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We consider two notions describing how one finite graph may be larger than another. Using

them, we prove several theorems for such pairs that compare the number of spanning trees,

the return probabilities of random walks, and the number of independent sets, among other

combinatorial quantities. Our methods involve inequalities for determinants, for traces of

functions of operators, and for entropy.
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1. Introduction

How does one compare different graphs? If they have the same vertex sets but one edge

set contains the other, then clearly we can say that one graph is larger than the other.

This can lead to inequalities, usually trivial, for combinatorial quantities associated with

the graphs. But if the numbers of vertices differ, then one might wish to compare those

combinatorial quantities with normalizations that depend on the numbers of vertices.

In such a case, however, if one graph can be embedded in another, we are unlikely to

have any such comparison of normalized combinatorial quantities. Instead, we should

demand some sort of uniformity in how one graph can be embedded in the other. With

appropriate hypotheses of uniformity, we have found inequalities for counting any of

the following: spanning trees, independent sets, proper colourings, acyclic orientations,

forests, and matchings. We also have inequalities for random walks and the spectra of the

graphs. However, many questions remain open.

We now describe what we mean by uniformity of embedding. Let G and H be finite

connected (multi)graphs. We will use G for the larger graph. The simplest kind of

uniformity is that H tiles G, meaning that G contains a collection of copies of H that

cover each vertex of G exactly once. See Figure 1 for an example. The case where H tiles
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682 R. Lyons

Figure 1. The 4 × 4 portion of the square grid is tiled by 4 copies of a 4-cycle.

Figure 2. The graph K4 is fractionally tiled by K3.

G is hardly different from H being a subgraph of G with the same number of vertices,

and will not be discussed further here.

In general, we define a copy of H to be a subgraph of G that is isomorphic to H . We

will also refer to a copy of H as an embedding of H .

The next simplest kind of uniformity is that G has a fractional tiling by H . This means

that there is an integer number of copies of H in G such that each vertex of G is covered

the same number of times by these copies of H . An example is in Figure 2. This is already

non-trivial and will be a common hypothesis in our paper.

Finally, the most general case we will consider is that G dominates H , written G � H ,

meaning that there is a probability measure on pairs (X,Y ) ∈ V (G) × V (H) such that

almost surely there is a rooted isomorphism from (H,Y ) to a subgraph of (G,X) and

such that the marginal distributions of X and Y are each uniform. Here, a rooted graph is

a pair (G, o) with o ∈ V (G) and a rooted isomorphism is an isomorphism that carries one

root to the other. The way to think of domination is that G looks bigger than H from

the point of view of a typical vertex. For some illustrative examples, see Figures 3 and 4.

We say that a graph is transitive if, for every pair of vertices, there is an automorphism

of the graph that takes one to the other. If H is transitive, then G � H if and only if

every vertex of G belongs to a copy of H . If G is transitive, then G � H if and only if G
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Figure 3. The graph G on the left dominates the graph H on the right, but H does not fractionally tile G.

Figure 4. The graph on the left dominates the graph on the right.

contains a copy of H . In both cases, the independent coupling of roots works. It is clear

that if H fractionally tiles G, then G � H . Conversely, if G is transitive and dominates H ,

then H fractionally tiles G.

Consider the case where H is a single edge. Then to say that G dominates H is to say

that G has no isolated vertices; since G is connected, this means that G has at least two

vertices. On the other hand, to say that H fractionally tiles G is to say that there is a

spanning ‘subgraph’ of G that is regular of degree at least 1; the reason for the quotes is

that the subgraph may need to use edges of G multiple times and thus be a multigraph

even if G is a simple graph. See Figure 5 for a comparison.

In probabilistic language, G � H has a simple expression, though we will not use it.

Note that the set of (isomorphism classes of) rooted graphs is partially ordered by rooted

embedding. This partial order defines a corresponding notion of stochastic ordering � on

the set of probability measures on rooted finite graphs. Let U(G) denote the probability

measure on G with a uniformly random root. Then G � H if and only if U(G) � U(H).

Our theme is the following. Suppose we know an inequality of the form f(H) � f(G)

when H is a spanning subgraph of G. Does it extend with appropriate normalization to

the setting of domination or fractional tiling?

One might consider weighted graphs as well, but in most cases we will not. One can

also consider random graphs; see Section 6 of Lyons, Peled and Schramm [13] for several

Figure 5. The graph on the left dominates an edge; an edge fractionally tiles the graph in the middle and tiles

the graph on the right.
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such questions. Luczak and Winkler [10] and Janson [8] contain further information for

random trees.

If G is a connected graph, we call a subgraph of G a spanning tree if it is maximal

without cycles. The number of spanning trees of G is denoted τ(G).

We conjecture the following.

Conjecture 1.1. If G � H , then

τ(G)1/|G| � τ(H)1/|H |. (1.1)

The infinitary analogue of Conjecture 1.1 for unimodular probability measures is true,

though we will not use it explicitly; see Lyons [12]. We will establish several special cases

of Conjecture 1.1. These proofs will use the Hadamard–Fischer–Koteljanskii inequality

for determinants, which we review in Section 2. One could extend our considerations to

stochastic domination of probability measures of the form U(G) and U(H) for G and

H themselves random, but for simplicity, we usually avoid such. The infinitary analogue

of Conjecture 1.1 also implies that (1.1) holds for certain pairs of large graphs: see

Proposition 3.5 below.

After treating spanning trees, we will give inequalities for return probabilities of

continuous-time random walks and for eigenvalues when one graph fractionally tiles

another. The main tool here will be a trace inequality for functions of operators.

In the last section we present some easy consequences of Shearer’s inequality about

entropy for a variety of combinatorial quantities, such as counting the number of

independent sets. The last two sections contain several open questions.

2. Determinant inequalities

For a square matrix M and a subset A of the indices of its rows and columns, let M(A)

denote the minor of M corresponding to the rows and columns indexed by A. We use the

convention M(∅) := 1. The Hadamard–Fischer–Koteljanskii inequality says that if M is a

positive semidefinite matrix, then

M(A)M(B) � M(A ∪ B)M(A ∩ B).

In other words, M( • ) is log-submodular. It follows that if the index of each row belongs

to precisely m sets Ai (each of arbitrary size), then∏
i

M(Ai) � (detM)m. (2.1)

Indeed, we simply aggregate repeatedly any pairs of subsets where neither is contained in

the other. Each time we get a larger subset, and this can only end when we have m copies

of the entire index set (together with irrelevant empty sets).

From now on, all graphs we consider will be connected without mention.

One well-known example of a positive semidefinite matrix associated to a finite graph,

G, is its Laplacian, ΔG, whose off-diagonal entries ΔG(x, y) are negative the numbers of

https://doi.org/10.1017/S096354831700013X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831700013X


Comparing Graphs of Different Sizes 685

edges joining x and y and whose row sums each vanish. For W ⊂ V (G), denote by G/W

the graph obtained from G by identifying all vertices in W to a single vertex. By the

Matrix-Tree theorem, for any non-empty subset W ⊂ V (G), we have

τ(G/W ) = ΔG(V (G) \ W ). (2.2)

Thus, if we denote G/(V (G) \ A) by GA, then we have

τ(GA)τ(GB) � τ(GA∪B)τ(GA∩B) (2.3)

when A ∪ B is a proper subset of V (G).

Inequality (2.3) does not hold when A ∪ B = V (G). For example, take G to be a path on

three vertices, x, y, and z, with y the middle vertex. Let A := {x, y} and B := {y, z}. Then

the left-hand side of (2.3) is 1 while the right-hand side is 2. However, (2.3) does hold

when A ∪ B = V (G) and there is an edge between A \ B and B \ A. Indeed, such an edge

may be subdivided to create a new vertex x that does not belong to either A or B. Let the

new graph be G′ with vertex set A ∪ B ∪ {x}. Note that τ(G′
A) = τ(GA), τ(G′

B) = τ(GB),

τ(G′
A∪B) = 2 > 1 = τ(GA∪B), and τ(G′

A∩B) � τ(GA∩B). Thus, if we apply (2.3) to G′ with

these same A and B, we obtain an inequality that is stronger than (2.3) applied to G, as

desired.

As Jeff Kahn noted (personal communication), this extension of (2.3) implies the

following inequality: if Ai ⊂ V (G) and each x ∈ V (G) belongs to exactly m sets Ai, then∏
i

τ(GAi
) � τ(G)m, (2.4)

since if Ai 	= V (G), then there is an x ∈ Ai adjacent to some y /∈ Ai, whence there is some

Aj containing y but not x, as x is covered the same number of times as y is. Hence we

can apply (2.3) or its extension repeatedly.

Some final notation for a (possibly disconnected) subgraph H of G: Write GH for GV (H).

Write G//H := G/E(H), the graph obtained from G by contracting all edges in E(H).

When H is connected, G//H = G/V (H). By |G|, we mean |V (G)|.

3. Spanning trees

In this section, we prove (1.1) when G � H and either G or H is transitive, and in general

when G is fractionally tiled by H .

Lemma 3.1. For any G and H ⊆ G, we have

τ(H)τ(G//H) � τ(G).

Proof. The union of the edges of a spanning tree of H and a spanning tree of G//H is

a spanning tree of G. This map from the pairs of spanning trees of H and the spanning

trees of G//H to the spanning trees of G is obviously injective.

Lemma 3.2. If G is transitive and H ⊆ G, then

τ(GH ) � τ(G)|H |/|G|.
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Proof. We prove this by induction on |H |. We may assume that ∅ 	= H 	= G. Call an

image of H under an automorphism of G a clone of H . We claim that there is an edge

e such that we can cover V (G) by clones of H , none of which uses both endpoints of

the edge e. Indeed, cover by clones as much of V (G) as possible without covering all of

V (G). Let o be a vertex that is not covered. Any clone of H that covers o covers all other

uncovered vertices of G. Further, some vertex x ∈ V (H) has degree less than its degree in

G. Choose an automorphism of G that maps x to o and use the corresponding clone of

H to finish the cover of V (G). Let o′ be a neighbour of o that is not contained in this last

clone of H . The edge e = (o, o′) is the edge we desire. Let k be the total number of clones

Hi of H used in this cover of V (G).

Now let G′ be G subdivided at e by a new vertex, z. We have V (G′ \ z) =
⋃k

i=1 V (Hi).

Note that for each i, G′
Hi

is isomorphic to GHi
, possibly plus a loop, because Hi does not

contain both o and o′. Furthermore, GHi
is isomorphic to GH by definition of clone. We

may assume that each Hi has a vertex not belonging to Li :=
⋃

j<i Hj . By (2.3), we have

τ(G′
Li

)τ(G′
Hi

) � τ(G′
Li+1

)τ(G′
Ki

),

where Ki := Li ∩ Hi � Hi. Since V (Lk+1) = V (G′ \ z), we have G′
Lk+1

= G′. In addition,

since Ki ⊂ Hi, we have G′
Ki

is GKi
, possibly plus a loop. Thus, multiplying together the

above inequalities for 1 � i � k and cancelling common terms on both sides yields

τ(GH )k =
∏
i�1

τ(G′
Hi

) � τ(G′)
∏
i>1

τ(G′
Ki

) = τ(G′)
∏
i>1

τ(GKi
) � τ(G)

∏
i>1

τ(GKi
).

Since |Ki| < |Hi|, the inductive hypothesis gives τ(GKi
) � τ(G)|Ki|/|G|. Now k|H | = |G| +∑

i>1 |Ki|, whence

τ(GH )k � τ(G)k|H |/|G|,

which is the desired inequality.

Strict inequality holds in Lemma 3.2 when |G| > |H | � 1 and G contains no cut-edge,

since in that case, τ(G′) > τ(G) in the proof.

Theorem 3.3. If G is transitive, then (1.1) holds with strict inequality when G contains no

cut-edge and G 	= H .

Proof. Let K be the complement of the vertices in a copy of H in G. The previous two

lemmas give

τ(G)|K|/|G| � τ(GK ) = τ(G//H) � τ(G)

τ(H)
.

Since |K| + |H | = |G|, the desired inequality follows.

We now prove that Conjecture 1.1 holds when H is transitive.

Theorem 3.4. If H is transitive, then (1.1) holds.
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Proof. We prove this by induction on |G|. If |G| = |H |, then G contains a copy of H and

the result is trivial. Otherwise, cover V (G) by copies Hi of H for 1 � i � k. For 1 < i < k,

we may assume that Hi has a vertex either in or adjacent to Hj for some j < i. Let

V ′ :=
⋃

1�i<k V (Hi) and let G′ be the graph spanned by V ′. Then G′ is connected. We may

also assume that H ′ := Hk has a vertex not in V ′. Since H is transitive and G′ is covered

by copies of H , we know that G′ � H , whence our inductive hypothesis says that

τ(G′)1/|G′ | � τ(H)1/|H |.

If H ′ does not contain a vertex in V ′, then

τ(G) � τ(G′)τ(H ′) � τ(H)|G′ |/|H |τ(H ′) = τ(H)|G|/|H |.

If H ′ does contain a vertex in V ′, then note that G//G′ = G/V ′ is isomorphic, up to loops,

to H ′/(V ′ ∩ H ′) = H ′
H ′\V ′ . Thus, the previous two lemmas give

τ(G) � τ(G′)τ(G//G′) � τ(H)|G′ |/|H |τ(H ′
H ′\V ′ )

� τ(H)|G′ |/|H |τ(H)|H ′\V ′ |/|H | = τ(H)|G|/|H |.

Both cases together complete the induction.

Note that the same proof shows that if H is any graph such that every (connected)

subgraph K ⊂ H satisfies τ(HK ) � τ(H)|K|/|H |, then for every G each of whose vertices

belongs to a copy of H (in particular, if G � H), we have τ(G)1/|G| � τ(H)1/|H |. Many

small non-transitive graphs H can be shown to have this property.

We also show that pairs of large graphs tend to satisfy Conjecture 1.1. Write ‖ • ‖ for the

usual total-variation norm of signed measures. Also, write Ur(G) for the distribution of

(the isomorphism class of) the rooted ball of radius r about a uniform random root of G.

Proposition 3.5. Suppose that D, r < ∞ and ε > 0. There is some k < ∞ such that if G �
H , |H | � k, all degrees in G are at most D, and ‖Ur(G) − Ur(H)‖ � ε, then τ(G)1/|G| �
τ(H)1/|H |.

Proof. If not, then there is a sequence Gn � Hn with |Hn| → ∞, such that all degrees of

Gn are at most D, ‖Ur(Gn) − Ur(Hn)‖ � ε, and τ(Gn)
1/|Gn| < τ(Hn)

1/|Hn|. By compactness,

there is a subsequence, which for simplicity of notation we take to be the whole sequence,

such that U(Gn) weakly converges to some probability measure μ on rooted graphs

and U(Hn) weakly converges to some probability measure ν on rooted graphs. Then

‖μ − ν‖ � ε. By Theorem 3.2 of Lyons [11] and Theorem 3.3 of Lyons [12], we have that

limn→∞ τ(Gn)
1/|Gn| > limn→∞ τ(Hn)

1/|Hn|, a contradiction.

We remark that weaker assumptions suffice in place of the bounded degree assumption;

as long as tightness and bounded average log degree hold for a class of graphs, the same

argument works. See Section 3 of Benjamini, Lyons and Schramm [3] for a discussion of

tightness.

We owe the following result to Jeff Kahn.
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Theorem 3.6. If H fractionally tiles G, then (1.1) holds.

Proof. Let Hi be the copies of H that fractionally tile G and Ai := V (G) \ V (Hi) for

1 � i � m. We have by Lemma 3.1 that

τ(G)m �
∏
i

τ(Hi)τ(G//Hi).

Since Hi is connected, we have G//Hi = GAi
, so now we can apply (2.4). Each vertex of

G appears m(|G| − |H |)/|G| times in some Ai, whence

τ(G)m � τ(G)m(|G|−|H |)/|G|
∏
i

τ(Hi) = τ(H)mτ(G)m(|G|−|H |)/|G|.

This gives the desired inequality.

In summary, we have proved that Conjecture 1.1 holds under any of the following

additional hypotheses: if either G or H is transitive; if H fractionally tiles G; if H is any

graph such that every (connected) subgraph K ⊂ H satisfies τ(HK ) � τ(H)|K|/|H |; if H is

sufficiently large and G and H are sufficiently distinct (see Proposition 3.5 for details).

4. Fractional tiling and random walks

For a continuous-time random walk on a weighted simple graph G, let pt(x;G) denote the

probability that a random walk started at x is at x at time t. If ΔG is the corresponding

Laplacian, that is, ΔG(x, y) := −w(e) when e is an edge joining x and y with weight w(e),

all other off-diagonal elements of ΔG are 0, and the row sums are 0, then pt(x;G) is the

(x, x)-entry of e−tΔG .

We would like to prove that if G dominates H , then for all t > 0,

1

|G|
∑

x∈V (G)

pt(x;G) � 1

|H |
∑

x∈V (H)

pt(x;H). (4.1)

It is easy to see that this inequality holds near 0 and near ∞. One motivation is the

following open problem of Fontes and Mathieu (personal communication). Suppose that

G is a fixed Cayley graph and w1, w2 are two random fields of positive weights on its edges

with the following properties: each field wi has an invariant law and a.s. w1(e) � w2(e)

for each edge e. Does it follow that E[p1,t(o;G)] � E[p2,t(o, G)] for all t > 0, where pi,t
denotes the return probability to a fixed vertex o at time t with the weights wi? This is

known to be true for amenable G [6] and also when the pair (w1, w2) is invariant [1]. The

problems for finite graphs and for infinite Cayley graphs are quite similar in that both try

to compare different normalized traces.

We prove a partial result, namely, that (4.1) holds when H fractionally tiles G.

Theorem 4.1. If G is fractionally tiled by H , then for continuous-time simple random walk,

we have for all t > 0,

1

|G|
∑

x∈V (G)

pt(x;G) � 1

|H |
∑

x∈V (H)

pt(x;H).

Equality holds if and only if G = H .
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In fact, a somewhat weaker condition suffices: a number of different graphs can be

used inside G as long as their average is at most G in a certain sense, as we formalize

next. The equality condition of Theorem 4.1 arises from the proof of Theorem 4.2: we

have strict inequality in (4.3) if G 	= H . In the following result, the case when k = m = 1

is due to Benjamini and Schramm; see Theorem 3.1 of Heicklen and Hoffman [7].

Theorem 4.2. Let G be a graph with positive weights w on its edges. Suppose that Hi is a

subgraph of G with positive weights wi on its edges for i = 1, . . . , k with the following two

properties:

(i) there is a constant m such that for every x ∈ V (G),

|{i : x ∈ V (Hi)}| = m

and

(ii) for every e ∈ E(G),

w(e) � 1

m

∑
i : e∈E(Hi)

wi(e).

Then for all t > 0, we have

1

|G|
∑

x∈V (G)

pt(x;G) � 1∑k
j=1 |Hj |

k∑
i=1

∑
x∈V (Hi)

pt(x;Hi).

We will use the notation A � B for self-adjoint operators A and B to mean that B − A

is positive semidefinite. Sometimes we regard the edges of a graph as oriented, where we

choose one orientation (arbitrarily) for each edge. In particular, we do this whenever we

consider the �2-space of the edge set of a graph. In this case, we denote the tail and the

head of e by e− and e+. Define dG : �2(V (G)) → �2(E(G)) by

dG(a)(e) :=
√

w(e) [a(e−) − a(e+)].

Then ΔG = d∗
GdG. Let Tr denote the normalized trace of a square matrix, that is, the

average of the diagonal entries. We use tr for the usual trace.

Proof. Let n := |G| and N :=
∑k

j=1 |Hj | = nm. Write V := V (G). Let

W :=

k⋃
i=1

V (Hi) × {i},

so that |W | = N. Suppose that Φ : L(�2(W )) → L(�2(V )) is a positive unital linear map,

that is, a linear map that takes positive operators to positive operators and takes the

identity map to the identity map. (Here, a positive operator means positive semidefinite.)

Theorem 3.9 of Antezana, Massey and Stojanoff [2] says that

Tr f(Φ(A)) � Tr Φ(f(A)) (4.2)
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for self-adjoint operators A ∈ L(�2(W )) and functions f : R → R that are convex on the

convex hull of the spectrum of A. In fact, those authors show the more general inequality

Tr g(f(Φ(A))) � Tr g(Φ(f(A)))

for every increasing convex g.

We apply this as follows. Write

Γ(x) := {i : x ∈ Hi}

and define φ : �2(V ) → �2(W ) by linearity and the requirement that

φ(1{x}) :=
1√
m

∑
i∈Γ(x)

1{(x,i)}.

Then φ∗φ is the identity map by hypothesis (i). Define

Φ : L(�2(W )) → L(�2(V ))

by ΦT := φ∗Tφ. Then Φ is a positive unital map. Regard Hi × {i} as a graph with weights

wi and a corresponding Laplacian matrix Δi. Consider the following map A ∈ L(�2(W )):

A :=

k⊕
i=1

Δi.

Hypothesis (ii) guarantees that

ΔG � Φ(A). (4.3)

To see this, let b ∈ �2(V ). We have

(ΔG(b), b) = ‖dGb‖2 (4.4)

and

(ΦA(b), b) = (φ∗Aφb, b) = (Aφb, φb). (4.5)

Write bi for the orthogonal projection of φb to �2(V (Hi) × {i}), so that φb =
∑k

i=1 bi. Note

that bi(x, i) = b(x)/
√
m for x ∈ V (Hi). Thus, we have

(Aφb, φb) =

k∑
i=1

(Δibi, bi) =

k∑
i=1

‖dHi
bi‖2 =

1

m

k∑
i=1

∑
e∈E(Hi)

wi(e)

w(e)
|dGb(e)|2

�
∑

e∈E(G)

|dGb(e)|2 = ‖dGb‖2

by hypothesis. Combining this with (4.4) and (4.5), we get our claimed inequality (4.3).

Since (4.3) implies, by the minimax principle, that the eigenvalues of ΔG are at least the

corresponding eigenvalues of Φ(A), we have

Tr f(ΔG) � Tr f(Φ(A))
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for every decreasing function f. (We have strict inequality if f is strictly decreasing and

we have strict inequality in (4.3).) Use f(s) := e−ts in this and in (4.2) to obtain

Tr f(ΔG) � Tr Φ(f(A)). (4.6)

The left-hand side equals

1

n

∑
x∈V (G)

pt(x;G).

We claim that the right-hand side equals

1

N

k∑
i=1

∑
x∈V (Hi)

pt(x;Hi),

which will complete the proof of the theorem.

Another way to state our claim is that

Tr Φ(f(A)) =
1

N

k∑
i=1

tr f(Δi).

Now, since f(A) =
⊕k

i=1 f(Δi), we have

Tr Φ(f(A)) =
1

n

∑
x∈V

(
f(A)φ1{x}, φ1{x}

)

=
1

N

∑
x∈V

∑
i∈Γ(x)

∑
j∈Γ(x)

(
f(A)1{(x,i)}, 1{(x,j)}

)

=
1

N

∑
x∈V

∑
i∈Γ(x)

∑
j∈Γ(x)

(
f(Δi)1{(x,i)}, 1{(x,j)}

)

=
1

N

∑
x∈V

∑
i∈Γ(x)

(
f(Δi)1{(x,i)}, 1{(x,i)}

)

=
1

N

k∑
i=1

tr f(Δi).

A similar proof shows that if f is any decreasing convex function and H fractionally

tiles G, then

Tr f(ΔG) � Tr f(ΔH ). (4.7)

However, it is not true that this inequality holds whenever G � H; a counter-example

is provided by taking f(t) := (4 − t)+ and G, H the graphs shown in Figure 6. Possibly,

however, it holds whenever G � H and H is transitive; this is not hard to verify when H

is an edge.

Remark. Theorem 4.2 is sharp in the following sense. If the inequality in (ii) holds in the

opposite direction for all edges with strict inequality at least once, then the conclusion
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Figure 6. The graph G on the left dominates the graph H on the right.

fails for all t sufficiently close to 0. This is because both sides equal 1 for t = 0, whereas

the derivative of the left-hand side at t = 0 is

− Tr ΔG = − 2

|G|
∑
e∈G

w(e) = −2
∑

e∈G mw(e)∑
i |Hi|

and the derivative of the right-hand side at t = 0 is

−
2
∑

i

∑
e∈Hi

wi(e)∑
i |Hi|

.

For special functions f, we can establish that domination is sufficient for (4.7). A

continuous function f : (0,∞) → R is called operator monotone on (0,∞) if, for any

bounded self-adjoint operators A,B with spectrum in (0,∞) and A � B, we have f(A) �
f(B). For example, Löwner [9] proved that the logarithm is an operator monotone function

on (0,∞) (see also Chapter V of Bhatia [4]).

Proposition 4.3. If f is any operator monotone increasing function on (0,∞) and G domin-

ates H , then

Tr f(ΔG + t) � Tr f(ΔH + t) (4.8)

and

det(ΔG + tI)1/|G| � det(ΔH + tI)1/|H | (4.9)

for t > 0.

Proof. Fix t > 0 and define g(s) := f(s + t). Consider a copy K of H in G and some

vertex x ∈ V (K). We have ΔG � ΔK ⊕ 0. Therefore g(ΔG) � g(ΔK ⊕ 0) = g(ΔK ) ⊕ g(0)I .

Comparing the (x, x)-entries, we obtain g(ΔG)(x, x) � g(ΔK )(x, x).

The definition of G � H is that there is a certain coupling of copies of (H,Y ) and

(G,X) with Y mapping to X; for each such copy (K,X), apply the preceding inequality

and take expectation. This gives (4.8).

Taking f = log yields (4.9).
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5. Fractional tiling and independent sets

There are some easy results that follow from Shearer’s inequality [5], which states the

following.

Theorem 5.1. Given discrete random variables X1, . . . , Xk and S ⊆ [1, k], write XS for the

random variable (Xi)i∈S . Let S be a collection of subsets of [1, k] such that each integer in

[1, k] appears in exactly r of the sets in S . Then

rH(X1, . . . , Xk) �
∑
S∈S

H(XS ).

Here,

H(X) := −
∑
x

Pr[X = x] log Pr[X = x]

denotes the entropy of a discrete random variable X.

A set of vertices in a graph is independent if no pair in the set is adjacent. A

homomorphism from G to H is a map from V (G) to V (H) that sends adjacent vertices

to adjacent vertices. If w : V (H) → (0,∞) is a weight function, then the weight of a map

φ : V (G) → V (H) is
∏

x∈V (G) w(φ(x)). The total weight of a set of such maps is just the

sum of the weights of the individual maps.

Proposition 5.2. Let f(G) denote one of the following:

• the number of independent sets in G,

• the number of proper colourings of G with a fixed number of colours,

• the total weight of the homomorphisms of G to a fixed graph F with arbitrary positive

weights on the vertices of F .

If H fractionally tiles G, then

f(G)1/|G| � f(H)1/|H |. (5.1)

Proof. For each of the things we count, the restriction of one of them in G to a copy

of H is also one of them for H . Thus, (5.1) is immediate from Shearer’s inequality: For

example, if S is a random uniform independent set in G, then its entropy H(S) equals

log f(G). Let Zx := 1{x∈S}. Let Hj (j ∈ J) be the copies of H that fractionally tile G. Each

vertex of G belongs to exactly |J| · |H |/|G| of these copies of H . Since the restriction of S

to V (H) is an independent set in H , we have

log f(G) = H((Zx)x∈V (G))

� |G|
|J| · |H |

∑
j

H((Zx)x∈V (Hj ))

� |G|
|J| · |H |

∑
j

log f(Hj) =
|G|
|H | log f(H)

by Shearer’s inequality.

https://doi.org/10.1017/S096354831700013X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831700013X


694 R. Lyons

For weighted homomorphisms, standard techniques apply: it suffices to prove it for

rational weights or, by homogeneity, for integral weights. Then we blow up each vertex

of F a certain number of times to get an equivalent inequality for an unweighted graph,

F ′, which follows as above. (Here, F ′ has vertex set {(x, i) : x ∈ V (F), 1 � i � w(x)} and

an edge from (x, i) to (y, j) whenever (x, y) ∈ E(F).)

A similar inequality holds for fractional tilings by varied graphs, rather than by a fixed

graph. That is, if G is fractionally tiled by H1, . . . , Hk , meaning that each Hi is a subgraph

of G and each vertex of G belongs to the same number of Hi, then

f(G)1/|G| �
( k∏

j=1

f(Hj)

)1/
∑ k

j=1 |Hj |
.

Of course, similar inequalities hold for hypergraphs.

We do not know when (5.1) holds under the weaker assumption that G dominates H .

It does not hold when f counts independent sets, as the example of G being a star and

H being an edge shows. For proper colourings, however, it is easy to check that this

inequality does hold when H is an edge.

The following is proved similarly to Proposition 5.2, but with basic random variables

representing edges rather than vertices. In this proposition, we say that H fractionally

edge-tiles G if there is a set of copies of H in G such that each edge of G belongs to the

same number of copies of H in the set.

Proposition 5.3. Let f(G) denote one of the following:

• the number of acyclic orientations of G (an evaluation of the Tutte polynomial, TG(2, 0)),

• the number of forests in G (an evaluation of the Tutte polynomial, TG(2, 1)),

• the number of matchings in G.

If H fractionally edge-tiles G, then

f(G)1/|E(G)| � f(H)1/|E(H)|. (5.2)

We do not know when the inequality opposite to (5.1) holds under the weaker

assumption that G dominates H for the functions f of Proposition 5.3. It does not

hold when f counts matchings, as is shown by the example of G being a star and H being

an edge. It might be the case that for any x, y � 1, we have TG(x, y)1/|G| � TH (x, y)1/|H |

when G dominates H , or even that all the coefficients of TG(x + 1, y + 1)|H | − TH (x +

1, y + 1)|G| are non-negative. Random testing of pairs G � H supports the possibility

that all coefficients are non-negative in this difference. Of course, such an

inequality would imply (1.1). When H is a tree, it is easy to prove this

inequality.

We close with a few questions involving fractional tiling.

Let f(G) be the number of matchings of G. Is

f(G)1/|G| � f(H)1/|H | (5.3)
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when H fractionally tiles G? After discussions with Ádám Timár, he proved that this

holds when H is an edge. To see this, consider a maximal matching, M, of G. Let

W := V (G) \ V (M). By definition, W is an independent set. In a fractional tiling of G

by H , let K be the list of all the copies of H that use a vertex of W . This may include

repetitions. The fact that H fractionally tiles G combined with Hall’s Marriage Theorem

allows us to conclude that there is a matching M ′ that contains W with M ′ using only

edges from K , such that each edge in M ′ intersects W . Now M ∪ M ′ is a subgraph of G

that satisfies the inequality, as can be seen by considering the connected components of

M ∪ M ′. That is,

f(G)1/|G| � f(M ∪ M ′)1/|G| � 21/2 = f(H)1/|H |.

More generally, call a set of subgraphs of G a packing if the subgraphs are disjoint.

Let f(G) be the number of packings of G by copies of a fixed graph K (so when K is

an edge, this is the number of matchings). Does (5.3) hold when H fractionally tiles G?

What about the particular case K = H?

Acknowledgements

I am grateful to Oded Schramm for discussions at the start of this project and to

Prasad Tetali for conversations about Section 5. I thank Jeff Kahn and Ádám Timár for
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