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Abstract

The evolution of the spot size and amplitude of a circularly polarized laser beam propagating in a plasma channel
embedded in an obliquely applied magnetic field has been investigated. The wave equation describing the evolution of
the radiation field is set up and a variational technique is used to obtain the equations governing the evolution of the
spot size and amplitude. Numerical methods are used to analyze the evolution of the laser beam spot size and
amplitude. It is seen that the amplitudes of the two transverse components of the electric field of the laser beam evolve
differently, since they are driven by unequal current densities. This leads to the conversion of a circularly polarized
laser beam into an elliptically polarized beam, under appropriate conditions.

Keywords: Conversion of circular to elliptically polarized laser beam; Evolution of spot size and amplitude; Obliquely
magnetized plasma channel

1. INTRODUCTION

Optical guiding of intense laser beams in plasma is beneficial
for a variety of applications, including harmonic generation
(Abdelli et al., 1992; Nuzzo et al., 2000), development of
X-ray lasers (Amendt et al., 1991; Eder et al., 1994), ad-
vanced laser fusion schemes (Tabak et al., 1994; Deutsch
et al., 1996) and plasma-based accelerators (Tajima &
Dawson, 1979; Berezhiani & Murusidze, 1992; Esarey
et al., 1996). At high intensities the interaction between
lasers and plasma becomes nonlinear. This leads to many in-
teresting phenomena such as self-focusing (Shen, 1984;
Esarey et al., 1997), wakefield generation (Esarey et al.,
2009), magnetic field generation (Gorbunov et al., 1997),
and other parametric instabilities (Kaw et al., 1973). To
allow optimum laser–plasma interaction for the abovemen-
tioned applications, it is necessary that the laser beams
should propagate several Rayleigh lengths in plasma. For
this purpose, plasma channels have been proposed for
extending the propagation distance of laser beams.
Jha et al., (2006, 2007) have studied the enhancement of

self-focusing of an intense laser beam propagating in
plasma embedded in transverse as well as axial magnetic

fields. Magnetic fields applied or generated, not only help
in guiding laser beams in plasma, but also lead to several
interesting nonlinear phenomena and applications such as
harmonic generation (Jha et al., 2007.), THz radiation gener-
ation (Hu et al., 2013; Wang et al., 2015; Verma & Jha,
2016; Sharma et al., 2017), and modulation instability (Jha
et al., 2005; Chen et al., 2011). The effects of externally ap-
plied static magnetic field on wake excitation (Jha et al.,
2012) and non-linear evolution of laser pulses have been
studied (Ren & Mori, 2004; Jha et al., 2014).

Recently, a direct three-dimensional model for studying
the effect of obliqueness of an externally applied magnetic
field, on the characteristics of wakefields generated in mag-
netized plasma, has been reported (Manouchehrizadeh &
Dorranian, 2013). Significant enhancement of the axial com-
ponent of the generated wakefield and extinction of the radial
components of plasma wakes occurs when the direction of
the external magnetic field is appropriately varied. An analyt-
ical and numerical investigation for studying the wakefields
driven by a short laser pulse in underdense plasma in the
presence of a strong oblique DC magnetic field has been re-
ported (Hu et al., 2012). The abovementioned studies based
on interaction of laser beams with obliquely magnetized
plasma, has motivated the present study of the amplitude
evolution of a circularly polarized laser beam propagating
in an obliquely magnetized plasma channel.
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The organization of the paper is as follows: In Section 2,
using perturbation technique, we have obtained the nonlinear
current densities generated due to the propagation of an in-
tense circularly polarized laser beam through obliquely mag-
netized plasma, in the mildly relativistic regime. In Section 3,
non-paraxial equations for the evolution of the laser fields in
a preformed, obliquely magnetized plasma channel are set
up. The linear dispersion relations for the electric field com-
ponents along the x- and y-directions have been derived.
Lagrangian method has been used to obtain the evolution
equations for the laser spot size and amplitude. In Section
4, numerical methods are used to graphically analyze the
evolution of the laser spot size and amplitude of the x and
y components of the electric field of the laser beam.
Summary and conclusions are discussed in Section 5.

2. FORMULATION

Consider a circularly polarized laser beam propagating along
the z-direction in a preformed plasma channel embedded in an
obliquely applied magnetic field �b0(= ŷb0 sin θ+ ẑb0 cos θ)
lying in the y–z plane at an angle θ with respect to the
z-axis. The radial profile of the plasma density is of the form
n0(r) = n00(1+ Δnr2/n00r2ch), where n00 is the ambient,
on-axis, plasma electron density, while rch and Δn are the
channel radius and depth, respectively. The electric vector of
the radiation field is given by

�E = E r, z( ) x̂ cos k0z− ω0t( ) − σŷ sin k0z− ω0t( ){ }
. (1)

where E(r, z), k0, and ω0 are the slowly varying amplitude,
wave number and frequency of the laser electric field, respec-
tively. σ takes the value±1 for right or left circularly polarized
radiation. The wave equation governing the propagation of the
laser beam through plasma is given by

∇2 − 1
c2

∂2

∂t2

( )
�E = 4π

c2
∂�J
∂t

. (2)

The plasma current density may be obtained from

�J = −ne�v. (3)

where �v and n are, respectively, the plasma electron velocity
and density. The equations governing the relativistic interac-
tion between the electromagnetic field and plasma electrons
are the Lorentz force equation

d(γ�v)
dt

= − e�E

m
− e

mc
�v × �B+ �b0

( )
(4)

and the equation of continuity

∂n
∂t

+ �∇. n�v( ) = 0, (5)

where γ(=(1− v2/c2)−1/2) is the relativistic factor and �B =[
E r, z( ) σx̂ sin k0z− ω0t( ) + ŷ cos k0z− ω0t( ){ }] is the magnet-
ic vector of the radiation field. It is assumed that the plasma
electrons are at rest before the passage of the laser beam and
therefore the external magnetic field does not affect them.
In order to study the evolution of the laser beam, in the

mildly relativistic regime, the current density has to be ob-
tained. This requires the derivation of perturbed velocities
and density of plasma electrons. Using a perturbative tech-
nique all quantities are simultaneously expanded in orders
of the radiation field. The first-order expansion of Eq. (4)
leads to the equations governing the evolution of the
plasma electron velocity components along the x, y, and
z-directions, as

∂v(1)x,y

∂t
= − e

m
Ex,y − e

mc
�v 1( ) × �b0

( )
x,y

(6a)

and

∂v(1)z

∂t
= − e

mc
�v 1( ) × �b0

( )
z
. (6b)

Simultaneous solution of Eqs (6a) and (6b) gives the first-
order quiver velocity of the plasma electrons as

v(1)x = v0x sin k0z− ω0t( ), (7a)

v(1)y = v0y cos k0z− ω0t( ) (7b)

and

v(1)z = −v0z cos (k0z− ω0t), (7c)

where

v0x = caω0(ω0 + σωc cos θ)
(ω2

0 − ω2
c )

( )

and

v0y = σca ω0(ω0 + σωc cos θ) − ω2
csin

2θ
{ }

(ω2
0 − ω2

c )

( )

are the amplitudes of the transverse quiver velocity compo-
nents and

v0z = caωc sin θ(ω0 + σωc cos θ)
(ω2

0 − ω2
c)

( )

is the amplitude of the longitudinal velocity while a(=eE/
mω0c) and ωc(=eb0/mc) are respectively the normalized ra-
diation field amplitude and cyclotron frequency of the
plasma electrons. Equations (7) show that application of
the static magnetic field increases (decreases) the transverse
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quiver velocities of plasma electrons for σ=+1(−1), for
positive values of cosθ. Therefore, henceforth, σ=+1
(right circular polarization), has been considered. It is seen
that the transverse quiver velocities are maximum when
θ= 0° and reduce with increase in θ. Also it may be noted
that the obliqueness of the applied external magnetic field
leads to the generation of a new longitudinal velocity compo-
nent. This velocity reduces to zero for the case of an axially
magnetized plasma channel (θ= 0).
Using Eq. (4), the second-order velocity components may

be obtained from the following set of equations

∂v(2)x,y,z

∂t
+ v(1)z

∂v(1)x,y,z

∂z
= − e

mc
�v 1( ) × �B
( )

x,y,z−
e

mc
�v 2( ) × �b0

( )
x,y,z

.

(8)

Substituting the first-order quantities from Eqs. (7), Eqs. (8)
are solved to give

v(2)x = − c2a2ω2
ck0 sin 2θ

8ω3
0

sin 2 k0z− ω0t( ), (9a)

v(2)y = − c2a2ω2
ck0 sin 2θ

8ω3
0

cos 2 k0z− ω0t( ) (9b)

and

v(2)z = 0. (9c)

While deriving Eq. (9), the cyclotron frequency of the plasma
electron is considered to be much less than the frequency of
the laser field. Therefore, third and higher powers of ωc/ω0

have been neglected. The same approximation has been
used for further analysis. The second-order components of
velocity (oscillating at the second harmonic of the radiation
frequency) are generated due to the obliqueness of the uni-
form magnetic field and reduce to zero if the magnetic
field is applied along the propagation direction, or is zero.
The same procedure is used to obtain the third-order electron
velocity components governed by

∂v(3)x,y,z

∂t
+ ∂

∂t
γ 2( )v 1( )

x,y,z

( )
+ v(1)z

∂v
(2)
x,y,z

∂z
+ v(2)z

∂v(1)x,y,z

∂z

= − e

mc
(�v (2) × �B)x,y,z −

e

mc
�v 3( ) × �b0

( )
x,y,z

.

(10)

Using Eqs. (7) and (9), simultaneous solution of Eq. (10)
gives the third-order transverse velocities

v(3)x =− ca3

2ω2
0

ω2
0+ 10ω2

c + 4ω0ωc cosθ− 21ω2
csin

2θ

4

[ ]
sin k0z−ω0t( )

(11a)

and

v(3)y =− ca3

2ω2
0

ω2
0 + 10ω2

c + 4ω0ωccos θ− 35ω2
csin

2θ

4

[ ]
cos k0z− ω0t( ).

(11b)

While deriving Eqs. (11), harmonics of the laser frequency
have been ignored.

The electron density is perturbed due to the interaction of
the intense laser field with plasma. The first-order electron
density is obtained by expanding the continuity Eq. (5) in
orders of the radiation field. Thus

∂n(1)

∂t
+ n(0)

∂v(1)z

∂z
= 0, (12)

where

n(0) = n0(r) = n00 1+ Δnr2

n00r2ch

( )

is the unperturbed plasma electron density. It may be noted
that the longitudinal velocity v(1)z , arising on account of the
oblique magnetic field, generates first-order fluctuations in
plasma density. Substituting the value of v(1)z in Eq. (12)
the first-order electron density perturbation is given by

n(1) = − n0(r)caωck0 sin θ(ω0 + ωc cos θ)
ω3
0

cos(k0z− ω0t). (13)

The first-order density perturbation arises due to the presence
of the oblique external magnetic field and reduces to zero
either if the field is switched off or is aligned along the direc-
tion of propagation of the laser beam. The second-order elec-
tron density perturbation may be obtained by solving the
equation:

∂n(2)

∂t
+ n(0)

∂v(2)z

∂z
+ n 1( ) ∂v

(1)
z

∂z
+ v(1)z

∂n(1)

∂z
= 0 (14)

as

n(2) = n0(r)c2a2ω2
ck

2
0sin

2θ

2ω4
0

cos 2(k0z− ω0t). (15)

The transverse components of the current density (upto the
third order of the radiation field) are written as

Jx,y = −e n(0)v(1)x,y + n(0)v(3)x,y + n(1)v(2)x,y + n(2)v(1)x,y

( )
.

It may be noted that the current density comprises of first and
third-order terms only. The second-order terms (n(1)v(1) and
n(0)v(2)) oscillate at the second harmonic of the laser frequen-
cy and have therefore been neglected. Substitution of the
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plasma electron velocities and densities gives

Jx =− n0(r)eca
ω2
0

ω0 ω0 + ωc cos θ( ) + ω2
c

[

− a2

2
ω2
0 + 4ω0ωc cos θ

{ + 10ω2
c

+ ω2
csin

2θ

4ω2
0

2c2k20 − 21ω2
0

( )}]
sin k0z− ω0t( )

(16a)

and

Jy =− n0(r)eca
ω2
0

ω0 ω0 + ωc cos θ( ) + ω2
ccos

2θ
[

− a2

2
ω2
0 + 4ω0ωc cos θ

{ + 10ω2
c

− ω2
csin

2θ

4ω2
0

2c2k20 + 35ω2
0

( )}]
cos k0z− ω0t( ).

(16b)

While deriving Eqs. (16), harmonics of the laser frequency
have been neglected. It may be noted that the x- and
y-components of current density are unequal in magnitude be-
cause the magnetic field lies in the y–z plane. This causes the
component of the �v × �b0 force acting along the x-direction to
be larger than that along the y-direction. The asymmetry in
current density, arising due to the obliqueness of the external
magnetic field, is expected to drive the amplitudes of the x and
y-components of the laser field, with a quantitative difference.
This point toward the possibility of conversion of the circular-
ly polarized laser into an elliptically polarized beam.

3. WAVE DYNAMICS

The equations governing the evolution of the laser fields
along the transverse directions are obtained by substituting
Eqs. (16) into the wave Eq. (2), to give

∇2
⊥ + ∂2

∂z2
− 1
c2

∂2

∂t2

[ ]
�a1

= ω2
p

c2
ω0 ω0 +ωc cosθ( ) +ω2

c

{ }
ω2
0

[
+ Δnr2

n00r2ch

ω0 ω0 +ωc cosθ( ) +ω2
c

{ }
ω2
0

− a1| |2Q1− Δnr2

n00r2ch
a1| |2Q1

]
�a1

(17a)

and

∇2
⊥+ ∂2

∂z2
− 1
c2

∂2

∂t2

[ ]
�a2

= ω2
p

c2
ω0 ω0+ωc cosθ( )+ω2

ccos
2θ

{ }
ω2
0

[

+ Δnr2

n00r2ch

ω0 ω0+ωc cosθ( )+ω2
ccos

2θ
{ }

ω2
0

− a2| |2Q2− Δnr2

n00r2ch
a2| |2Q2

]
�a2,

(17b)

where �a1,2 are the laser fields along the x, y-directions and
ωp(=4πn00e

2/m)1/2 is the plasma frequency while the
coefficients

Q1 = 1

2ω2
0

ω2
0+ 4ω0ωc cosθ+ 10ω2

c −
ω2
csin

2θ

4ω2
0

2ω2
p+ 19ω2

0

( ){ }

and

Q2 = 1

2ω2
0

ω2
0+ 4ω0ωc cosθ+ 10ω2

c −
ω2
csin

2θ

4ω2
0

37ω2
0− 2ω2

p

( ){ }

quantify the non-linear effects in obliquely magnetized
plasma.
Considering only the linear terms on the right-hand side of

Eqs. (17a) and (17b) leads to two linear dispersion relations for
the x and y-components of the laser electric field, respectively as

c2k20 = ω2
0 −

ω2
p ω0(ω0 + ωc cos θ) + ω2

c

{ }
ω2
0

(18a)

and

c2k20 = ω2
0 −

ω2
p ω0(ω0 + ωc cos θ) + ω2

ccos
2θ

{ }
ω2
0

. (18b)

In the absence of obliqueness (θ= 0) of the magnetic field,
Eqs. (18) reduce to the well-known linear dispersion relation
for a circularly polarized laser beam propagating in axially
magnetized plasma (Jha et al., 2007).
Assuming the radiation amplitude to be a slowly varying

function of z, the term ∂2a1,2/∂z
2 representing higher order

diffraction effects is neglected in comparison with 2k0∂/∂z.
Thus, the paraxial approximation of Eqs. (17) gives,

∇2
⊥ + 2ik0

∂
∂z

[ ]
a1(r, z)

= −k2p a1| |2Q1 + a1| |2Q1
Δnr2

n00r2ch

[
− ω0 ω0 + ωc cos θ( ) + ω2

c

{ }
ω2
0

− ω0 ω0 + ωc cos θ( ) + ω2
c

{ }
ω2
0

Δnr2

n00r2ch

]
a1(r, z)

(19a)

and

∇⊥
2 + 2ik0

∂
∂z

[ ]
a2(r, z)

= −k2p

[
a2| |2Q2 + a2| |2Q2

Δnr2

n00r2ch
− ω0 ω0 +ωc cosθ( ) +ω2

ccos
2θ

{ }
ω2
0

− ω0 ω0 +ωc cosθ( ) +ω2
ccos

2θ
{ }

ω2
0

Δnr2

n00r2ch

]
a2(r, z).

(19b)

Since unequal current densities drive the x and y-components
of the radiation field amplitude, the Lagrangian densities

Hemlata et al.634

https://doi.org/10.1017/S0263034617000581 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034617000581


associated with the two equations Eqs. (19a) and (19b) are
respectively written as

l1 = �∇⊥a
∗
1.
�∇⊥a1 + ik0 a1

∂a∗1
∂z

− a∗1
∂a1
∂z

( )

− k2p
a21a

∗2
1 Q1

2
+ a21a

∗2
1 Q1

2
Δnr2

n00r2ch

[
− a1a

∗
1

ω0 ω0 +ωc cosθ( ) +ω2
c

{ }
ω2
0

−a1a
∗
1
Δnr2

n00r2ch

ω0 ω0 +ωc cosθ( ) +ω2
c

{ }
ω2
0)

]
(20a)

and

l2 = �∇⊥a
∗
2.
�∇⊥a2 + ik0 a2

∂a∗2
∂z

− a∗2
∂a2
∂z

( )

− k2p
a22a

∗2
2 Q2

2
+ a22a

∗2
2 Q2

2
Δnr2

n00r2ch

[

− a2a
∗
2

ω0 ω0 +ωc cosθ( ) +ω2
ccos

2θ
{ }

ω2
0

− a2a
∗
2
Δnr2

n00r2ch

ω0 ω0 +ωc cosθ( ) +ω2
ccos

2θ
{ }

ω2
0

]
.

(20b)

Considering a Gaussian radial profile, the trial functions
representing the laser amplitudes may be written as

a1,2 = f1,2(z) exp iφ1,2(z) +
iα1,2(z)r2
r2s1,2 (z)

− r2

r2s1,2 (z)

( )
, (21)

where f1,2(z), φ1,2(z), α1,2(z), and rs1,2(z) are, respectively, the
amplitude, phase shift, curvature and spot size corresponding
to the laser field along the x and y-directions. Substituting
Eq. (21) into (20) and using l̂1,2 =

�∞
0 l1,2rdr, yields the

reduced Lagrangian densities

l̂1 = (α21 + 1)f 21
4

+ f 21 r
2
s1k0
4

∂φ1

∂z
+ 1
2
∂α1
∂z

− α1
rs1

∂rs1
∂z

[ ]

+ ω0 ω0 +ωc cosθ( ) +ω2
c

{ }
ω2
0

k2p f
2
1 r

2
s1

8
+ k2p f

2
1 r

4
s1Δn

16n00r2ch

×
ω0 ω0 +ωc cosθ( ) +ω2

c

{ }
ω2
0

− 3k2p f
4
1 r

2
s1Q1

128
− 3k2pΔnf

4
1 r

4
s1Q1

512n00r2ch
(22a)

and

l̂2 = (α22 + 1)f 22
4

+ f 22 r
2
s2k0
4

∂φ2

∂z
+ 1
2
∂α2
∂z

− α2
rs2

∂rs2
∂z

[ ]

+ ω0 ω0 +ωc cosθ( ) +ω2
ccos

2θ
{ }

ω2
0

f 22 r
2
s2k

2
p

8
+ k2pΔnf

2
2 r

4
s2

16n00r2ch

×
ω0 ω0 +ωc cosθ( ) +ω2

ccos
2θ

{ }
ω2
0

− 3k2p f
4
2 r

2
s2Q2

128
− 3k2pΔnf

4
2 r

4
2Q2

512n00r2ch
.

(22b)

Varying the reduced Lagrangian densities with respect to
φ1,2(z) gives

∂
∂z

f 21,2r
2
s1,2

( )= 0

or
f 21,2r

2
s1,2 = f 20 r

2
0 = constant, (23)

where f0 and r0 are the initial laser beam amplitude and spot
size, respectively. Thus,

f1,2 = f0r0
rs1,2

. (24)

Variation with respect to curvature α1,2(z) gives

α1,2 = k0rs1,2
2

∂rs1,2
∂z

. (25)

Similarly, varying Eqs. (22a) and (22b) with respect to spot
size rs1(z) and rs2(z), respectively, leads to the equations
governing the evolution of the spot size as,

∂2rs1
∂z2

= 4

r3s1k
2
0

1− 3k2p f
2
0 r

2
0Q1

32
− k2pΔnr

4
s1

4n00r2ch

×
{ω0(ω0 +ωc cosθ) +ω2

c

}
ω2
0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (26a)

and

∂2rs2
∂z2

= 4

r3s2k
2
0

1− 3k2p f
2
0 r

2
0Q2

32
− k2pΔnr

4
s2

4n00r2ch

×
ω0(ω0 +ωc cosθ) +ω2

ccos
2θ

{ }
ω2
0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦. (26b)

While deriving Eqs. (26), Eqs. (25) have been used. The first,
second, and third terms on the right-hand side of Eqs. (26) rep-
resent vacuumdiffraction, relativistic self-focusing and channel
focusing of a laser beam in an obliquely magnetized plasma
channel. Itmay be noted that relativistic self-focusing and chan-
nel focusing contributions to the evolution of the spot size of the
laser beam along the x- and y-directions are not the same.
Hence, the spot size rs1 and rs2 will evolve differently. If the
laser spot size is considered to bematched, along one direction,
it will remain mismatched along the other. The matching con-
dition of the laser spot size along the y-direction as it propagates
in the magnetized plasma channel is obtained by assuming that
rs2= r0,∂rs2/∂z= 0.With these conditions, Eq. (26b) gives the
critical density gradient of the plasma channel for which the
laser spot size along the y-direction remains matched (rs2= r0)
as it propagates in a plasma channel, as

Δnc = 4n00r2chω
2
0

k2pr
4
0 ω0(ω0 +ωc cosθ) +ω2

ccos
2θ

{ }
× 1− 3k2p f

2
0 r

2
0Q2

32

[ ]
.

(27)
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It is seen that apart from other laser and plasma parameters, the
critical channel density depends on the obliqueness (θ) of the
applied magnetic field. For the same condition, the spot size
along the x-direction (rs1) remains mismatched. Solving
Eqs. (24), (26), and (27) simultaneously, we can obtain the
evolution of the spot size as well as the x- and y-amplitudes,
with respect to the propagation distance. Since the amplitudes
( f1 and f2) are expected to be unequal, the eccentricity of the
laser beam polarization can be obtained from

ε=
�������
1− f 22

f 21

√
. (28)

It may be noted that the eccentricity will vary with the
propagation distance.

4. NUMERICAL SOLUTIONS

In order to study the evolution of the laser spot size, it is in-
teresting to first analyze the quiver velocities generated by
the passage of the laser beam in the plasma channel, in the
presence of the oblique magnetic field. The variation of the
normalized (by c) amplitude of transverse quiver velocity
components of plasma electrons (v0x and v0y) with the
obliqueness of the magnetic field is shown in Figure 1.
The modulus of the normalized initial, on-axis radiation
field amplitude (a) is considered to be 0.2, σ=+1 and ωc/
ω0= 0.08 (b0= 855T ). Curve a (b) represents the evolution
of amplitude of the transverse quiver velocity component of
the plasma electrons along the x(y)-direction. It is seen that
when an axial (θ= 0°) magnetic field is applied, the trans-
verse quiver velocity components remain equal in magnitude
along the x- and y-directions and are maximum. As the
obliqueness (θ) of the magnetic field increases, these velocity

components become unequal and also reduce. The asymme-
try in the transverse quiver velocity components gives rise to
unequal transverse current density components. Similarly,
Figure 2 depicts the variation of the normalized amplitude
of the longitudinal quiver velocity (v0z) with the obliqueness
(θ) of the external magnetic field, for the same parameters as
in Figure 1. This curve shows that no longitudinal quiver ve-
locity component is generated in case of axially (θ= 0°)
magnetized plasma. However, this velocity increases with
an increase in the obliqueness of the external magnetic
field. Also it may be noted that the amplitude of the trans-
verse quiver velocity is about ten times larger than the longi-
tudinal quiver velocity.
The evolution of the normalized spot size and amplitude of

the laser beam propagating in an obliquely magnetized
plasma channel is studied numerically by simultaneously
solving Eqs. (24), (26), and (27), with the assumption that
at z= 0, ∂rs1,2/∂z= 0 and rs1,2= r0= 25 μm. The other
laser, magnetic field, and plasma parameters are f 20 = 0.04
(Intensity= 5.47 × 1016W/cm2), λ= 1 μm, ωc/ω0= 0.08,
n00= 1.1 × 1019cm−3(λp= 10 μm), and channel radius
rch= 40 μm. The channel density gradient is considered to
be equal to its critical value Δn= Δnc (Eq. (27)) for rs2.
Since Δnc is a function of θ, its value for θ= 30°, 45°, and
90° is respectively 1.71 × 1017, 1.86 × 1017, and 2.51 ×
1017cm−3. Figure 3 shows the simultaneous evolution of
the normalized (by r0) spot size of the laser beam with
propagation distance, normalized by the Rayleigh length
ZR(=πr20/λ for an initially circularly polarized laser beam
propagating in a magnetized plasma channel. Curves a, b,
and c respectively, show the evolution of the spot size
along the x-direction, when the applied magnetic field is at
an angle θ= 30°, 45°, and 90° with respect to the z-axis,
while curve d represents the matched spot size along the

Fig. 1. Variation of the normalized amplitude of the transverse quiver velocities with obliqueness of the magnetic field (θ) for a= 0.2,
σ=+1 and ωc/ω0= 0.08. Curve a(b) represents the amplitude of the transverse quiver velocity along the x( y)-direction.
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y-direction. It is seen that the spot size along the x-direction is
mismatched and oscillates with propagation distance. These
betatron oscillations arising due to the presence of the
plasma channel tend to confine the spot size. The beam
spot size along the x-direction is mismatched because the
obliqueness of magnetic field leads to asymmetric current
densities along the transverse directions causing a significant
enhancement in the relativistic as well as channel focusing
along the x-direction, which in turn reduces the beam
width along the x-direction as compared to the initial beam
width. Comparison of curves a, b, and c, shows that the fo-
cusing effect enhances with the obliqueness (θ) of the mag-
netic field. After a certain propagation distance the spot size

along the x-direction becomes equal to the spot size in the
y-direction, implying that the beam spot attains a circular
shape.

Figure 4 shows the simultaneous variation of the normal-
ized amplitude of the x and y-components of the electric field
of the laser beam, with normalized propagation distance, in
an obliquely magnetized plasma channel, for the same pa-
rameters as in the case of Figure 1. The curves a, b, and c,
respectively, show the evolution of the amplitude of the x
component, for θ= 30°, 45°, and 90° while curve d repre-
sents the y component amplitude, under matching conditions.
These curves show a reverse trend as compared to those in
Figure 1, since the evolution of the amplitude depends

Fig. 2. Variation of the normalized amplitude of the longitudinal quiver velocity with obliqueness of the magnetic field (θ) for a= 0.2,
σ=+1, and ωc/ω0= 0.08. Curve represents the amplitude of the longitudinal quiver velocity along the z-direction.

Fig. 3. Variation of normalized spot size of a laser beamwith normalized propagation distance for rch= 40 μm, λ= 1 μm, f 20 = 0.04, r0=
25 μm, n00= 1.1 × 1019cm−3, and ωc/ω0= 0.08. Curves a, b and c represent the spot size along the x-direction for θ= 30° (Δnc= 1.71 ×
1017cm−3), θ= 45° (Δnc= 1.86 × 1017cm−3), and θ= 90° (Δnc= 2.51 × 1017cm−3), respectively. Curve d depicts the matched spot size
along the y-direction for all values of θ.
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inversely on the spot size. The amplitude of the electric field
along the x and y-directions, which was initially equal (circu-
larly polarized) starts becoming unequal (elliptically polar-
ized), as the laser beam propagates in plasma. Thus,
obliquely magnetized plasma channel can convert a circular-
ly polarized laser beam into an elliptically polarized beam
and works as a quarter wave plate.
Figure 5 depicts the evolution of eccentricity [Eq. (28)] of

the polarization of the laser beam propagating in a magne-
tized plasma channel. All parameters are the same as in
Figure 1. Curves a, b, and c, respectively, show the variation
of eccentricity of the laser beam when the beam propagates in

a plasma channel embedded in an obliquely applied magnetic
field. These curves show that the eccentricity of the laser
beam changes with propagation distance. The eccentricity at-
tains a maximum value of 0.099, 0.135, and 0.174 (at 2.5ZR,
2.4ZR, and 2.15ZR) for θ= 30°, 45°, and 90°, respectively.
After the beam has traversed a certain distance the eccentric-
ity decreases sharply, due to the rapid decrease in the x am-
plitude of the laser beam. Thus, elliptically polarized laser
beams of desired eccentricity can be obtained, by choosing
appropriate values of the magnetic field, angle θ and propa-
gation distance. It may also be noted that eccentricity increas-
es with the obliqueness (θ) of applied magnetic field.

Fig. 4. Variation of normalized amplitude of a laser beam with normalized propagation distance for rch= 40 μm, λ= 1 μm, f 20 = 0.04,
r0= 25 μm, n00= 1.1 × 1019cm−3, and ωc/ω0= 0.08. Curves a, b, and c represent the amplitude of electric field along the x-direction for
θ= 30° (Δnc= 1.71 × 1017cm−3), θ= 45° (Δnc= 1.86 × 1017cm−3), and θ= 90° (Δnc= 2.51 × 1017cm−3), respectively. Curve d depicts
the matched amplitude of electric field along the y-direction for all values of θ.

Fig. 5. Variation of eccentricity of a laser beam with normalized propagation distance for rch= 40 μm, λ= 1 μm, f 20 = 0.04, r0= 25 μm,
n00= 1.1 × 1019cm−3, and ωc/ω0= 0.08. The curves a, b, and c, respectively, depict the evolution of eccentricity for θ= 30° (Δnc=
1.71 × 1017cm−3), θ= 45° (Δnc= 1.86 × 1017cm−3), and θ= 90° (Δnc= 2.51 × 1017cm−3).
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Therefore, the maximum eccentricity is obtained when the
applied magnetic field is applied along the transverse (θ=
90°) direction. It is seen that eccentricity becomes zero at
5.0ZR, 4.75ZR, and 4.3ZR for θ= 30°, 45°, and 90°, respec-
tively. At these distances the laser beam becomes circularly
polarized again. Thus, extracting the laser beam at appropri-
ate distances allows the obliquely magnetized plasma chan-
nel to convert laser beams having circular into elliptical
polarization and can serve as a retarder.

5. SUMMARY AND CONCLUSIONS

Non-linear propagation of a circularly polarized laser beam,
in a preformed, obliquely magnetized plasma channel having
a parabolic density profile, has been analyzed. The external
magnetic field is applied in the y–z plane. Using perturbation
technique, plasma electron velocities, and densities are ob-
tained. It is observed that when the magnetic field is applied
along the axis, the transverse quiver velocity components
along the x- and y-directions remain equal and are the maxi-
mum, while these velocity components become unequal and
reduce with the obliqueness of external magnetic field. It
may be also noted that a new longitudinal velocity compo-
nent is generated. This velocity increases with the oblique-
ness of the applied external magnetic field. The obliquely
applied magnetic field leads to the generation of unequal cur-
rent densities along the two transverse directions. The laser
field equations governing the propagation of the laser beam
in an obliquely magnetized plasma channel have been set
up. Lagrangian method has been used to derive the evolution
equations of the laser spot size and amplitude of x- and
y-components of the electric vector. The spot size as well
as the amplitude of the laser electric field, along the two
transverse directions, is seen to be asymmetrical. In order
to study the evolution of the laser beam, the channel depth
is chosen such that the spot size along the y-direction is
matched. It is seen that although the spot size remains
matched along the y-direction, the spot size along the
x-direction is mismatched and oscillates with the propagation
distance. The focusing effect is sharply enhanced with the
obliqueness of external magnetic field. The field amplitude
of the laser beam along the two transverse directions shows
a reverse trend. At certain propagation distances, the beam
amplitudes along the two transverse directions are unequal.
This implies that the polarization of the laser field becomes
elliptical. The eccentricity of the elliptically polarized laser
beams varies continuously in the plasma channel. Therefore,
we can obtain elliptically polarized laser beams of desired ec-
centricity, by choosing appropriate values of the magnetic
field, angle θ and propagation distance. It is also observed
that eccentricity increases with the obliqueness (θ) of the ap-
plied magnetic field and is the maximum for transversely ap-
plied magnetic field. This study provides an estimate for the
changes not only in laser parameters but also in the state of
polarization with the propagation distance. Thus, obliquely
magnetized plasma channel can convert the polarization of

a laser beam from circular to elliptical and may serve as a re-
tardation device.
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