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SUMMARY
This paper presents a new approach to accurately track a moving vehicle with a multiview setup
of red–green–blue depth (RGBD) cameras. We first propose a correction method to eliminate a
shift, which occurs in depth sensors when they become worn. This issue could not be otherwise
corrected with the ordinary calibration procedure. Next, we present a sensor-wise filtering system to
correct for an unknown vehicle motion. A data fusion algorithm is then used to optimally merge the
sensor-wise estimated trajectories. We implement most parts of our solution in the graphic processor.
Hence, the whole system is able to operate at up to 25 frames per second with a configuration of five
cameras. Test results show the accuracy we achieved and the robustness of our solution to overcome
uncertainties in the measurements and the modelling.

KEYWORDS: RGBD; Real-time; Tracking; Multiview; Kalman filter; Robust H∞; Covariance
intersection; GPU.

1. Introduction
Nowadays, real-time tracking of moving objects in red–green–blue (RGB) video streams has become
one of the most targeted research areas. Surveillance, sports reporting, video annotation, and traffic
management systems are a few of the domains that have been widely benefited from advances in this
field.1 At the highest current performance level, the RGB data remains a limiting factor in giving a
complete real world view. Recent off-the-shelf RGBD sensors, such as the Microsoft Kinect, provide
great potential for the better perception of the surrounding space.2 These cameras have the ability to
deliver both 3D map of the scene and the corresponding colour image at a frequency of 30 Fps.

In the present work, we focus on the use of multiple RGBD sensors to accurately localise moving
robots. The result of this solution is used to feed augmented reality and robotic systems with real-
time pose data. The cooperative multiview sensing is better able to overcome the occlusions among
different views. The latter leverages the joint action of all the sensors for more reliable tracking.
Nevertheless, the processing of large amounts of 3D data is computationally expensive and as such
may inversely affect the response time of the system. Hence, a need emerges for compromise between
performance and response time in the processing stream. The graphic processing units (GPUs) are
a very powerful tool when the different parts of the data can be simultaneously processed.3 In our
case, the huge amount of 3D data parallel streamed by the cameras is subject to smoothing and fusion
algorithms. The processing starts with the RGBD data acquisition. The data is then sent through a
smoothing stage to enhance its quality.4 The 3D positions of the targets are then computed and sent
to the robust H∞ filtering level to correct them. Based on single estimates, a data fusion algorithm is
applied to combine all the sensor-wise estimates of the position in a unique consistent result.

Our three main contributions in the present work are as follows:

� We improve the raw measurements of the RGBD sensor using a mathematical correction model.

* Corresponding author. E-mail: a.amamra@cranfield.ac.uk

https://doi.org/10.1017/S026357471400263X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471400263X


1856 Multiview robust tracking

� We deal with uncertainties in the model describing the motion of the vehicle using the robust H∞
filter (RF), which has the ability to deal with uncertainties in the measurements and the modelling.

� We apply the Covariance Intersection (CI) algorithm with adaptive weighting coefficients computed
from the specific characteristics of our tracking setup.

The paper is structured as follows: In Section 2, we discuss the state of the art of image-based
tracking applications. We then explain the architecture of our system in Section 3. We give the
details of the first two modules of the system in Section 4. In Section 5, we detail the modelling of
uncertainties as to how the objects can be accurately tracked without prior knowledge of their motion.
In Section 6, we present the CI technique. In Section 7, we clarify how it is possible to compute the
orientation of the vehicle in our solution. We validate our finding in Section 8, where we plot error
graphs obtained from the real experiments. Finally, we discuss the possible improvements and future
works in Section 9.

2. Related Works
The tracking problem is generally divided into three stages: motion detection, object segmentation,
and object tracking.5 Single-camera tracking methods suffer from object/object or object/obstacle
occlusions. The latter lead to failure as the tracked entities become incorrectly associated.6 Lv et al.7

presented a method for people tracking with a single camera. They used 3D shape models of people
that were projected back into the image space to perform segmentation and resolve occlusions. Each
human hypothesis is then tracked in 3D with a Kalman filter (KF) using the object’s appearance
constrained by its shape. Okuma et al.8 propose a combination of Adaboost for object detection and
particle filters for multiple objects’ tracking. The combination of the two approaches leads to fewer
failures than either one on its own, as well as addressing both detection and consistent track formation
in the same framework. Li et al.9 present a pedestrian detection algorithm for crowded scenes. His
method iteratively aggregates local and global patterns for a better segmentation. These and other
similar algorithms are challenged by the occluding and partially occluding objects and appearance
changes.

On the other hand, the cooperative multiview object tracking has been recently benefited from a
large interest against a single camera method.6 This advantage is largely driven by a wider coverage
of the scene, which is an asset in handling occlusions. The KidsRoom system developed at the
MIT Media laboratory10 uses a real-time tracking algorithm based on contextual information. The
algorithm uses the overhead camera views of the space, which minimises the possibility of one
object occluding another. The system can track and analyse the actions and interactions of people and
objects. The lighting is assumed to remain constant during the runtime. The background subtraction is
used to segment objects,11 and the foreground pixels are clustered into 2D blobs. The algorithm then
maps each person known to be in the room with a blob in the incoming image frame. Person-finder
(Pfinder) is another real-time system for the tracking and interpretation of human motion.12 Motion
detection is performed using the background subtraction, where the statistics of background pixels
are recursively updated using a simple adaptive filter. The human body is modelled as a connected
set of blobs using a combination of spatial and colour cues. Pfinder has been applied in a variety of
applications, including video games, distributed virtual reality, providing interfaces to information
spaces, and recognising sign language. In our system, we only track robots in the first stage. We
also apply background subtraction to extract the position of markers on the vehicle. However, the
computation of the actual centre of mass is based on the extraction of contours for every marker and
the computation of its corresponding zero-th and first moments.13

From a filtering point of view, the tracking problem is considered as a sequential recursive
estimation problem. The estimation combines the knowledge about the previous estimate and the
current measurement using a state/transition model. In the image space, the measurement comes
from the relative 3D position of the vehicle in the space where it is moving. Each frame is processed
within a time step. The noise statistics are deduced from the noise process affecting both the measured
and the estimated positions. The state/space formalism, where the current tracked object properties are
described in an unknown state vector updated by the noisy measurements, is very well adapted to the
object tracking problem. The sequential estimation has an analytical solution under a very restrictive
hypothesis. The KF is an optimal solution for the class of linear Gaussian estimation problems.14
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For nonlinear systems, a number of Bayesian techniques were proposed to perform optimisation.
When the Gaussian distribution is assumed, commonly used approaches include the Extended KF
(EKF)15 and the Unscented KF (UKF).16 The particle filter is another numerical method that enables
an approximate solution to the sequential estimation to be found.17 All the above filters are very
sensitive to the error in the system’s model. In other words, if the system is imprecisely modelled,
which is very common in real scenarios,18 then the accuracy of the estimation is not optimal. To
overcome uncertainty in the system, the robust H∞ filter is known for its ability to cope with the
uncertainties impinging on the model and the measurements. The authors are not aware of any RF
system being used for accurate tracking. Furthermore, CI19 is applied to combine the estimates
computed upon the raw output of each camera in a way that minimises error in the global estimate.20

Red–green–blue depth sensors have recently become very popular in the capture of 3D data
among professionals and researchers alike. These do not deliver just the colour but also the depth
information at a frame rate of 30 Fps. This information (colour and depth) enables us to benefit
from both the colour image and the 3D geometry approaches to overcome the traditional problems of
many robotic and computer vision applications such as human pose estimation,21 robot navigation,22

SLAM,23 object tracking,24 and 3D scanning.25 However, the 3D (x, y, z) point data resulting from
these RGBD sensors are more important in size than their colour counterpart. Thus emerges the need
for the GPUs to achieve real-time performance. There are many examples in published literature
that show the bottlenecks in processing are reduced if the solution is implemented using the GPU,
resulting in higher performance. Kinect fusion25 and the work of Tong et al.26 are the best examples.

3. System Overview

3.1. Kinect camera
Kinect sensor1 is an RGBD camera that has the ability to capture a depth map of the scene and its
RGB colour image at a frame rate of 30 Hz and a resolution of 640 × 480 pixels. The sensor contains
an infrared (IR) projector that projects a set of IR patterns onto the scene. An IR camera captures
the light reflected by the projected patterns and an RGB imager senses the colour of objects.27 The
sensor infers the depth of the scene after the computation of disparity with a triangulation approach.
After a calibration procedure, both the RGB image and the depth data can be fused into a coloured
point cloud of about 300,000 points in every frame.

Although the Kinect comes with factory-embedded calibration parameters (fx, fy, cx, cy

intrinsic parameters for both RGB and IR cameras, and the extrinsic parameters [R, T ] for the
IR-RGB stereo setup), the actual accuracy of the capture may range from less than 1 mm to many
centimetres. This clear difference depends on the state of the sensor, the target application, and the
nature of the scene.28 To reliably track moving objects with Kinect, the sensor should be accurately
recalibrated. The native parameters are more generic and remain the same for all the Kinects in
the market. However, the frequency of use and the external factors, which widely differ from one
application to another, can easily affect the precision of measurements.24

3.2. Hardware and software configuration
Our real-time tracking setup comprises N = 5 Kinect cameras covering a volume of 4 × 4 × 3 m.
All the sensors are connected to the same workstation (Fig. 1). The hardware configuration encloses
an INTEL i7 3930K CPU with six physical cores (two logical cores per physical core) running at
3.20 GHz, 16.0 GB of RAM as well as an NVIDIA GeForce 2-GB GTX 680 GPU. In the present
research, we track a ground robot (Pioneer P3-DX).2 However, our tracking system can be used to
estimate the trajectory of any kind of ground or aerial vehicle moving in indoor environments. The
robot moves freely in the space covered by the sensors according to an embedded obstacle avoidance
algorithm that runs simultaneously with the capture. Therefore, we use a more general motion model
that adapts to every possible model of motion characterising the vehicle. From a software point of
view, we need to access the output of all Kinects simultaneously in real time. Thus, we used Kinect

1 http://www.xbox.com/en-GB/Kinect (2012).
2 http://www.mobilerobots.com/researchrobots/pioneerp3dx.aspx (2013).
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Fig. 1. Multi-Kinects real-time tracking system.

Fig. 2. Capture and markers extraction modules.

SDK 1.7.03 and CUDA4 to program the GPU. CUDA is a GPU/CPU programming language that
allows us to build heterogeneous applications capable of running in the CPU and some kernels to be
launched in the GPU.29

3.3. Real-time multi-Kinects tracking architecture
The system comprises the following four main modules through which flows every synchronised set
of RGBD data streamed by five sensors (see Figs. 2 and 3):

1. Capture module

It streams 3D point clouds to the tracker and to the following stages of the platform. At
this level, we associate a thread to each sensor. This architecture allows full occupation of
both CPU and GPU during the capture. Nevertheless, other sensor-related limitations should
be taken into account when using multiple Kinects simultaneously. The IR beams emanating
from the projectors can interfere with each other. They confuse IR cameras when inferring the
disparity as it would be impossible to decide which IR speckle belongs to which sensor. As
a result, some holes may appear in 3D data because of the undefined disparity information.30

Each thread acts independently by loading the data into the GPU and performing the following
computations:

3 http://www.microsoft.com/en-gb/download/details.aspx?id=36998 (2013).
4 http://www.nvidia.com/object/cuda home new.html (2013).
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Fig. 3. Filtering modules.

� Filtering the unreliable zi elements (pixels where no disparity information is available).
� Correcting the remaining valid depth values using appropriate correction models.
� Computing xi, yi for the valid points only using the intrinsic parameters of IR camera.
� Mapping the colour image onto the depth image using stereo calibration parameters.

2. Markers extraction module

To compute position and orientation of robot, we fix three distinctive markers on its top (see Fig. 1).
The 3D pose of a moving object is obtained by estimating its centre of mass and the corresponding
orientation. This becomes possible because we have the colour data mapped with the depth image.
Consequently, we just need to fetch the markers in the colour space, and then the corresponding
3D positions are easily resolved. The background/foreground segmentation module takes as input
the aligned colour image and follows the following steps:
� RGB to Hue, Saturation, and Value (HSV) conversion. This conversion is motivated by the fact

that the HSV space is more robust to light intensity changes.31

� Colour thresholding to separate markers from background.
� Erode and dilate binary thresholded image.
� Actual extraction of markers.
The output of this module is the raw position and orientation data characterising the vehicle in its
neighbourhood.

3. The robust filtering module

The filtering module aims to enhance the quality of position and the orientation information. It
acts on the whole trajectory of a moving robot, and filters it according to a rough state/transition
motion model. However, for generality and to allow the solution to work with any kind of
ground or aerial vehicles, we assume that we do not have an exact model. We choose a
classical Newtonian motion system with approximate parameters. We compensate for the lack
of knowledge about the nature of the system by adapting the robust H∞ filtering scheme32 to our
Newtonian model of motion. The output of this stage is the sensor-wise filtered positions and
orientations.

4. Data fusion module

At this level, we aim to combine all the sensor-wise estimates to produce, in a cooperative manner,
a complete and more accurate position data. We use the external calibration parameters of Kinects
with the reference frame to combine the data with the CI technique19,33 by following these
steps:
� Transforming each position data for every Kinect to a global reference frame.
� Applying the CI algorithm on these data to produce a unique acceptable position and orientation

information.
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As the markers can be occluded during tracking, it is necessary to fill the missing data. In addition,
the quality of measurements is not the same among the five viewpoints. Thus, a weighting coefficient
is associated to each sensor according to the error in its measurements. These coefficients promote
more accurate measurement. This approach allows us to optimally fuse all the outputs in a more
precise estimate benefitting from the best of each sensor.

4. Capture and Markers Extraction

4.1. Capture module
1. Filtering the unreliable zi

We filter the unreliable zi to reduce the markers’ search space in the corresponding RGB image.
A depth value is considered unreliable if:
� there is no disparity information at the raw depth pixel, and
� it exceeds the interval of useful depth data (0.8–4.5 m).

2. zi correction with sensor’s model
After being used for a long time, every electronic device suffers from a decrease in accuracy. The
quality of the 3D map obtained by the Kinect sensor is highly affected by the performance of its
IR setup. However, the RGB camera (passive part of the device) is more robust and the colour
image remains unaffected for a longer time.
To ensure a higher precision in our tracking system, we propose an effective correction approach
to enhance the quality of measurements among different Kinects covering the same scene. To this
end, we compute a function that takes as input the shifted raw outputs of device and corrects them.
This approach is justified by the fact that the regular camera calibration procedure cannot handle
this drop in the quality of disparity measurements. The origin of the problem is not related to the
optical configuration of IR camera but to an error factor generated by the disparity computation
module.34 The latter is an offset that appears in the estimation of distance between the sensor and
the object. Its value becomes more important as the object gets further away. Our purpose is to
correctly remap the shifted depth (zsh) to its respective correct value. Hence, we take the depth
measurements output by the sensor along with their correct ground truth counterparts (zcor), the
pairs (zsh, zcor) are related by a function

f (zsh) = zsh − zcor, (1)

where f (zsh) represents the shift from the correct reading. It computes for every depth value
the corresponding error based on the ground truth reference (zcor) as shown in Eq. (1). f (zsh) is
computed from the sample points taken simultaneously from Kinect and a high precision tracking
system.5 Once we obtain the pair (zsh, zcor), we fit the sparse data with a polynomial approximating
the shape of representative curve. The same polynomial will serve as a model, which takes as
input a raw measurement (zsh) generated by the Kinect and outputs a corrected estimate (zcor).
Nonetheless, the shift is not calculated for all the 300,000 points in the frame. Instead, we focus
on correcting a limited set of known Z-levels (Fig. 4) that can exist in the point cloud.35 Thus, we
attribute to each raw range value a respective corrected value. As a result, the correction of the
whole depth image is reduced to the correction of the known Z-levels only.

3. xi, yi computation and stereo mapping
Kinect has two cameras, one for the colour image and the other for the depth data. However, we
do not actually know the depth of a given pixel in the colour image because the two cameras
have different viewpoints. Hence, we need a proper stereo calibration to get the right [R, T]
transformation that relates both cameras. We first compute the world coordinates xi, yi or every
valid pixel coordinates (Eqs. (2) and (3)). To complete this step, we need the calibration parameters

5 http://www.naturalpoint.com/optitrack/ (2013).
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Fig. 4. Kinect depth data. (a) Actual output of camera. (b) Structure of Z-levels.

of the IR camera:

xi = (ui ir − cx ir ) zi/fx ir , (2)

yi = (
vi ir − cy ir

)
zi/fy ir. (3)

Afterwards, we apply the stereo calibration parameters [R, T] on the point P (xi, yi, zi) to transform
it from the IR coordinate system to the RGB frame P ′ (x ′

i , y
′
i , z

′
i

)
, Eq. (4):

P ′ = RP + T . (4)

In the next step, we re-project P ′ to RGB imager using the intrinsic parameters of colour camera
(Eqs. (5) and (6)),

ui rgb = (
x ′

i fx rgb/z
′
i

) + cx rgb, (5)

vi rgb = (
y ′

i fy rgb/z
′
i

) + cy rgb. (6)

The output is a coloured 3D point cloud where every point P (xi, yi, zi) has its own colour and
world coordinates.

4.2. Markers extraction
1. RGB to HSV conversion

The RGB colour model is often used in computer and electronic systems. However, this coding
has many downsides when we consider colour from a perceptual point of view.31 When we try to
decide whether an object of a known colour exists in a given image like a human does, we note a
large difference between the respective RGB combinations of source and target objects. This even
happens when there occurs a small change in the lighting. On the other hand, the HSV colour
coding was proven to be less sensitive to light intensity and shadows.36

2. Colour thresholding and morphological operations
Once we convert our image to HSV space (Fig. 5(a)), we need to localise the areas of similar
colour as the target. The thresholding and binarisation (Fig. 5) are used to recognise and extract
three yellow markers from the scene. The alignment between the colour image and the depth map
allows us to obtain 3D coordinates for each marker. We apply erosion on binary image to eliminate
disturbing noise spots, followed by a dilation to recover the eroded part of the areas representing
the markers. The 3D position of the robot is the centre of the triangle defined by the three markers.
On the other hand, the orientation of the robot is deduced from the centre of the triangle and the
frontal marker.

3. Markers extraction

After localising the markers in the binary image, we proceed to the actual computation of their
centre of mass. We start by extracting the contours of every marker in the binary image (white spots
in Fig. 5(b)). Afterwards, we compute the zero-th and first moments of each marker in the binary
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Fig. 5. Markers extraction. (a) HSV image. (b) Binary image. (c) Tracked markers.

image13 using Eq. (7):

μm,n =
∞∑

x=0

∞∑
y=0

xmynf (x, y) . (7)

To compute the centroid of the markers in our binary image, we use the first moments μ01, μ10

and the moment μ00 (represents the area covered by the marker). The marker’s centroid coordinates
are

(x0, y0) =
(

μ10

μ00
,
μ01

μ00

)
. (8)

This technique is robust to noise. The centroid might have little bit shifted because of some noisy
contour elements. However, the error in its position does not significantly affect the accuracy of our
tracker even if the target is further away.

5. Robust Filtering

5.1. Motion model
Raw Kinect position measurements are only precise at a close range from the sensor because the error
in position remains below 5 cm for the 3-m correction module we introduced. It becomes below 5 cm
for up to 4.5-m depth after the correction. However, the accurate tracking of moving objects requires
a higher accuracy with an acceptable additional computational load. To fulfil this requirement in a
relatively large indoor space, we apply the robust H∞ filtering32 on the trajectories delivered by the
five cameras. Our need for such a filtering scheme is motivated by its ability to deal with the problem
of uncertainty in the model describing the motion of the vehicle. If the filter becomes too tight to
the imprecise model of the vehicle, the tracking would fail within a few iterations. In the context
of this work, the tracked entities are assumed to move irregularly. The translation, the rotation, and
the occlusions between the rigid bodies often occur in real situations. As a consequence, a constant
velocity model is difficult to adapt. On the other hand, the acceleration of ordinary ground and flying
robots is more stable and does not change in magnitude just as it does in sign because of smooth and
gradual variations in velocity. Consequently, the motion of the vehicle tends to follow a Newtonian
model with a varying velocity and a bounded acceleration. To correct the raw position data output
by the cameras in real time, the filter should be able to robustly predict the next state of the vehicle
[xkykzkẋkẏkżk]T and correct it accordingly after obtaining the measurements and the control input
(acceleration). However, the filter is not applied to the orientation data. The computation of the latter
is based on the estimated positions of the markers and the centroid of the robot.

For the (x, y, z) position of a given marker, the motion model will be

⎧⎪⎪⎨
⎪⎪⎩

xk+1 = xk + T ẋk + T 2

2 ẍk,

yk+1 = yk + T ẏk + T 2

2 ÿk,

zk+1 = zk + T żk + T 2

2 z̈k.

. (9)
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The equations of the corresponding velocities (ẋ, ẏ, ż) are:

⎧⎪⎨
⎪⎩

ẋk+1 = ẋk + T ẍk,

ẏk+1 = ẏk + T ÿk,

żk+1 = żk + T z̈k.

(10)

The state-transition system is

sk+1 = Fsk + Buk + wk,

tk = Hsk + vk, (11)

where:

sk = [xkykzkẋkẏkżk]T ,

tk =
[

�

xk
�

yk

�

zk

]
,

uk = [ẍkÿkz̈k] ,

H = [I3, 03] .

(12)

At every time-step k,sk is the estimated state of the vehicle (position and velocity); tk is the
measurement output by the sensor; uk is the acceleration of the vehicle along the three axes; Qk is
the covariance of noise affecting the system (Wk) ; and Rk is the covariance of noise affecting the
measurements (vk).

From Eqs. (9) and (10), the state-transition matrix F becomes Eq. (13),

F =
[

I3 T I3

03,3 I3

]
, (13)

B =
[

T 2

2 I3

T I3

]
. (14)

5.2. Robust H∞ filter
In practical situations, the exact model of the system may not be available. The performance of such
a system becomes an important issue. The robust H∞ filter,18 adopts as process and measurement
models the state space representation in Eq. (15). In our case, the matrices of such models are defined
by Eqs. (13) and (14):

sk+1 = (Fk + �Fk) sk + Buk + wk,
(15)

tk = (Hk + �Hk)sk + vk.

At time-step k, wk and vk are uncorrelated zero-mean white noise processes with the covariance
matrices Qk and Rk respectively. The matrices �Fk and �Hk represent the uncertainties in the system
and the measurement matrices. These uncertainties are assumed to be of the form[

�Fk

�Hk

]
=

[
M1k

M2k

]
�kNk, (16)

where M1k , M2k , and Nk are three known matrices, and �k is an unknown matrix satisfying the bound:

�T
k �k ≤ I. (17)
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It is assumed that Fk is non-singular. This assumption is not too restrictive; Fk should also be
non-singular for real systems because it comes from the exponential of the system matrix (the matrix
exponential is always non-singular). The problem is to design a state estimator of the form:

sk+1 = F̃ksk + Kktk (18)

with the following characteristics:

� The estimator should be stable (the eigenvalues of F̃k should be less than 1 in magnitude).
� The estimator error satisfies the following worst-case bound:

max
wk,vk

s̃k2

wk2 + vk2 + s̃0
O

−1
1

+ s0
O

−1
2

≤ 1

θ
. (19)

� The estimation error of s̃k satisfies the following root mean square (RMS) bound:

E
(
s̃k s̃

T
k

)
< Pk. (20)

The solution of this problem can be achieved by the following procedure:

1. Choose a scalar sequence αk > 0 and a small ε > 0.
2. Define the following matrices

R11k = Qk + αkM1kM
T
1k,

R12k = αkM1kM
T
2k, (21)

R22k = Rk + αkM2kM
T
2k.

3. Initialise Pk and P̃k as follows:

P0 = O1,
(22)

P̃0 = O2,

where O1, O2 are the initial values that we attribute to the estimation error covariance matrices
for the computation of R1k , R2k , F1k, H1k , and Tk . Although these parameters have initially large
values, the filter automatically tunes them within few iterations. Hence, the process reaches a
steady state, and the error in estimation decreases to its lowest levels.

4. Find the positive definite solutions Pk and P̃k satisfying the following Riccati equations:

Pk+1 = F1kGkF
T
1k + R11k + R11kR2kR

T
11k

− (
F1kGkH

T
1k + R11kR2kR12k

)
R−1

k

(
F1kTkH

T
1k + R11kR2kR12k

)T + εI, (23)

P̃k+1 = FkP̃kF
T
k + FkP̃kN

T
k (αkI − NkP̃kN

T
k )−1NkP̃kF

T
k + R11k + εI, (24)
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where the matrices R1k ,R2k ,F1k, H1k , and Gk are defined as:

R1k = (
P̃ −1

k − NT
k Nk/αk

)−1
FT

k , (25)

R2k = R−1
1k

(
P̃ −1

k − NT
k Nk/αk

)−1
R−T

1k , (26)

F1k = Fk + R11kR
−1
1k , (27)

H1k = Hk + RT
12kR

−1
1k , (28)

Gk = (P −1
k − θ2I )−1. (29)

5. If the Ricatti equation solutions satisfy:

1

θ2
I > Pk, (30)

αkI > NkP̃kN
T
k , (31)

then the estimator of Eq. (18) solves the problem with:

Kk = (
F1kTkH

T
1k + R11kR2kR12k

)
R̃−1

k , (32)

R̃k = H1kTkH
T
1k + RT

12kR2kR12k + R22k, (33)

F̂k = F1k − KkH1k. (34)

The parameter ε is generally chosen as a very small positive number. In our case it was fixed to
ε = 10−8.

The parameter αk has to be chosen large enough so that the conditions of Eqs. (30) and (31) are
satisfied. However, when αk increases, Pk also increases, which results in a looser bound for the RMS
estimation error.18

A steady state of robust filter can be obtained by letting the parameter Pk+1 = Pk and P̃k+1 = P̃k

in Eq. (24). In our case, we compared the raw tracking results delivered by the Kalman filter against
the trajectory filtered with the robust H∞ filter. With the application of this filter we have a more
robust tracker.

The adaptation of the robust H∞ filtering scheme is proven to be flexible and able to produce
accurate state estimation based on uncertain system parameters. This asset enables us to track vehicles
without the exact knowledge of their motion model. The robust H∞ filter showed very interesting
results in several automation and control applications.37,38 More importantly, the results we obtained
and the error in estimation compared with the ground truth measurements show the effictivness of our
approach against the naı̈ve filtering scheme (KF does not consider uncertainties in the system). The
latter does not have the ability to cope with uncertainty. Nevertheless, if the exact model becomes
available, the robust H∞ filter performs even better. Although in many real cases the exact model
is hard to determine.39 The robust filter combines the robustness of H∞ (it is less affected by the
accuracy of system’s parameters) and the optimality of Kalman filtering.

6. Tracking Data Fusion
The precision of some Kinects’ tracking measurements can be important, particularly if the target
moves far from them. In addition, if there are many targets moving around the obstacles in the same
scene, occlusions can appear and consequently prohibit the decent recognition of vehicles. At this
level of our pipeline, we propose to develop cooperation between multiple Kinects with the application
of CI filter.19 We combine the estimated positions delivered by all the cameras (after being filtered
by robust H∞ filter) in one consistent estimate that precisely determines the pose of the vehicle in its
space.
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6.1. Covariance intersection filtering
Based on the estimates determined by the robust H∞ filter x̂kn (0 ≤ n ≤ N) at time step k, and their
respective covariance matrices Pkn, we compute a combined estimate x̃ with its error covariance P

where the true state of the system is x (real position of the vehicle).
If we consider N unbiased estimates related to each camera x̂1, x̂2, x̂3 . . . x̂N for the unknown state

vector x̃:

x̃ = P

N∑
n=1

P −1
n x̂n, (35)

P −1 =
N∑

n=1

P −1
n . (36)

In the presence of a correlation between estimation errors, the estimated P may become far too
optimistic and this can cause divergence in sequential filtering. A conservative estimate can be given
by applying CI according to:

x̃ = P

N∑
n=1

ωnP
−1
n x̂n, (37)

P −1 =
N∑

n=1

ωnP
−1
n , (38)

with the non-negative coefficient ωn verifying the following consistency condition:

N∑
n=1

ωn = 1. (39)

An estimate can always be obtained with

P ≥ P0 := E
[
(x̃ − x)(x̃ − x)T

]
, (40)

where P ≥ P0 denotes the fact that P − P0 is positive semi-definite. Consequently, the coefficient
ωn is meant to minimise either the trace or the determinant of P. In order to avoid the possibly
high numerical implementation effort to find the solution of this nonlinear optimisation problem,
Niehsen19 has proposed a fast approximate solution.
For trace (Pn) ≤ trace (Pm) ; 1 ≤ n, m ≤ N , one would expect ωn ≥ ωm.

From a computationally optimal point of view, rather than using the estimation uncertainty Pn, the
authors in ref. [33] introduced estimation certainty by considering Sn = P −1

n :

ωn = trace(Sn)∑N
i=0 trace(Si)

. (41)

Equation (41) means that the greater the trace(Sn) (the more certain we are about the estimate x̂n),
the higher the corresponding weight ωn. On the other hand, the smaller the trace(Sn), the lower the
weight ωn. More importantly, the consistency condition (39) remains satisfied:

N∑
n=1

ωn =

N∑
n=0

trace(Sn)

N∑
i=0

trace(Si)

= 1 (42)
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Fig. 6. CI parameters.

6.2. Covariance intersection for multi-Kinect tracker
As we have explained earlier, some Kinects may be faulty and consequently produce erroneous
measurements when the target is far away from the sensor. However, with a cooperative multiview
setup, the final estimate of position and orientation can be jointly corrected. The correction is led by
the weighting coefficients which give higher weighting to the more accurate measurements delivered
by each camera in the multiview setup covering the whole scene.

Another contribution of the present work is the adaptive weighting scheme based on the assessment
of the quality for each estimate resulting from the robust H∞ filter and the confidence in the raw
measurements delivered by the camera itself. Indeed, we introduce a quality factor for each of the
cameras capturing the motion of the vehicle. This quality indicator is obtained from the remaining
error in the sensor after applying appropriate correction model. The mathematical formulation is as
follows.

For the processing thread of the nth camera:
� Pn is the covariance matrix of the error in the estimate delivered by the robust H∞ filter.
� Kn is the covariance matrix characterising the residual error after correction.
� Zn is a positive scalar factor representing the distance between the target and the camera.

The last assumption is motivated by the fact that the smaller the depth of the target, the more
accurate the resulting measurement.

Figure 6 depicts the situation where every sensor has its native hardware accuracy matrix Kn

(red circles). Moreover, using the distance separating the camera from the target, we introduce the
weighting coefficient Zn.

For every pair of position estimates x̂n, x̂m, the following condition should be satisfied:

tr (Kn) + tr (Pn) + Zn ≤ tr (Km) + tr (Pm) + Zm ⇒ ωn ≥ ωm;
(43)

1 ≤ n, m ≤ N.

Equation (43) means that x̂n affects the final estimate x̃ more than x̂m does and Pn affects the final
error in estimation P more than Pm does. In our tracking algorithm, we considered Niehsen’s19 findings
about fast CI. In addition, we included the uncertainty characterising the quality of the measurements
delivered by the sensor. Our weighting coefficients are given by the following expression:

ωn =

∑N
i = 1
i �= n

(tr (Ki) + tr (Pi) + Zi)

∑N
i=1(tr (Ki) + tr (Pi) + Zi)

. (44)

Another form of the same expression is more adequate to reduce the load of computation:

ωn =
∑N

i=1(tr (Ki) + tr (Pi) + Zi) − (tr (Kn) + tr (Pn) + Zn)∑N
i=1(tr (Ki) + tr (Pi) + Zi)

. (45)
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Fig. 7. Orientation computation. (a) Heading vector (upper view). (b) Heading vector (side view). (c) Pose of
the robot in the scene. (d) Orientation definition.

Consequently, we only need to compute the traces of the matrices once. The denominator∑N
i=1(tr(Ki) + tr(Pi) + Zi) is also computed once. Afterwards we subtract the corresponding

parameter (tr(Kn) + tr(Pn) + Zn) appropriate to every one of the estimates. The condition of
consistency (39) remains verified as

∑N
n=1 ωn = 1. The experiments conducted using this approach

proved that Eq. (45) is more realistic and suitable for real tracking scenarios.

7. Orientation Computation
Until this point, we have not discussed the computation of the direction towards which the robot is
heading. However, our current solution is already able to deliver 6 DoF without any need to process
orientation data independently. In the published literature, the common way to compute orientation
during the motion of the vehicle is the well-known slow least square-based algorithms. This category
of solutions produces elementary rotations and translations between the successive states taken by
the robot. Thus, we considered it to be unsuitable for our real-time solution.

Once we obtain an accurate estimate of centroid, we can easily compute the remaining three
orientation components (α, β, γ ) by applying some simple trigonometry on the accurate positions
of the centroid and the frontal marker (Figs. 7(a) and (b)). This method is effective as it prevents us
complicating the filter with the extra load of computations regarding the orientation,

Mag =
√

(x − x ′)2 + (y − y ′)2 + (z − z′)2, (46)

α = arcos

(
x − x ′

Mag

)
, (47)

β = arcos

(
y − y ′

Mag

)
, (48)

γ = arcos

(
z − z′

Mag

)
. (49)

Figures 7(c) and (d) illustrate how the problem of defining the orientations can be formulated. From
Eqs. (47)–(49), one can directly obtain the correct angles that define where the vehicle is heading
without any confusion. In addition, it is possible to compute the 3D rotation between two different
orientations by just using the angles characterising the two poses.
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Fig. 8. KF GPU implementation for depth map filtering.

Fig. 9. Optimisation of data exchange in the GPU. (a) RAM/GMGPU transfer. (b) GMGPU → RAM data
loading.

8. Results and Discussion
All the following stages are based on our hardware configuration. For programming, we used C++
and CUDA for the GPU/CPU heterogeneous coding.

8.1. GPU implementation of the capture and marker extraction algorithms
The subject images we are processing have a VGA resolution (640 × 480) delivered at the same
frame rate of the camera to allow the following applications to fully exploit the frame rate offered
by the sensor. When we first ran the correction on a regular CPU, the maximum achieved frame rate
was 15 fps. Hence, emerges the need to implement the bottlenecks of our solution in the GPU. On
the other hand, the image data is more naturally organised to fit GPU blocks, where every element
in the block (thread) processes a single pixel at time.40 Figure 8 illustrates how the depth image
output by the camera is divided into image blocks of a constant size (16 × 16 pixels; so 256 threads
is the size of the block in our implementation). The pixels of the same image block are processed
simultaneously in the same GPU thread block. As a result, for every pixel in the image there is an
attributed thread in the GPU. The latter runs the actual kernel on a single depth pixel (range reading).
This scheme is straightforward because there are no constraints between the pixels and the order in
which they should be processed. Otherwise, more specific techniques should be applied to benefit
from the parallel computational ability of the GPUs. The complexity of processing is reduced to the
complexity of the algorithm running in the Kernel, which indeed is constant.

Other considerations should be addressed to optimise the utilisation of all the available hardware
capability. Basically, the design of heterogeneous algorithms aims at a higher occupancy of processors
and the full usage of the bandwidth when exchanging data between the central memory (RAM) and
the global memory of GPU (GMGPU).41 To this end, we focus on the following two optimisation
aspects:
Running asynchronous transfers: When the GPU is processing the current frame, the bus between it
and the central memory is entirely free.

We therefore benefit from this idleness to exchange data. In other words, the following frame
(ft+1) is sent from the RAM to the GMGPU, and the already available result (f ′

t−1) is sent back to
the RAM. Simultaneously, the current frame (ft ) is being processed on the device (GPU) (Fig. 9(a)).
Memory coalescing: The GPU automatically loads the content of adjacent memory cells because its
internal design assumes that it is highly probable for neighbouring data within the same area to be
requested sooner as well.42 Memory coalescing is another optimisation that significantly helps to
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Fig. 10. Drifty Kinect. (a) Before correction (RMSE = 0.2189 m). (b) Error model. (c) Result after correction
(RMSE = 0.0633 m).

increase the probability of threads in the same warp (a group of 32 threads from the same thread
block running simultaneously) to fetch the data from the memory together. The purpose of memory
coalescing is to ensure that the threads access the same memory segment to only pay one memory
transaction. However, if the threads of the same warp fetch sparse addresses then it will cost 32
memory transactions.

Appropriately organising the data in device memory allows such contiguous access to happen
automatically. Programmatically, structure of arrays rather than the easy use of array of structures
significantly increases the chances of loading a chunk of memory containing the data for not only the
thread which requests it but also for its neighbours in the warp. Figure 9(b) illustrates what happens
when a thread fetches a given cell in the global memory.

The CPU and the GPU are significantly different. A GPU can handle large amounts of data in
many streams, performing relatively simple operations, but it is inadequate for heavy processing on a
single or few streams. A CPU is much faster on a per-core basis and can perform complex operations
on a single or few streams of data more easily. Consequently, the robust filter and the CI algorithms
have not been implemented in the GPU. The reason is that they do not interact with a large amount of
image data. Hence, they just smooth the 3D positions of markers. More importantly, we were able to
filter the five position data using a CPU-based multithreaded architecture where each thread handles
the stream of a given camera. The fusion algorithm is then executed on the resulting estimates to find
the correct pose of the vehicle.

8.2. Sensor first stage correction
To illustrate the effect of our sensor correction method, we conducted some experiments where
two Kinects of different measurement precisions were corrected. Figures 10 and 11 illustrate two
cases where drifty and healthy sensors were adjusted using an 8◦ polynomial. The first column of
both figures (column (a) in Figs. 10 and 11 before correction) presents the graphs of the function
g (zsh) = zcor (zsh : shifted depth; zcor: ground truth depth). The more the fitting line approaches y = x,
the more accurate is the sensor (the range measurement delivered by the Kinect is closer to the ground
truth). With faulty sensor (Fig. 10), the curve representing g (zsh) is clearly shifted below y = x. This
happens because the sensor overestimates the range of objects in front of it. As a consequence, such
behaviour limits the ability of the sensor to fully capture the 3D geometry within the working range
(0.8 to 4.0 m). On the other hand, with a good sensor (Fig. 11), the representative curve is almost
superimposed on y = x when the depth of the object is below 4.0 m. When the object goes further
than permitted by the manufacturer (zsh > 4.0 m), the accuracy drops and the corresponding fitting
line slightly shifts above y = x.

To correct the sensor, we plot the following points: (zsh, zsh − zcor). We then fit them with a
polynomial f (zsh) that minimises the error between zsh and zcor in the least squares sense (column
(b) in Figs. 10 and 11). In practice, we found that an 8◦ polynomial adequately represents the set
of points with a small error factor. The correct depth of zsh is obtained by evaluating f (zsh) for the
whole depth map.

Owing to the limited number of discrete depth values that can exist in any point cloud output by
Kinect,35 we compute for each raw range value (zsh) a respective corrected value (zcor). As a result,
the correction of the depth image is reduced to the correction of the known depth levels.35

The depth correction module runs in the GPU on a pixel by pixel basis. We apply the correction
only on the valid depth readings before any further processing takes place to ensure a better quality
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Fig. 11. Good Kinect. (a) Before correction (RMSE = 0.0703 m). (b) Error model. (c) Result after correction
(RMSE = 0.0538 m).

Table I. Symbols and their corresponding meaning.

Quantity/unit/
Symbol range/size Definition

N 5 Number of cameras covering the whole scene
fx, fy Pixel Focal lengths in pixels towards X, Y axes respectively
cx, cy Pixel Centre of imager
R 3 × 3 Rotation transform from colour camera (RGB) frame to IR frame
T 3 × 1 Translation describing the shift between RGB frame centre and IR frame
u, v Pixel Coordinates of a given pixel in IR frame
z(u, v) 0.8–4.5 (m) Depth measurement (distance that separates the sensor from the scene)
x, y, z Meter Coordinates of robot in world frame
ẋ, ẏ, ż Meter/second Velocities of robot on the three axes of world frame
ẍ, ÿ, z̈ Meter/second2 Accelerations of robot on the three axes of world frame
Im Size 640 × 480 Size of images in every RGB and depth frame
RGBD–Ki 640 × 480 Raw RGBD (RGB + Depth) data streamed by the ith (0 ≤ i ≤ 4)

Kinect sensor
P –RGBD–Ki 640 × 480 Pre-processed and aligned frames
Posi 3 + 3 Position and orientation of the robot delivered by the ith (0 ≤ i ≤ 4)

Kinect sensor
RF–Robi 3 + 3 Position and orientation of robot resulting from the robust H∞ filter
Covi 3 × 3 Covariance matrix associated to RF–Robi

α, β, γ 1 × 3 Orientations of robot

Table II. RMSE (m) for some Kinects before and after the correction.

Kinect 0 Kinect 1 Kinect 3 Kinect 4

Before 0.1114 0.1474 0.2189 0.0703
After 0.0490 0.0598 0.0633 0.0538

of data. This allows us to fully benefit from the available accuracy of the sensor. After the correction
(column (c) in Figs. 10 and 11), the depth data is almost the same as the ground truth. However, for
greater range of values, the resolution of the sensor decreases and only some discrete measurements
can be obtained. As we can see from the figures, the density of the samples that we used to compute
the correction model decreases with increasing range. Table II shows the error in measurements for
some of the Kinects used in our cooperative multiview tracking experiments.

8.3. The robust H∞ filter
The results discussed in the following sections are obtained from the setup shown in Fig. 12.

Figures 13 and 14 present, respectively, the best and the worst performances of the robust H∞
filter tracking algorithm along with comparative results when delivered by KF. As we have explained
earlier, the motion model of the robot is unknown. Hence, we applied a generic Newtonian system to
mimic its behaviour. Afterwards, we overcome the uncertainties with the robust H∞ filter.
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Fig. 12. X, Y, and Z axes in our experimental setup.

Fig. 13. The best tracking results after applying robust H∞ and KF on X, Y, and Z coordinates. (a) X RMS (m).
(b) Y RMSE (m). (c) Z RMSE (m). (d) 3D view of the trajectory. (e) XZ view of the trajectory.

Fig. 14. The worst tracking results after applying robust H∞ and Kalman filters on X, Y, and Z coordinates. (a)
X RMS (m). (b) Y RMSE (m). (c) Z RMSE (m). (d) 3D view of the trajectory. (e) XZ view of the trajectory.
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Table III. Error in X-component for all cameras.

X RMSE (m) Kinect 0 Kinect 1 Kinect 2 Kinect 3 Kinect 4

KF 0.0570 0.0575 0.0580 0.0552 0.0546
RF 0.0433 0.0435 0.0456 0.0440 0.0403
Difference (KF – RF) 0.0137 0.0140 0.0124 0.0112 0.0143

Table IV. Error in Y-component for all cameras.

Y RMSE (m) Kinect 0 Kinect 1 Kinect 2 Kinect 3 Kinect 4

KF 0.0392 0.0429 0.0414 0.0415 0.0415
RF 0.0253 0.0253 0.0253 0.0253 0.0252
Difference(KF – RF) 0.0139 0.0176 0.0161 0.0162 0.0163

Table V. Error in Z-component for all cameras.

Z RMSE (m) Kinect 0 Kinect 1 Kinect 2 Kinect 3 Kinect 4

KF 0.0614 0.0594 0.0634 0.0590 0.0640
RF 0.0537 0.0524 0.0530 0.0534 0.0493
Difference (KF – RF) 0.0077 0.0070 0.0104 0.0056 0.0147

For X and Y coordinates (X, Y, and Z axes are shown in Fig. 12), Figs. 13 and 14 show almost
similar error shape for the two filters: KF and robust H∞. This happens because of the similarity in the
model of motion for both the algorithms. Nevertheless, the tracking error with robust H∞ is smaller.
The smallest error within all five cameras for X-coordinate was 0.0403 m with RF against 0.0546 m
for KF (Fig. 13(a)). The worst case in X was 0.0450 m for RF against 0.0580 m for KF (Fig. 14(a)).
For Y-coordinate, the best RMSE was 0.0252 m with RF against 0.040 m for KF (Fig. 13(b)). The
worst case in Y was 0.0253 m with RF against 0.0429 m for KF (Fig. 14(b)).

For the Z-component, the best result with RF was 0.0493 m against 0.0590 m for KF (Fig. 13(c)).
The worst result was 0.053 m with RF against 0.0634 m for KF (Fig. 14(c)).

Throughout the experiments, the RF was less affected by the inaccuracies in the parameters of the
system and always gave the best estimation. More importantly, it was able to predict the position of
a moving robot even if no measurements were available. The detailed results for all the five sensors
are given in Tables III–V.

The results shown in these tables are obtained after the correction of all cameras with their
respective models. On the other hand, the effectiveness of some sensors against others is highly
biased by the trajectory of the vehicle. If all the cameras have the same accuracy, the closest one to
the robot will be the best candidate to precisely capture the position.

8.4. Covariance intersection
At the final stage of our cooperative multiview tracking pipeline, the CI filter is adapted to fuse the
position data resulting from the sensor-wise estimates. To validate our finding about the CI weighting
coefficients, we compared three different approaches of applying the weights on estimates. We tested
the weighting with only the error in estimation (Pn) obtained by RF. Then we combined the latter with
uncertainty in the accuracy of the sensors (Pn and Kn). Finally, we combined both the elements with
the confidence in the depth measurement (Pn, Kn, and Zn). After considering each new parameter
affecting the process of data fusion, the quality of the estimation was improved. We tested our CI
algorithm on both: the estimate of the trajectory resulting from the KF (CI + KF), and the one
obtained from the robust H∞ filter (CI + RF). The results of the fused trajectories were as follows.

Firstly, for the X-coordinate with Pn on its own (Fig. 15(a), Table VI (column X)) gave us an error
of 0.028 m with RF, whereas with KF it gave an error of 0.0415 m. After considering the accuracy
of the sensor (Fig. 16(a), Table VII (column X)), the error was reduced for both the filters to reach
0.0188 m with RF and 0.028 m for KF. The introduction of Zn (Fig. 17(a), Table VIII (column X))
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Fig. 15. Pn, weighting results. (a) X RMS (m). (b) Y RMSE (m). (c) Z RMSE (m). (d) 3D view of the trajectory.
(e) XZ view of the trajectory.

Table VI. Final tracking error after CI filtering with Pn weighting.

Filters X RMSE (m) Y RMSE (m) Z RMSE (m)

CI + KF 0.0415 0.0247 0.0484
CI + RF 0.0275 0.0154 0.0323
Difference CI + (KF – RF) 0.014 0.0093 0.0161

Table VII. Final tracking error after CI filtering with Pn,Kn weighting.

Filters X RMSE (m) Y RMSE (m) Z RMSE (m)

CI + KF 0.0281 0.017 0.0333
CI + RF 0.0188 0.011 0.0223
Difference CI + (KF – RF) 0.0093 0.0065 0.011

Table VIII. Final tracking error after CI filtering with Pn,Kn, and Znweighting.

Filters X RMSE (m) Y RMSE (m) Z RMSE (m)

CI + KF 0.0165 0.0097 0.0195
CI + RF 0.011 0.006 0.0129
Difference CI + (KF – RF) 0.0055 0.0037 0.0066

further approached the estimation to its ground truth counterpart as the error reached 0.011 m with
RF and 0.016 m with KF.

Secondly, for the Y-coordinate, Pn on its own (Fig. 15(b), Table VI (column Y)) again gave us an
error of 0.0154 m for RF, whereas with KF it gives 0.0247 m. After adding the accuracy parameter of
the sensor, the error was reduced to 0.011 m with RF. Likewise, the introduction of Kn (Fig. 16(b),
Table VII (column Y)) positively affected the accuracy of KF estimates as it increased to 0.017 m.
Lastly, when we introduce Zn (Fig. 17(b), Table VIII (column Y)), the error in estimation dropped to
0.006 m, at the same time the error with KF dropped to 0.0098 m.

Thirdly, for Z-component, Pn (Fig. 15(c), Table VI (column Z)) on its own again gave us an error of
0.0323 m for RF, whereas with KF it gave an error of 0.0484 m. After adding the accuracy parameter
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Fig. 16. Pn, Kn, and Zn weighting results. (a) X RMS (m). (b) Y RMSE (m). (c) Z RMSE (m). (d) 3D view of
the trajectory. (e) XZ view of the trajectory.

Fig. 17. Pn, Kn, and Zn weighting results. (a) X RMS (m). (b) Y RMSE (m). (c) Z RMSE (m). (d) 3D view of
the trajectory. (e) XZ view of the trajectory.

of the sensor, the error was slightly reduced to 0.0223 m with RF. In the same way, the introduction
of Kn (Fig. 16(c), Table VII (column Z)) increased the accuracy of KF estimates to 0.0333 m. Zn

(Fig. 17(c), Table VIII (column Z)) positively affected the error in RF to reach 0.013 m; the error in
KF estimation also decreased to reach 0.0195 m.

Based on the result obtained from our experiments, the quality of estimation between RF and
KF is not significantly different. This is true because of the compensating effect of the CI algorithm
through all the sensors. In other words, each sensor participates with its best estimation. After the
correction, the most accurate measurement is used in both KF and RF to compute the next prediction.
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Fig. 18. Angle between the GT and the estimated heading.

As a consequence, the difference in the fused output is not significant when we attribute a higher
weight to the most reliable measurement. In addition, given the limited space used for this indoor
experiment, the RF performs theoretically just as the KF when the robot moves linearly according to
a predefined motion model.

8.5. Orientation of vehicle
To test the orientation angles delivered by our solution, we compute error angle between the ground
truth heading and the estimated one. To this end, we use the dot product between the two vectors
representing the ground truth and the estimated direction of the robot. As we can see in Fig. 18, the

dot product between the two vectors, �P and
−→
P ′ , can be obtained from their magnitude and the angle

between them as shown in Eq. (50):

P × P ′ = |P | ∣∣P ′∣∣ × cos (θ) . (50)

From Eq. (50), we get:

cos (θ) = P × P ′

|P | |P ′| . (51)

The error angle between the two directions becomes,

θ = arcos

(
P × P ′

|P | |P ′|
)

. (52)

After applying Eq. (52), we got the results illustrated in Fig. 19. The error in the orientation of the
vehicle resulting from RF was 11◦, whereas KF-RMSE was 17◦. With both the filters the error in the
orientation of the mobile robot was not important. More importantly, proportional to the accuracy
of the position of the vehicle, the application of CI better improved the accuracy of the orientation
angle as follows: With Pn on its own, RF-RMSE was 7.1◦ and KF-RMSE became 12◦. With Pn, Kn

the results are even better where RF-RMSE became 4.8◦ and KF-RMSE was 8.1◦. Finally, the
introduction of Zn significantly reduced the error to 2.7◦ for RF and 4.6◦ for KF. The result is very
accurate, given the fact that we did not imply the three angles of orientation in the filtering algorithm.
Consequently, our approach to compute the heading of the vehicle proved its effectiveness and high
adequacy for real-time systems.

9. Conclusions and Future Works
In this work, we presented a novel approach to accurately track moving vehicles in indoor
environments with cooperative multiple consumer RGBD cameras. We described the details of
our methodology and findings. Our findings about the RGBD sensor correction are of importance for
a more accurate measurement with any type of sensors suffering from the same drawbacks. To our
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Fig. 19. Error in the estimated orientation of vehicle. (a) Best orientation estimation with RF. (b) Worst orientation
estimation with RF. (c) CI with Pn weighting results. (d) CI with Pn and Kn weighting results. (e) CI with Pn,
Kn, and Zn weighting.

knowledge, we were the first to investigate and apply the robust filtering in objects tracking using
RGBD sensor. We also demonstrated the power of the latter to overcome the lack of knowledge
about the system governing the behaviour of vehicles. We considered the quality of measurements
and the estimates provided by each sensor in the CI algorithm. We successfully combined all the
single contributions of cameras in one consistent and cooperative output. Test results show the
performance we achieved at a frame rate of 25 Fps with five Kinects. The innovative development
based on the GPU for all the bottleneck stages of processing (capture and markers extraction)
helped significantly to achieve the real-time performance. For robust filtering and CI algorithms, no
parallelisation was required because these were just applied on some position data (five 3D points).
Their linear computational nature required a powerful sequential processing, which was the asset for
CPUs (their frequency of processing was much higher than that of GPUs).

In future work, we aim to overcome the multiple Kinect interference problems by algorithmic
means using the stereo RGB/IR images to complete the missing depth information. We also aim to
apply the same filtering scheme on 3D reconstruction applications for object recognition purposes.
Another planned work is the combination of motion and 3D structure all together for a complete
acquisition of the shape and behaviour of robots moving in the scene.
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A. Wilson, “The KidsRoom: A perceptually-based interactive and immersive story environment,” Presence
Teleoperators Virtual Environ. 8(4), 369–393 (Aug. 1999).

11. S. Intille, J. Davis and A. Bobick, “Real-Time Closed-World Tracking,” Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (1997) pp. 697–703.

12. C. Wren, A. Azarbayejani, T. Darrell and A. P. Pentland, “Pfinder: Real-time tracking of the human body,”
IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (Jul. 1997).

13. J. Flusser and T. Suk, “Rotation moment invariants for recognition of symmetric objects,” IEEE Trans.
Image Process. 15(12) 3784–3790 (Dec. 2006).

14. S. Y. Chen, “Kalman filter for robot vision: A survey,” IEEE Trans. Ind. Electron. 59(11) 4409–4420 (Nov.
2012).

15. L. Liu, B. Sun, N. Wei, C. Hu and M. Q.-H. Meng, “A Novel Marker Tracking Method Based on
Extended Kalman Filter for Multi-Camera Optical Tracking Systems,” Proceedings of the 5th International
Conference on Bioinformatics and Biomedical Engineering (2011) pp. 1–5.

16. Y. Rui and Y. Chen, “Better Proposal Distributions: Object Tracking Using Unscented Particle Filter,”
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2001), vol. 2 (2001), pp. II-786–II-793.

17. M. Pupilli and A. Calway, “Real-Time Camera Tracking Using a Particle Filter.,” British Machine Vision
Conference (BMVC), 519–528 (2005).

18. D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. (Wiley-Interscience,
New York, NY, 2006) 552 p.

19. W. Niehsen, “Information Fusion Based on Fast Covariance Intersection Filtering,” Proceedings of the Fifth
International Conference on Information Fusion (FUSION 2002), vol 2 (IEEE Cat. No. 02EX5997) (2002)
pp. 901–904.

20. D. Smith and S. Singh, “Approaches to multisensor data fusion in target tracking: A survey,” IEEE Trans.
Knowl. Data Eng. 18(12), 1696–1710 (Dec. 2006).

21. J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook and R. Moore, “Real-time
human pose recognition in parts from single depth images,” Commun. ACM 56(1), 116 (Jan. 2013).

22. D. S. O. Correa, D. F. Sciotti, M. G. Prado, D. O. Sales, D. F. Wolf and F. S. Osorio, “Mobile Robots
Navigation in Indoor Environments Using Kinect Sensor,” Proceedings of the 2012 Second Brazilian
Conference on Critical Embedded Systems (2012) pp. 36–41.

23. P. Henry, M. Krainin, E. Herbst, X. Ren and D. Fox, “RGB-D mapping: Using kinect-style depth cameras
for dense 3D modeling of indoor environments,” Int. J. Rob. Res. 31(5), 647–663 (Feb. 2012).

24. T. Nakamura, “Real-Time 3-D Object Tracking Using Kinect Sensor,” Proceedings of the 2011 IEEE
International Conference on Robotics and Biomimetics (2011) pp. 784–788.

25. S. Izadi, A. Davison, A. Fitzgibbon, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,
S. Hodges and D. Freeman, “Kinect Fusion,” Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology – UIST ’11 (2011) 559.

26. J. Tong, J. Zhou, L. Liu, Z. Pan and H. Yan, “Scanning 3D full human bodies using Kinects,” IEEE Trans.
Vis. Comput. Graph. 18(4) 643–650 (2012).

27. J. Han, L. Shao, D. Xu and J. Shotton, “Enhanced computer vision with microsoft kinect sensor: A review,”
IEEE Trans. Cybern. 43(5), 1318–1334 (Oct. 2013).

28. ROS Wiki, “kinect calibration/technical - ROS Wiki” (online). Available at: http://wiki.ros.org/
kinect calibration/technical. Accessed: Jan. 27, 2014.

29. R. Reyes, I. Lopez, J. J. Fumero and F. de Sande, “accULL: A User-Directed Approach to Heterogeneous
Programming,” Proceedings of the 2012 IEEE 10th International Symposium on Parallel and Distributed
Processing with Applications, (2012) pp. 654–661.

30. M. Andersen, T. Jensen, P. Lisouski, A. Mortensen, M. Hansen, T. Gregersen, and P. Ahrendt, “Kinect
Depth Sensor Evaluation for Computer Vision Applications,” Technical report, Dept. of Engineering,
Aarhus University, Denmark, 2012.
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