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Abstract

In this paper we first use the distribution of the number of records to demonstrate that
the right tail probabilities of counts of rare events are generally better approximated by
the right tail probabilities of a Poisson distribution than those of the normal distribution.
We then show that the moderate deviations in Poisson approximation generally require
an adjustment and, with suitable adjustment, we establish better error estimates of the
moderate deviations in Poisson approximation than those in [18]. Our estimates contain
no unspecified constants and are easy to apply. We illustrate the use of the theorems via
six applications: Poisson-binomial distribution, the matching problem, the occupancy
problem, the birthday problem, random graphs, and 2-runs. The paper complements the
works [16], [8], and [18].
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1. Introduction

An exemplary moderate deviation theorem is as follows (see [29, page 228]). Let Xi, 1 ≤
i ≤ n, be independent and identically distributed (i.i.d.) random variables with E(X1) = 0 and
var(X1) = 1. If, for some t0 > 0,

Eet0|X1| ≤ c0 < ∞, (1.1)

then there exist positive constants c1 and c2 depending on c0 and t0 such that

P(n−1/2 ∑n
i=1 Xi ≥ z)

1 − �(z)
= 1 + O(1)

1 + z3

√
n

, 0 ≤ z ≤ c1n1/6, (1.2)

where �(z) is the distribution function of the standard normal, |O(1)| ≤ c2. However, since
the pioneering work [15], it has been shown [9] that, for the counts of rare events, Poisson
distribution provides a better approximation. For example, the distribution of the number of
records [23, 30] in Example 1.1 below can be better approximated by the Poisson distribution
having the same mean than by a normal distribution [22]. Moreover, a suitable refinement of
the Poisson distribution can further improve the performance of the approximation [10, 11].

The right tail probabilities of counts of rare events are often needed in statistical inference,
but these probabilities are so small that the error estimates in approximations of distributions
of the counts are usually of no use because the bounds are often larger than the probabilities
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FIGURE 1: Pn(λn).

of interest. Hence it is of practical interest to consider their approximations via moderate devi-
ations in Poisson approximation in a similar fashion to (1.2). However, there is not much
progress in the general framework except the special cases in [16], [8], [18], [34], and [13].
This is partly due to the fact that the tail behaviour of a Poisson distribution is significantly
different from that of a normal distribution, and this fact was observed by Gnedenko [25] in
the context of extreme value theory. In particular, Gnedenko [25] concluded that the Poisson
distribution does not belong to any domain of attraction, while the normal distribution belongs
to the domain of attraction of the Gumbel distribution.

Example 1.1. We use the distribution of the number of records to explain the difference of
moderate deviations between Poisson and normal approximations. More precisely, let {ηi : 1 ≤
i ≤ n} be i.i.d. random variables with a continuous cumulative distribution function. As the
value of η1 is always a record, for 2 ≤ i ≤ n, we say ηi is a record if ηi > max1≤j≤i−1 ηj. We
define the indicator random variable

Ii := 1
[
ηi > max

1≤j≤i−1
ηj

]
,

that is, Ii = 1 if a new record occurs at time i and Ii = 0 otherwise. Our interest is in the distri-
bution of Sn :=∑n

i=2 Ii, denoted by L (Sn). Dwass [23] and Rényi [30] stated that EIi = 1/i,
{Ii : 2 ≤ i ≤ n} are independent, so

λn :=ESn =
n∑

i=2

1

i
, σ 2

n := var(Sn) =
n∑

i=2

1

i

(
1 − 1

i

)
.

We use Pn(λ) to stand for the Poisson distribution with mean λ, Pn(λ)(A) := P(Y ∈ A) for Y ∼
Pn(λ), and N(μ, σ 2) to stand for the normal distribution with mean μ and variance σ 2.

Let vn := λn + x · σn, and we consider approximations of P(Sn ≥ vn) by moderate devia-
tions based on Pn(λn) [8, 18] and Nn ∼ N(λn, σ 2

n ). For x = 3, Figures 1, 2, and 4, respectively,
are the plots of the ratios P(Sn ≥ vn)/Pn(λn)([vn, ∞)), P(Sn ≥ vn)/P(Nn ≥ vn), and P(Sn ≥
vn)/Pn(σ 2

n )([vn, ∞)) for the range of n ∈ [3, 105]. As observed in [11], Poisson and nor-
mal approximations to L (Sn), respectively, are of order O(( ln n)−1) and O(( ln n)−1/2), and
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FIGURE 2. N(λn, σ 2
n ) without correction.
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FIGURE 3. N(λn, σ 2
n ) with correction.

hence the numerical studies confirm that approximation by the Poisson distribution is bet-
ter than that by the normal distribution. In fact, it appears that the speed of convergence of
P(Sn ≥ vn)/P(Nn ≥ vn) to 1 as n → ∞ is too slow to be of practical use. In the context of nor-
mal approximation to the distribution of integer-valued random variables, a common practice
is to introduce a 0.5 correction, giving the ratios P(Sn ≥ vn)/P(Nn ≥ 
vn� − 0.5), where 
x� is
the smallest integer that is not less than x. Figure 3 is the plot of the ratios and we can see that
the ratios are still far away from the limit of 1. Finally, the difference between Figure 1 and
Figure 4 shows that a minor change of the mean of the approximating Poisson can change the
quality of moderate deviation approximation significantly, further highlighting the difficulty of
obtaining sharp bounds in theoretical studies in the area.

Example 1.1 shows that the distribution of the counts of rare events often has a heavier
right tail than that of the corresponding normal distribution; approximations by the moderate
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FIGURE 4. Pn(σ 2
n ).

deviations in the normal distribution are generally inferior to those by the moderate devia-
tions in the Poisson distribution. Example 1.2 says that the parameter of the approximating
Poisson distribution suggested in [16], [8], and [18] is not optimal, and some adjustment can
significantly improve the quality of approximations by the moderate deviations in the Poisson
distribution.

Example 1.2. With 0 < p < 1, let Wn ∼ Bi(n, p), Yn ∼ Pn(np), and Z ∼ N(0, 1). Then, for a
fixed x > 0,

lim
n→∞

P(Wn ≥ np + x
√

np(1 − p))

P(Yn ≥ np + x
√

np(1 − p))
= P(Z ≥ x)

P(Z ≥ x
√

1 − p)
,

which systematically deviates from 1 as x moves away from 0. The systematic bias can be
removed by introducing an adjustment into the approximate models: for a fixed x > 0,

lim
n→∞

P(Wn ≥ np + x
√

np(1 − p))

P(Yn ≥ np + x
√

np)
=1

or equivalently, with Yn
′ ∼ Pn(np(1 − p)),

lim
n→∞

P(Wn ≥ np + x
√

np(1 − p))

P(Y ′
n ≥ np(1 − p) + x

√
np(1 − p))

=1.

Example 1.2 suggests that it is more suitable to approximate the right tail probabilities
by looking at the number of standard variations away from the mean, which is essentially
the original idea of the translated (shifted) Poisson approximation [7, 31, 32]. In this paper
we show that it is indeed better to approximate the right tail probabilities via the moderate
deviations in the translated Poisson distribution.

Our approach does not rely on the boundedness of the Radon–Nikodým derivative as in [16]
and [8] or the tacit assumption of well-behaved tail probabilities as in [18]; see Remark 2.3 for
more details. For the case of Poisson-binomial, we show in Proposition 3.2 that our approach
works for the case when the maximum of the success probabilities of the Bernoulli random
variables is not small, such as the distribution of the number of records.
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The paper is organised as follows. In Section 2 we state the main results in the context of
local dependence, size-biased distribution, and discrete zero-biased distribution. In Section 3
we illustrate the accuracy of our bounds with six examples. The proofs of the main results are
postponed to Section 4, where we also establish Stein’s factors for Poisson moderate deviations
in Lemma 4.1.

2. The main results

In this section we state three theorems on moderate deviations in Poisson approximation:
the first is under a local dependent structure, the second is with respect to the size-biased
distribution, and the last is in terms of the discrete zero-biased distribution.

We first consider a class of non-negative integer-valued random variables {Xi : i ∈ I}
satisfying the local dependent structure (LD2) in [17] (see also [2] for its origin). For ease
of reading, we quote the definition of (LD2) below.

(LD2) For each i ∈ I, there exists an Ai ⊂ Bi ⊂ I such that Xi is independent of {Xj : j ∈ Ac
i }

and {Xi : i ∈ Ai} is independent of {Xj : j ∈ Bc
i }.

We set

W =
∑
i∈I

Xi, Zi =
∑
j∈Ai

Xj, Z′
i =

∑
j∈Bi

Xj, Wi = W − Zi, W ′
i = W − Z′

i .

We write
μi =E(Xi), μ =E(W), σ 2 = Var(W).

As suggested in Example 1.2, we consider Y ∼ Pn(λ) approximation to W − a with |λ − σ 2|
being not too large and a = μ − λ being an integer, so that k in P(W − a ≥ k) and P(Y ≥ k) is
in terms of the number of standard deviations of W. In principle, the constant a is chosen to
minimise the error of approximation. However, our theory is formulated in such a flexible way
that other choices of λ and a are also acceptable. The three most useful choices of a are a = 0,
a = �μ − σ 2�, and a = 
μ − σ 2�, where �·� stands for the largest integer in ( − ∞, ·].
Theorem 2.1. With the set-up in the preceding paragraph, assume that {Xi : i ∈ I} satisfies
(LD2) and, for each i, there exists a σ -algebra Fi such that {Xj : j ∈ Bi} is Fi-measurable.
Define

θi := ess sup max
j

P(W = j |Fi),

where ess sup V is the essential supremum of the random variable V. Then, for integer a < μ,
λ = μ − a, and positive integer k > λ, we have∣∣∣∣P(W − a ≥ k)

P(Y ≥ k)
− 1

∣∣∣∣≤ C2(λ, k)
∑
i∈I

θi{|E(Xi − μi)Zi|E(Z′
i)

+E[|Xi − μi|Zi(Z
′
i − Zi/2 − 1/2)]}

+ C1(λ, k)|λ − σ 2| + P(W − a < −1), (2.1)

where, with F( j) = P(Y ≤ j), F( j) = P(Y ≥ j),

C1(λ, k) := F(k − 1)

kP(Y = k)

{
1 − min

(
F(k − 2)

F(k − 1)
· λ

k − 1
,

F(k + 1)

F(k)
· k

λ

)}
, (2.2)

C2(λ, k) := F(k − 1)

kP(Y = k)

(
2 − F(k − 2)

F(k − 1)
· λ

k − 1
− F(k + 1)

F(k)
· k

λ

)
. (2.3)
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FIGURE 5. Performance of the bound.

Remark 2.1. Both C1 and C2 can be numerically computed in applications and they cannot
generally be improved (see the proofs below). They are better than the ‘naive’ counterparts (1 −
e−λ)/(λP(Y ≥ k)) derived through the total variation bounds in [6] and [9]. Figure 5 provides
details of

ratio i := Ci(λ, k)/[(1 − e−λ)/(λP(Y ≥ k))], i = 1, 2,

for λ = 10, k from 10 to 43. We would like to mention that for large k and/or large λ, the tail
probabilities are so small that the calculation using MATLAB produces unstable results since
accumulated computation errors often exceed the tail probabilities, and hence more powerful
computational tools are needed to achieve the required accuracy or one has to resort to known
approximations to the Poisson right tails and point probabilities.

Remark 2.2. Due to the discrete nature of Poisson distribution, it seems impossible to
analytically simplify C1 and C2 at negligible costs for the diverse range of k > λ.

Remark 2.3. If λ is chosen reasonably close to σ 2 so that λ − σ 2 is bounded, then θi in the
bound (2.1) converges to 0 when σ 2 converges to ∞. Our bound does not rely on the Radon–
Nikodým derivative of L (W) with respect to Pn(λ), which is the crucial ingredient in [16] and
[8]. On the other hand, the tacit assumption of [18] is that

sup
λ≤r≤k

P(W ≥ r)

P(Y ≥ r)
for W and Y

in Theorem 2.1 is well-behaved and this assumption is hard to verify. The bound (2.1), although
relatively crude, does not rely on this assumption and covers more general cases.
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Corollary 2.1. For the sum of independent non-negative integer-valued random variables
W =∑

i∈I Xi, let θi = maxj P(W − Xi = j), μi =EXi, μ =∑
i∈I μi, σ 2 = Var(W). For any

integer a < μ, let λ = μ − a, Y ∼ Pn(λ). Then, for k > λ,∣∣∣∣P(W − a ≥ k)

P(Y ≥ k)
− 1

∣∣∣∣≤ C2(λ, k)
∑
i∈I

θi

{
μi|E[Xi(Xi − μi)]| + 1

2
E[|Xi − μi|Xi(Xi − 1)]

}

+ C1(λ, k)|λ − σ 2| + P(W − a < −1).

Remark 2.4. We leave P(W − a < −1) in the upper bound (2.1) because the current approach
cannot remove it from the bound. Nevertheless, it is no more than 1 and converges to zero
exponentially fast with suitable choice of a. For the sum of independent non-negative integer-
valued random variables in Corollary 2.1, if a is at least less than μ by a few σ s, we can use
[20, Theorem 2.7] to obtain

P(W − a < −1) ≤ exp

(
− (μ − a + 2)2

2
∑

i∈I E(X2
i )

)
. (2.4)

For any non-negative random variable W with mean μ ∈ (0, ∞) and distribution dF(w), the
W-size-biased distribution [1, 21] is given by

dFs(w) = wdF(w)

μ
, w ≥ 0,

or equivalently by the characterising equation

E[Wg(W)] = μEg(Ws) for all g with E|Wg(W)| < ∞.

Theorem 2.2. Let W be a non-negative integer-valued random variable with mean μ and
variance σ 2, and let a < μ be an integer, λ = μ − a. Then, for integer k > λ, we have∣∣∣∣P(W − a ≥ k)

P(Y ≥ k)
− 1

∣∣∣∣≤ C1(λ, k){μE|W + 1 − Ws| + |μ − λ|} + P(W − a < −1), (2.5)

where Y ∼ Pn(λ).

Remark 2.5. Theorem 2.2 improves [18, Theorem 3] in a number of ways, with less restrictive
conditions and no unspecified constants.

The next theorem is based on the discrete zero-biased distribution defined in [26] and the
approach is very similar to that in [19]. For an integer-valued random variable V with mean μ

and finite variance σ 2, we say that V� has the discrete V-zero-biased distribution [26, Definition
2.1] if, for all bounded functions g : Z := {0, ±1, ±2, . . . } →R with E|Vg(V)| < ∞,

E[(V − μ)g(V)] = σ 2
E�g(V�),

where �f (i) := f (i + 1) − f (i).

Theorem 2.3. Let W be a non-negative integer-valued random variable with mean μ, variance
σ 2, let a < μ be an integer, and let W� have the discrete W-zero-biased distribution and be
defined on the same probability space as W. Set R = W� − W and define

θR = max
j

P(W = j | R).
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Then, for integer k > λ, with λ = μ − a > 0, we have∣∣∣∣P(W − a ≥ k)

P(Y ≥ k)
− 1

∣∣∣∣≤ C2(λ, k)σ 2
E[|R|θR] + C1(λ, k)|λ − σ 2|λ−1 + P(W − a < −1), (2.6)

where Y ∼ Pn(λ).

3. Examples

As many applications of Poisson approximation rely on size-biased distributions, we begin
with a review of some facts about size biasing.

Size biasing has been of considerable interest for many decades (see [9], [33], [3], and
references therein). In the context of the sum of Bernoulli random variables, its size biasing
is particularly simple. More precisely, if {Xi : i ∈ I} is a family of Bernoulli random variables
with P(Xi = 1) = pi, then the size-biased distribution of W =∑

i∈I Xi is

Ws =
∑
j �=I

X(I)
j + 1, (3.1)

where
L ({X(i)

j : j ∈ I}) = L ({Xj : j ∈ I} | Xi = 1),

and I is a random element independent of {{X(i)
j : j ∈ I} : i ∈ I} having distribution P(I = i) =

pi/(EW), i ∈ I. Moreover, {Xi : i ∈ I} are said to be negatively related (resp. positively related)
[9, page 24] if one can construct {{X(i)

j : j ∈ I} : i ∈ I} such that X(i)
j ≤ (resp. ≥) Xj for all j �= i.

When {Xi : i ∈ I} are negatively related, we have

E|W + 1 − Ws| =E(W + 1 − Ws) = μ−1(μ − σ 2), (3.2)

where μ =EW and σ 2 = var(W). On the other hand, if {Xi : i ∈ I} are positively related, then

E|W + 1 − Ws| =E

∣∣∣∣∣
∑
j �=I

(
X(I)

j − Xj
)− XI

∣∣∣∣∣
≤E

{∑
j �=I

(
X(I)

j − Xj
)+ XI

}

=E(Ws − W − 1) + 2μ−1
∑
i∈I

p2
i

= μ−1(σ 2 − μ) + 2μ−1
∑
i∈I

p2
i . (3.3)

3.1. Poisson-binomial trials

Let {Xi, 1 ≤ i ≤ n} be independent Bernoulli random variables with P(Xi = 1) = pi ∈ (0, 1),
W =∑n

i=1 Xi, μ =EW, and μ2 =∑n
i=1 p2

i . When p̃ := max1≤i≤n pi → 0, the large deviation
of W is investigated in [16] and [8] with precise asymptotic order. We give two results for this
particular case without the assumption p̃ being small: the first is a direct consequence of the
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general results in Section 2 and the second is based on our approach using a more fine-tuned
analysis and well-studied properties of the tail behaviour of W.

Proposition 3.1. Recalling C1 and C2 in (2.2) and (2.3), for any integer k > μ we have∣∣∣∣ P(W ≥ k)

Pn(μ)([k, ∞))
− 1

∣∣∣∣≤ C1(μ, k)μ2 (3.4)

and, with a = �μ2� and λ := μ − a,∣∣∣∣ P(W − a ≥ k)

Pn(λ)([k, ∞))
− 1

∣∣∣∣
≤ C2(λ, k)

∑n
i=1 p2

i (1 − pi)

1 ∨√(
∑n

i=1 pi ∧ (1 − pi) − 1/4)π/2
+ C1(λ, k)|λ − σ 2| + e−(λ+2)2/(2μ). (3.5)

Proof. The claim (3.4) is a consequence of Theorem 2.2 with a = 0 and μE|W + 1 − Ws| =∑n
i=1 p2

i , as shown in (3.2).
The bound (3.5) is a special case of Corollary 2.1. Since L (Wi) is unimodal, Corollary 1.6

of [28] says that

θi = dTV(Wi, Wi + 1)

≤ 1 ∧
{√

2

π

(
1

4
+
∑
j �=i

pj ∧ (1 − pi)

)−1/2}

≤ 1 ∧
{√

2

π

(
n∑

i=1

pi ∧ (1 − pi) − 1/4

)−1/2}
. (3.6)

On the other hand E(X2
i ) = pi, and hence the upper bound (3.5) is an immediate consequence

of Corollary 2.1 and (2.4).
One can also use Theorem 2.3 to obtain the same bound. More precisely, according to

the construction of the discrete zero-biased distribution suggested in [26], let I be a random
variable independent of {Xi, 1 ≤ i ≤ n} with distribution P(I = i) = pi(1 − pi)/σ 2 for 1 ≤ i ≤ n.
Then we can write W� = W − XI , giving R = −XI . We then apply (3.6) to bound θR as

θR = max
j

P(W = j | R) ≤
√

2

π

(
n∑

i=1

pi ∧ (1 − pi) − 1/4

)−1/2

,

and a routine calculation gives

E|R| =
n∑

i=1

p2
i (1 − pi)/σ

2.

Hence (3.5) follows from (2.6) and (2.4). �
Proposition 3.2. Define

M := M( p1, . . . , pn) =
{

eμ if 0 < μ < 1,

e13/12
√

2π (1 − μ2/μ)−1/2 if μ ≥ 1.
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Then, for any integer k with x := (k − μ)/
√

μ ≥ 1, we have

0 >
P(W ≥ k)

Pn(μ)([k, ∞))
− 1 > −2M(μ2/μ)

(
x2 + 1 + 4x

√
1 − e−μ

μ

)
. (3.7)

The proof relies on more information on the solutions of Stein’s equation and it is postponed
to the end of Section 4. The bound (3.7) improves [18, (3.1)] in two respects: it contains no
unspecified constants and it does not require p̃ to be small. For the distribution of the number
Sn of records, the large deviation results in [8] do not apply. However, recalling that λn =∑n

i=2 (1/i), we apply Proposition 3.2 with the harmonic series λn =∑n
i=2 (1/i) ≥ ln n + γ − 1

and the Riemann zeta function

n∑
i=2

1

i2
≤

∞∑
i=2

1

i2
= π2

6
− 1

to get the following estimate.

Corollary 3.1. For any integer k with x := (k − λn)/
√

λn ≥ 1, we have

0 >
P(Sn ≥ k)

Pn(λn)([k, ∞))
− 1 > − 2e13/12

√
2π (π2/6 − 1)√

( ln n + γ − 1)( ln n + γ − π2/6)

(
x2 + 1 + 4x√

ln n + γ − 1

)
,

where γ is Euler’s constant.

Remark 3.1. We conjecture that, with a = �μ2� and λ := μ − a, the bound in (3.5) can be
significantly improved and the better estimate is likely dependent on the Radon–Nikodým
derivative bound

sup
r≥0

P(W − a = r)

Pn(λ)({r}) .

3.2. Matching problem

For a fixed n, let π be a uniform random permutation of {1, . . . , n}, and let

W =
n∑

j=1

1{j=π ( j)}

be the number of fixed points in the permutation.

Proposition 3.3. For the random variable W defined above and any integer k ≥ 2, we have∣∣∣∣ P(W ≥ k)

Pn(1)([k, ∞))
− 1

∣∣∣∣≤ 2

n
C1(1, k). (3.8)

Proof. In this case, the size-biased distribution L (Ws) can be coupled with W as follows
[14]. Let I be uniformly distributed on {1, 2, . . . , n}, independent of π , and define

π s( j) =

⎧⎪⎪⎨
⎪⎪⎩

I if j = I,

π (I) if j = π−1(I),

π ( j) otherwise.
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Set Ws =∑n
j=1 1{j=π s( j)}. One can easily verify that Ws has the size-biased distribution of W.

Also, we can check that EW = Var(W) = 1, giving EWs = 2. Let � = W + 1 − Ws. Using the
above construction of Ws, we can conclude that � takes values in {−1, 0, 1} and P(� = 1 |
W) = W/n. Since E� = 0, we have P(� = 1) = P(� = −1), and E|�| = 2/n. On the other
hand, λ = μ allows us to get rid of the second term in (2.5). By Theorem 2.2 with a = 0,
λ = μ = 1, the claim follows. �
Remark 3.2. The bound (3.8) contains no unknown constants and improves the bound of [18,
Section 3.3].

3.3. Occupancy problem

The occupancy problem has a long history dating back to the early development of proba-
bility theory. General references on this subject can be found in classical treatments, e.g. [24,
Vol. 1, Chapter 2] and [9, Chapter 6].

The occupancy problem can be formulated as follows. Let l balls be thrown independently
of each other into n boxes uniformly. Let Xi be the indicator variable of the event that the
ith box is empty, so the number of empty boxes can be written as W =∑n

i=1 Xi. Noting that
p :=EXi = (1 − 1/n)l, direct computation gives

μ :=EW = np,

σ 2 := Var(W) = μ − μ2 + μ(n − 1)

(
1 − 1

n − 1

)l

.

Proposition 3.4. For the random variable W defined above and any integer k > μ, we have∣∣∣∣P(W ≥ k)

P(Y ≥ k)
− 1

∣∣∣∣≤ C1(μ, k)μ

[
μ − (n − 1)

(
1 − 1

n − 1

)l]
, (3.9)

where Y ∼ Pn(μ).

Proof. For the sake of completeness, we provide the following proof, which is essentially
a repeat of [9, page 23]. From the construction of W-size-biased distribution in (3.1), we can
construct a coupling as follows. Let I be uniform on {1, . . . , n}, that is, we randomly pick
one box with equal probability. If the selected box is not empty, we redistribute all balls in
the box randomly into the other n − 1 boxes with equal probability 1/(n − 1). Define X(i)

j as
the indicator of the event that the box being selected is i, and after the redistribution, box j is
empty. With this coupling in mind, one can verify that {Xi} is negatively related, so it follows
from (3.2) that

E|W + 1 − Ws| = μ − (n − 1)

(
1 − 1

n − 1

)l

.

Now, applying Theorem 2.2 with a = 0 yields (3.9). �

3.4. Birthday problem

The classical birthday problem is essentially a variant of the occupancy problem. For this
reason, we throw l balls independently and equally likely into n boxes and let Xij be the indi-
cator random variable of the event that ball i and ball j fall into the same box. The number
of pairs of balls going into the same boxes (i.e. the number of pairs of people having the
same birthdays) can be written as W =∑

i<j Xij. Define p =EXij = 1/n, so μ =EW = ( l
2

)
p.
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Chatterjee, Diaconis, and Meckes [14] gave the following construction of Ws: label the balls
from 1 to l, randomly choose two balls J1 and J2, and move ball J1 into the box that J2 is in.
Then W is the number of pairs of balls before the move while Ws is the number of pairs of
balls after the move. Let E be the event that J1 and J2 are from the same box. When E occurs,
Ws = W, so |W + 1 − Ws| = 1; otherwise J1 and J2 are from different boxes with B1 and B2
balls respectively, giving

W + 1 − Ws = B1 − B2.

Hence

E|W + 1 − Ws| = P(E) +E[|W + 1 − Ws| | Ec]P(Ec)

≤ 1

n
+E|B1 − B2|

≤ 1

n
+E(B1 + B2)

= 1 + 2l

n
.

This, together with Theorem 2.2 and a = 0, gives the following proposition.

Proposition 3.5. For the random variable W defined above and any integer k > μ, we have∣∣∣∣P(W ≥ k)

P(Y ≥ k)
− 1

∣∣∣∣≤ C1(μ, k)μ
1 + 2l

n
,

where Y ∼ Pn(μ).

3.5. Triangles in the Erdős–Rényi random graph

Let G = G(n, p) be an Erdős–Rényi random graph on n vertices with edge probability p. Let
Kn be the complete graph on n vertices, and let � be the set of all triangles in Kn. For α ∈ �,
let Xα be the indicator that there is a triangle in G at α, that is,

Xα = 1{α⊂G}.

Therefore the number of triangles in G can be represented as W =∑
α∈� Xα . Clearly, Xα is

independent of Xβ if α and β do not share a common edge. By analysing the numbers of
shared edges, we obtain (see [33, page 255])

μ =EW =
(

n

3

)
p3,

σ 2 = Var(W) =
(

n

3

)
p3[1 − p3 + 3(n − 3)( p2 − p3)].

Proposition 3.6. For the random variable W defined above and any integer k > μ, we have∣∣∣∣P(W ≥ k)

P(Y ≥ k)
− 1

∣∣∣∣≤ C1(μ, k)μ(3(n − 3)p2(1 − p) + p3), (3.10)

where Y ∼ Pn(μ).
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Proof. The following proof is a special version of the general argument in [9, page 89].
Since Xα and Xβ are independent if α and β have no common edges, a size-biased distribution
of W can be constructed as follows. Let

X(α)
β

:= 1{β⊂G∪α}, β ∈ �.

Then
L ({X(α)

β , β �= α}) = L ({Xβ, β �= α} | Xα = 1).

Here the union of graphs is in the sense of set operations on their vertices and edges. Let I be a
random element taking values in � with equal probability and independent of L ({X(α)

β , α, β}).
Then we can write

Ws =
∑
β �=I

X(I)
β + 1.

Because X(α)
β ≥ Xβ for all β ∈ �, (3.3) implies

E|W + 1 − Ws| ≤ μ−1(σ 2 − μ + 2μp3) = 3(n − 3)p2(1 − p) + p3.

The claim follows from Theorem 2.2 with a = 0. �
Remark 3.3. Since μ = (n

3

)
p3, if p = O(1/n), then the error bound (3.10) is of the same order

O(1/n).

3.6. 2-runs

Let {ξi, . . . , ξn} be i.i.d. Bernoulli(p) random variables with n ≥ 9, p < 2/3. For each 1 ≤
i ≤ n, define Xi = ξiξi+1 and, to avoid edge effects, we define ξj+n = ξj for −3 ≤ j ≤ n. The
number of 2-runs in the Bernoulli sequence is defined as W =∑n

i=1 Xi. Then μ = np2 and
variance σ 2 = np2(1 − p)(3p + 1).

Proposition 3.7. For any integer k > μ,∣∣∣∣ P(Wn ≥ k)

Pn(μ)([k, ∞))
− 1

∣∣∣∣≤ C1(μ, k)np3(2 − p). (3.11)

If a := �np3(3p − 2)�, λ = μ − a, then for any integer k > λ,∣∣∣∣P(Wn − a ≥ k)

Pn(λ)([k, ∞))
− 1

∣∣∣∣≤ C2(λ, k)
9.2np2(1 + 5p)√
(n − 8)(1 − p)3

+ C1(λ, k)(1 ∧ λ). (3.12)

Proof. For (3.11), we apply Theorem 2.2 with a = 0,

X(i)
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xj if |j − i| ≥ 2,

ξj if j = i − 1,

ξj+1 if j = i + 1,

1 if j = i,

I a uniform random variable on {1, . . . , n} independent of {X(i)
j }, and

Ws =
∑
j �=I

X(I)
j + 1,
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giving

E|W + 1 − Ws| =E|XI−1 + XI + XI+1 − ξI−1 − ξI+2|
=E|ξi−1ξi + ξiξi+1 + ξi+1ξi+2 − ξi−1 − ξi+2|
= p(2 − p).

à propos of (3.12), we make use of Theorem 2.1. To this end, let Ai = {i − 1, i, i + 1}, Bi =
{i − 2, i − 1, i, i + 1, i + 2}, and Fi = σ {ξj : i − 2 ≤ j ≤ i + 3}. Then Lemma 5.1 of [7] with
αj = 0 or 1 for j = i − 2, . . . , i + 5 gives

θi ≤ dTV(W, W + 1 |Fi) ≤ 2.3√
(n − 8)p2(1 − p)3

.

On the other hand, E(Z′
i) = 5p2, |E((Xi − μi)Zi)| ≤E(Zi) = 3p2,

E[|Xi − μi|Zi(Z
′
i − Zi/2 − 1/2)] ≤E[Zi(Z

′
i − Zi/2 − 1/2)] = 4p3 + 5p4,

and |λ − σ 2|λ−1 ≤ 1 ∧ (λ−1), a = �np3(3p − 2) ≤ 0�, λ ≥ σ 2, and hence P(W − a < −1) = 0
and (3.12) follows from Theorem 2.1 by collecting these terms.

4. The proofs of the main results

The celebrated Stein–Chen method [15] is based on the observation that a non-negative
random variable Y ∼ Pn(λ) if and only if E[λf (Y + 1) − Yf (Y)] = 0 for all bounded functions
f : Z+ := {0, 1, 2, . . . } →R, leading to a Stein identity for Poisson approximation as

λf ( j + 1) − jf ( j) = h( j) − Pn(λ){h}, j ≥ 0, (4.1)

where Pn(λ){h} :=Eh(Y). Since f (0) plays no role in Stein’s equation, we set f (0) = f (1) and
f ( j) = 0 for j < 0. The following lemma plays a key role in the proofs of the main results, and
it enables us to circumvent checking the moment condition (1.1), which seems to be inevitable
in the existing procedure for proving moderate deviation theorems.

Lemma 4.1. For fixed k ∈Z+, let h = 1[k,∞). With π· = Pn(λ)({·}), �f (i) = f (i + 1) − f (i), and
�2f = �(�f ), the solution f := fh of the Stein equation (4.1) has the following properties:

(i) ‖ f ‖ := supi∈Z+ | f (i)| = C0(λ, k)Pn(λ){h}, where

C0(λ, k) := F(k − 1)

kπk
,

(ii) �f (i) is negative and decreasing in i ≤ k − 1 and positive and decreasing in i ≥ k,

(iii)
‖�f ‖k− := sup

i≤k−1
|�f (i)| = C1−(λ, k)Pn(λ){h}

and
‖�f ‖k+ := sup

i≥k
|�f (i)| = C1+(λ, k)Pn(λ){h},

where

C1−(λ, k) := F(k − 1)

kπk

(
1 − F(k − 2)

F(k − 1)
· λ

k − 1

)
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and

C1+(λ, k) := F(k − 1)

kπk

(
1 − F(k + 1)

F(k)
· k

λ

)
,

(iv)
‖�f ‖ := sup

i∈Z+
|�f (i)| = C1(λ, k)Pn(λ){h}

and
‖�2f ‖ := sup

i∈Z+
|�2f (i)| = C2(λ, k)Pn(λ){h},

where C1 and C2 are defined in (2.2) and (2.3).

For k > λ, death rates are bigger than the birth rate, so it seems intuitively obvious that τ−
k

is stochastically less than or equal to τ+
k−2 for such k. In view of representation (4.11) and

f (k) < 0 as shown in (4.6), this is equivalent to C1−(λ, k) > C1+(λ, k), leading to the following
conjecture.

Conjecture 4.1. We conjecture that C1−(λ, k) > C1+(λ, k) for all k > λ, and the gap increases
exponentially as a function of k − λ.

Proof of Lemma 4.1. We build our argument on the birth–death process representation of
the solution

f (i) = −
∫ ∞

0
E[h(Zi(t)) − h(Zi−1(t))] dt, for i ≥ 1, (4.2)

where Zn(t) is a birth–death process with birth rate λ, unit per capita death rate, and initial state
Zn(0) = n [4, 5, 12]. For convenience we adopt the notation in [12]: for i, j ∈Z+, define

τij = inf{t : Zi(t) = j}, τ+
j = τj,j+1, τ−

j = τj,j−1,

and
τ+

j =E(τ+
j ), τ−

j =E(τ−
j ), πi = Pn(λ)({i}).

Applying Lemmas 2.1 and 2.2 of [12] with birth rate λ, death rate βi = i, A := [k, ∞), and
π (·) =∑

l∈· πl, we have

f (i) = τ−
i π (A ∩ [0, i − 1]) − τ+

i−1π (A ∩ [i, ∞)), i ≥ 1, (4.3)

and for j ∈Z+,

τ+
j = F( j)

λπj
, τ−

j = F( j)

jπj
, (4.4)

where, as in Theorem 2.1,

F( j) =
j∑

i=0

πi, F( j) =
∞∑
i=j

πi. (4.5)

One can easily simplify (4.3) to get

f (i) =
⎧⎨
⎩

−τ+
i−1π (A) for i ≤ k,

−τ−
i F(k − 1) for i > k,

(4.6)
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which, together with (4.4) and the balance equations

λπi = (i + 1)πi+1 for all i ∈Z+, (4.7)

implies

�f (i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−π (A)

(
F(i)

λπi
− F(i − 1)

λπi−1

)
for i ≤ k − 1,

−(1 − π (A))

(
F(i + 1)

λπi
− F(i)

λπi−1

)
for i ≥ k.

(4.8)

It follows from [12, Lemma 2.4] that for i ≥ 1,

F(i)

F(i − 1)
≥ λ

i
≥ F(i + 1)

F(i)
,

which, together with (4.7), ensures

�f (i) ≤ 0 for i ≤ k − 1, (4.9)

�f (i) ≥ 0 for i ≥ k. (4.10)

Hence f (k) ≤ f (i) ≤ 0, and combining (4.4), (4.5), and (4.6) gives

‖ f ‖ = | f (k)| = F(k − 1)

kπk
π (A),

as claimed in (i).
à propos of (ii), because of (4.9) and (4.10), it remains to show that �f is decreasing in the

two ranges. To this end, we will mainly rely on the properties of the solution (4.2). Let T be an
exponential random variable with mean 1 and independent of birth–death process Zi−1. Then
Zi can be represented as

Zi(t) = Zi−1(t) + 1{T>t},
and hence we obtain from (4.2) and the strong Markov property in the second-to-last equality
that

f (i) = −
∫ ∞

0
E[ 1{Zi−1(t)+ 1{T>t}≥k} − 1{Zi−1(t)≥k}] dt

= −E

∫ ∞

0
e−t 1{Zi−1(t)=k−1} dt

= −E

{∫ ∞

τi−1,k−1

e−t 1{Zi−1(t)=k−1} dt

}

= −E{e−τi−1,k−1}E
∫ ∞

0
e−t 1{Zk−1(t)=k−1} dt

=Ee−τi−1,k−1 f (k).

This enables us to give another representation of (4.8) as

�f (i) = f (k)(Ee−τi,k−1 −Ee−τi−1,k−1 ), (4.11)
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and so
�2f (i) = f (k)(Ee−τi+1,k−1 − 2Ee−τi,k−1 +Ee−τi−1,k−1 ).

For i ≥ k, using the strong Markov property again in the equalities below, we have

E(e−τi+1,k−1 − 2e−τi,k−1 + e−τi−1,k−1 )

=Ee−τi−1,k−1 (Ee−τi+1,i−1 − 2Ee−τi,i−1 + 1)

=Ee−τi−1,k−1 (Ee−τi+1,iEe−τi,i−1 − 2Ee−τi,i−1 + 1)

≥Ee−τi−1,k−1 (Ee−τi,i−1 − 1)2 ≥ 0,

where the inequality follows from

τi,i−1 = inf{t : Zi(t) = i − 1}
= inf{t : Zi(t) + 1{T>t} = i − 1 + 1{T>t}}
≥ inf{t : Zi+1(t) = i} = τi+1,i.

Similarly, for i ≤ k − 2, τi−1,i is stochastically less than or equal to τi,i+1, so

E(e−τi+1,k−1 − 2e−τi,k−1 + e−τi−1,k−1 )

=Ee−τi+1,k−1 (Ee−τi−1,i+1 − 2Ee−τi,i+1 + 1)

≥Ee−τi+1,k−1 (Ee−τi,i+1 − 1)2 ≥ 0.

Hence �2f (i) ≤ 0 for i ≥ k and i ≤ k − 2, which concludes the proof of (ii).
In terms of (iii), we use (ii) to obtain

‖�f ‖k− = |�f (k − 1)|
= f (k − 1) − f (k)

= π (A)
1

λ

(
F(k − 1)

πk−1
− F(k − 2)

πk−2

)

= π (A)
F(k − 1)

kπk

(
1 − F(k − 2)

F(k − 1)
· λ

k − 1

)
.

Likewise,

‖�f ‖k+ = |�f (k)|
= f (k + 1) − f (k)

= F(k − 1)

λπk−1
π (A) − F(k + 1)

λπk
F(k − 1)

= π (A)
F(k − 1)

kπk

(
1 − F(k + 1)

F(k)
· k

λ

)
.

Since (iv) is clearly an immediate consequence of (iii), (2.2), and (2.3), the proof of Lemma
4.1 is complete. �
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Proof of Theorem 2.1. As in the proof of Lemma 4.1, we set A = [k, ∞) and h = 1A. Then

P(W − a ≥ k) − P(Y ≥ k) =Eh(W − a) − Pn(λ){h}.

Define

e1 :=E(h(W − a) − Pn(λ){h}) 1{W−a<0} − λf (0)P(W − a = −1),

e2 :=E(λf (W − a + 1) − (W − a)f (W − a)).

Then it follows from (4.1) that

P(W − a ≥ k) − P(Y ≥ k) = e1 + e2. (4.12)

For the estimate of e1, from f (0) = f (1), we know that λf (0) = −Pn(λ){h}, and thus

e1 = −P(W − a < −1)Pn(λ){h},

which gives

|e1| = π (A)P(W − a < −1). (4.13)

For the estimate of e2, denoting f̃ ( j) := f ( j − a), we have

e2 =E{λ�f̃ (W) − (W − μ)f̃ (W)}. (4.14)

Using Lemma 4.1(ii), we have that �2 f̃ (m) is negative for all m except m = a + k − 1, which
implies

−
∑

m�=k−1

�2f (m) ≤ �2f (k − 1) = ‖�2f ‖

and

E[�2 f̃ (W ′
i + l) |Fi] ≤ �2f (k − 1)P[W ′

i = k − 1 + a − l |Fi] ≤ ‖�2f ‖θi,

E[�2 f̃ (W ′
i + l) |Fi] ≥

∑
m�=k−1

�2f (m)P[W ′
i = m + a − l |Fi] ≥ −θi‖�2f ‖,

and hence

|E[�2 f̃ (W ′
i + l) |Fi]| ≤ ‖�2f ‖θi. (4.15)

By taking

θ := λ − σ 2,
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we have from (4.14) that

e2 = θE�f̃ (W) +E{σ 2�f̃ (W) − (W − μ)f̃ (W)}

= θE�f̃ (W) +E

{
σ 2�f̃ (W) −

∑
i∈I

(Xi − μi)f̃ (W)

}

= θE�f̃ (W) + σ 2
E�f̃ (W) −

∑
i∈I

E{(Xi − μi)(f̃ (W) − f̃ (Wi))}

= θE�f̃ (W) + σ 2
E�f̃ (W) −

∑
i∈I

E

{
(Xi − μi)

( Zi−1∑
j=0

�f̃ (Wi + j)

)}

= θE�f̃ (W) + σ 2
E�f̃ (W) −

∑
i∈I

E[(Xi − μi)Zi]E�f̃ (W ′
i )

−
∑
i∈I

E

{
(Xi − μi)

Zi−1∑
j=0

[�f̃ (Wi + j) − �f̃ (W ′
i )]

}

= θE�f̃ (W) +
∑
i∈I

E[(Xi − μi)Zi]E[�f̃ (W) − �f̃ (W ′
i )]

−
∑
i∈I

E

{
(Xi − μi)

Zi−1∑
j=0

[�f̃ (Wi + j) − �f̃ (W ′
i )]

}

= θE�f̃ (W) +
∑
i∈I

E[(Xi − μi)Zi]E

[Z′
i−1∑

j=0

�2 f̃ (W ′
i + j)

]

−
∑
i∈I

E

{
(Xi − μi)

Zi−1∑
j=0

Z′
i−Zi+j−1∑

l=0

�2 f̃ (W ′
i + l)

}

= θE�f̃ (W) +
∑
i∈I

E[(Xi − μi)Zi]E

[Z′
i−1∑

j=0

E(�2 f̃ (W ′
i + j) |Fi)

]

−
∑
i∈I

E

{
(Xi − μi)

Zi−1∑
j=0

Z′
i−Zi+j−1∑

l=0

E(�2 f̃ (W ′
i + l) |Fi)

}
, (4.16)

where the third-to-last equality is because
∑

i∈I E[(Xi − μi)Zi] = σ 2 and (Xi, Zi) is indepen-
dent of W ′

i , and the last equality is due to the assumption that {Xj : j ∈ Bi} is Fi-measurable.
Using (4.15) in (4.16), we obtain

|e2| ≤ ‖�f ‖|θ | + ‖�2f ‖
∑
i∈I

θi{|E(Xi − μi)Zi|E(Z′
i) +E[|Xi − μi|Zi(Z

′
i − Zi/2 − 1/2)]}.

(4.17)

Now, combining Lemma 4.1(iii, iv), (4.12), (4.13), and (4.17) gives (2.1). �
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Proof of Corollary 2.1. Under the setting of the local dependence, the claim follows from
Theorem 2.1 by taking Zi = Z′

i = Xi. �
Proof of Theorem 2.2. Recall the Stein representation (4.12) and the estimate (4.13). It

remains to tackle (4.14). However,

e2 =E(λf̃ (W + 1) − μf̃ (Ws) + af̃ (W))

= μE(f̃ (W + 1) − f̃ (Ws)) + (λ − μ)E�f̃ (W),

and thus

|e2| ≤ ‖�f ‖(μE|W + 1 − Ws| + |λ − μ|)
≤ Pn(λ){h}[C1(λ, k)(μE|W + 1 − Ws| + |λ − μ|)]. (4.18)

Hence, combining (4.12), (4.13), and (4.18) completes the proof. �
Proof of Theorem 2.3. Again we make use of the Stein representation (4.12) and the estimate

(4.13) so that it suffices to deal with (4.14). To this end, we have

e2 =E(λ�f̃ (W) − (W − μ)f̃ (W))

=E(λ�f̃ (W) − σ 2�f̃ (W�))

=E((λ − σ 2)�f̃ (W) + σ 2(�f̃ (W) − �f̃ (W�))).

However, with R = W� − W,

E[�f̃ (W) − �f̃ (W�)]

= −E

{
R−1∑
j=0

E(�2 f̃ (W + j)) 1R>0 −
−R∑
j=1

E(�2 f̃ (W − j)) 1R<0

}

= −E

{
R−1∑
j=0

E(�2 f̃ (W + j) | R) 1R>0 −
−R∑
j=1

E(�2 f̃ (W − j) | R) 1R<0

}
,

and a similar argument for (4.15) ensures

|E(�2 f̃ (W + j) | R)| ≤ ‖�2f ‖θR,

and hence

|e2| ≤ |λ − σ 2|‖�f ‖ + σ 2‖�2f ‖E[|R|θR]. (4.19)

The claim follows from combining (4.12), (4.13), and (4.19) and using Lemma 4.1(iii, iv). �
Proof of Proposition 3.2. The first inequality of (3.7) is a direct consequence of [27]. For the

second inequality, let h = 1[k,∞) and f be the solution of the Stein identity (4.1) with λ = μ,
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setting Wi = W − Xi, Y ∼ Pn(μ), the following argument is standard (see [9, page 6]) and we
repeat it for ease of reading:

P(W ≥ k) − P(Y ≥ k)

=E{μf (W + 1) − Wf (W)}

= μEf (W + 1) −
n∑

i=1

E{Xif (W)}

= μEf (W + 1) −
n∑

i=1

piE{f (Wi + 1)}

=
n∑

i=1

p2
i E�f (Wi + 1). (4.20)

For any non-negative integer-valued random variable U such that the following expectations
exist, summation by parts gives

Eg(U + 1) =
∞∑

j=1

�g( j)P(U ≥ j) + g(1).

On the other hand, Proposition 2.1 of [8] ensures that

P(Wi ≥ j)

P(Y ≥ j)
≤ P(W ≥ j)

P(Y ≥ j)
≤ sup

r≥0

P(W = r)

P(Y = r)
≤ M,

so using Lemma 4.1(ii), we have

E�f (Wi + 1)

=
∞∑

j=1

�2f ( j)P(Wi ≥ j) + �f (1)

≥ M
∑

j≥1,j �=k−1

�2f ( j)P(Y ≥ j) + �f (1)

= M

{ ∞∑
j=1

�2f ( j)P(Y ≥ j) + �f (1)

}
− M�2f (k − 1)P(Y ≥ k − 1) + (1 − M)�f (1)

= ME�f (Y + 1) − M�2f (k − 1)P(Y ≥ k − 1) + (1 − M)�f (1)

> ME�f (Y + 1) − M�2f (k − 1)P(Y ≥ k − 1). (4.21)

However, by (4.2), since Pn(μ) is the stationary distribution of Zi, ZY (t) ∼ Pn(μ), leading to

E�f (Y + 1)

= −
∫ ∞

0
E[h(ZY+2(t)) − 2h(ZY+1(t)) + h(ZY (t))] dt

= −
∫ ∞

0
E[h(Y + 1{T1>t} + 1{T2>t}) − h(Y + 1{T1>t}) − h(Y + 1{T2>t}) + h(Y)] dt

= −
∫ ∞

0
e−2t

E[�2h(Y)] dt = −1

2
(πk−2 − πk−1), (4.22)
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where T1, T2 are i.i.d. exp (1) random variables independent of Y . Combining (4.20), (4.21),
and (4.22), we have

P(W ≥ k)

P(Y ≥ k)
− 1 > −1

2
Mμ2

πk−2 − πk−1

P(Y ≥ k)
− Mμ2�

2f (k − 1)
P(Y ≥ k − 1)

P(Y ≥ k)
. (4.23)

For the first term of (4.23), using [9, Proposition A.2.1 (ii)], we obtain

πk−2 − πk−1

P(Y ≥ k)
= k

μ
· πk

P(Y ≥ k)
· k − 1 − μ

μ

≤ 4(k − μ)

μ
· k − 1 − μ

μ

≤ 4x2/μ. (4.24)

For the second term of (4.23), we use the crude estimate of

�2f (k − 1) ≤ 2‖�f ‖ ≤ 2(1 − e−μ)/μ

(see [9, Lemma 1.1.1] or Remark 2.1), so applying [9, Proposition A.2.1 (ii)] again,

�2f (k − 1)
P(Y ≥ k − 1)

P(Y ≥ k)

≤ 2(1 − e−μ)

μ

(
1 + πk

P(Y ≥ k)
· k

μ

)

≤ 2(1 − e−μ)

μ

(
1 + 4(k − μ)

μ

)

≤ 2

μ

(
1 + 4x

√
1 − e−μ

μ

)
. (4.25)

The bound (3.7) follows by collecting (4.23), (4.24), and (4.25). �
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