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How Bohm’s Theory Solves the
Measurement Problem

Peter J. Lewis†‡

I examine recent arguments based on functionalism that claim to show that Bohm’s
theory fails to solve the measurement problem, or if it does so, it is only because it
reduces to a form of the many-worlds theory. While these arguments reveal some
interesting features of Bohm’s theory, I contend that they do not undermine the dis-
tinctive Bohmian solution to the measurement problem.

1. Introduction. Bohm’s theory is one of the three ‘canonical’ solutions
to the measurement problem in quantum mechanics, along with GRW-
type spontaneous collapse theories and Everettian ‘many-worlds’ theories.
But despite this status, it is often claimed that Bohm’s theory in fact fails
to provide a distinctive solution to the measurement problem, and if it
solves the measurement problem at all, it is only because it reduces to a
many-worlds theory.1 In this paper, I examine the most recent incarnation
of these arguments in the work of Wallace (2003) and Brown and Wallace
(2005), and also revisit the debate between Stone (1994) and Maudlin
(1995) on the same topic. I conclude that Bohm’s theory has exactly the
same credentials for solving the measurement problem as the many-worlds
theory, and not because the former reduces to the latter.

2. What It Takes to Solve the Measurement Problem. To say more pre-
cisely what I mean by ‘credentials’ here, a short preamble on what a
theory must do in order to solve the measurement problem will be helpful.
The measurement problem, in a nutshell, is the problem that at the end
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1. The same charge has been leveled against spontaneous collapse theories (Cordero
1999); see Lewis (2007) for a brief discussion.
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of a measurement, there is nothing in standard quantum mechanics that
represents the determinate outcome of the measurement; rather, every
possible measurement outcome is represented in some branch of the final
wavefunction. So if we take the standard theory seriously as a description
of physical systems, we have no explanation of the fact that measurements
have outcomes. A minimal condition for solving the measurement prob-
lem, then, is that a theory provides an explanation of our determinate
measurement results. This condition leaves open what counts as an ex-
planation, and hence is rather vague, but I do not think it is unconscion-
ably vague. It is clear enough that standard quantum mechanics provides
no explanation of the fact that measurements have outcomes, and Bohm’s
theory at least prima facie provides such an explanation. So the burden
on those who would argue that Bohm’s theory fails to solve the mea-
surement problem is to show how this apparent explanation is deficient.

Not everyone uses the phrase ‘the measurement problem’ in the same
way. Some people use it to refer to a problem with collapse-on-measure-
ment accounts of measurement outcomes, namely that these accounts treat
the term ‘measurement’ as an unanalyzed primitive of physical theory. In
other words, some people take collapse-on-measurement theories of quan-
tum mechanics to be the source of the measurement problem, rather than
a proposed solution. But not much hangs on this choice; even if one uses
the phrase ‘the measurement problem’ in such a way that collapse-on-
measurement theories solve the problem, such theories are clearly unac-
ceptable precisely because the explanation they propose takes ‘measure-
ment’ as an unanalyzed primitive. So we may as well take the minimal
condition for solving the measurement problem to be the following: To
solve the measurement problem, a theory must provide an explanation
for determinate measurement results that does not take ‘measurement’ as
an unanalyzed primitive.

Obviously, a theory can satisfy the minimal condition and yet fail to
be an acceptable physical theory, for any of a number of reasons. First,
we want our quantum mechanical theory to be consistent with our other
physical theories, notably special relativity. This condition is notoriously
hard to satisfy. Second, and more controversially, we might insist that the
theory be consistent with our other philosophical commitments, concern-
ing logic or personal identity or whatever. Of course, many would argue
that it is our philosophical commitments that should give way in such
situations, and hence dismiss this as a condition on solutions to the mea-
surement problem. But my concern here is not to propose a set of necessary
and sufficient conditions for solving the measurement problem; it is rather
to note that the claim that a theory solves the measurement problem can
mean a number of things. In particular, one might mean that the theory
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satisfies the minimal condition, or one might mean that, all things con-
sidered, it is an acceptable physical theory.

The thesis that I defend here is that whatever one means, just as good
a case can be made that Bohm’s theory solves the measurement problem
as that the many-worlds theory does so. That is, there is no sense of ‘the
measurement problem’ in which the many-worlds theory clearly solves it
and Bohm’s theory clearly does not. In particular, while the arguments
against Bohm’s theory in the recent literature highlight some interesting
features of the theory, it is not obvious that these features are problematic,
and they certainly do not eliminate Bohm’s theory from contention as a
potential solution to the measurement problem.

3. The Functionalist Argument. Perhaps the most straightforward version
of the anti-Bohmian argument is that of Deutsch (1996). Deutsch notes
that the evolution of the wavefunction is exactly the same in Bohm’s
theory as in the many-worlds theory; in each theory, the wavefunction
always, without exception, evolves according to the Schrödinger equation.
In the many-worlds theory, this evolution underlies the branching struc-
ture of ‘worlds’. In particular, during a measurement, each possible mea-
surement outcome is instantiated in some branch of the evolving wave-
function. In Bohm’s theory, too, these branches are all present, but in
this case one branch is associated with the Bohmian particles whereas the
other branches are ‘empty’. The Bohmian explanation of the fact that
measurements have determinate outcomes is that it is the occupied branch
that corresponds to the unique outcome of the measurement. However,
Deutsch argues that since the empty branches in Bohm’s theory evolve
in exactly the same way as the branches in the many-worlds theory, and
since in the many-worlds case this evolution instantiates alternate mea-
surement outcomes, then in the Bohmian case, too, the empty branches
contain alternate measurement outcomes. Hence the explanation of de-
terminate measurement outcomes in terms of Bohmian particles fails,
since branches instantiate outcomes irrespective of the location of the
particles.

According to Deutsch, the only sense in which Bohm’s theory solves
the measurement problem is that it reduces to a form of the many-worlds
theory. In other words, if Bohm’s theory were true, it would still be the
case that we obtain determinate results to our measurements, but the
explanation of this fact would have nothing to do with the Bohmian
particles. The correct explanation, according to Deutsch, is that each post-
measurement branch of the wavefunction contains a successor of the
observer, and each successor sees a unique measurement outcome. But
this is precisely the many-worlds explanation. Hence Deutsch concludes
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that Bohm’s theory is a many-worlds theory “in a state of chronic denial”
(1996, 225).

Zeh makes essentially the same argument: “Bohm’s theory contains the
same ‘many worlds’ of dynamically separate branches as the Everett in-
terpretation (now regarded as empty wave components), since it is based
on precisely the same . . . global wave function” (1999, 200). At least at
first glance, though, these arguments seem to miss the point. While it is
true that the wavefunction evolution is the same in Bohm’s theory and
the many-worlds theory, it only follows that Bohm’s theory yields the
same worlds (and the same measurement outcomes) as the many-worlds
theory if worlds and measurement outcomes are instantiated by wave-
function evolution. But this, presumably, is precisely what a Bohmian
would deny; according to Bohm’s theory, measurement outcomes are in-
stantiated by the evolution of the Bohmian particles, not the evolution
of the wavefunction (Lewis 2007).

However, there is a more charitable way to interpret these rather brief
arguments, namely as implicitly appealing to a variety of functionalism.
Wallace makes this functionalist premise explicit: “A macro-object is a
pattern, and the existence of a pattern as a real thing depends on the
usefulness . . . of theories which admit that pattern in their ontology”
(2003, 93). The basic idea here is that is that if a macro-object is a pattern,
then it makes no difference whether that pattern is instantiated in the
evolution of the particles or the wavefunction. On this functionalist con-
ception of macro-objects, an empty branch contains exactly the same
objects instantiating exactly the same processes as it would contain were
it to be occupied by the Bohmian particles, since the pattern is the same
in either case. Hence empty branches contain measurement outcomes, and
Bohm’s theory fails to solve the measurement problem, except in the sense
that it reduces to the many-worlds theory (Wallace 2003, 99). It is this
functionalist argument, together with the variants considered below, that
I take to be the main challenge to the claim that Bohm’s theory solves
the measurement problem.

4. Responses to the Functionalist Argument. One response to the above
challenge is to claim that the wavefunction is not a physical entity, and
hence not the kind of thing in which physical patterns could be instan-
tiated. For example, Dürr, Goldstein, and Zanghı̀ (1997) argue that the
wavefunction plays the role of a law in Bohm’s theory, a law that directs
the motion of the Bohmian particles. If this is tenable, then there are no
empty branches in Bohm’s theory, since there are no branches at all, just
particles moving according to a complex law. But the challenge facing
this line of argument is that the wavefunction itself is subject to dynamics;
it evolves over time, and its form at any particular time is a contingent
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matter of fact, independent of the configuration of the particles (Deutsch
1996, 225; Brown and Wallace 2005, 532). These are not features we
associate with laws. Dürr, Goldstein, and Zanghı̀ appeal to work in quan-
tum cosmology that suggests that the wavefunction may turn out to be
unique and time-independent, but as Brown and Wallace (2005, 533) note,
this is currently no more than a speculative research program.

Let us assume, then, that the wavefunction must be treated as a physical
entity. Can the force of the functionalist argument nevertheless be resisted?
The obvious way to do so is to deny the functionalist premise. The position
that ordinary objects are patterns is plausible, but as I have argued pre-
viously (Lewis 2007), the many-worlds theory, too, must deny various
plausible assumptions if its explanation of our determinate measurement
results is to succeed. For example, Greaves (2004, 426–427) suggests giving
up the assumption that a subjective probability measure over future events
requires uncertainty about what will happen, and Wallace (2006, 672–
673) suggests giving up the assumption that uncertainty requires some
fact about which one is uncertain. Still, the many-worlds theory certainly
satisfies the minimal condition for solving the measurement problem; it
provides an explanation of our determinate measurement results, albeit
one that violates various plausible assumptions about probability and
uncertainty. But by the same token, Bohm’s theory satisfies the minimal
condition; it too provides an explanation of our determinate measurement
results, albeit one that violates a plausible kind of functionalism about
macroscopic objects.

So if satisfying the minimal condition is taken as sufficient for solving
the measurement problem, then Bohm’s theory clearly counts as a solu-
tion, the functionalist argument notwithstanding. But as noted above, one
might require more from a solution to the measurement problem; one
might require that, all things considered, it is an acceptable physical the-
ory.2 Further, one might take macro-object functionalism to be a precon-
dition for any acceptable physical theory. But this is a strong claim; at
least prima facie, it seems conceivable that macro-objects could be tied
to a particular ontological basis, namely Bohmian particles. At the very
least, the argument for this claim has not yet been made. Furthermore,
as noted above, it is just as unclear whether the many-worlds theory is
an acceptable physical theory, all things considered. The many-worlds
theory, too, violates assumptions that one might take as preconditions on
any acceptable theory. Indeed, if one insists on holding tight to all one’s

2. One might quite reasonably contend that Bohm’s theory is unacceptable as a physical
theory because it conflicts with special relativity. However, since the functionalist ar-
gument makes no mention of relativity, and since it is unclear whether the many-worlds
theory fares any better in this regard, I leave the issue to one side.

https://doi.org/10.1086/525619 Published online by Cambridge University Press

https://doi.org/10.1086/525619


754 PETER J. LEWIS

pre-theoretical philosophical assumptions, then there may well be no so-
lutions to the measurement problem.

These considerations are, I think, sufficient to address the basic func-
tionalist argument. But I have conceded that Bohm’s theory has a pre-
viously unappreciated cost, namely that it requires the rejection of macro-
object functionalism. Thus even if the functionalist argument doesn’t by
itself show that Bohm’s theory fails to solve the measurement problem,
it might be taken as a contribution to the demise of Bohm’s theory as an
acceptable physical theory. Perhaps, though, this concession was hasty;
let us see whether accepting macro-object functionalism really destroys
the Bohmian explanation of determinate measurement results.

Recall that macro-object functionalism poses a threat to Bohm’s theory
because empty branches exhibit the same patterns that they would exhibit
were they to be occupied by Bohmian particles. That is, for any given
branch, the pattern of the evolving wavefunction (if empty) and the pat-
tern of the evolving particles (if occupied) are the same pattern. Hence,
given macro-object functionalism, the empty branch and the occupied
branch contain the same objects and processes; the former contains a
measurement result just in case the latter does. But do the wavefunction
evolution and the Bohmian particle evolution really constitute the same
pattern? Clearly they are different in many respects; the former is the
evolution of a continuous field according to the Schrödinger equation,
the latter is the evolution of discrete points according to the Bohmian
dynamics.

The functionalist trick, of course, is to identify the patterns by what
they do, that is, by their interactions with other patterns. A particular
pattern in the Bohmian particles constitutes the display of a measurement
result just because of its correlations with patterns that constitute the state
of the measured system and the experiences of the observer. But then one
can identify a pattern in the wavefunction evolution of the occupied
branch that plays the same functional role; it mediates between a wave-
function pattern of the measured system and a wavefunction pattern of
the observer. And this latter pattern can equally well be instantiated in
empty branches; hence, empty branches can contain measurement results.

But identifying patterns in wavefunction evolution is not quite as
straightforward as this account suggests, precisely because the wavefunc-
tion exists in multiple branches. The pattern that would correspond to
some measurement result, were its branch the only branch, is superposed
with patterns bear the same relation to the other possible results. What
should we say of the resultant wavefunction pattern? Should we say that
each of the individual patterns is present in the superposed pattern, or
that none of the individual patterns are present in the superposed pattern?
Neither answer seems forced on us. Consider an analogy with two-di-
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mensional pictures. If one superposes a pattern of horizontal stripes and
a pattern of vertical stripes, one might say that the result is a pattern of
both horizontal and vertical stripes, or one might say that it is a pattern
of squares (depending, perhaps, on the width of the stripes). Appealing
to the functionalist conception of patterns outlined above doesn’t resolve
the issue; if patterns are identified by their relations to other patterns,
then one must decide whether the individual patterns are present in the
superposition before one can use such relations to identify patterns. Sim-
ilarly, appealing to decoherence is of no help; once patterns have been
identified, decoherence can be used to establish that two patterns evolve
independently of each other, but decoherence doesn’t identify patterns.

One way the question might be answered is by an appeal to theory.
That is, one might read the many-worlds theory as stipulating that each
of the individual patterns is present in the superposition. On this view,
one might equally well stipulate that the individual patterns are not present
in the superposition; the result would be something like Albert’s bare
theory (1992, 124). The bare theory is a very poor physical theory for a
number of reasons, but the point is that if the existence of these patterns
is a matter of theoretical stipulation, then the Bohmian can equally well
stipulate that the individual patterns are not present in the superposition.
But then the Bohmian can accept macro-object functionalism while avoid-
ing the conclusion that multiple outcomes exist after a measurement. The
Bohmian can insist that none of the patterns corresponding to the possible
outcomes are present in the wavefunction, but one such pattern is present
in the particles. Hence the Bohmian explanation of determinate mea-
surement outcomes is retained, even granting macro-object functionalism.

If the foregoing is correct, then the functionalist argument against
Bohm’s theory fails at two levels. First, even if macro-object functionalism
is granted, it is arguable that Bohm’s theory provides a successful solution
to the measurement problem, one that is distinct from the many-worlds
solution. Second, to insist that any solution to the measurement problem
must be constrained by macro-object functionalism is to impose a double
standard, since the many-worlds theory must violate equally well-en-
trenched philosophical positions.

5. Elaborating the Functionalist Argument. Brown and Wallace (2005)
provide an elaboration of the functionalist argument. They argue first
against what they call Bohm’s result assumption, that is, the position that
it is the branch of the wavefunction (‘wave packet’) containing the particles
that determines the outcome of a measurement. They ask us first to con-
sider a case in which only a single wave packet exists at the end of the
measurement, that is, a case in which the measurement has exactly one
possible outcome. In this ‘predictable’ case, they note, nobody doubts
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that the wavefunction alone can account for the result of the measurement.
But then, they argue, in the general case where the wavefunction consists
of a number of distinct packets, each of those packets “has the same
credentials for representing a definite measurement outcome as the single
packet does in the predictable case. . . . The fact that one of them carries
the de Broglie-Bohm corpuscles does nothing to remove these credentials
from the others” (2005, 524).

I think that this argument trades on an ambiguity in what it is that
nobody doubts. What nobody doubts is that in the predictable case, the
wavefunction alone could explain the measurement result, that is, there
is no technical barrier to its doing so. But if read in this way, the inference
Brown and Wallace wish to make doesn’t go through. In the general case,
people do doubt that the wavefunction alone could be the explanation of
our determinate measurement results, precisely because there is a technical
barrier to its doing so. The technical barrier is just the fact that in the
general case there are several wave packets, and hence no unique mea-
surement outcome; in other words, the technical barrier is precisely the
measurement problem. That is, what (many people think) takes away the
credentials for representing a definite measurement outcome from a wave
packet is the presence of other wave packets, not the presence of Bohmian
particles.

On the other hand, if the claim is that, in the predictable case, the
wavefunction alone does explain the measurement, then the inference may
well go through. It would at least be rather ad hoc for a theory to specify
that the measurement result is determined by the wavefunction in the
predictable case but by the Bohmian particles in the general case. So if
the wave packet does in fact determine the measurement result in the
predictable case, it seems reasonable to conclude that each wave packet
determines a measurement result in the general case. But if that is the
argument, it begs the question against the Bohmian. The Bohmian will
insist that even in the predictable case, it is the particle configuration, not
the wave packet, that determines the measurement result. That is, even
though the wave packet could determine the measurement result in the
predictable case, in the sense described above, as a matter of fact, given
Bohm’s theory, it does not.

In a sense, though, Brown and Wallace are right, since the Bohmian
position outlined in the previous paragraph amounts to a rejection of
Bohm’s result assumption. Bohm’s result assumption says that it is the
wave packet containing the particles that determines the measurement
outcome, whereas what the Bohmian should say is that the particles them-
selves determine the outcome. In fact, this is precisely what Bohmians do
say; as Brown and Wallace admit, probably no Bohmian, including Bohm
himself, has ever seriously advocated Bohm’s result assumption (2005,

https://doi.org/10.1086/525619 Published online by Cambridge University Press

https://doi.org/10.1086/525619


BOHM’S THEORY 757

523). Hence an argument against Bohm’s result assumption is not, by
itself, an argument against Bohm’s theory. However, what Brown and
Wallace are concerned to establish here is that Bohm’s result assumption
is an unstable position; if one attempts to associate the measurement
outcome with the wave packet containing the particles, one will be forced
to associate measurement outcomes with empty packets too. Then their
strategy in the remainder of the paper is to argue that, despite their
protestations to the contrary, Bohmians are tacitly committed to some-
thing like Bohm’s result assumption, and in particular, that measurement
results cannot, after all, be determined directly by the particle configu-
ration.

The argument has to do with our knowledge of the particle configu-
ration. Bohmians frequently point out that according to Bohm’s theory,
one cannot know the particle configuration exactly. In fact, the theory
entails that the best one can do is to have one’s probability distribution
over the possible particle configurations determined by the squared am-
plitude of the wavefunction. That is, the squared wavefunction amplitude
functions as a lower bound on the accuracy of our determinations of the
particle configuration. But this can’t be exactly right; the wavefunction,
after all, doesn’t determine a unique result for a measurement. So Bohm-
ians note that since an observer can know which wave packet contains
the particles, the lower bound on the accuracy with which the particle
configuration can be known is actually the squared amplitude of the
occupied wave packet. This raises two worries. First, there is a tension in
the theory as just sketched; how can we know which packet contains the
particles if the squared wavefunction amplitude constitutes a lower bound
on the accuracy with which the particle configuration can be known?
Second, even if this story can be told, it begins to look as though the
occupied wave packet, rather than the particle configuration, is playing a
central role in determining our beliefs about measurement results, so that
the Bohmian is committed to Bohm’s result assumption after all.

Brown and Wallace fill out this argument by referring back to the debate
between Stone (1994) and Maudlin (1995) on the status of Bohm’s theory.
Consider how measurement results might be determined by particle con-
figurations. Presumably the particle configuration corresponding to the
measurement result becomes correlated with a particle configuration in
the brain of the observer. But how is the observer aware of the particle
configuration in her brain? Stone argues that if her knowledge of the
position of the particles is based on something like a measurement by one
part of her brain on another part of her brain, then she can never know
which wave packet contains the particles. This is a straightforward con-
sequence of the result cited above; according to Bohm’s theory, a mea-
surement can never determine the locations of the particles with greater
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accuracy than the squared wavefunction amplitude, and the squared wave-
function amplitude, of course, doesn’t determine which wave packet con-
tains the particles.

If this is the correct story about how observers come to know mea-
surement results, then Bohm’s theory clearly fails to account for our
knowledge of measurement results. However, Maudlin responds that mea-
surement of one part of the brain by another is entirely beside the point;
the fact that the particle configuration in the observer’s brain is correlated
with the particle configuration of the measured system is sufficient for the
observer to know the result of the measurement. But as Brown and Wal-
lace point out, “Maudlin seems to be taking it for granted that our con-
scious perceptions supervene directly and exclusively on the configuration
of (some subset) of the corpuscles associated with our brain” (2005, 534).
This direct supervenience of experience on particle configuration, they
think, is problematic, precisely because it allows for more accurate knowl-
edge of the particle configuration than is afforded by the squared wave-
function amplitude. In particular, a result by Valentini (1992) suggests
that knowledge of this kind would allow us, in principle, to violate the
quantum no-signaling theorem, that is, to send superluminal signals. One
could retreat to the position that it is just the wave packet containing the
particles that is directly known, but this would be to endorse Bohm’s
result assumption, and hence open the door to the argument at the be-
ginning of this section.

The argument here has the form of a trilemma. How are we aware of
the particle configuration in our brains? If via measurement, then we can
never know the particle configuration. If directly, then the quantum no-
signaling theorem does not apply to Bohm’s theory. And if via the wave
packet containing the particles, then we are back at Bohm’s result as-
sumption. The right response, I think, is to endorse the second option,
but to note just how imprecise the supervenience of our experience on
the particle configuration is likely to be. The supervenience of the mental
on the physical is (presumably) at something like the level of neural pro-
cesses, but specifying the neural processes leaves a huge amount of leeway
in the possible Bohmian particle configurations. That is, an observer who
is directly aware of a particular neural process will know her own physical
state with far less precision than is given by the squared wavefunction
amplitude.

Indeed, Brown and Wallace concede as much: “Considerable variation
in the precise configuration of the corpuscles in our brain must be unob-
servable. How much? Not even the effective wavefunction of our brain
can be known precisely; even Everettians must admit there is a many-one
relationship between wavefunctions of the brain and conscious sensations”
(2005, 535). So as a matter of fact, we do not know our own brain states
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with enough precision to allow superluminal signaling. Still, there is the
matter of principle; if Bohm’s theory is true, then it looks like there is no
reason in principle why an organism should not know its own particle
configuration with enough precision to allow superluminal signaling. This
will depend on tricky issues concerning what kinds of physical processes
could in principle provide the supervenience basis for the experiences of
an organism. But this is a point that the Bohmian should probably just
concede. As Albert has independently pointed out, very strange conse-
quences follow if an organism can be directly aware of the precise location
of a Bohmian particle in its brain (1992, 170–176). This is an oddity of
Bohm’s theory, and worth pointing out, but not clearly an objection to it.

6. Conclusion. I have argued that the functionalist argument, in all its
guises, fails to undermine the claim of Bohm’s theory to offer a distinctive
solution to the measurement problem. In particular, no form of the ar-
gument succeeds in showing that Bohm’s theory is really just a disguised
many-worlds theory. Nevertheless, the various forms of the functionalist
argument raise interesting issues concerning the comparative merits of
Bohm’s theory and the many-worlds theory. In particular, the extent to
which Bohm’s theory relies on the rejection of some form of macro-object
functionalism is a topic that deserves further investigation.
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