has the property that at least one element
in each row and column is not z. The elements of 8 may then be regarded as the m x n
matrices (x)ip where {x)^ has x&G{z) in the (i, j)th position and z elsewhere. Multi-
plication in S, which we denote by o, is according to the rule

where the product on the right is calculated by the ordinary rules of matrix multi-
plication, assuming that z has the properties of an additive zero. Thus

The zero of S is (z)^ (all i, j).
The semigroup described above is called a regular matrix semigroup over a group-

with-zero, and will be denoted by Smn[G, P]. G is called its basic group, andP its matrix.

3-7. Rees has also shown that Smn\G, P] s Smn[G, P*] if and only if there exist
' monomial' matrices A and B over G(z) (matrices with one and only one entry =j= z
in each row and column), of types nxn and mxm respectively, such that P* = APeB,
where 6 is an automorphism of G(z) andP" is that n x m matrix whose (i, j)th entry is p\y

3-8. From the description of S in 3-6 we see that the contracted algebra of S over $
may be regarded as the vector space <3m7!,(9l) of all mxn matrices over the group algebra
9t = 2t((?)t ofG over%, with multiplication (o) defined by AoB = ^ P 5 ( ^ , 5 e © m J 3 l ) ) ,
where if z occurs in P it is taken as the zero of %.

4. The algebra il^^fSljP]. I t is convenient to discuss a somewhat more general
algebra than that described in 3-8. Before doing so, however, we state some results
which we shall presently require.

Let 93 be an algebra over ^ with an identity / . Then the element a e 93 is termed
non-singular if there exists b e 93 such that either ab = f or ba = f. We first note the
following well-known result (see, for example, (l), chapter 1, Theorem 4):

4-1. LEMMA, (i) The element a is non-singular if and only if the constant term of its
minimum function is non-zero, (ii) If ab = / then b is expressible as a polynomial in a
over Of, and hence (iii) if ab = f, then ba = / .

The element b is unique, and we write 6 = a~x. We note that every subalgebra of 93
which contains a a n d / also contains a-1 in virtue of (ii).

t This is in accord with our notational convention, for O may be regarded as a subsemigroup
of S.
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4- 2. COROLLARY. Let 'iQ* bean algebra with an identity f *, and let 6 be an isomorphism
ojft into ft* such that f6 — f*. Then a is non-singular inft ifand onlyif'a6is non-singular
in ft*.

Proof. Let a6 be non-singular. Then by 4-1 (ii) there exists a polynomial h(ae) in
a9 over $ such that a6.h(ae) = /*. Hence \a.h(a)f = fe, and so a.h(a) = / , since 0
is 1-1. The converse is trivial.

4-3. COROLLARY. Let %* bean extension of g and let 33* be the corresponding scalar
extension^ of 23. Then a is non-singular in 93 if and only if it is non-singular in ft*.

Proof. The minimum function of a is the same whether we consider a as an element
of S3 or of 93*. The result then follows from 4-1 (i).

Now let 21 be an algebra over g with an identity e. Let Qmn(W) denote the vector
space of all m x n matrices with entries from 21. Let P be any fixed n x m matrix over 91.
Then we turn @mn(2I) into an algebra by denning multiplication (o) by the rule
AoB = APB (A,Be.Smn(%))\ the distributive and associative laws are readily
verified. This algebra will be denoted by Mmn[%, P] . The algebra of 3-8 is a special case.

Let Un denote the n x n 'unit ' matrix over 21. We write Mn(%) = Mnn\%, Un].
Let 6 be any homomorphism of 2t into an algebra 21*, and let A = (aw)€(5rs(2l).

Then A6 will denote that element of @rs(2l*) whose (i, j)th entry is a\y If 6 is a matrix
representation we shall use the more customary 'functional' notation 6: a^-6(a),
and accordingly write 6{A) in place of A6.

4-4. LEMMA. Let ft = . ^ [ 2 1 , P ] , ft* = Mmn['$i,P*]. If there exist non-singular
matrices A, B in ^(21), MrJ^i) respectively such that P* = APeB, where 8 is an auto-
morphism of 21, then ft s 93*.

Proof. The mapping <j>: X-*B~1XeA-1 is a non-singular linear transformation of
Smre(2t). Furthermore, if X, Ye @mn(2t) then

{XPYf = B-^XePBYeA-1 = B-1X°A-1P*B-1YeA-1 = X^P*Y^.
Hence (f> is an isomorphism of 93 onto 33*.

4-5. LEMMA. Mn(%) is semisimple if and only if 21 is semisimple.
For the proof we refer the reader to (8), chapter 5, Theorem 8. (i^(2t) may be

k

regarded as the direct product Mn(%) x 21). In fact if 21 ̂  © .30®^, where each ®f is
<=i

k

a division algebra, then it can be shown that Mn{^H) % © ̂  (®i); hence we have
4-6. COROLLABY. / / 21 is semisimple, then C\Mn{S&) = C12I.
An r x s matrix A over 21 will be termed non-singular if r = * and A is a non-singular

element of -34,(21). Otherwise A is termed singular.
We now prove the main result of this section.

4-7. THEOREM. J4,n[2t, P] is semisimple if and only if (i) 21 is semisimple, and
(ii) P is non-singular.

Proof. First suppose that J^,n[2l, P] is semisimple. Then it must have an identity;
let this be E. We have EPX = X, XPE = X for all XeSm?l(2t). I t is then easily
verified that we must have EP = Um and PE = Un; hence to prove (ii) we need only

t See (1), chap. 1, §12.
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show that TO = n. Assume without loss of generality that m^-n, and suppose that

m>n. Write E = (^A and P = (Px P2); where Ev PxeMn(%). Then

Fp_(E1P1 ElP2\_lUn 0

In particular E1P1 = Un, whence P1E1 = Un (4-1 (iii)). But E2P1 = 0; hence
E2 = E2P1E1 = 0, contradicting E2P2 = Um_n. Thus we have m = n, and so P is non-
singular (showing, incidentally, that E = P-1). Since P = PUnUm, we have

Mnn[%P]^Mnn[% Un] = Mn(K) (4-8)
by 4-4; hence ikfm(9l) is semisimple, and so 91 is semisimple, by 4-5.

Conversely, suppose that (i) and (ii) hold. From (ii) m = n, and again (4-8) holds.
From (i) and 4-5 Mn(%) is semisimple, and the result follows.

4-9. COEOLLABY. / / Mnn[%, P] is semisimple, then Cl Mnn[% P] = Cl 91.
This follows at once from 4-6 and (4-8).
A discussion of the radical of Mmn['$l, P] in the general case will be given in a later

paper.
5. Tests for the non-singularity of a matrix over 91. In view of 4-7 it is of some im-

portance to find criteria for the non-singularity of a matrix over 21.
Let 91* be any subalgebra of 91 which contains e, the identity of 91; we can of course

choose 91* = 21. Let F* denote the regular representation of 21*. If 91* has order r
over %, then F* is a faithful representation of degree r, and F*(e) = Ir.

5-1. LEMMA. Let A € Mn(%*). Then A is non-singular in Mn(S&) if and only if T*(A)
is a non-singular nr x nr matrix over Qf.

Proof. Consider the mapping X->T*(X) of Mn(%*) into Mnr($). By linearity, and
the rule for block multiplication, this is a representation of Jfm(2l*), and it is readily
seen to be faithful. We also have F*(Vn) = Inr. The result then follows by 4-2.

5-2. LEMMA. Let 91* be semisimple, and let {F*; i = 1, ...,&*} be a complete set of
inequivalent irreducible representations of 91* over Qr. Then AeMn(^i*) is non-singular
in Mn{S&) if and only if each matrix F*(4) (i = 1,..., k*) is non-singular.

Proof. Let F* be the regular representation of 21* as before. Then Y*(A) can be

transformed to a diagonal sum of matrices ®m,iT
il(A), where each mi is a positive

integer. Thus T*(A) is non-singular if and only if each matrix F*(>4) is non-singular,
and the result follows from 5-1.

Finally, we mention a useful test for the non-singularity of a special type of matrix
over 21.

5-3. LEMMA. Let

11 A^2)*
Mn{%)' Where A"€MrW ( K r < » ) .

Then A is non-singular if and only if both An and A22 are non-singular.
The proof, which we omit, again depends essentially on 4-1.

6. Semigroup algebras (continued). We now apply the results of §§ 4, 5 to semigroup
algebras.
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6-1. THEOREM. Let S = Smn[G, P], and let g be afield of characteristic zero or a prime
not dividing the order of G. Let G* be any subgroup of G containing all the non-zero entries
of P, and let 21* = 21(6?*) be the algebra of G* over $. Then 21* is semisimple. Let
{F*;i = 1,..., k*} be a complete set ofinequivalent irreducible representations of G* over %.
Then the algebra of S over g is semisimple if and only if each of the matrices F*(P) is
non-singular (i = 1,..., &*).

(Note that if T*(P) is non-singular then P must be square.)
Proof. If ^ has characteristic p then p cannot divide the order of 6?*; hence 21* is

semisimple. Let 21 = 2I(G); then 51 is also semisimple. But the contracted algebra
of S over g is il^,re[2I, P] by 3-8, and so by 4-7 this is semisimple if and only if P is
non-singular. The result then follows from 5-2.

It is usually convenient to take G* to be the group generated by the non-zero entries
of P, but we may take G* = G.

62. COROLLARY. Let S be a simple semigroup without zero. Then if 2l(S) is semi-
simple, S is a group.

Proof. S may be regarded as the set of non-zero elements of Smn[G,P~\, say, where
P has no zero entries. Let I \ denote the identical representation of G; then every
entry of the nxm matrix I\(P) is 1. Thus I\(P) is non-singular only if m = n = 1,
in which case 8 reduces to a group (isomorphic with G).

This result was previously obtained by M. Teissier (10).
The non-singularity of the matrix P has so far been discussed with reference to a

particular field %. We now show that it depends only on the characteristic of ^ .

6-3. LEMMA. Let P be an nxn matrix over agroup-with-zero G(z), and let ̂ 1 ; ^f2be
two fields having the same characteristic. Let 2l1; 2I2 be the algebras of G over g1; $ 2 respec-
tively. Then P is non-singular qua matrix over 2ti if and only if it is non-singular qua
matrix over 2I2-

Proof. Let
("rational field if ^v $2 have characteristic 0,

0 1 GF(p) if %ly $ 2 have characteristic p.

Let 2l0 be the algebra of G over g0. It is sufficient to prove the result for ^2 = %o-
We may regard ^ 0 as a subfield of ^v Thus ^ is a scalar extension of 2t0, and so
MniUi) is a scalar extension of Jfn(2t0). But PeMnC<H0), and we then apply 4-3.

As an example to show that the non-singularity of P does in fact depend on the
characteristic of g, let P be the nxn matrix whose (i,j)th entry is the identity e of
G if i + j , and is 0 if i = j . Take G* = (e). Then by 5-2, P is non-singular if and only if
T*(P) is a non-singular matrix over % (T* the identical representation). Now it can
readily be shown that det T*(P) = ( - I)""1 (n- 1) if $ has characteristic 0, whence it
follows that when n = p + 1 the matrix P is singular for fields of characteristic p and
is non-singular for all other fields.

A simple semigroup S will be termed c-non-singular if S-^Snn[G, P], where P is
non-singular qua matrix over 21, the algebra of G over any field of characteristic c.
Otherwise S will be termed c-singular. (Note that if Snn[G,P]^Snn[G,P*], and if
P is c-non-singular, then so is P* by 3-7.)
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Combining the results of 3-3, 3-4 and 4-7 we obtain
6-4. THEOEEM. Let 2l($) be the algebra of a semigroup 8 over afield of characteristic c.

Then 2l(*S) is semisimple if and only if each of the principal factors of 8 is a c-non-
singular simple semigroup, provided that c, if non-zero, does not divide the orders of any
of the basic groups of the principal factors.

_ 6-5. COEOLLABY. / / §l(#) is semisimple, then the kernel of S is a group.
Proof. Let the kernel be K; then K is simple without zero. But if 2l(£) is semi-

simple then so is %{K), and the result follows from 6-2.
This means that if 9I(#) is semisimple, then 8 possesses zeroid elements (see (6)).

7. Simple semigroup algebras.
7-1. THEOBEM. A simple algebra 501 over afield % is a contracted semigroup algebra

over Q- if and only if it is isomorphic with a complete matrix algebra over %.
Proof. Let 2Ji ^Mn($) for some n. Then as basis for Mn(%) we can choose the set of

'matrix units' Ei} whose multiplication is given by E^E^ = 8jrEis, whence 95£ is
a contracted semigroup algebra over ^.

Conversely, let S be a semigroup with zero, and let 93, the contracted algebra of 8
over %, be simple. Then 8 is simple. Let S^8mn[G,P], so that 93 ̂  J^,n[5l, P] where
21 = %(G). Now 93 is a fortiori semisimple, and so by 4-7 91 is semisimple and P is non-
singular (implying that m = n). By 4-9 C12I = C193 = 1, from which it follows that
G consists of a single element. Thus Us%, and so 93 ^Mn(%) from (4-8).

We note in passing that 2l(£), the non-contracted algebra of a semigroup S over
a field £$f, is simple if and only if 8 consists of a single element.

Consider the se'migroup Snn[G,P]. If G consists of one element, we identify this
element with the identity 1 of gf. Then P may be regarded as an element of Mn(%)
whose entries are either 0 or 1. Let £fn = S^n(%) denote the set of all non-singular
nxn matrices whose entries are 0 or 1, and let P e Sfn. Write P* ~ P if there exist nxn
permutation matrices A, B such that P* = APB. This defines an equivalence o n ^ n )

and by 3-7 Snn[{l),P]^Snn[(l),P*] if and only if P* ~ P. Let sn denote the number
of equivalence classes; then sn is the number of non-isomorphic simple semigroups
whose contracted algebras over £$f are isomorphic with MJffi). I t is easily seen that
s2 = 2 for all fields %, and it may be verified that sz = 7 or 8 according as the
characteristic of $ is or is not 2.

8. Representations of simple semigroups. The representations of a simple semigroup
S by matrices over a field ^ have been discussed by Clifford (3). These were obtained
as ' extensions' of the representations of the basic group of 8. We give a summary of
the results, and show how they are related to those of § 6 when the algebra of S over gf
is semisimple.

Let S = 8mn[G,P]; we shall use the notation of 3-6 throughout. Without loss of
generality we can assume that plx = e, the identity of G (this is a consequence of 3-7).
Let z' be the zero of S; thus z' = {z)ti for all i,j. Now let V be a representation of 8
by s x s matrices over $ . We suppose that F"(z') = 0g. V induces a representation of
the subsemigroup Gu = {(a;)n; xeG(z)}^G(z), and we may suppose that V is
transformed so that /T ,C*" ) <8I>
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F is thus a representation of G(z) such that F(z) = 0. We regard z as the zero of 91,
the algebra of G over %, so that F may be considered as a representation of 21. Let
t be the degree of F; then there is no loss of generality if we assume that F(e) = /,.
In this case F is said to be proper.

We call F' an extension of F.
From the law of multiplication in S Clifford shows that

RtT{x)Qt)'

where Qp Rt a r e tx (s — t), (s — t)xt mat r ices respect ively, such t h a t

and QiSt

Conversely, if F is any proper representation of G, and if Qp Rt are matrices satis-
fying conditions (8-3), then the mapping F' defined on 8 by (8-2) is a representation of
S such that (8-1) holds. We write

QA
8 ; R = (R2R3...Rm).

w
Let H = H{Y) be that (n—l)tx(m—l)t matrix whose (j,i)th block is the txt

matrix V(pii) — T{pil) r(#K) (i = 2, ...,m; j = 2, ...,n). Then from (8-3) we have
QR = H. (8-4)

Conversely, any proper representation F of G and any factorization (8-4) of H
determine a unique representation F' of S. We call Q and R the defining matrices of F'.

If h is the rank of H, then s^t + h. In particular there are factorizations (8-4) in
which Q, R are (n — 1) t x h, h x (m — 1) t matrices respectively. Such factorizations are
termed basic. The representation of 8 derived from a basic factorization is unique to
within equivalence ((3), Theorem 6-1), and hence we call it the basic extension of F.

8-5. A representation of 8 is termed proper if it does not decompose into the sum
of two representations, one of which is null. Clifford shows by an examination of
matrix factorizations that if F' is any representation of S of degree s over g?, extending
a proper representation F of G of degree t, and if the matrices Q, R, H of (8-4) have
ranks q, r, h respectively, then s — t^q + r — h, and F' is proper if and only if
s — t = q + r — h ((3), Theorem 5-1). In particular, the basic extension is proper.

Now let 93 (S) denote the contracted algebra of S over ̂ . The representation described
in (8-2) can be extended to a representation of 93(#). With the usual notation we have

8-6. THEOREM. Let % have characteristic zero or a prime not dividing the order of G.
Then 93 (S) is semisimple if and only if the only proper representation of S extending any
given proper representation of G is its basic extension.

Proof. Let

-Pnl
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Then A is non-singular, by 5-3. Also

( « Pu ••• Pun

0 (p22-p21p12) ... (P2m~P2lPlm)

0 (2>w2-Z

Let i \ denote the submatrix of AP from rows 2, ...,n and columns 2, ...,m. By
4-7 23(5) is semisimple if and only if P is non-singular, and so by 5-3 23(#) is semi-
simple if and only if Pl is non-singular.

Let Px be non-singular, so that in particular m — n, and let F be a proper representa-
tion of G of degree t. Then T(P1) is a non-singular (n — l)tx(n — l)t matrix. Let F'
be a proper representation of 8 of degree s with denning matrices Q, R. Then from
(8-4) we have QR = H = F ^ ) . With the notation of 8-5 we have q = r = h = (n-l)t.
Since I" is proper, 8-5 gives s — t = q + r-h = h, and so F' is the basic extension of F.
We also note that s = nt.

Conversely, let 8 be such that the only proper representation of 8 extending any
given proper representation of G over $ is the basic extension. Let F be a proper
representation of G of degree t, and let h be the rank of H = F(P1) as before. Suppose
that h< (n— \)t. Then for our factorization (8-4) we may take Q = I(n-\u, R = H.
Let F ' be the representation of degree a, say, obtained from this factorization. Then
with the usual notation we have q — (n— \)t,r = h and so s — t = (TO— \)t = q + r — h.
Thus by 8-5 F' is a proper representation. But it is not the basic extension of F, and
this contradicts our hypothesis. Hence we must have h = (n— 1) t. Similarly, we must
have h = (m—\)t, and so F(PX) is non-singular. Now let F be chosen to be the regular
representation of G. Then from 5-1 we see that Pt is non-singular, and so S3($) is
semisimple.

8-7. THEOREM. Let {F ;̂ i = l,...,k} be a complete set of inequivalent irreducible
representations of G over $, and let 93(8) be semisimple. Then {F ;̂ i = 1,..., k) is a com-
plete set of inequivalent irreducible representations of 8 over Qf, where F^ is the basic
extension of F^.

Proof. Since F^ is irreducible, so also is F^ ((3), Theorem 7-1). Further, the repre-
sentations T't (i = 1,..., h) are inequivalent since they induce inequivalent repre-
sentations of G. But by 4-9 C193(£) = CISC = k, and the result follows.

9. Semigroups which admit relative inverses. In this final section we apply the
results of §6 to semigroups of a type first discussed by Clifford (2). A semigroup 8
(not necessarily finite) is said to admit relative inverses if for any a in 8 there exist
elements e and a' in S such that ea = a = ae and a'a = e = aa'.

By a ' semilattice' we mean a commutative semigroup, all of whose elements are
idempotent. Let a, /? belong to a semilattice Y; then if afi = /? we write a^fi. This
defines a partial ordering in Y with the property that any two elements £, v have a
unique greatest lower bound, namely £w. Clifford's main result may then be stated thus:

9-1. Let S be a semigroup which admits relative inverses. Then S determines a semi-
lattice Y such that to each aeY there corresponds a subsemigroupKa of 8. The Ka's
have the following properties:
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(i) they are mutually disjoint and their union is S,
(ii) each Ka is a completely simple semigroup! without zero,

(iii) KaK^Kafi.

Conversely, every semigroup with this structure admits relative inverses.
Y will be called 'the semilattice of S', and the Ka's 'the components of S'.

9-2. LEMMA. A semigroup 8 with a principal series admits relative inverses if and
only if (i) its kernel is completely simple without zero, and (ii) its remaining principal
factors, if any, are completely simple without divisors of zero.

(A semigroup with these properties is a fortiori semisimple.)
We omit the formal proof. It can be verified that in this case the semilattice Y

of S is finite, and if w is the zero of Y, then the principal factors of 8 other than the
kernel Ka are the semigroups K* (ae Y, a=)=<y), where K* is formed from Ka by the
adjunction of a zero.

We shall also make use of the following result due to Clifford:
9-3. Let S be a semigroup which admits relative inverses, and let all the idem-

potents of S commute. Let Y be the semilattice of 8, and {Ka; cteY} the set of com-
ponents of 8. Then each Ka is a group. Further, to every pair of elements a, /?e Y
such that a, > ft there corresponds a homomorphism <pap of Ka into Kp, and these
homomorphisms satisfy the transitivity relation

If we take (j)aa to be the identity automorphism of Ka, then the structure of 8 is given
in terms of the structures of the component groups by the relation

aabp = (aa^ay)(bfi<f>py), (9-36)
where aa, bp are any elements of Ka, Kp respectively, and y = ocft.

Conversely, any semigroup which is a union of disjoint groups and whose structure
is defined as above admits relative inverses, and all its idempotents commute.

We now obtain an additional result in this connexion.
9-4. LEMMA. J Let S be a semigroup which admits relative inverses. Then if each com-

ponent of 8 is a group, all the idempotents of S commute.
Proof. Let {Ka; a e Y} be the set of components of 8, and let ea be the identity of the

group Ka. We wish to prove that eaefi = epea for all a,/?e Y. Let y = afi; then by 9-1
eaey, eyeaeKy, and so eaey = ey(eaey) = (eyea)ey = eyea. Thus (eaey)

2 = eaey, and so
eaey = ey. Similarly, epey — ey = eyefi. Hence since eaep, epeaeKy we have

eaep = (eaep)ey = ea(e^ey) = eaey = ey = eyea = (eyep)ea = er(efea) = efea.

We now let 8 be a finite semigroup which admits relative inverses, and consider
the algebra 21(<S) of S over a field g.

9-5. THEOREM. Let ^ have characteristic zero or a prime not dividing the orders of any
of the basic groups of the principal factors of S. Then 2I(#) is semisimple if and only if
all the idempotents of S commute.

t See (9). In particular, a finite simple semigroup is completely simple.
% (Added in proof). This result has also been obtained by A. H. Clifford ('Bands of semi-

groups,' Proc. Amer. phil. Soc. 5 (1954), 499-594 (Theorem 8)) and by R. Croisot ('Demi-groupes
inversifs et demi-groupes reunions de demi-groupes simples', Ann. Ec. Norm. (3), 70 (1953),
361-79 (p. 375)).
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Proof. Let %(S) be semisimple. Then by 3-3 the algebra of each principal factor over
% is semisimple. In particular, by 6-5 the kernel of 8 is a group. Now by 9-2 the
remaining principal factors of S are all simple semigroups without divisors of zero.
By applying 6-2 to their contracted algebras, we see that these factors are groups-
with-zero, and so the components of 8 are groups. Hence by 9-4 all the idempotents
of S commute.

Conversely, let all the idempotents of 8 commute. Then by 9-3 all the components
of S are groups; that is, the kernel of S is a group and the remaining principal factors
are groups-with-zero. It then follows from 3-3 that 2I(#) is semisimple.

Finally we discuss the matrix representations of a semigroup 8 which admits
relative inverses, and whose idempotents commute. As a consequence of 9-5, if g is a
field of characteristic zero or a prime not dividing the orders of any of the components
of S (groups), then the representations of S over $ are completely reducible. We use
the notation of 9-3.

9-6. THEOREM. Let {Tvi; i = 1, ...,&,} be a complete set of inequivalent irreducible
representations of the group Kv (yeY) over Qf. Define the extension T'vi of Tvi to S as
follows:

 r , , , ( i y a . ^ ) for all aaeKa>a>V,
*,il««J-j 0 forau aaeKa,ct%v.

Then {T'vi ;i = l,...>kv;ijeY}isa complete set of inequivalent irreducible representations
of S over gf.

Proof. Let aa, bp be any elements o£Ka, Kp respectively. If both a,fi^v then we have

r;<(a«6,) = IW(aa0By) (brffr)} by (9-36) (y = a/?),

= r,,{[(aB0Br) {bffo)] <f>yv} since y>7),

= M K 4>ay 4>rv) (bp <f>fi7 <j>yn)} since 07V is a homomorphism,

= r , i{(aa^,)(6 / ?^ ,)} by(9-3o),

= Tvi(aa$av) Tvi(bp<j)pv) since Tvi is a representation of Kv

If not both a,ft^v, then afi^w. But aabp e Kap, and so from our definition we have

Hence T'vi is a representation of S. It is irreducible since Tvi> its restriction to Kv,
is irreducible. Similarly, the T'vi's (i = I, ...,Jcv) are inequivalent, and clearly if r/ + £
then we cannot have F'vi equivalent to T'y. But the number of inequivalent irreducible
representations of S over % = Cl$t(<S) = 2 K, by 3-5, and the result follows.

I should like to express my gratitude to Dr D. R. Taunt for his encouragement and
extremely helpful criticisms, and to thank Mr D. Bees for suggesting in the course of
conversation the result of 4-7. I am also indebted to the Carnegie and Cross Trusts for
grants.
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