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Abstract

Simulated tempering is a popular method of allowing Markov chain Monte Carlo algo-
rithms to move between modes of a multimodal target density π . Tawn, Moores and
Roberts (2021) introduces the Annealed Leap-Point Sampler (ALPS) to allow for rapid
movement between modes. In this paper we prove that, under appropriate assumptions,
a suitably scaled version of the ALPS algorithm converges weakly to skew Brownian
motion. Our results show that, under appropriate assumptions, the ALPS algorithm
mixes in time O(d[ log d]2) or O(d), depending on which version is used.
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1. Introduction

Markov chain Monte Carlo (MCMC) algorithms [6] are very widely used to explore and
sample from a complicated high-dimensional target probability distribution π . The most basic
version of MCMC is the Metropolis algorithm [17, 10]. From a given state x, it proceeds by
first proposing to move to a new state y, and then either accepting that proposal (i.e. moving
to y), or rejecting that proposal (i.e. staying at x). The acceptance probability is given by
min [1, π (y)/π (x)]. If the proposal densities are symmetric (i.e. have the same probability of
proposing y from x as of proposing x from y), this procedure ensures that the resulting Markov
chain will be reversible with respect to π , and thus have π as its stationary density.

MCMC algorithms have a tendency to get stuck in local modes, which limits their effective-
ness. Annealing and tempering methods [1, 9, 12, 16, 18] attempt to overcome this problem by
considering different powers πβ of the target density, where β ≤ 1 is an inverse temperature.
Here, β = 1 corresponds to the desired distribution, so those are the only samples which are
‘counted’. However, small positive values β � 1 make the density flatter and thus much easier
to traverse.

Despite the tremendous success of tempering, these methods suffer from deficiencies, espe-
cially in high dimensions. In particular, tempering of distributions does not usually preserve
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the relative mass contained in each of the modes. To deal with this, [31] introduced a weight-
preserving transformation which overcomes the weight instability problem as long as all
modes look reasonably Gaussian. Unfortunately, in applications that is often not the case, since
modes often exhibit significant skewness.

An alternative approach, the Annealed Leap-Point Sampler (ALPS), is introduced in [29].
This algorithm instead considers very large values β � 1, corresponding to very peaked target
densities at very cold temperatures. (Large β are often used in optimisation algorithms such as
simulated annealing [1, 12, 18], but are not normally used by sampling algorithms.) Assuming
smoothness, the resulting sharply peaked modes then become approximately Gaussian, thus
facilitating simpler ways of moving between them. Furthermore, a weight-preserving trans-
formation is performed to approximately preserve the probabilistic weight of each peak upon
tempering.

For any MCMC algorithm, an important question is how quickly it converges to its sta-
tionary distribution π . While there have been many attempts to bound MCMC convergence
times directly (see, e.g., [26] and the references therein), much of the effort has been focused
on questions of computational complexity, i.e. how the algorithm’s running time grows as a
function of other parameters (dimension, size of data, etc.).

One promising, though technically challenging, approach to determining the computational
complexity of Metropolis algorithms is through the use of diffusion limits as the dimension
d → ∞. Similar to how a symmetric random walk converges to Brownian motion under
appropriate rescaling, certain transformations of some Metropolis algorithm components will
converge to Langevin diffusions. This was originally exploited in [21, 22] to derive com-
plexity and optimality results for ordinary random-walk-based Metropolis algorithms, and
was later generalised to many other contexts [4, 23, 25]. Furthermore, the d → ∞ limit of
MCMC algorithms also provides good approximate information about processes of modest
finite dimension; see, e.g., [23, Figure 4].

In this paper we apply the diffusion limits methodology to a ‘vanilla’ version of the ALPS
algorithm, to study its convergence complexity. We prove (Theorem 3) that, under appropriate
assumptions, a suitably scaled version of this ALPS algorithm converges to skew Brownian
motion (cf. [14]). This limit allows us to draw conclusions about the computational complexity
of our algorithm, and to show (Corollaries 2 and 3) that, under appropriate assumptions, as the
dimension d → ∞ the vanilla ALPS algorithm mixes in time O(d[ log d]2) or O(d) depending
on which version is used.

These results show that ALPS converges fairly quickly even in high dimension. This com-
plexity order is similar to those previously derived for ordinary random-walk Metropolis [21]
and for simulated tempering [25], which were each shown to converge to dimension-free diffu-
sions when sped up by a factor of d, thus showing that their complexity is O(d). The difference
is that those previous results assumed an independent and identically distributed (i.i.d.) target
of the form (1) and (3) with J = 1, and assumed immediate mixing between all modes at each
β, so it omitted the issue of moving between modes which often makes those algorithms expo-
nentially slow [32]. By contrast, the ALPS algorithm stores mode location information that is
used in a special mode-jumping move to converge efficiently even when there are J > 1 widely
separated modes, as we now describe.

2. The ALPS algorithm

Tempering methods for MCMC usually consider powers πβ for small values β ∈ (0, 1],
to make the target distribution flatter and thus allow for easier mixing between modes.
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FIGURE 1. The θ1 marginal of the target density in the illustrative example.

By contrast, [29] introduces the ALPS algorithm, which instead uses large values β � 1,
combined with locally weight-preserving tempering distributions as in [31] so the modes
retain their relative masses. These choices make the modes of π even more separated.
However, under certain smoothness and integrability assumptions, they also make each
mode appear approximately Gaussian and hence similarly shaped. This allows for auxiliary
‘mode-jumping’ Markov chain steps which move effectively between the different modes
when β is large. Then, as usual, only samples in the original temperature β = 1 are ‘counted’
as actual samples from π .

To illustrate the idea of this algorithm, consider the following simple example in dimension
d = 5. Suppose the target density π on R

5 is a mixture of two skew-normal modes centered
at (− 20, −20, −20, −20, −20) and (20, 20, 20, 20, 20) respectively, with scalings 1 and 2
respectively, and with shape parameter α = 10; so, for all θ ∈R

5,

π (θ ) = (0.7)
5∏

i=1

2 φ
(
θi + 20

)
�
(
10(θi + 20)

)+ (0.3)
5∏

i=1

φ
( 1

2 (θi − 20)
)
�
(
5(θi − 20)

)
,

where as usual φ(x) = 1√
2π

e−x2/2 and �(x) = ∫ x
−∞ φ(u) du; see Figure 1.

In such an example, it is very easy for a Markov chain to mix separately within either of the
two modes. The challenge is to move between the modes (which is virtually impossible for a
typical fixed-temperature Metropolis algorithm even in this simple five-dimensional example).
The ALPS algorithm introduces a powerful independence-sampler-based move so that at very
large inverse-temperature values β � 1, the chain can exploit the near-Gaussianity of each of
the modes to directly jump between them. Figure 2 shows a trace plot of the inverse temperature
values β during one run of the algorithm, and also indicates by colour which of the two modes
the chain is in (i.e. closest to). As can be seen from the plot, the chain stays in the same mode
for long periods of time, and only switches modes when the values of β are very large, at which
point it jumps to either mode with its correct probability. (Note that this description is for the
‘vanilla’ version of ALPS; see Remark 1.)

Figure 2 illustrates that the key to the ALPS algorithm’s success is moving rapidly between
the large β = βmax = 256 values (which allow for mixing between the modes) and the small
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FIGURE 2. Trace plot of the β values in the illustrative example, coloured to indicate whether the chain
is in mode 1 (light-grey) or mode 2 (black).
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FIGURE 3. A trace plot of the transformed values s log (βmax/β) in the illustrative example, where s = +1
or s = −1 when the chain is in mode 1 or 2.

β = 1 value (which can be ‘counted’ as a sample from π ). However, it is not clear how quickly
such mixing takes place, and in particular how it changes depending on the target π and dimen-
sion d. To study this, we would like to prove a diffusion limit of a suitably scaled version of
the β process, but it is not clear from Figure 2 what sort of limiting diffusive behaviour is
available.

To better understand this algorithm’s convergence, we consider a suitable transformation of
β. Namely, we instead consider the values of s log (βmax/β), where s = 1 if the chain is in mode
1 or s = −1 if the chain is in mode 2. The resulting process is shown in Figure 3, which suggests
that this modified functional does indeed start to resemble a diffusive process. Indeed, away
from the special value 0 (corresponding to βmax and the mode-jumping moves), the process
looks roughly like Brownian motion. In fact, we prove in Theorem 3 that under appropriate
assumptions and scalings, this modified process converges to a skew Brownian motion.

More precisely, we shall prove diffusion limits for suitably rescaled versions of the ALPS
algorithm, as the dimension d → ∞. We shall assume that the ALPS algorithm can easily
jump between modes when it reaches the sufficiently large inverse temperature β

(d)
max, but

that it is stuck within one mode whenever β < β
(d)
max. We therefore focus on how the inverse

temperatures β themselves are updated by the algorithm. In particular, we prove in Theorem
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3 that a particular rescaling of the β process converges to skew Brownian motion [14]. This in
turn allows us to derive computational complexity results (Section 5).

Remark 1. The ‘vanilla’ ALPS algorithm studied herein differs in certain ways from the full
ALPS algorithm for actual applications in [29]. For example, we assume the process mixes
perfectly between modes when β = β

(d)
max (due to near-Gaussianity and the algorithm’s auxil-

iary mode-jumping steps), and not at all when β < β
(d)
max, while the full algorithm mixes better

and better at higher β values but never perfectly. Also, the full algorithm actually uses parallel
tempering, in which a separate chain is run at each temperature and their values are swapped;
the single β process studied herein can then be thought of as following which of the chains is
currently carrying state information between larger and smaller inverse temperatures and thus
facilitating mixing (cf. [2, Section 4]). Finally, the full ALPS algorithm in [29] also makes
use of the QuanTA transformation [30], an additional affine transformation to increase the effi-
ciency of the temperature-swap moves, which we omit here; we discuss the effect of this extra
QuanTA transformation in Corollary 3.

3. Assumptions

We consider a version of the ALPS algorithm of [29]. We assume the chain always mixes
immediately within each mode, but the chain can only jump between modes when at the suf-
ficiently cold inverse temperature β = β

(d)
max, at which point it immediately jumps to any of its

modes with the correct probability weight.
To facilitate theoretical analysis, we assume that the target density π is a mixture of J

normalised densities g1, . . . , gJ on R
d with weights w1, . . . , wJ , i.e.

π (x) =
J∑

j=1

wjgj(x), x ∈R
d. (1)

We do not require the gj to be unimodal, but we shall nevertheless refer to them informally as
the ‘modal components’ or ‘modes’ of π , with the intuition that it is easy for MCMC to mix
efficiently within each individual gj but difficult for it to jump between the different gj.

We also assume that each state x is ‘allocated’ to (i.e. is ‘in’) one of the modes (e.g.
whichever one’s centre it is closest to), such that the accept/reject probabilities when updating
β can be computed using only the mode gj of the current state, rather than the full density π .

(This corresponds to considering the x values as elements of
(
R

d
)J , with a different version

of the state space R
d for each of the J modes; if the modes are well separated then, especially

for large β, this will be a good approximation to the actual algorithm.)
Then, for each inverse temperature β ≥ 1 we use the tempered distribution

πβ (x) ∝
J∑

j=1

wj
[gj(x)]β∫
[gj(x)]β dx

=:
J∑

j=1

wj gβ
j (x), (2)

where gβ
j are the normalised powers of the gj. We assume the same weights wj can be used for

each β due to a weight-preserving transformation as in [31].
In terms of these assumptions, the vanilla ALPS algorithm as we shall study it is defined by

Algorithm 1.
In our theoretical proofs below, we assume for simplicity (though see Remark 3) that we

have just J = 2 modes, of weights w1 and w2 = 1 − w1. To achieve limiting diffusions, we
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Algorithm 1: The vanilla ALPS algorithm.

further assume, as in the original MCMC diffusion limit results [21], that each of the individual
components gj consists of i.i.d. univariate coordinates, i.e. that, for each j, we have

gj(x) =
d∏

i=1

gj(xi) (3)

for some fixed one-dimensional density function gj, where x = (x1, x2, . . . , xd). This allows us
to apply the diffusion limit results of [25] within each individual target mode. (Although (3)
is a very restrictive assumption, it is known [23] that conclusions drawn from this special case
are often approximately applicable in much broader contexts.)

We also require assumptions on the β values. Write the inverse temperatures as

1 = β
(d)
0 < β

(d)
1 < · · · < β

(d)
k(d) =: β(d)

max (4)

for the process in dimension d. Similar to [2, 25], following [19, 13], we assume that the inverse
temperatures are related by

βi = βi−1 + �(βi−1)/d1/2 (5)
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for some fixed C1 function �. It is shown in [2, 25] that in the single-mode i.i.d. case, the fastest
limiting diffusion is obtained by using the choice

�(β) = I−1/2(β) �0 (6)

for a fixed constant �0
.= 2.38, where I(β) = Varx∼gβ ( log g(x)). Inspired by this, in our later

results we assume the proportionality condition that the quantities Ij(β) := Var
x∼gβ

j
( log gj(x))

for the different modes are proportional, i.e. there are positive constants rj and a C1 function
I0 : R+ →R+ such that

Ij(β) = I0(β)/rj, j = 1, . . . , J, (7)

and shall then correspondingly assume that

�(β) = I−1/2
0 (β) �0 (8)

for some fixed constant �0 > 0.
One example is the exponential power family case, in which each of the mixture component

factors gj is of the form gj(x) ∝ e−λj|x|rj
for some λj, rj > 0. It then follows from [2, Section 2.4]

that Ij(β) = β−2/rj for β > 0, so the proportionality condition (7) holds with I0(β) = β−2. The
corresponding choice of � from (6) is then �(β) = β/

√
rj in mode j. This includes the Gaussian

case, where each rj = 2 and λj = 1/σ 2
j .

Remark 2. Our assumptions of immediate mixing within modes, and immediate mixing
between modes when β = βmax, is analogous to the corresponding assumptions in [31, Section
5.1] for ordinary simulated tempering of immediate mixing within modes, and immediate mix-
ing between modes when β = βmin (the hottest temperature). In practice, even within simple
modes the mixing is not immediate, but rather takes, e.g., O(d) iterations for random-walk
Metropolis (RWM) [21], or O(d1/3) for Langevin algorithms [22], or O(d1/4) for Hamiltonian
(hybrid) Monte Carlo [5]. Since we show that the β-mixing for ALPS takes at least O(d), it
follows that if Langevin or Hamiltonian dynamics are used for the state-changing phase, then
the states will mix at a faster order than the temperatures, thus effectively immediately, in
which case our assumption of immediate mixing within modes is reasonable. By contrast, if
RWM dynamics are used for the state-changing phase, then the interplay between the tem-
perature convergence and state convergence would be more complicated, though it still works
effectively in practice [29].

4. Main results

We now state various weak convergence results for various transformations of our process.
(All proofs are deferred to Section 6.) Let β(d)(t) be the inverse temperature at time t for the
process described by Algorithm 1 in dimension d. Let β(d)(N(dt)) be a continuous-time version
of the β(d)(t) process, sped up by a factor of d, where {N(t)} is an independent standard rate-1
Poisson process. To combine the two modes into one single process, we further augment this
process by multiplying it by −1 when the algorithm’s state is allocated to the second mode,
while leaving it positive (unchanged) when state is allocated to the first mode, i.e.

X(d)
t =

{
β(d)(N(dt)) in mode 1,

−β(d)(N(dt)) in mode 2.
(9)
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Our first diffusion limit result, following [25], states that within each mode, the inverse tem-
perature process behaves identically to the case where there is only one mode (i.e. J = 1). To
state it, we extend the definition of I to

I(β) =
⎧⎨⎩Var

x∼f β
1

( log f1(x)), β > 0,

Var
x∼f |β|

2
( log f2(x)), β < 0.

(10)

Theorem 1. Assume the target distribution π is of the form (1), with J = 2 modes of weights
w1 and w2 = 1 − w1, each having i.i.d. coordinates as in (3), with tempered distributions as in
(2) for an inverse-temperatures list (4) related by (5). Then, away from its boundary points 1
and β

(d)
max, the process

{
X(d)

t
}

from (9) converges weakly as d → ∞ to a fixed diffusion process
X, which for X(d) > 0 satisfies

dXt =
[

2�2(Xt) �

(−�(Xt)I1/2(Xt)

2

)]1/2

dBt

+
[
�(Xt) �′(Xt) �

(−I1/2(Xt)�(Xt)

2

)
− �2(Xt)

(
�(Xt)I1/2(Xt)

2

)
′φ
(−I1/2(Xt)�(Xt)

2

)]
dt. (11)

The same equation holds for Xt < 0, except with the sign of the drift reversed.

As a check, (11) satisfies the general relation μ(x) = 1
2σ 2(x) d

dx log π (x) + σ (x)σ ′(x), which
implies that π is locally invariant for X(d), i.e. that its generator G has π (Gf )(x) = 0 for appro-
priate smooth f and for x in the interior of the domain. That is, π is stationary for X(d) locally
within each mode, as expected.

However, Theorem 1 describes only what happens on each mode separately; it says nothing
about the mode-jumping process itself. Moreover, its state space (− ∞, −1] ∪ [1, ∞) is not
connected. In fact, we will see that as d → ∞, the value β

(d)
max will go to infinity and hence never

be reached in finite time. To resolve these issues, we make several transformations on the X(d)
t

process. First, for |x| ≥ 1, we define h(x) = ∫ |x|
1

1
�(u) du. (For example, in the exponential power

family case, I(β) ∝ 1/β2, so (8) gives �(β) = I−1/2
0 (β) �0 ∝ β, whence h(x) = ∫ |x|

1
1

�(u) du ∝∫ |x|
1

1
u du = log |x|.) We then set

H(d)

t(h(β(d)
max))2

= sign

(
X(d)

th(β(d)
max)2

)⎡⎢⎢⎣1 +
h

(
X(d)

th(β(d)
max)2

)
h(β(d)

max)

⎤⎥⎥⎦ . (12)

Hence, 1 ≤ H(d)
t ≤ 2 in the first mode, and −1 ≥ H(d)

t ≥ −2 in the second mode. Also, H(d)
t

speeds up X(d)
t by a factor of h

(
β

(d)
max

)2, and hence moves at Poisson rate dh
(
β

(d)
max

)2. This new

process H(d)
t satisfies the following.

Theorem 2. Under the set-up and assumptions of Theorem 1, on (− 2, −1) ∪ (1, 2) (i.e. away
from its boundary points), the process

{
H(d)

t
}

from (12) converges weakly in the Skorokhod
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topology as d → ∞ to a limiting diffusion H which satisfies

dHt =
[

2�

(−�(Xt)I1/2(Xt)

2

)]1/2

dBt + �(Xt)

[
�

(−I1/2(Xt)�(Xt)

2

)]′
dt. (13)

Furthermore, H leaves constant (uniform) densities locally invariant.

To make further progress, we now use the proportionality condition (7), with corre-
sponding inverse-temperature spacing (8). It then follows from the extended definition
(10) that �(Xt) I1/2(Xt) = �0r1/2

1 for Xt < 0, and �(Xt) I1/2(Xt) = �0r1/2
2 for Xt > 0, with[

�(Xt) I1/2(Xt)
]′ = 0 for all Xt �= 0. Hence, Theorem 2 immediately gives the following

corollary.

Corollary 1. Assume the set-up and assumptions of Theorem 1, and also the proportion-
ality condition (7) with inverse-temperature spacing (8). Then, as d → ∞, the process{
H(d)

t
}

converges weakly in the Skorokhod topology to a limit process H on (− 2, −1) and
on (1,2), i.e. away from its boundary points. Furthermore, H is a diffusion, with drift 0,
and with diffusion coefficient which is constant on each of the two intervals (− 2, −1)
and (1,2). Specifically, dHt = s(Ht) dBt, where s(Ht) = s1 for Ht ∈ (1, 2), and s(Ht) = s2 for
Ht ∈ (− 2, −1), with

si :=
[

2�
(
− 1

2�0r1/2
i

) ]1/2

. (14)

Next, we need to join up the two parts of the domain [ − 2, −1] ∪ [1, 2] of the process
H(d)

t . Now, the original process can jump between modes when at the coldest temperture β
(d)
max,

corresponding to the values ±2 for the transformed process H(d)
t . Hence, we let

Z(d)
t = 2sign

(
H(d)

t
)− H(d)

t =
⎧⎨⎩2 − H(d)

t , H(d)
t ≥ 1, i.e. in mode 1,

−2 − H(d)
t , H(d)

t ≤ −1, i.e. in mode 2,
(15)

so that Z(d)
t has domain [ − 1, 1] with mode-jumping at 0.

However, by Corollary 1, the limit of the process Z(d)
t will still have diffusion coefficient s1

or s2 on its positive and negative parts. We thus rescale the process by setting

W(d)
t = s(Z(d)

t )−1 Z(d)
t . (16)

(So, to recap, W(d)
t is defined in (16) in terms of Z(d)

t , which is defined in (15) in terms of H(d)
t ,

which is defined in (12) in terms of X(d)
t , which is in turn defined in (9) in terms of the original

inverse-temperature process β(d)(t), which itself arises from running Algorithm 1.) Then, W(d)
t

has domain
[
− 1

s2
, 1

s1

]
, and a limit which is actual Brownian motion on each of

(
− 1

s2
, 0
)

and
(

0, 1
s1

)
. The precise limit of this process requires the notion of skew Brownian motion, a

generalisation of usual Brownian motion that, intuitively, behaves just like a Brownian motion
except that the sign of each excursion from 0 is chosen using an independent Bernoulli random
variable; for further details, constructions, and discussion see, e.g., [14]. In terms of skew
Brownian motion, we have the following theorem.

Theorem 3. Under the assumptions of Corollary 1, with si as in (14), the process
{
W(d)

t
}

from
(16) converges weakly in the Skorokhod topology as d → ∞ to a limit process W which is skew
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Brownian motion on
[− 1

s2
, 1

s1

]
, with reflecting boundaries, and with excursion probabilities at

0 proportional to w1s1 (to go positive) and w2s2 (to go negative).

The above theorems are all proved in Section 6. First, we use them to investigate the
computational complexity of the ALPS algorithm.

5. Computational complexity

Theorem 3 has implications for the computational complexity of the ALPS algorithm.
Indeed, it shows that the limiting process W does not depend at all on the dimension d, and
hence has convergence time O(1) as d → ∞. However, W was derived from the processes H(d)

t

and Z(d)
t , which sped up time by a factor of

(
h
(
β

(d)
max

))2
from the process X(d)

t , which itself

sped up time by a factor d. That is, W was sped up by a total factor of d
[
h
(
β

(d)
max

)]2
. So, in the

original scaling, the convergence time is O
(

d
[
h(β(d)

max)
]2)

.

More formally, it is shown in [24, Theorem 1] that such diffusion limit convergence implies
that for any ε > 0, the convergence time Tε for each component of the original process to get
within ε of stationary in Kantorovich–Rubinstein distance, averaged over starting state chosen
from stationarity, will be of the same order as the speedup factor. So, combining Theorem 3
and [24, Theorem 1] shows that, for the β process of the vanilla ALPS algorithm, the conver-
gence time Tε is O

(
d
[
h(β(d)

max)
]2). Furthermore, this convergence time is indeed an appropriate

measure of the algorithm’s efficiency, since it is proportional to the rate at which the β values
can complete a ‘round trip’ from one sample at β = 1, to a mode jump at β = βmax, to another
sample at β = 1, and hence mix well between modes; similar approaches appear in [2, 11, 28].

This raises the question of how h
(
β

(d)
max

)
grows as a function of d. It is proved in [29] that for

the ALPS process to mix modes efficiently, we need the maximum inverse temperature value
β

(d)
max to grow linearly with dimension, i.e. we need to choose β

(d)
max ∝ d. And, in the exponential

power family case, as mentioned above, I(β) ∝ 1/β2, which implies by (8) that h(x) ∝ log |x|,
so h

(
β

(d)
max

)∝ log (d). Hence, the complexity order O
(
d
[
h(β(d)

max)
]2) equals O

(
d[ log d]2

)
. That

is, for the inverse temperature process to hit β
(d)
max and hence mix modes takes O

(
d[ log d]2

)
iterations.

If we are not in the exponential power family case, then it may no longer be true that
I(β) ∝ 1/β2. However, as d, β → ∞, under appropriate smoothness assumptions the densities
in the different modes will become approximately Gaussian, which corresponds to the
exponential power family case with r = 2. And, it is proved in [30, Equation (66)] that if the
first four moments converge to those of a Gaussian, then 2β2I(β) → 1, i.e. approximately
I(β) ∝ 1/β2. Hence, from (8), approximately �(β) ∝ β, so again h

(
β

(d)
max

)∝ log (d), and the
complexity order is still O

(
d[ log d]2

)
as before. We summarise this conclusion as follows.

Corollary 2. Under the assumptions of Corollary 1, if either (a) the densities of the two
modes of π are in the exponential power family, or (b) the two modes’ first four moments
each converge to those of a Gaussian as d, β → ∞, then the convergence times Tε for β are
O
(
d[ log d]2

)
as d → ∞.

In a different direction, [30] introduces the QuanTA algorithm, which modifies parallel
tempering’s usual temperature-swap moves by adjusting the x space in order to permit larger
moves in the inverse temperature space. As a result of this, [30, Theorem 2] shows that the
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resulting �(β) function is then proportional to βk/2 for some k > 2 (instead of proportional to
β). In that case,

h
(
β(d)

max

)=
∫ β

(d)
max

1

1

�(u)
du ≤

∫ ∞

1

1

�(u)
du ∝

∫ ∞

1
u−k/2 du = (k/2) − 1 < ∞,

so that h
(
β

(d)
max

)
is O(1) rather than O( log d). This means that the convergence complexity

O
(

d
[
h
(
β

(d)
max

)]2)
becomes simply O(d), i.e. the [ log d]2 factor vanishes. We summarise this

observation as follows.

Corollary 3. Under the assumptions of Corollary 1, if we instead run the version of the ALPS
algorithm which uses the QuanTA modification of [30], then the convergence times Tε for β

are O
(
d[ log d]2

)
as d → ∞.

Comparing Corollaries 2 and 3, we see that the QuanTA modification improves the com-
plexity bound by a factor of [ log d]2. This is not surprising, since QuanTA was specifically
designed to make the algorithm move faster, especially under near-Gaussianity at large β,
thus improving the mixing time. This improvement is also borne out through simulation
experiments; see [30].

Remark 3. (More than two modes). For simplicity, all of the above proofs assumed a mixture
of just J = 2 modes. However, similar analysis works more generally. Indeed, suppose π is a
mixture of J > 2 modes, of weights w1, w2, . . . , wJ ≥ 0 where

∑J
i=1 wi = 1. Then, when β(t)

reaches β
(d)
max, the process chooses one of the J modes with probability wi (due to the auxiliary

mode-jumping step). In this case, a theorem similar to Theorem 3 could be proved by similar
methods. The processes

{
W(d)

t
}

will converge not to skew Brownian motion but to Walsh’s

Brownian motion, a process not on
[
− 1

s2
, 1

s1

]
but rather on a ‘star’ shape with J different line

segments all meeting at the origin (corresponding to β
(d)
max). Intuitively, this process behaves

as Brownian motion within each segment, but chooses each excursion from the origin using
an independent random variable with probabilities wi; for further details, constructions, and
discussion see, e.g., [3]. (The case J = 2 but w1 �= 1

2 corresponds to skew Brownian motion as
in Theorem 3.) This in turn leads to the same complexity bound of O

(
d[ log d]2

)
iterations (or

O(d) iterations if using QuanTA) when J > 2 as well.

6. Theorem proofs

In this section we prove the theorems stated in Section 4. Note that Theorem 1 essentially
follows directly from the previous theoretical analysis of simulated tempering in [2, 25], and
Theorem 2 then follows from some additional computations using Itô’s formula. By contrast,
Theorem 3 requires a different approach, to show that the modified W(d) process converges
to reflecting skew Brownian motion, including delicate arguments to show the convergence of
the corresponding infinitesimal generators, especially at the two endpoints and at the excursion
point 0.

6.1. Proof of Theorem 1

Since mixing between modes is only possible at β
(d)
max, the dynamics for other β will be

identical to the single-mode case (J = 1) as covered in [2, 25]. It therefore follows directly
from [25, Theorem 6] that as d → ∞, the process {Xt} converges weakly, at least on Xt > 0, to
a diffusion limit {Xt}t≥0 satisfying (11). The result for Xt < 0 follows similarly.
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6.2. Proof of Theorem 2

We assume x ∈ (1, 2); the proof for x ∈ (− 2, −1) is virtually identical. Here Ht = h(Xt),
where h′(x) = �(x)−1, and h′′(x) = −�′(x)�(x)−2. Hence, by Itô’s formula,

dHt = h′(Xt)dXt + 1

2
h′′(Xt)d〈X〉t

= �(Xt)
−1dXt − 1

2
�′(Xt)�(Xt)

−2d〈X〉t

= �(Xt)
−1
[

2�2(Xt)�

(−�(Xt)I1/2(Xt)

2

)]1/2

dBt

+ �(Xt)
−1�(Xt)�′(Xt)�

(−I1/2(Xt)�(Xt)

2

)
dt

− �2(Xt)

(
�(Xt)I1/2(Xt)

2

)
′φ
(−I1/2(Xt)�(Xt)

2

)
dt

− 1

2
�′(Xt)�(Xt)

−22�2(Xt)�

(−�(Xt)I1/2(Xt)

2

)
dt.

In this last equation, the second and fourth terms cancel. Also, since �′ = φ, it follows from
the chain rule that the third term can be written as

−�2(Xt)

[
�

(−I1/2(Xt)�(Xt)

2

)]′
dt.

This gives (13). Then, writing everything in terms of Ht = h(Xt), this becomes

dHt =
[

2 �

(−�(h−1(Ht))I1/2(h−1(Ht))

2

)]1/2

dBt

+ �(h−1(Ht))

[
�

(−I1/2(h−1(Ht))�(h−1(Ht))

2

) ]
′dt.

Now, a diffusion of the form dHt = σ (Ht)dBt + μ(Ht)dt has locally invariant distribution π

provided that 1
2 ( log π )′σ 2 + σσ ′ = μ. That holds for constant π if σσ ′ = μ. In this case, we

compute that

σσ ′ = 1

2
(σ 2)′ = 1

2

d

dH

[
2 �

(−�(h−1(H))I1/2(h−1(H))

2

)]

= 1

2

(
dH

dX

)−1 d

dX

[
2 �

(−�(X)I1/2(X)

2

)]

= 1

2

(
�(X)−1

)−1
[

2 �

(−�(X)I1/2(X)

2

)]′

= �(X)

[
�

(−�(X)I1/2(X)

2

)]′
= μ,

thus showing that H leaves constant densities locally invariant.
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6.3. Proof of Theorem 3

Let w(d)
min = −1/s2 and w(d)

max = 1/s1 be the endpoints of the domain of W. By Corollary 1,
dHt = s(Ht) dBt in the interior of its domain. Since Wt = s(Ht)−1 Ht, it follows that Wt behaves
like Brownian motion on

(− w(d)
min, 0

)
and on

(
0, w(d)

max
)
. It remains to show that the process con-

verges weakly to skew Brownian motion, including at the boundary points Wt = 0, w(d)
min, w(d)

max.
We prove this result using infinitesimal generators, as we now explain.

6.3.1. Method of proof: Generators To prove the weak convergence, it suffices by [7, Corollary
8.7, Chapter 4] to show (similar to previous proofs of diffusion limits of MCMC algorithms
in [4, 21, 22]) that the infinitesimal generator G(d) of the process W(d) converges uniformly
in x as d → ∞ to the generator G∗ of skew Brownian motion, when applied to a core D of
functionals, i.e. that

lim
d→∞ sup

x∈
[
w(d)

min,w
(d)
max

]
∣∣∣G(d)f (x) − G∗f (x)

∣∣∣= 0, f ∈D,

where

G(d)f (x) := lim
δ↘0

E
[
f
(
W(d)

δ

) | W(d)
0 = x

]− f (x)

δ
.

To this end, let D be the set of all functions f :
[− w(d)

min, w(d)
max

]→R which are continuous

and twice continuously differentiable on
[
w(d)

min, 0
]

and also on
[
0, w(d)

max
]
, with matching one-

sided second derivatives f ′′+(0) = f ′′−(0), and skewed one-sided first derivatives satisfying
w1s1f ′+(0) = w2s2f ′−(0) and f ′(w(d)

max
)= f ′(w(d)

min

)= 0. Then, it follows from, e.g., [15] and
[20, Exercise 1.23, Chapter VII] that the generator of skew Brownian motion (with excursion
weights proportional to w1s1 and w2s2 respectively, and with reflections at w(d)

min and w(d)
max)

satisfies that G∗f (x) = 1
2 f ′′(x) for all f ∈D, where f ”(0) represents the common value f ′′+(0) =

f ′′−(0). Furthermore, D is clearly dense (in the sup norm) in the set of all C2
[
w(d)

min, w(d)
max

]
functions, so in the language of [7], D serves as a core of functions for which it suffices to
prove that the generators converge.

It follows from Corollary 1, as discussed above, that, for any fixed f ∈D,

lim
d→∞ sup

w∈
(

w(d)
min,w

(d)
max

)
\{0}

∣∣G(d)f (w) − G∗f (w)
∣∣= 0. (17)

That is, the generators do converge uniformly to G∗, as required, at least for w �= 0, w(d)
min, w(d)

max,

i.e. avoiding the mode-jumping value 0 and the reflecting boundaries w(d)
min and w(d)

max. To

complete the proof, it suffices to prove that (17) also holds at w = 0, w(d)
min, w(d)

max, i.e.
to prove

lim
d→∞ G(d)f (0) ≡ G∗f (0) = 1

2 f ′′(0), (18)

lim
d→∞ G(d)f

(
w(d)

min

)≡ G∗f
(
w(d)

min

)= 1
2 f ′′(w(d)

min

)
, (19)

lim
d→∞ G(d)f

(
w(d)

max

)≡ G∗f
(
w(d)

max

)= 1
2 f ′′(w(d)

max

)
. (20)

6.3.2. Verification of (19) and (20) The proofs of (19) and (20) are virtually identical, so here
we prove (20).
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If the original inverse-temperature process β(d)(t) proposes to move in time 1 from inverse
temperature 1 + 0 = 1 to 1 + �(1)d−1/2, then by (12), the H(d)

t process proposes to move at

Poisson rate
[
d h
(
β

(d)
max

)2
]

from 1 +
(

0/h
(
β

(d)
max

))= 1 to

1 + h
(
1 + �(1)d−1/2

)
h
(
β

(d)
max

) = 1 + 1

h
(
β

(d)
max

) ∫ 1+�(1)d−1/2

1

1

�(u)
du,

which, to first order as d → ∞, is equal to

1 + 1

h
(
β

(d)
max

) (�(1)d−1/2)
1

�(1)
= 1 + d−1/2

h
(
β

(d)
max

) .

Simultaneously, the Z(d)
t process proposes to move from 2 − 1 = 1 to 2 − [

1 +
d−1/2/h

(
β

(d)
max

)]= 1 − d−1/2/h
(
β

(d)
max

)
, and the W(d)

t process proposes to move from w(d)
max to(

w(d)
max

)− d−1/2/s1h
(
β

(d)
max

)
. Let A be the probability that the original β(d)(t) process accepts a

move from 1 to 1 + �(1)d−1/2. Then, since β(d)(t) proposes to move from 1 to 1 + �(1)d−1/2

with probability 1/2, it actually moves from 1 to 1 + �(1)d−1/2 with probability A/2, other-
wise it stays at 1. So, correspondingly, W(d)

t moves from w(d)
max to

(
w(d)

max
)− d−1/2/s1h

(
β

(d)
max

)
.

Furthermore, recall that W(d)
t moves at Poisson rate

[
d h
(
β

(d)
max

)2
]
, so it moves from w(d)

max to(
w(d)

max
)− d−1/2/s1h

(
β

(d)
max

)
at rate

[
d h
(
β

(d)
max

)2
]
(A/2). However, we instead consider a minor

modification of the process W(d)
t which speeds up time by a factor of 2 whenever it is at w(d)

max,

i.e. it moves from there at Poisson rate
[
d h
(
β

(d)
max

)2
]
(A). This is equivalent to the original

β(d)(t) process ‘reflecting’ by always proposing a positive move from 1, instead of proposing
either a positive or a negative (always-rejected) move with probability 1/2 each. We show in
Section 7 that this minor modification will not change the limiting distribution of the W(d)

t , and
thus does not affect the proof.

Thus, to first order as δ ↘ 0 (i.e. up to o(1) errors), our modified process W(d)
t will move

from w(d)
max to

(
w(d)

max
)− d−1/2/s1h

(
β

(d)
max

)
at Poisson rate

[
d h
(
β

(d)
max

)2
]
(A). Hence, setting x =

w(d)
max = 1/s1, we have

E
[
f
(
W(d)

δ

) | W(d)
0 = x

]− f (x)

δ

=
[
d h
(
β(d)

max

)2
]
(A)

[
f
((

w(d)
max

)− d−1/2/s1h
(
β(d)

max

))− f (x)
]+ o(1).

Then, taking a Taylor series expansion around x = w(d)
max = 1/s1,

E

[
f
(
W(d)

δ

) | W(d)
0 = x

]
− f (x)

δ

= −
[
d h
(
β(d)

max

)2
]
(A)

[
d−1/2/s1h

(
β(d)

max

)]
f ′
(

w(d)
max

)
+ 1

2

[
d h
(
β(d)

max

)2
]
(A)

[
d−1/2/s1h

(
β(d)

max

)]2
f ′′(w(d)

max

)+ O(d−1/2) + o(1)

= −
[
Ad1/2h

(
β(d)

max

)
/s1

]
f ′(w(d)

max

)+ 1
2

[
A/s2

1

]
f ′′(w(d)

max

)+ O(d−1/2) + o(1).
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Since f ∈D, we have f ′(w(d)
max

)= 0, so the first term vanishes. Furthermore, it is shown in [31]
that, as d → ∞, A → 2 �

(−�0/2
√

r1
)= s2

1. Hence,

E
[
f
(
W(d)

δ

) | W(d)
0 = x

]− f (x)

δ
= 0 + 1

2 [1] f ′′(w(d)
max

)+ O(d−1/2) + o(1),

so that

lim
d→∞ G(d)f

(
w(d)

max

)= lim
d→∞ lim

δ↘0

E
[
f
(
W(d)

δ

) | W(d)
0 = x

]− f (x)

δ

= 1
2 f ′′(w(d)

max

)= G∗(w(d)
max

)
,

as required.

6.3.3. Verification of (18) To prove (18), note that if the original inverse-temperature process
β(d)(t) proposes to move in time 1 from β

(d)
max to β

(d)
max − �

(
β

(d)
max

)
d−1/2 in one of the two modes

(with probabilities w1 and w2 respectively), then by (12) the H(d)
t process proposes to move at

rate
[
d h
(
β

(d)
max

)2
]

from 1 + [
h
(
β

(d)
max

)
/h
(
β

(d)
max

)]= 2 to

±
[

1 + h
(
β

(d)
max − �

(
β

(d)
max

)
d−1/2

)
h
(
β

(d)
max

) ]
= ±

⎡⎢⎢⎢⎣2 −

∫ β
(d)
max

β
(d)
max−�

(
β

(d)
max

)
d−1/2

1
�(u) du

h
(
β

(d)
max

)
⎤⎥⎥⎥⎦

≈ ±
[

2 −
(
�
(
β(d)

max

)
d−1/2

) 1

�
(
β

(d)
max

)]= ±(2 − d−1/2).

Simultaneously, the Z(d)
t process proposes to move from 2 − 2 = 0 to ±2 − [ ± (2 − d−1/2)] =

±d−1/2, and the W(d)
t process proposes to move from 0 to either d−1/2/s1 or −d−1/2/s2. Hence,

similar to the above (but without the minor modification), with x = 0 we have, to first order as
δ ↘ 0,

E[f (Wδ) | W0 = x] − f (x)

δ
=

[d h
(
β(d)

max

)2]
(
w1α1[f (d−1/2/s1) − f (0)] + w2α2[f (− d−1/2/s2) − f (0)]

)+ o(1), (21)

where αi is the acceptance probability for the original process to accept a proposal to increase
the inverse temperature from β

(d)
max to β

(d)
max − �

(
β

(d)
max

)
d−1/2 in mode i. Now, the argument in

[31] shows that, as d → ∞,

αi → 2 �

( −�0

2
√

ri

)
= s2

i , i = 1, 2.

Hence, taking a Taylor series expansion around x = 0, we obtain from (21) that

E[f (Wδ) | W0 = x] − f (x)

δ

= d w1s2
1(d−1/2/s1)f ′+(0) + 1

2 d w1s2
1(d−1/2/s1)2f ′′+(0) + O(d d−3/2) + o(1)

− d w2s2
2(d−1/2/s2)f ′−(0) + 1

2 d w2s2
2(d−1/2/s2)2f ′′−(0) + O(d d−3/2) + o(1)

= d1/2[w1s1f ′+(0) − w2s2f ′−(0)] + 1
2 [w1f ′′+(0) + w2f ′′−(0)] + O(d−1/2) + o(1).
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Now, by the definition of f ∈D, w1s1f ′+(0) − w2s2f ′−(0) = 0, and w1f ′′+(0) + w2f ′′−(0) =
(w1 + w2)f ′′(0) = f ′′(0). Hence, we obtain finally that

E[f (Wδ) | W0 = x] − f (x)

δ
= 1

2 f ′′(0) + O(d−1/2) + o(1),

so that

lim
d→∞ G(d)f (0) = lim

d→∞ lim
δ↘0

E
[
f
(
W(d)

δ

) | W(d)
0 = x

]− f (x)

δ
= 1

2 f ′′(0) = G∗(0).

This establishes (18), and hence completes the proof of Theorem 3.

Remark 4. Because of our transformations converting β(d)(t) to W(d)
t , the limiting process

W in Theorem 4 was skew Brownian motion on a continuous interval. It is also possible to
consider diffusions directly associated with a discrete graph; see, e.g., [8].

7. Appendix: Modified processes’ occupation times

Recall that the proof of (20) in Section 6.3.2 was actually for a minor modification of
the process W(d)

t that speeds up time by a factor of 2 whenever it is in the state w(d)
max. We

now argue that this minor modification does not affect the limiting distribution. Indeed, since
the modification corresponds to adjusting the rate of time, we can write the modified pro-
cess as Ŵ(d)

t ≡ W(d)
τd(t), where τd(t) is the time scale including the occasional speedups. Clearly,

limt↘0 τd(t) = 0. Also, it follows from Proposition 2 below that the fraction of time that the

original process spends at w(d)
max converges to 0 as d → ∞. This implies that limd→∞ (τd(t)/t) =

1. Since our process W(d)
t is continuous, this means that limd→∞

∣∣∣f (W(d)
τd(t)

)− f
(
W(d)

t
)∣∣∣= 0.

That is, the two processes have the same limiting behaviour as d → ∞. So, the diffusion limit
is not affected by making our minor modification as above.

It remains to state and prove Proposition 2. We begin with a result about limiting
probabilities for reflecting a simple symmetric random walk.

Proposition 1. Let {Yn} be a reflecting simple symmetric random walk on the state space
{0, 1, 2, . . . , m}, i.e. a discrete-time birth–death Markov chain with transition probabilities
pi,i+1 = pi,i−1 = 1/2 for 1 ≤ i ≤ m − 1, and p0,1 = pm,m−1 = 1. Then, for all m ∈N and all
sufficiently large n ∈N, P(Yn = 0) ≤ (2/

√
n) + (1/m). Hence, lim

n,m→∞ P(Yn = 0) = 0.

Proof. We condition on Y0 = y; the general case then follows by taking expectation with respect
to Y0. We ‘lift’ {Yn} to Z by writing Yn = g(Zn), where {Zn} is a simple symmetric random walk
on all the integers Z, and g(z) = minj |z − 2jm| (see Figure 4). Then

Py[Yn = 0] = Py[g(Zn) = 0] =
∑
j∈Z

Py[Zn = 2jm]

=
∑
j∈Z

Py

[
Binomial(n, 1/2) = n

2
+ y

2
+ jm

]
=
∑
j∈Z

h
(n

2
+ y

2
+ jm

)
,

where h(k) = P[Binomial(n, 1/2) = k]. Now, h is maximised when k = n/2 (or (n ± 1)/2
if n is odd), and decreases monotonically on either side of that. Hence, find j∗ ∈N with
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n 

 =
  g

(Z
n)

FIGURE 4. The lifting transformation function ‘g’ (when m = 10).

y
2 + (j∗ − 1)m < 0 ≤ y

2 + j∗m. It follows from Stirling’s approximation (see, e.g., [27]) that
to first order as n, k, n − k → ∞,

P[Binomial(n, 1/2) = k] ≤ e−2n[ 1
2 − k

n ]2√
1/2πk[1 − (k/n)],

so in particular h
( n

2 + y
2 + j∗m

)≤ √
2/πn + on(1) ≤ 1/

√
n for all sufficiently large n, and

similarly for h
( n

2 + y
2 + (j∗ − 1)m

)
. Then, by monotonicity, we have, for j > j∗,

h

(
n

2
+ y

2
+ jm

)
≤ 1

m

[
h

(
n

2
+ y

2
+ (j − 1)m + 1

)
+ h

(
n

2
+ y

2
+ (j − 1)m + 2

)
+ · · · + h

(
n

2
+ y

2
+ jm

)]
.

Hence,∑
j>j∗

h

(
n

2
+ y

2
+ jm

)
≤ 1

m

[
h

(
n

2
+ y

2
+ 1

)
+ h

(
n

2
+ y

2
+ 2

)
+ h

(
n

2
+ y

2
+ 3

)
+ · · ·

]
.

But
∑

k h(k) = 1, so by symmetry
∑

k>n/2 h(k) ≤ 1/2, and so

h

(
n

2
+ y

2
+ 1

)
+ h

(
n

2
+ y

2
+ 2

)
+ h

(
n

2
+ y

2
+ 3

)
+ · · · ≤ 1

2
.

Thus, ∑
j>j∗

h

(
n

2
+ y

2
+ jm

)
≤ 1

2m
.

Similarly, ∑
j<j∗−1

h

(
n

2
+ y

2
+ jm

)
≤ 1

2m
.
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Therefore, for all sufficiently large n,

∑
j∈Z

h

(
n

2
+ y

2
+ jm

)
≤ (1/

√
n) + (1/

√
n) + 1

2m
+ 1

2m
= (2/

√
n) + (1/m),

as claimed. �

Remark 5. Similar arguments show that lim
n,m→∞ P(Yn = z) = 0 for any fixed number z ∈N,

by replacing ‘Zn = 2jm’ by ‘Zn = 2jm + z’ and ‘ n
2 + y

2 ’ by ‘ n
2 + y

2 − z
2 ’ throughout the proof,

though we do not use that fact here.

Corollary 4. Let {Yn} be as in Proposition 1. Let N0 = #{i : 0 ≤ i ≤ n − 1, Yi = 0} be the occu-
pation time of state 0 before time n. Then, as n, m → ∞, the average occupation time N0/n
converges to 0 in probability.

Proof. Let Ii = 1Yi=0 be the indicator function of the event Yi = 0. Then, by Proposition 1,
limn,m→∞ E[In] = limn,m→∞ P[Yn = 0] = 0. Hence, using the theory of Cesàro sums,

lim
n,m→∞ E[N0/n] = lim

n,m→∞ E

[
n−1∑
i=0

Ii

]
/n = lim

n,m→∞
1

n

n−1∑
i=0

E[Ii] = lim
n,m→∞ E[In] = 0.

Hence, by Markov’s inequality, since N0/n ≥ 0, for any ε > 0 we have

lim
n,m→∞ P[(N0/n) > ε] ≤ lim

n,m→∞ E[N0/n]/ε = 0,

so that N0/n → 0 in probability, as claimed. �

Proposition 2. Let {Xn} be a discrete-time birth–death Markov chain on the state space
{0, 1, 2, . . . , m}, with transition probabilities satisfying pi,j = 0 whenever |j − i| ≥ 2, pi,i+1 =
pi,i−1 for all 1 ≤ i ≤ m − 1, and pi,i ≤ 1 − a for some fixed constant a > 0. Let N0 = #{i : 0 ≤
i ≤ n − 1, Xi = 0}. Then, as n, m → ∞, N0/n converges to 0 in probability.

Proof. Let {Jk} be the jump chain of {Xn}, i.e. the Markov chain which copies {Xn} except
omitting immediate repetitions of the same state, and let {Mk} count the number of repetitions.
[For example, if the original chain {Xn} began

{Xn} = (a, b, b, b, a, a, c, c, c, c, d, d, a, . . . )

then the jump chain {Jk} would begin {Jk} = (a, b, a, c, d, a, . . . ) and the corresponding mul-
tiplicity list {Mk} would begin {Mk} = (1, 3, 2, 4, 2, . . . ).] Then the assumptions imply that
{Jk} has the transition probabilities of a reflecting simple symmetric random walk, as in
Proposition 1 and Corollary 4.

Now, let K(n) be the smallest integer with M1 + · · · + MK(n) ≥ n. Given Jk, the random
variable Mk has the Geometric(1 − pJkJk ) distribution, so it is stochastically bounded above by
the Geometric(a) distribution, from which it follows that limn→∞ K(n) = ∞ with probability
1. Let Cs = #{i : 0 ≤ i ≤ K(n), Ji = s}. Then Corollary 4 implies that limn,m→∞ (C0/K(n)) = 0.
On the other hand, N0 is less than or equal to a sum of C0 independent Geometric(1 − p00)
random variables, so E[N0 | C0] = C0/(1 − p00) ≤ C0/a, and P[N0 > 2C0/a | C0] → 0 as
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n → ∞. Also, M1 + · · · + MK(n)−1 ≤ n, and each Mi ≥ 1, so n ≥ K(n) − 1. We therefore
conclude that

lim
n,m→∞

N0

n
≤ lim

n,m→∞
2C0/a

K(n) − 1
= (2/a) lim

n,m→∞
C0

K(n)
= 0,

as claimed. �
Remark 6. It might be possible to instead obtain the conclusion of Proposition 2 via the
ergodic theorem or the Markov chain law of large numbers, which states that for fixed m the
average occupation time N0/n will converge to the stationary measure of the process at state
0. However, this would require conditions and bounds on the sequence of stationary measures
as m → ∞, so it would not be trivial (nor provide the explicit bound of Proposition 1), and we
instead use the more direct and quantitative method described herein.
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