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Abstract. A combinatorial model for a property of continuous self-maps of a compact
interval is a self-map π of a finite ordered set such that every continuous π-weakly
monotone self-map of a compact interval has that property. We identify the minimal
combinatorial models for the property ‘the set of periods is a given set’. Here the word
minimal refers to the number of points in the domain of the model. We also identify the
minimal permutation models and, in appropriate cases, the minimal combinatorial models
for properties involving ‘horseshoes’.

0. Introduction
A combinatorial model for a property of continuous self-maps of a compact interval is a
self-map π of a finite-ordered set such that every continuousπ-weakly monotone self-map
of a compact interval has the property. Not every dynamical property has a combinatorial
model. For example, the property ‘f has a dense orbit’ does not. We also consider
permutation models, where we require that π be a permutation.

We consider the following two properties:
• the set of periods of f is a given set of positive integers;
• the set of periods of f is a given set of positive integers and f 2k does not have a

horseshoe. (Horseshoe is defined in §3.)
We show that for every set which is the set of periods of some continuous self-map of a

compact interval, other than the set of all powers of 2, both properties have combinatorial
models. For the properties above, we characterize the minimal combinatorial models and
the minimal permutation models, where minimal refers to the cardinality of the domain
of π , denoted #π .
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Suppose that π : P → P is a self-map of a finite-ordered set
P = {p1 < p2 < · · · < pn}. A self-map f : I → I of a compact interval is π-weakly
monotone if and only if there exist z1 < z2 < · · · < zn in I such that I = [z1, zn],
f (zi) = zj if π(pi) = pj , and f is weakly (i.e. not necessarily strictly) monotone on
every subinterval [zi, zi+1]. We call these points π-points and the set {z1 < z2 < · · · < zn}
a π-set.

We show in Theorems 3.5 and 2.6 that for each of the properties that we are considering,
whether a continuous, π-weakly monotone map has the property depends only on π and
its Markov graph (defined in §1), which is the same for two self-maps of finite-ordered sets
which are conjugate via a one-to-one, order-preserving map. Thus we may, and often do,
assume that P = {1, 2, . . . , n} when #π = n.

Let Per(f ) denote the set of (least) periods of the periodic points in the domain of f
and let <S (Sharkovsky-less than) be the Sharkovsky order on the positive integers, defined
in §1. It follows from Sharkovsky’s Theorem, stated in §1, that Per(f ) is of one of the
following:
(1) {t : t ≤S 2k} for some k ≥ 0;
(2) {t : t is a power of 2};
(3) {t : t ≤S 3 · 2k} for some k ≥ 0;
(4) {t : t ≤S r · 2k} for some k ≥ 0, and some odd r ≥ 5.

The main results of this paper are Theorems 3.3, 3.6, 6.2–4 and 7.1. These say that
sets of the forms (1), (3) and (4), but not (2), have combinatorial models and characterize
the minimal combinatorial models for those that do. The characterizations are in terms of
simple cycles, also known as S̆tefan cycles, which are defined in §3 for cycles of length a
power of 2 and in §6 for cycles of other lengths.

THEOREM 3.3. There are no combinatorial models for ‘Per(f ) = {2k : k = 0, 1, . . . }’.
THEOREM 3.6. The minimal combinatorial models for ‘Per(f ) = {t : t ≤S 2k}’ are the
simple cycles of length 2k .

THEOREM 6.2. The minimal combinatorial models for ‘Per(f ) = {t : t ≤S 3 · 2k} and
f 2k does not have a horseshoe’ are the simple cycles of length 3 · 2k.

Theorems 6.3 and 6.4 characterize the minimal permutation and minimal combinatorial
models for ‘Per(f ) = {t : t ≤S 3 · 2k}’. In the first case, #π = 3 · 2k but π need not be a
cycle; in the second case, if k ≥ 1, then #π = 3 · 2k−1 + 1 and π is not a permutation.

THEOREM 7.1. The minimal combinatorial models for ‘Per(f ) = {t : t ≤S r · 2k}, r ≥ 5,
r odd’ are the simple cycles of length r · 2k.

This implies, for example, that if f is continuous, π-weakly monotone and Per(f ) =
{t : t ≤S 1 000 000}, then #π ≥ 1 000 000.

We conclude the paper with a brief discussion of unimodal minimal combinatorial
models in §8.

An informal way to summarize some of the conclusions of this paper is the following.
For the property that the set of periods is a given set, the only way to obtain a minimal
combinatorial model which is not a simple cycle is to create an appropriate horseshoe.
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In particular, this is possible if and only if the Sharkovsky-largest member of the given set
is 3 · 2k for some k ≥ 0. The ‘turbulence stratification’ [BCop, p. 34] is relevant here.

1. Three basic concepts
Throughout this paper, f : I → I is a continuous self-map of a compact interval and
π : P → P a self-map of a finite-ordered set. We denote the cardinality of P by #π .
We use exponentiation of maps to denote iterated composition. Thus π2 = π ◦ π ,
f 2 = f ◦ f , etc. For f : I → I , x ∈ I and n ≥ 1, we say that x ∈ I is periodic,
or f -periodic, of period t if and only if f t (x) = x, and f s(x) �= x for 1 ≤ s < t . We let
Per(f ) denote the set of t ≥ 1 such that there exists x ∈ I of period t and call it the set of
periods of f .

The study of the periods of the periodic points of continuous self-maps of compact
intervals goes back to Sharkovsky’s Theorem [Sh], which is stated in terms of the
Sharkovsky order, <S, on the positive integers {1, 2, . . . }:

1 <S 2 <S 22 <S 23 <S · · · <S 22 · 7 <S 22 · 5 <S 22 · 3 <S · · ·
<S 2 · 7 <S 2 · 5 <S 2 · 3 <S · · · <S 7 <S 5 <S 3.

Formally, if r and s are odd, then 2kr <S 2�s if and only if either: (1) k < � and r = s = 1;
(2) r = 1 and s > 1; (3) k = � and 1 < s < r; or (4) k > � and r, s > 1.

Sharkovsky’s Theorem states that for every continuous self-map f of a compact
interval, if s is the period of some point in the domain of f and if t <S s, then t is also the
period of a point in the domain of f . In symbols, if s ∈ Per(f ), then Per(f ) ⊇ {t : t ≤S s}.
Thus every set Per(f ), except the set {2k : k ≥ 0} of all powers of 2, which we denote 2∞,
is determined by its Sharkovsky-largest member, which we denote S-max(Per(f )).

S̆tefan [S̆] showed that the converse is also true. For every positive integer s, there is
a continuous self-map f of a compact interval such that Per(f ) = {t : t ≤S s} and, in
addition, there is such a map for which Per(f ) = 2∞.

For modern proofs of Sharkovsky’s Theorem in English, including the converse, see
[BGMY], [ALM], or [BCop].

Let π : P → P , where P = {p1 < p2 < · · · < pn}. The canonical π-linear map is
Lπ : [1, n] → [1, n], where Lπ(i) = j if π(pi) = pj and Lπ is linear on each interval
[i, i + 1].

The Markov graph of π is the directed graph Mπ with n− 1 vertices, V1, V2, . . . , Vn−1

and an arc from Vi to Vj , written Vi → Vj , if and only if either π(pi) ≤ pj and
π(pi+1) ≥ pj+1, or π(pi) ≥ pj+1 and π(pi+1) ≤ pj .

LEMMA 1.1. The following statements are equivalent.
(1) Vi → Vj in Mπ .
(2) For some continuous, π-weakly monotone map f with π-set Zπ , f [zi, zi+1] ⊇

[zj , zj+1].
(3) For every continuous, π-weakly monotone map f with π-set Zπ , f [zi, zi+1] ⊇

[zj , zj+1].
(4) For some continuous, π-weakly monotone map f with π-set Zπ , there exists

x ∈ (zi, zi+1) such that f (x) ∈ (zj , zj+1).
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(5) For every continuous, π-weakly monotone map f with π-set Zπ , there exists
x ∈ (zi, zi+1) such that f (x) ∈ (zj , zj+1).

2. Horseshoes
f : I → I has a horseshoe if and only if there exist subintervals J and K of I , with at
most one point in common, such that f (J ), f (K) ⊇ J ∪ K . In this case we say that J
and K exhibit a horseshoe for f , and if J = [a, b] and K = [b, c], we say that a < b < c

exhibit a horseshoe for f . As in Li-Yorke’s famous proof that ‘Period three implies chaos’
[LY], we have the following.

LEMMA 2.1. If f has a horseshoe, then Per(f ) = {1, 2, 3, . . . }.
From Sharkovsky’s Theorem we then have the following.

LEMMA 2.2. If some power of f has a horseshoe, then Per(f ) � 2∞.

LEMMA 2.3. If there exist a < b ≤ c < d in I such that f [a, b] ⊇ [c, d], f [c, d] ⊇
[a, b], f k(a) is a fixed point of f for some k ≥ 0, and f i(a) /∈ (a, b) for all i ≥ 0, then
some power of f has a horseshoe.

Proof. Without loss of generality k is even.
Suppose first that f k(a) ≤ a. Since k + 1 is odd, f k+1[a, b] ⊇ [c, d]. However,

f k+1(a) = f k(a) ≤ a, so f k+1[a, b] contains [c, d] and a point less than or equal to a.
Thus f k+1[a, b] ⊇ [a, b] ∪ [c, d], and hence f k+2[a, b] ⊇ [a, b] ∪ [c, d]. However,
f [c, d] ⊇ [a, b], so f k+2[c, d] ⊇ [a, b]∪[c, d]. Thus [a, b] and [c, d] exhibit a horseshoe
for f k+2.

Finally, suppose that f k(a) ≥ b. Note that f k(a) = f k(f k(a)). Since f k[a, b] ⊇
[a, b], there exists x ∈ (a, f k(a)) such that f k(x) = a. Then a < x < f k(a) exhibit a
horseshoe for f k . ✷

LEMMA 2.4. Suppose that f is continuous and π-weakly monotone . Then f has a
horseshoe if and only if there exist pi < pj < pk in P such that π(pi), π(pk) ≤ pi

and π(pj ) ≥ pk , or π(pi), π(pk) ≥ pk and π(pj ) ≤ pi .

Proof. The conditions are clearly sufficient for f to have a horseshoe. To prove the
converse, it suffices to show that one of the conditions holds if f has a horseshoe.

By [BCop, Lemma II.2] we may assume that there exist a < b < c in I such that

f (a) = f (c) = a and f (b) = c,

f (x) > a for all x, a < x < c,

x < f (x) < c for all x, a < x < b.

Let zi be largest π-point less than or equal to a, let zj be the smallest π-point greater
than or equal to b and let zk = f (zj ). Then zi ≤ a < b ≤ zj < c ≤ zk .

If zi = a, then f (zi) = zi . If zi < a, then it follows from the facts that for small ε > 0,
f is non-decreasing on [a, a + ε] and there are no π-points in (zi , a + ε), that f (zi) ≤ zi .
Similarly, f (zk) ≤ zi .

It follows that π(pi), π(pk) ≤ pi and π(pj ) ≥ pk . ✷
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LEMMA 2.5. Suppose that f is continuous and π-weakly monotone . Then for every
k ≥ 1, f k has a horseshoe if and only if there exist π-points a < b < c of f such
that f k[a, b], f k[b, c] ⊇ [a, c].
Proof. One direction is trivial. Suppose then that f k has a horseshoe. Let Zπ denote the
set of π-points of f .

Let Q be the set of endpoints of the connected components of
⋃k−1

i=0 f−k(Zπ), and let
θ = f k|Q. Then f k is θ -weakly monotone and f k(Zθ ) ⊆ Zπ . By Lemma 2.4, there
are θ -points x < y < z such that, without loss of generality, f k(x) ≤ x, f k(z) ≤ x and
f k(y) ≥ z. In particular, f i(y) �= f i(x), f i(z) for 0 ≤ i ≤ k.

Let m be the smallest positive integer such that f m(y) is not between f m(x) and f m(z).
Then 1 ≤ m ≤ k. We may assume that fm(y) < f m(x), f m(z).

Let v = min{fm−1(x), f m−1(z)} and w = max{fm−1(x), f m−1(z)}. Then v <

fm−1(y) < w and f m−1[x, z] ⊇ [v,w]. The minimum value of f on [v,w] is less
than both f (v) and f (w), so we may assume that it takes place at a π-point, b.

Now let a be the largest π-point less than or equal to v and let c be the smallest π-point
greater than or equal to w. Since f k[v, b], f k[b,w] ⊇ [v,w] and f k(Zθ ) ⊆ Zπ , it follows
that f k[v, b], f k[b,w] ⊇ [a, c]. Thus f k[a, b], f k[b, c] ⊇ [a, c]. ✷

We now phrase Lemma 2.5 in terms of π and its Markov graph.
A directed graph, with ordered vertices and arcs · → ·, has a horseshoe if and only

if there are disjoint, non-empty collections VL and VR of vertices such that V ′ < V ′′ for
every V ′ ∈ VL and every V ′′ ∈ VR, and such that for every V ∈ VL ∪ VR , there exist
V ′ ∈ VL and V ′′ ∈ VR and arcs V ′ → V and V ′′ → V .

Let D be a directed graph and let k ≥ 1. The kth power of D, denoted Dk , is the
directed graph whose vertices are the vertices of D (with the same order if the vertices
of D are ordered) and whose arcs are the k-tuples of arcs in D, each starting where the
previous arc ends.

THEOREM 2.6. Suppose that π is a self-map of a finite-ordered set and that f : I → I

is continuous and π-weakly monotone . Then for every k ≥ 1, f k has a horseshoe if and
only if Mk

π has a horseshoe.

Proof. Let {zi} denote the set of π-points of f . Suppose that f k has a horseshoe.
By Lemma 2.5, there are π-points a < b < c such that f k[a, b], f k[b, c] ⊇ [a, c].
Let VL denote the set of vertices Vi in Mπ such that a ≤ zi < zi+1 ≤ b, and let VR denote
the set of vertices Vj in Mπ such that b ≤ zj < zj+1 ≤ c. Then VL and VR are well
defined and satisfy the conditions of the definition.

Conversely, suppose that VL and VR are as in the definition. Let i and j be least such
that Vi ∈ VL and Vj ∈ VR . Similarly, let i ′ and j ′ be greatest such that Vi′ ∈ VL and
Vj ′ ∈ VR. Then [zi, zi′+1] and [zj , zj ′+1] exhibit a horseshoe for f k . ✷

3. Periods and primitive closed walks
A continuous, piecewise weakly monotone self-map f : I → I of a compact interval
has finitely many turning points and finitely many turning intervals. A turning point is a
point x ∈ I such that either f (x − ε), f (x + ε) > f (x) for all small ε > 0, or f (x − ε),
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f (x + ε) < f (x) for all small ε > 0. A turning interval is a non-degenerate subinterval
J = [a, b] of I such that f (J ) is one point and either f (a − ε), f (b + ε) > f (J )

for all small ε > 0 or f (a − ε), f (b + ε) < f (J ) for all small ε > 0. pk is a
turning point of π if and only if k �= 1, n and either π(pk) < π(pk−1), π(pk+1) or
π(pk) > π(pk−1), π(pk+1).

A cycle of π is the restriction of π to a subset on which π is a cyclic permutation.
Thus the cycles of π can be thought of as periodic orbits of Lπ .

We review some standard directed graph-theoretic terminology.
• A walk is a sequences of arcs, each starting at the vertex where the previous one

ends.
• The length of a walk is the number of arcs in it (counting multiplicity).
• A walk is closed if and only if it starts and ends at the same vertex.
• A cycle is a closed walk which does not pass through the same vertex twice.
• A closed walk is primitive if and only if it is not a shorter closed walk traversed

several times. For example, V1 → V1 → V2 → V1 is primitive, whereas
V1 → V2 → V1 → V2 → V1 is not.

• A directed graph is strongly connected if and only if for every pair of vertices V1

and V2, there are walks from V1 to V2 and from V2 to V1.
• For V , a subset of the vertices of D, the subgraph of D induced by V is the graph

whose set of vertices is V and whose set of arcs is the set of arcs in D from vertices
in V to vertices in V .

• A strongly connected component of D is a maximal strongly connected induced
subgraph of D.

Let Vi0 → Vi1 → · · · → Vit−1 → Vit be a walk of length t in Mπ , and let f : I → I

be continuous and π-weakly monotone with π-set Zπ . A point x ∈ I follows the walk if
and only if f k(x) ∈ [zik , zik+1] for k = 0, 1, . . . , t .

LEMMA 3.1. Let f be continuous and π-weakly monotone , with π-set Zπ . Suppose that
x /∈ Zπ is periodic of period t . Then x follows a closed walk of length t which is either
primitive or a primitive closed walk traversed twice.

LEMMA 3.2. Let f be continuous and π-weakly monotone . Suppose that Mπ contains a
primitive closed walk of length t . Then f has a periodic point of period t .

Proof. Let Zπ = {zi} be a π-set and let Vi0 → Vi1 → · · · → Vit−1 → Vi0 be a primitive
closed walk in Mπ . By [BCop, Lemma I.4] there is a fixed point x of f t which follows
the walk.

Suppose that x ∈ (zi0 , zi0+1). Then f k(x) ∈ (zik , zik+1) for 0 ≤ k ≤ t −1. If the period
of x were less than t , the walk would not be primitive.

Suppose that x = zi0 or zi0+1. Then [zi1 , zi1+1] is the unique π-interval with one
endpoint f (x) such that Vi0 → Vi1 . Similarly, for k = 2, 3, . . . , t − 1, [zik , zik+1] is the
unique π-interval with one endpoint f k(x) such that Vik−1 → Vik .

Suppose that the period of x is s. If Vis = Vi0 , then Vis+1 = Vi1 , etc. Since the walk is
primitive, s = t . If Vis �= Vi0 , then [zis , zis+1] and [zi0 , zi0+1] are the distinct π-intervals
with common endpoint x. Then Vi2s = Vi0 and s = t/2, and so t/2 ∈ Per(f ).

https://doi.org/10.1017/S0143385702001451 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385702001451


Minimal combinatorial models 713

If t is not a power of 2, then t <S t/2, and so t ∈ Per(f ) by Sharkovsky’s Theorem.
So suppose that t is a power of 2. We may assume that S-max(Per(f )) = s. Consider the
endpoints of [zi0, zi0+1] and [zis , zis+1]. Call them a < b ≤ c < d . Then [a, b] and [c, d]
satisfy the conditions of Lemma 2.3 with f s in place of f . Therefore f s has a horseshoe
and so by Lemma 2.2, Per(f ) � 2∞. By Sharkovsky’s Theorem, 2∞ ⊆ Per(f ). Therefore
t ∈ Per(f ). ✷

Remark. If in Lemma 3.2, π is a cyclic permutation, then it follows from [ALM,
Theorem 2.6.4] that f has a periodic point of period t which follows the walk. However, if
π is not a cyclic permutation, there may not exist a periodic point of period t which follows
the walk. Consider π = (

1 2 3 4 5
4 5 3 2 1

)
and the primitive closed walk V2 → V3 → V2.

THEOREM 3.3. There are no combinatorial models for ‘Per(f ) = 2∞’.

Proof. It suffices to show that every strongly connected component of Mπ is a cycle.
Then Mπ consists of finitely many cycles. By Lemma 3.1, Per(f ) is finite for every
continuous, π-weakly monotone self-map of a compact interval.

Let D be a strongly connected component of Mπ and let C be a cycle in D. The length
of C is a power of 2, say 2k . Suppose that D �= C. Then there is a vertex V1 in C which is
connected by an arc A of D to a vertex V2 not in C. Consider the closed walk W consisting
of A followed by a walk in D from V2 to V1 which passes through V2 and V1 each only
once. Then W is primitive, so its length is a power of 2, say 2�. Since A appears in W but
not in C, the closed walk consisting of W followed by five repetitions of C is primitive.
It has length 2� + 5 · 2k , which is not a power of 2. Therefore D = C. ✷

Remark. Theorem 3.3 follows from [JS], but the proof above is much simpler (as it
proves less).

THEOREM 3.4. Suppose that π is a self-map of a finite-ordered set and that f is a
continuous and π-weakly monotone map. If Per(f ) is a finite subset of 2∞, then π has a
cycle of length S-max(Per(f )).

Proof. Suppose that π : P → P . We prove by induction on k that if f : I → I is
continuous and π-weakly monotone , and if S-max(Per(f )) = 2k , then π has a cycle of
length 2k .

Suppose that k = 0. Since the length of every cycle of π is also the period of some
periodic orbit of f , it follows that π has no cycles of length other than 1. However, it does
have a cycle of length 1.

Suppose that k = 1, but that the length of every cycle in Mπ is 1. Let {v,w} be a
periodic orbit of period 2. Without loss of generality, v < w. Then both v and w are in
the interiors of π-intervals. Let a be the left endpoint of the π-interval containing v and
let d be the right endpoint of the π-interval containing w. If there is at least one π-point
between v and w, let b be the right endpoint of the π-interval containing v and let c be the
left endpoint of the π-interval containing w. If not, let b = c be the unique fixed point of
f between v and w. Then by Lemmas 2.2 and 2.3, Per(f ) � 2∞.

So suppose that k ≥ 1 and that the result is true for k; we prove it for k + 1. Let Zπ

be a π-set for f . Let Q be the union of Zπ and the set of endpoints of the connected
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components of f−1(Zπ), and let θ = f 2|Q. Then f 2 is θ -weakly monotone. We have
Per(f ) = {1, 2, . . . , 2k+1} and Per(f 2) = {1, 2, . . . , 2k}. By the inductive hypothesis, θ
has a cycle of length 2k. Because θ(Q) ⊆ Zπ this cycle is contained in Zπ . Hence π2 has
a cycle of length 2k . Since k ≥ 1, 2k is even and so π has a cycle of length 2k+1. ✷

THEOREM 3.5. Let π be a self-map of a finite-ordered set. Then every continuous,
π-weakly monotone map has the same set of periods. This set is the union of the set of
lengths of the cycles of π and the set of lengths of the primitive closed walks in Mπ .

Proof. To prove the first assertion, by Theorem 3.3 it suffices to show that the following
hold for every continuous, π-weakly monotone map f :
(1) if every cycle of π and every primitive closed walk in the Markov graph Mπ of π

have lengths powers of 2, then S-max(Per(f )) is the Sharkovsky-largest length of
the cycles of π ;

(2) if some cycle of π or some primitive closed walk in Mπ has a length not a power
of 2, then S-max(Per(f )) is the Sharkovsky-largest of the following two numbers:
the Sharkovsky-largest length of the cycles of π and the Sharkovsky-largest length
of the primitive closed walks in Mπ .

(1) By Lemma 3.1, S-max(Per(f )) is a power of 2. By Theorem 3.4, S-max(Per(f )) is
the Sharkovsky-largest length of the cycles of π .

(2) Consider the Sharkovsky-largest length of the cycles of π and the Sharkovsky-
largest length of the primitive closed walks in Mπ . By Lemma 3.1, S-max(Per(f )) is
Sharkovsky-less than or equal to one of these numbers. By Lemma 3.2, S-max(Per(f )) is
Sharkovsky-greater than or equal to both of them.

To prove the second assertion, we first show that if t ∈ Per(Lπ ), but no cycle of π has
length t (i.e. no π-point has period t), then there is a primitive closed walk of length t

in Mπ .
Suppose that x is Lπ -periodic of period t . Then x follows a closed walk Vi0 →

Vi1 → · · · → Vit−1 → Vi0 of length t . By Lemma 3.1, the walk is primitive or it is
Vi0 → Vi1 → · · · → Vi(t/2)−1 → Vi0 traversed twice. Suppose the latter holds. Consider
the set of all points which follow the closed walk Vi0 → Vi1 → · · · → Vi(t/2)−1 → Vi0 .

This set is a closed interval J . L
t/2
π maps J linearly onto Vi0 and interchanges x

and L
t/2
π (x). Therefore, the slope of Lt/2

π on J is −1 and hence J = Vi0 .
Now i0 and i0 + 1 are fixed points of Lt

π and are in the same Lπ -orbit. If i0 had period
s < t , then x would be a fixed point of Ls

π . Since this is not the case, i0 has period t .
This proves one containment of the second assertion. The other containment follows

from Lemma 3.2. ✷

In light of Theorem 3.5, for π a self-map of a finite-ordered set, we let Per(π) denote
the set of periods of every continuous, π-weakly monotone map. We call it the set of
periods of π .

Let π : P → P be a cyclic permutation of a finite-ordered set, P = {p1 < p2 < · · ·
< p2k }, of cardinality 2k, k ≥ 0. If k = 0, we say that π is a simple cycle. If k > 0, set
L = {p1 < p2 < · · · < p2k−1} and R = {p2k−1+1 < p2k−1+2 < · · · < p2k }. We say that π
is a simple cycle if and only if π(L) = R, π(R) = L and both π2|L and π2|R are simple
cycles of length 2k−1.
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Remark. Simple cycles of length a power of 2 were introduced by Block [B].

Suppose, for example, that π : P → P a simple cycle of length 8, where P = {p1 <

p2 < · · · < p8}. Then π{p1, p2, p3, p4} = {p5, p6, p7, p8} and π{p5, p6, p7, p8} =
{p1, p2, p3, p4}. Furthermore, π maps each of the sets {p1, p2} and {p3, p4} onto one of
the sets {p5, p6} and {p7, p8} and vice versa. Therefore, there are exactly three primitive
closed walks in Mπ , namely V4 → V4, V2 → V6 → V2 and a walk of length 4 passing
through the vertices V1, V3, V5, V7.

Using the same analysis for arbitrary k > 0, we have the following.

Remark. Suppose that π : P → P is a simple cycle of length 2k , k > 0 and let t be
a positive integer. Then there is a primitive closed walk of length t in Mπ if and only if
t = 2j for some j < k. In particular, there are no primitive closed walks of length 2k

in Mπ .

THEOREM 3.6. For every k ≥ 0, the minimal combinatorial models for ‘Per(f ) = {t :
t ≤S 2k}’ are the simple cycles of length 2k.

Proof. It suffices to consider only k > 0 and to prove:
(1) every simple cycle π of length 2k satisfies Per(π) = {t : t ≤S 2k};
(2) every minimal combinatorial model for ‘Per(f ) = {t : t ≤S 2k}’ is a simple cycle of

length 2k .
Statement (1) follows from Theorem 3.5 and the Remark immediately preceding the

statement of Theorem 3.6. To prove (2), suppose that π is a minimal combinatorial model
for ‘Per(f ) = {t : t ≤S 2k}’. Then by (1), #π ≤ 2k, and so by Theorem 3.4, π is a
cycle of length 2k . By [BCop, Theorem VII.24] (see also [B]), if a continuous self-map
of a compact interval has a periodic point of period 2k whose orbit is not simple, then
Per(f ) � 2∞. It follows that π is a simple cycle of length 2k . ✷

4. Reduction- and restriction-minimality
A block of P is a subset B of consecutive members (possibly only one) of P . A block of
P is flat if and only if it contains at least two points and π is constant on the block. For
blocks B and B ′, write B < B ′ if and only if b < b′ for every b ∈ B, b′ ∈ B ′. A block
structure for π is a partition B = {B1 < B2 < · · · < Bm} of P into disjoint blocks, such
that if b and b′ belong to the same block, then so do π(b) and π(b′). The reduction of π
corresponding to B is θ : {q1 < q2 < · · · < qm} → {q1 < q2 < · · · < qm}, defined
by θ(qi) = qj if π(Bi) ⊆ Bj . The vertex Vk = [pk, pk+1] in Mπ is a gap vertex if pk

and pk+1 are in different blocks and a block vertex if they are in the same block.

LEMMA 4.1. Suppose that B is a block structure for π and that θ is the corresponding
reduction:
(1) every closed walk in Mπ passes through only block vertices or through only gap

vertices;
(2) Mθ is isomorphic, via an increasing map of the vertices, to the subgraph of Mπ

induced by the gap vertices [MN, Theorem 4.1].

θ : Q → Q is a restriction of π : P → P if and only if Q ⊆ P and θ = π |Q.
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LEMMA 4.2. Suppose that θ is a reduction of or a restriction of π:
(1) if π is a permutation, then so is θ ;
(2) if Mk

θ has a horseshoe, then so does Mk
π .

Proof of Lemma 4.2(2). For θ a reduction of π , the result follows from Lemma 4.1.
Suppose that θ : Q → Q is a restriction of π : P → P and that Mk

θ has a horseshoe.
Let f be continuous, π-weakly monotone, and suppose, without loss of generality, the set
of π-points of f is P . Similarly, let g be continuous, θ -weakly monotone and suppose
the set of θ -points of g is Q. Since Mk

θ has a horseshoe, it follows from Theorem 2.6
that gk has a horseshoe. By Lemma 2.5, there are θ -points a < b < c such that
gk[a, b], gk[b, c] ⊇ [a, c]. Since Q ⊆ P , a, b and c are π-points. However, f (J ) ⊇ g(J )

for every interval J whose endpoints are θ -points and, hence, f k(J ) ⊇ gk(J ) for
every such interval. Therefore f k[a, b], f k[b, c] ⊇ [a, c]. By Theorem 2.6, Mk

π has a
horseshoe. ✷

π is reduction- and restriction-minimal, which we abbreviate to r&r-minimal, if and
only if there is no proper reduction of π with the same set of periods as π and there is no
proper restriction of π with the same set of periods as π .

The following theorem is immediate from Lemma 4.2.

THEOREM 4.3. Suppose that π is a minimal combinatorial model or a minimal
permutation model for either of the following properties:
(1) Per(f ) = {t : t ≤S s}, s ≥ 1;
(2) Per(f ) = {t : t ≤S 3 · 2k}, k ≥ 0, and f 2k does not have a horseshoe.
Then π is r&r-minimal.

In the remainder of this section, we establish several properties of r&r-minimal maps
which will be needed later in the paper.

f : I → I exhibits π if and only if there exist x1 < x2 < · · · < xn in I such that if
π(pi) = pj , then f (xi) = xj . Every π-weakly monotone map exhibits π .

LEMMA 4.4. If θ is a reduction of or a restriction of π , then Per(θ) ⊆ Per(π).

Proof. If θ is a reduction of π , then by Theorem 3.5, the result follows from Lemma 4.1.
Suppose then that θ is a restriction of π . We show that if f is continuous and exhibits θ ,

then Per(θ) ⊆ Per(f ). Then, since θ is a restriction of π , any continuous, π-weakly
monotone map exhibits θ . By [MN, Corollary 1.15], there is a continuous, θ -weakly
monotone map fθ , such that for every map η of a finite-ordered set which has no flat
blocks, if fθ exhibits η, then any continuous f which exhibits θ also exhibits η. So let
k ∈ Per(θ) = Per(fθ ), and let f be a continuous map which exhibits θ . There is a
cyclic permutation η of a finite-ordered set containing k points which is exhibited by fθ .
Since permutations have no flat blocks, f also exhibits η. Thus k ∈ Per(f ). ✷

LEMMA 4.5. r&r-minimal maps have no flat blocks.

Proof. Suppose that π : P → P is r&r-minimal, but that π(pk) = π(pk+1).
Let {pk, pk+1} be a block and call the associated reduction θ . It follows from Theorem 3.5
that Per(θ) = Per(π). Therefore π has no flat blocks. ✷
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LEMMA 4.6. Suppose that π is r&r-minimal and that {B1, B2, . . . , Bk} is a collection
of disjoint blocks, each containing at least two points, such that π(Bi) ⊆ Bi+1, i =
1, 2, . . . , k, where Bk+1 = B1. Then B1 ∪ B2 ∪ · · · ∪ Bk = P .

Proof. Suppose that the result is false. Consider the block structure with blocks
B1, B2, . . . , Bk and the singletons in P � (B1 ∪ B2 ∪ · · · ∪ Bk). Let t = S-max(Per(π)).

There are three possibilities:

(1) π has a cycle of length t;
(2) Mπ has a primitive closed walk of length t passing through only block vertices;
(3) Mπ has a primitive closed walk of length t passing through only gap vertices.

In case (1), restrict to the cycle of length t . In case (2), restrict to B1 ∪ B2 ∪ · · · ∪ Bk .
In case (3), reduce by collapsing each Bi to a point. The resulting restriction or reduction
has the same set of periods as does π . ✷

LEMMA 4.7. Suppose that π is r&r-minimal and that Per(π) � 2∞. Then there is no
collection {B1, B2, . . . , Bk} of disjoint blocks, each containing at least two points, such
that π maps Bi monotonically onto Bi+1, i = 1, 2, . . . , k, where Bk+1 = B1.

Proof. If there is such a collection, let θ be the reduction obtained by collapsing the blocks
to points. Then k ∈ Per(θ), since θ contains a cycle of length k. Now Per(π) consists of k,
possibly 2k, and the lengths of the primitive closed walks passing through gap vertices
in Mπ . However, the gap vertices in Mπ and Mθ are the same, so Per(π) � Per(θ)
can contain only 2k. In particular, Per(θ) � 2∞. So 2k �= S-max(Per(π)) and hence
Per(π) = Per(θ). ✷

We call a collection of blocks as in Lemma 4.7 a monotone cycle of blocks. In [BCov],
an interval J with endpoints in P is called periodic if and only if there is a positive integer t
such that Lt

π is the identity on J , where Lπ is the canonical π-linear map. It follows from
[BCov, Lemmas 2.6 and 2.4] that {pi, pi+1, . . . , pi+k} is in a monotone cycle of blocks if
and only if [i, i + k] is a periodic interval.

Recall that pk is a turning point of π if and only if k �= 1, n and either
π(pk−1), π(pk+1) < π(pk) or π(pk−1), π(pk+1) > π(pk).

LEMMA 4.8. Suppose that π is r&r-minimal and that Per(π) � 2∞. Then every point in
P is in the orbit of a turning point of π .

Proof. Let θ be the restriction of π to Q, where Q is the set of points in P each of which
is in the orbit of at least one of the following:

• the largest point in P ;
• the smallest point in P ;
• a turning point of π ;
• an endpoint of a maximal flat block;
• an endpoint of a block in a maximal monotone cycle of blocks.

By [BCov, Theorem 2.6], Lθ and Lπ are topologically conjugate; in particular they have
the same set of periods. It follows from Theorem 3.5 that Per(θ) = Per(π). Since π is
r&r-minimal, θ = π .
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Since π has no flat blocks and no monotone cycle of blocks, it suffices to show that
the smallest and largest points in P , say p and p′, are in the orbits of turning points of π .
If π−1(p) ⊆ {p}, π−1(p′) ⊆ {p′} or π−1{p,p′} ⊆ {p,p′}, then there is a restriction of π
with the same set of periods as π . If none of these conditions hold, then p and p′ are in
the orbits of turning points of π . ✷

5. Block structure over a simple cycle
LEMMA 5.1. Suppose f : I → I is continuous and that there is no non-degenerate,
closed subinterval J �= I of I such that f (J ) ⊆ J .
(1) If f has more than one fixed point, then f has a horseshoe.
(2) If some fixed point of f has more than one preimage, then f 2 has a horseshoe.

Proof. Without loss of generality I = [0, 1].
(1) It suffices to find a < b < c in [0, 1], such that f (a) = f (c) = a and f (b) = c

(or f (a) = f (c) = c and f (b) = a).
The set of non-fixed points of f is open and dense in [0, 1]. Since f has more than

one fixed point, there is a connected component C of that set such that both endpoints
a < a′ are fixed points. Without loss of generality f (x) > x for every x, a < x < a′.
Then a′ �= 1. (Otherwise let J = [a + ε, 1].)

Let c > a′ be least such that f (c) = a. (If no such c exists, again let J = [a + ε, 1].)
There exists b, a < b < c, such that f (b) = c. (If no such b exists, let J =
[a, c − ε].)

(2) We may assume that f has exactly one fixed point a; otherwise, by (1), f has a
horseshoe and then so does f 2. Since f is onto, a �= 0, 1. Suppose that f (c) = a, where
without loss of generality, c > a.

Let u = min{f (x) : a < x < c}. Then u < a. (If not, let J = [a, c].) There exists
b′, u ≤ b′ < a, such that f (b′) = c. (If not, let J = f [u, c].) There exists b, a < b < c,
such that f (b) = b′. Then f 2(a) = f 2(c) = a and f 2(b) = c. ✷

LEMMA 5.2. Suppose that π : P → P is r&r-minimal, P = {1, 2, . . . , n}, and
Per(π) � 2∞. If there is a non-degenerate, closed interval J ⊆ [1, n] and a positive
integer t such that J,Lπ (J ), . . . , L

t−1
π (J ) are pairwise disjoint and Lt

π(J ) ⊆ J , then
J ∪ Lπ(J ) ∪ · · · ∪ Lt−1

π (J ) ⊇ {1, 2, . . . , n}.
Proof. Since π has no flat blocks, the slope of Lπ on any π-interval [i, i + 1] has absolute
value at least 1. Let J be an interval satisfying the conditions of the lemma.

Suppose first that J ∩P = ∅. Then for i = 0, 1, . . . , t − 1, Li
π (J )∩P = ∅. Therefore

Lt
π is linear on J . Since Lt

π (J ) ⊆ J and the slope of Lt
π on J has absolute value at

least 1, Lt
π maps J linearly onto J . Therefore L2t

π is the identity on J , and so J is
contained in a periodic (in the sense of [BCov]—see §4) interval whose endpoints belong
to P . This contradicts Lemma 4.7. Therefore J ∩ P �= ∅.

Next suppose that J ∩ P contains exactly one point, say d . Since π has no flat blocks,
each Li

π (J ) ∩ P contains exactly one point. Define a subinterval K of J = [a, b], as
follows. If d = a or b, let K = J . Suppose that a < d < b. At least one of the following
holds:
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(1) Lt
π [a, d] ⊆ [a, d];

(2) Lt
π [d, b] ⊆ [d, b];

(3) Lt
π [a, d] ⊆ [d, b] and Lt

π [d, b] ⊆ [a, d].
If (1) holds, set K = [a, d]; otherwise set K = [d, b]. Then L2t

π (K) ⊆ K and for each
i = 0, 1, . . . , 2t − 1, Li

π(K) is contained in a unique π-interval. As above, this leads to a
contradiction of Lemma 4.7.

Therefore J ∩ P contains at least two points. For each i = 1, 2, . . . , t , let B ′
i =

Li−1
π (J ) ∩ P . Each B ′

i is a block containing at least two points and π(B ′
i ) ⊆ B ′

i+1 for
i = 1, 2, . . . , t , where B ′

t+1 = B ′
1. It follows from Lemma 4.6 that B ′

1 ∪B ′
2 ∪· · ·∪B ′

t = P .
Therefore J ∪ Lπ(J ) ∪ · · · ∪ Lt−1

π (J ) ⊇ P . ✷

THEOREM 5.3. Let k ≥ 0. Suppose that π : P → P is an r&r-minimal self-map of a
finite-ordered set such that Per(π) � 2∞ and such that M2k

π does not have a horseshoe.
Then π has a block structure over a simple cycle of length 2k .

Proof. We prove, by induction on j , that for every j = 0, 1, . . . , k, π has a block structure
over a simple cycle of length 2j .

There is nothing to prove for j = 0. Suppose then that 0 ≤ j ≤ k − 1, and that
π has a block structure over a simple cycle θ of length 2j . Let B ′′

1 , B
′′
2 , . . . , B

′′
2j

be the

blocks of this block structure, labelled so that π(B ′′
i ) ⊆ B ′′

i+1 for i = 1, 2, . . . , 2j , where
B ′′

2j+1
= B ′′

1 . Since π has no flat blocks and Per(π) � 2∞, each block contains at least
two points of P .

Suppose that #π = n. Without loss of generality, P = {1, 2, . . . , n}. Let Lπ : [1, n] →
[1, n] be the canonical π-linear map. For i = 1, 2, . . . , 2j , let Ji be the convex hull,
in [1, n], of the block B ′′

i , where B ′′
i is as in the preceding paragraph, and let gi = L2j

π |Ji .
Then gi maps Ji to itself. Since j ≤ k − 1, g2

i does not have a horseshoe.
Now fix i, 1 ≤ i ≤ 2j . We claim that there is no non-degenerate, proper,

closed subinterval J of Ji such that gi(J ) ⊆ J . Suppose that J is such an interval.
Then the intervals J,Lπ (J ), . . . , L

2j−1
π (J ) are pairwise disjoint. So by Lemma 5.2,

J ∪ Lπ(J ) ∪ · · · ∪ L2j−1
π (J ) ⊇ P . Since the endpoints of Ji are in P , it follows that

J = Ji . This establishes the claim.
By Lemma 5.1, gi has a unique fixed point wi and g−1

i (wi) = {wi}.
We claim that every Lπ -periodic point not in J1 ∪ J2 ∪ · · · ∪ J2j has period a power

of 2. If not, then by Lemma 3.1, Mπ has a primitive closed walk of length not a power of 2
which passes through only gap vertices. By Lemma 4.1, Mθ has a primitive closed walk of
length not a power of 2. This contradicts the Remark immediately preceding Theorem 3.6.

Since Per(Lπ) � 2∞, gi has a periodic orbit with more than one point. There exist
adjacent points y < z in this periodic orbit such that gi(y) > y and gi(z) < z. Therefore
y < wi < z, gi(y) > wi and gi(z) < wi . Since g−1

i (wi) = {wi}, it follows that:
(∗) gi(x) > wi for every x ∈ Ji such that x < wi and gi(x) < wi for every x ∈ Ji such

that x > wi .
Now {w1, w2, . . . , w2j } is a periodic orbit of Lπ . It follows from (∗) that if x1 ∈ J1 and
Lπ(x1) = w2, then x1 = w1. Therefore we have:
(∗∗) L−1

π (w1) ∩ J2j = {w2j } and for i �= 1, L−1
π (wi) ∩ Ji−1 = {wi−1}.
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It also follows from (∗) that none of the points wi are turning points of Lπ . Since J1 ∪
J2 ∪ · · · ∪ Jt contains all the turning points of Lπ , it follows from (∗∗) that none of the
points wi is in the orbit of a turning point of Lπ . Then by Lemma 4.8, none of the points
wi is in P . This together with (∗) implies that π has a block structure over a simple cycle
of length 2j+1. ✷

6. Sharkovsky-largest period 3 · 2k

This section contains the most surprising and technically difficult results to prove, the
characterizations of the minimal combinatorial models and the minimal permutation
models for ‘Per(f ) = {t : t ≤S 3 · 2k}’. It is the only case for which the minimal
combinatorial models and the minimal permutation models are not the same.

Let π : P → P be a cyclic permutation of a finite-ordered set of cardinality r · 2k ,
where r ≥ 3 is odd. π is a simple cycle if and only if:
(1) π has a block structure over a simple cycle of length 2k;
(2) π is monotone on all blocks but one;
(3) for each block B, letting p be the central point of B and θ = π2k |B , either

θr−1(p) < θr−3(p) < · · · < θ2(p) < p < θ(p) < · · · < θr−4(p) < θr−2(p)

or

θr−1(p) > θr−3(p) > · · · > θ2(p) > p > θ(p) > · · · > θr−4(p) > θr−2(p).

Remark. Simple cycles of odd length greater than 1 were introduced by S̆tefan [S̆].
Simple cycles of length r · 2k, r odd, r ≥ 3, were studied by Coppel [C] and by Alsedà
et al [ALS]. In [BCop] simple cycles were called strongly simple. Our usage of the term
corresponds to its usage in [ALM].

LEMMA 6.1. Let π : P → P be r&r-minimal such that Per(π) = {t : t ≤S 3 · 2k} and
M2k

π does not have a horseshoe. If #π ≤ 3 · 2k , then π is a simple cycle of length 3 · 2k .

Proof. Consider the canonical π-linear map Lπ : [1, n] → [1, n]. By Theorem 5.3, π
has a block structure over a simple cycle of length 2k. Let B1, B2, . . . , B2k be the blocks
of this structure, labelled so that π(Bi) ⊆ Bi+1 for i = 1, 2, . . . , 2k , where B2k+1 = B1.
Let Ci = [minBi,maxBi] be the convex hull of Bi (in [1, n]). Since Per(π) � 2∞, at least
one block contains more than one point. Since π has no flat blocks, every block contains
at least two points. If every block contained exactly two points, then by Theorem 3.5,
Per(π) ⊆ 2∞. Therefore, one of the blocks contains at least three points.

If one of the blocks contains exactly two points, then some block Bi contains more than
two points, while Bi+1 contains exactly two points. Since π has no flat blocks, any two
consecutive members of Bi must map onto the two members of Bi+1. Therefore there
are non-overlapping subintervals J ′ and J ′′ of Ci such that Lπ(J

′) = Lπ(J
′′) = Ci+1.

It follows that, then L2k
π has a horseshoe. Therefore, each block contains at least three

points, hence exactly three points and #π = 3 · 2k.
Let J be the set of π-intervals contained in C1 ∪ C2 ∪ · · · ∪ C2k , i.e. J = {[j, j + 1] :

Vj is a block vertex}. Note that each Ci contains exactly two intervals in J . If, for each

interval J in J , Lπ(J ) contains only one interval in J , then every L2k
π |Ci is monotone.
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This contradicts the fact that 3 ∈ Per(L2k
π |Ci ) for some i. Therefore, there is at least one

interval J0 in J such that Lπ(J0) contains two intervals in J .
By relabelling, we may assume that J0 ⊆ C2k . Let I2k,1 = J0 and let I2k ,2 be the

other interval in J which is a subset of C2k . Then Lπ(I2k,1) = C1. Now it follows from

Lemma 4.6 that Lπ(Ci) = Ci+1 for i = 1, 2, . . . , 2k − 1. In particular L2k
π (I2k ,1) = C2k .

Since L2k
π does not have a horseshoe, Lπ(I2k,2) is a proper subset of C1. Denote the

intervals in J which are contained in C1 by I1,1 and I1,2, where Lπ(I2k,2) = I1,2.
Similarly, for i = 2, 3, . . . , 2k − 1, denote the two members of J which are contained
in Ci by Ii,1 and Ii,2, where Lπ(Ii−1,2) = Ii,2.

Since 3 ∈ Per(L2k
π ), we must have Lπ(I2k−1,2) ⊇ I2k ,1. If Lπ(I2k−1,2) ⊇ I2k ,2 as well,

then the intervals I2k,1 and I2k ,2 would exhibit a horseshoe for L2k
π . Thus Lπ(I2k−1,2) =

I2k,1.

If Lπ(I1,1) ⊇ I2,2, then the intervals I1,1 and I1,2 would exhibit a horseshoe for L2k
π .

Thus Lπ(I1,1) = I2,1. Similarly Lπ(Ii,1) = Ii+1,1 for i = 2, 3, . . . , 2k − 2 and
Lπ(I2k−1,1) = I2k,2.

We have determined all the arcs emanating from block vertices in Mπ . In particular, π
maps Bi monotonically onto Bi+1 for i = 1, 2, . . . , 2k − 1. Furthermore, if x is the point
in B1 which is an endpoint of I1,1 but not an endpoint of I1,2, if y is the common endpoint
of I1,1 and I1,2, and if z is the point in B1 which is an endpoint of I1,2 but not an endpoint
of I1,1, then it is easy to check that π2k (x) = y, π2k (y) = z, and π2k (z) = x. Therefore π
is a simple cycle. ✷

THEOREM 6.2. The minimal combinatorial models for ‘Per(f ) = {t : t ≤S 3 · 2k} and
f 2k does not have a horseshoe’ are the simple cycles of length 3 · 2k.

Proof. First suppose that π is a simple cycle of length 3 · 2k . Then π has a block structure
over a simple cycle θ of length 2k . Since the length of any primitive closed walk in Mθ is
a power of 2, it follows from Lemma 4.1(2) that the length of any primitive closed walk
in Mπ which passes through only gap vertices is also a power of 2. On the other hand,
any primitive closed walk in Mπ which passes through only block vertices has length a
multiple of 2k . Mπ has a primitive closed walk of length 3 · 2k , the Sharkovsky-largest
multiple of 2k . By Theorem 3.5, S-max(Per(π)) = 3 · 2k .

Let f be continuous and π-weakly monotone . The monotonicity condition on π

implies that M2k
π does not have a horseshoe. By Theorem 2.6 neither does f 2k . Therefore,

π is a combinatorial model for ‘Per(f ) = {t : t ≤S 3 · 2k} and f 2k does not have a
horseshoe’.

To complete the proof, suppose that π is a minimal combinatorial model for ‘Per(f ) =
{t : t ≤S 3 · 2k} and f 2k does not have a horseshoe’. Then by the first part of the proof,
#π ≤ 3 · 2k and by Theorem 4.3, π is r&r-minimal. So by Lemma 6.1, π is a simple cycle
of length 3 · 2k . ✷

THEOREM 6.3. The minimal permutation models for ‘Per(f ) = {t : t ≤S 3 · 2k}’ are the
permutations of cardinality 3 · 2k which satisfy:
(1) π has a block structure over a simple cycle of length 2k with each block having

exactly three points;
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(2) for any pair of adjacent points, pj andpj+1, in the same block, πi(pj ) andπi(pj+1)

are not adjacent points for some i, 1 ≤ i ≤ 2k+1.

Proof. First, suppose that π : P → P is a permutation which satisfies (1) and (2). There is
a block B = {pj , pj+1, pj+2} such that the restriction of π to B is not monotone. Consider
Vj and Vj+1, the two block vertices associated with B in Mπ . Without loss of generality,
there are arcs from Vj to two distinct block vertices. Since π maps blocks onto blocks, it
follows that there are walks of length 2k from Vj to Vj and from Vj to Vj+1.

It follows from (2) that there is a closed walk of length 2k from Vj+1 to Vj .
By following, in succession, the walks from Vj to Vj , from Vj to Vj+1, and from Vj+1

to Vj , we obtain a primitive closed walk of length 3 · 2k. By Theorem 3.5, 3 · 2k ∈ Per(π).
On the other hand, it follows from (1) that the length of any cycle of π is a multiple

of 2k. Now suppose that W is a primitive closed walk. By Lemma 4.1(1), W passes
through only block vertices or through only gap vertices. In the first case, the length of W
is a multiple of 2k. In the second case, it follows from Lemma 4.1(2) and the remark
immediately preceding Theorem 3.6 that the length of W is 2j for some j < k. Therefore,
the length of W is Sharkovsky-less than or equal to 3 · 2k. Thus by Theorem 3.5, 3 · 2k =
S-max(Per(π)) and so π is a permutation model for ‘Per(f ) = {t : t ≤S 3 · 2k}’.

To complete the proof, suppose that π : P → P is a minimal permutation model for
‘Per(f ) = {t : t ≤S 3 · 2k}’ and consider the canonical π-linear map Lπ : [1, n] → [1, n].
The case k = 0 is straightforward, so suppose that k ≥ 1.

By Theorem 4.3, π is r&r-minimal. Since 3 · 2k−1 /∈ Per(π), M2k−1

π does not have
a horseshoe. Hence, by Theorem 5.3, π has a block structure over a simple cycle of
length 2k−1.

As in the proof of Theorem 5.3, let B be one of the blocks and let C = [minB,maxB]
be its convex hull. Since π maps blocks onto blocks, Lπ maps convex hulls of blocks onto
convex hulls of blocks. Set g = L2k−1

π |C . Then g maps C onto itself. We will show that
the following holds.
(∗) There is a point z ∈ C, z /∈ B, such that g(p) > z for every p ∈ B with p < z, and

g(p) < z for every p ∈ B with p > z.
As in the proof of Theorem 5.3, g has no proper, non-degenerate, invariant subinterval.

Since g does not have a horseshoe, by Lemma 5.1, it has a unique fixed point, call this z.
Since g maps C onto itself, z is not an endpoint of C.

We first claim that z is not a turning point of g. Note that since π is r&r-minimal, Lπ

and hence g have no flat intervals. If z is a turning point of g, let Q be B union the set of
endpoints of maximal monotone pieces of g. Let a be the largest point in Q less than z and
let b be the smallest point in Q greater than z. Then since g maps endpoints of maximal
monotone pieces of g into B, g(a), g(b) ∈ B. Since the turning point z is the unique fixed
point of g, either g(a) < a or g(b) > b. Without loss of generality assume the former.
Then g(x) < x for all x ∈ C such that x ≤ a. However, g(a) < a so g2(a) < g(a).
Continuing, we have · · · < g3(a) < g2(a) < g(a), which contradicts the fact that g(a) is
g-periodic. Therefore, z is not a turning point of g and hence not a turning point of Lπ .

Similarly no point in the Lπ -orbit of z is a turning point of Lπ . Since π is a permutation,
z is not in the orbit of a turning point of Lπ . Then by Lemma 4.8, z /∈ P .
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Let p ∈ B. Then p is Lπ -periodic and hence g-periodic. Since p �= z and Per(g)
contains no odd number other than 1, it follows from [ALM, Lemma 2.1.6] that there
exists z′ = z′(p) ∈ C, z′ not in the g-orbit of p, such that g(p) > z′ if p < z′ and
g(p) < z′ if p > z′. Clearly z′ may be chosen to be a fixed point of g. Therefore, we may
choose z′(p) = z for all p ∈ B, and (∗) is established.

It follows from (∗) that π has a block structure over a simple cycle of length 2k. Since π

is a permutation, the blocks all have the same number of points. If this number were one or
two, then by Theorem 3.5, S-max(Per(π)) = 2k or 2k+1. Since this is not the case, every
block contains three points, i.e. (1) holds.

Finally, we show that (2) holds. Proceeding by contradiction, suppose that there is a pair
of adjacent points, pj and pj+1, in the same block, such that for every i, 1 ≤ i ≤ 2k+1,
πi(pj ) and πi(pj+1) are adjacent points. Without loss of generality, we may assume that
the block which contains pj and pj+1 is {pj , pj+1, pj+2}. It follows from Lemma 4.6

that {π2k (pj ), π
2k (pj+1)} = {pj+1, pj+2} and hence that {π2k (pj+1), π

2k (pj+2)} =
{pj , pj+1}. Therefore, π is monotone on every block, π2k (pj ) = pj+2, π2k (pj+1) =
pj+1 and π2k (pj+2) = pj . Then, by Theorem 3.5, S-max(Per(π)) = 2k. This is a
contradiction and so (2) holds. ✷

It follows from Theorem 6.3 that every cyclic permutation which satisfies (1) is a
minimal permutation model for ‘Per(f ) = {t : t ≤S 3 · 2k}’. On the other hand, there
are non-cyclic minimal permutation models. For example, the permutation

(
1 2 3 4 5 6
5 4 6 2 3 1

)
is

a minimal permutation model for ‘Per(f ) = {t : t ≤S 6}’.
THEOREM 6.4. The minimal combinatorial models for ‘Per(f ) = {t : t ≤S 3 ·2k}, k ≥ 1’
are the self-maps π of finite-ordered sets of cardinality 3 · 2k−1 + 1 which satisfy:
(1) π has a block structure over a simple cycle of length 2k−1;
(2) there is a block B with four points and every other block has three points;
(3) π is strictly monotone on every block other than B;
(4) π2k−1 |B = (

1 2 3 4
3 4 3 1

)
or

(
1 2 3 4
4 2 1 2

)
.

Proof. First, suppose that π : P → P , #π = 3 · 2k−1 + 1 and π satisfies (1), (2),
(3) and (4). Let P = {p1 < p2 < · · · < p3·2k−1+1}, the exceptional block be
B = {pm, pm+1, pm+2, pm+3} and Vm, Vm+1, Vm+2 be the corresponding block vertices
in Mπ .

Number the blocks B1, B2, . . . , B2k−1 , so that B1 = B and each π(Bi) ⊆ Bi+1,

where B2k−1+1 = B1. Without loss of generality, π2k−1 |B1 is equivalent to
(

1 2 3 4
3 4 3 1

)
.

Then it follows from (3) that the endpoints of B2 are π(pm+3) and π(pm+1) and that
π(pm) = π(pm+2) is the midpoint of B2. Moreover, π maps the endpoints of B2k−1 onto
{pm, pm+3} and maps the midpoint of B2k−1 to pm+2.

It follows that in Mπ there are walks of length 2k−1 from Vm to Vm+2, from Vm+1

to Vm+2, from Vm+2 to Vm and from Vm+2 to Vm+1, and no other walks of length 2k−1

between these vertices. Since by (1), every primitive closed walk which passes through
only gap vertices has length a power of 2, it follows that the Sharkovsky-largest length of
a primitive closed walk is 3 · 2k . As the only cycle of π has length 2k−1, it follows from
Theorem 3.5 that Per(π) = {t : t ≤S 3 · 2k}.
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To complete the proof, suppose that π is a minimal combinatorial model for ‘Per(f ) =
{t : t ≤S 3 ·2k}, k ≥ 1’. By Theorem 4.3, π is r&r-minimal. Also, since 3 ·2k−1 /∈ Per(π),
M2k−1

π does not have a horseshoe. Hence, by Theorem 5.3, (1) holds.
To show that (2), (3) and (4) hold, first consider the case k ≥ 2. By Lemma 4.5, π

has no flat blocks. In particular, each block has at least two points. Suppose that some
block has exactly two points and let V denote the corresponding block vertex in Mπ .
At least one block has more than two points, otherwise Per(π) ⊆ 2∞. It follows from
Lemma 4.6 that there are two distinct primitive closed walks of length 2k−1 from V to
itself. By Theorem 3.5, 3 · 2k−1 ∈ Per(π). Since this is a contradiction, each block
contains at least three points.

By the first part of the proof, #π ≤ 3 · 2k−1 + 1. Since k ≥ 2, there is a block B with
exactly three points. Let V ′ and V ′′ be the corresponding block vertices in Mπ . It follows
from Lemma 4.6 that there are walks of length 2k−1 from V ′ to V ′′, and from V ′′ to V ′.
Since 3 · 2k−1 /∈ Per(π), it follows from Theorem 3.5 that:
(∗) there are no closed walks of length 2k−1 from V ′ to itself or from V ′′ to itself.
In light of (∗) and the fact that π has no flat blocks, we see that π cannot map the midpoint
of B to an endpoint of another block. From this and Lemma 4.6, we have:
(∗∗) π |B is strictly monotonic and maps the endpoints of B to the endpoints of another

block.
Since 3 · 2k ∈ Per(π), it follows from (∗∗) and Theorem 3.5 that at least one block has

more than three points. On the other hand, since π is a minimal combinatorial model, it
follows from the first part of the proof that #π ≤ 3 · 2k−1 + 1. Hence, there is exactly one
block with four points, i.e. (2) holds. Since (3) follows from (∗∗), it remains to prove (4).

Number the blocks B1, B2, . . . , B2k−1 , so that B1 has four points, and π(Bi) ⊆ Bi+1,
where B2k−1+1 = B1. It follows from (∗) and Lemma 4.6 that π maps adjacent points
of B1 to adjacent points of B2. So π maps one endpoint of B1 to an endpoint of B2 and
the other endpoint of B1 to the midpoint of B2. Write B1 = {a < b < c < d}. We may
assume that π(d) is an endpoint of B2. Write B2 = {u, v,w}, where w = π(d) and u is the
other endpoint of B2. Then using Lemma 4.6, we have π(a) = π(c) = v and π(b) = u.
Write B2k−1 = {x, y, z}, where π2k−1−2(u) = x, π2k−1−2(v) = y and π2k−1−2(w) = z.
By (∗∗), π{x, z} = {a, d}. If π(x) = a and hence π(z) = d , we obtain a contradiction to
Lemma 4.6. Therefore, π(x) = d and π(z) = a.

Suppose that π(y) = b. If V is the block vertex corresponding to the adjacent points x
and y in B2k−1 , there is a closed walk of length 2k−1 from V to itself. This contradicts (∗).

Hence, π(y) = c. Therefore, π2k−1
(a) = c, π2k−1

(b) = d , π2k−1
(c) = c and

π2k−1
(d) = a, i.e. (4) holds.

Finally, we consider the case k = 1. It suffices to only show that (4) holds, i.e. that
π |B = (

1 2 3 4
3 4 3 1

)
or

(
1 2 3 4
4 2 1 2

)
. Since π is a minimal combinatorial model, it follows from the

first part of the proof that #π ≤ 4. On the other hand, it is easy to see, using Theorem 3.5,
that there are no combinatorial models for ‘Per(f ) = {t : t ≤S 6}’ with fewer than four
points. Therefore, #π = 4. Write P = {p1 < p2 < p3 < p4}. By Theorem 6.3, π is not
a permutation and by Lemma 4.6, p1, p4 ∈ π(P ). So we may assume that p2 /∈ π(P ).
Now by Lemma 4.5, π has no flat blocks. So if π(P ) = {p1, p4}, then Mπ would have a
horseshoe, implying that 3 ∈ Per(π). Therefore, π(P ) = {p1, p3, p4}.
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We claim that π(p1) �= p1. If π(p1) = p1, then π(p2) = p3 or p4. First suppose
that π(p2) = p3. Since p1 is in the orbit of a turning point of π , either π(p3) = p1 or
π(p3) = p4 and π(p4) = p1. In either case there is a primitive closed walk of length 3
in Mπ . This is a contradiction. By a similar argument,π(p2) = p4 leads to a contradiction.
Therefore π(p1) �= p1, i.e. π(p1) = p3 or p4. Arguments similar to the ones above show
that π(p1) �= p4. Therefore, π(p1) = p3.

Now, if π(p2) = p1 then V1 → V1 → V2 → V1 is a primitive closed walk of
length 3, where V1 is the block vertex corresponding to {p1, p2} and V2 is the block vertex
corresponding to {p2, p3}. Therefore, π(p2) = p4. It follows similarly that π(p3) = p3

and π(p4) = p1. ✷

7. Sharkovsky-largest period r · 2k, r ≥ 5
THEOREM 7.1. The minimal combinatorial models for ‘Per(f ) = {t : t ≤S r · 2k}, r ≥ 5,
r odd’ are the simple cycles of length r · 2k.

COROLLARY 7.2. The minimal permutation models for ‘Per(f ) = {t : t ≤S r ·2k}, r ≥ 5,
r odd’ are the simple cycles of length r · 2k.

Proof of Theorem 7.1. Let r ≥ 5, r odd. Suppose first that π is a simple cycle of length
r · 2k. Then by the remark following [ALM, Corollary 2.11.2], Per(π) = {t : t ≤S r · 2k}.
So to prove the theorem it suffices to show that if π is a minimal combinatorial model for
‘Per(f ) = {t : t ≤S r · 2k}’, then π is a simple cycle of length r · 2k.

Suppose then that π is a minimal combinatorial model for ‘Per(f ) = {t : t ≤S r · 2k}’.
It follows from the preceding paragraph that #π ≤ r · 2k . By Theorem 4.3, π is r&r-
minimal. Since 3 · 2k /∈ Per(π) and since a continuous self-map of a compact interval
which has a horseshoe must have a periodic point of period 3, it follows from Theorem 2.6
that M2k

π does not have a horseshoe. Hence, by Theorem 5.3, π has a block structure over
a simple cycle of length 2k .

By Theorem 3.5, either π is a cycle of length r ·2k or there is a primitive closed walk of
length r · 2k in Mπ . In the first case, it follows from [BCop, Theorem VII.11] that π is a
simple cycle of length r · 2k . Hence, we may assume that there is a primitive closed walk
W of length r · 2k in Mπ .

In light of Theorem 3.5 we have the following:
(∗) there is no primitive closed walk of length s · 2k , 1 < s < r , s odd, in Mπ .

We claim that every block in the block structure contains exactly r points. To prove the
claim it suffices to show that if a block B has at most r points, then it has exactly r points.
Let DB be the subgraph of M2k

π induced by the block vertices associated with the block B.
As in the proof of Theorem 6.3, the walk W passes through only block vertices. So from

W , we obtain a closed walk WB of length r in DB .
If WB contained only one vertex, then M2k

π would have a horseshoe. So WB contains
at least two vertices. On the other hand, since there are at most r − 1 vertices in DB , WB

passes through some vertex twice. It follows that WB is the concatenation of two shorter
closed walks, one of which has odd length. However, it follows from (∗) that if s is odd
and 1 < s < r , then there is no closed walk of length s in DB which passes through two
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distinct vertices. Thus WB is the concatenation of a closed walk of length 1 and a closed
walk of length r − 1, i.e. WB is of the form

J1 → J1 → J2 → · · · → Jr−1 → J1.

It now follows that J1, J2, . . . , Jr−1 are distinct—otherwise there would be a closed
walk of odd length s, 1 < s < r , in DB passing through two distinct vertices. In particular,
there are at least r − 1 distinct vertices in DB . Hence, B contains at least r points and the
claim is proved.

It follows from the preceding paragraph and (∗) that the blocks may be numbered
B1, B2, . . . , B2k , where π(Bi) ⊆ Bi+1 and B2k+1 = B1, in such a way that the closed
walk W has the form

J1,1 → J2,1 → · · · → J2k,1 →
J1,1 → J2,1 → · · · → J2k,1 →
J1,2 → J2,2 → · · · → J2k,2 →

· · · → · · ·
J1,r−2 → J2,r−2 → · · · → J2k,r−2 →

J1,r−1 → J2,r−1 → · · · → J2k,r−1 → J1,1,

where for each i = 1, 2, . . . , 2k, the distinct block vertices associated with the block Bi

are Ji,1, Ji,2, . . . , Ji,r−1.
Recall that if P = {p1 < p2 < · · · < pr ·2k}, then the vertices Vi of Mπ are labelled so

that Vi → Vj if and only if either π(pi) ≤ pj and π(pi+1) ≥ pj+1 or π(pi) ≥ pj+1 and
π(pi+1) ≤ pj .

Using (∗) we have that arcs in W are the only arcs in Mπ emanating from
J1,1, J2,1, . . . , J2k,1. In particular, {J1,1, J1,2} = {Vi, Vi+1} for some i. We may assume

that J1,1 = Vi and J1,2 = Vi+1. It follows that π2k {pi, pi+1} = {pi, pi+2}.
We claim that π2k (pi) = pi+2 and π2k (pi+1) = pi . Suppose not, i.e. π2k (pi) = pi

and π2k (pi+1) = pi+2. Then π2k (pi+2) > pi , otherwise M2k
π would have a horseshoe.

Since there is a walk of length 2k in Mπ from J1,2 to J1,3, but no such walk from J1,2

to J1,4, J1,5, . . . or J1,r−1, we have J1,3 = Vi+2 and π2k (pi+2) = pi+3. In the same
way, it follows that B1 = {pi, pi+1, . . . , pi+r−1}, J1,s = Vi+s−1 for s = 1, 2, . . . , r − 1
and π2k (pj ) = pj+1 for j = i, i + 1, . . . , i + r − 2. Since π2k (pi+r−2) = pi+r−1 and
there is a walk of length 2k from J1,r−1 = Vi+r−2 to J1,1 = Vi , it follows that there are
walks of length 2k from J1,r−1 to each of the vertices J1,1, J1,2, . . . , J1,r−1. In particular,
there is a primitive closed walk of length 3 · 2k in Mπ . This establishes our claim that
π2k (pi) = pi+2 and π2k (pi+1) = pi .

We claim next that if k �= 0, then the arc J1,2 → J2,2 is the only arc in Mπ emanating
from J1,2. If there were an arc J1,2 → J2,1, then M2k

π would have a horseshoe. If there
were any arcs J1,2 → J2,s , s = 3, 4, . . . , r − 1, it would contradict (∗). Similarly there is
only one arc emanating from each of the vertices J2,2, J3,2, . . . , J2k−1,2.

Now, each of the maps π, π2, . . . , π2k−1 is monotone on {pi, pi+1, pi+2}, π2k (pi) =
pi+2, and π2k (pi+1) = pi . By (∗) there cannot be a closed walk of length 2k from J1,2 to
any of the vertices J1,1, J1,4, J1,5, . . . , J1,r−1, so we must have π2k (pi+2) = pi−1.
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Similarly, we see that π is monotone on every block except B2k , pi+1 is the central
point of B1 and if θ = π2k |B1 , then

θr−2(pi+1) < θr−4(pi+1) < · · · < θ3(pi+1) < θ(pi+1)

< pi+1 < θ2(pi+1) < · · · < θr−3(pi+1) < θr−1(pi+1).

Finally, since there is a walk of length 2k from J1,r−1 to J1,1 but by (∗) no such walk
from J1,r−1 to J1,2, we must have θr(pi+1) = pi+1.

Therefore, π is a simple cycle of length r · 2k. ✷

8. Unimodal minimal combinatorial models
Recall that a self-map π of a finite-ordered set {p1 < p2 < · · · < pn} is unimodal
if and only if for some m, 1 < m < n, π is (not necessarily strictly) increasing on
{p1, p2, . . . , pm}, (not necessarily strictly) decreasing on {pm, pm+1, . . . , pn}, but not
constant on either set. Note that π is unimodal if and only if every π-weakly monotone
map is unimodal.

For all the properties considered in this paper, except ‘Per(f ) = {t : t ≤S 3 · 2k},
k ≥ 1’, the minimal combinatorial models are the simple cycles of the appropriate length.
It is well known that there is a unique unimodal simple cycle of every length greater
than 2. Using Theorem 6.4, it can be checked that there is a unique unimodal minimal
combinatorial model for ‘Per(f ) = {t : t ≤S 3 · 2k}, k ≥ 1’.

These may be constructed inductively as follows. Let π1 = (
1 2 3 4
3 4 3 1

)
. Assume that

πk is the unique unimodal minimal combinatorial model for ‘Per(f ) = {t : t ≤S 3 · 2k}’.
Let θk+1 be the ‘unimodal S̆tefan square root’ of πk. (See [BkhC] for how to take unimodal
square roots of unimodal self-maps of finite-ordered sets.) Then #θk+1 = 3 · 2k + 2,
the turning point of θk+1 is pre-periodic, but not periodic, and it has a unique pre-image
under θk+1. The pre-image has no pre-images. Restricting θk+1 to its domain with
the pre-image deleted produces a unimodal map πk+1 with #πk+1 = 3 · 2k + 1 and
Per(πk+1) = {t : t ≤S 3 · 2k+1}. By Theorem 6.4, πk+1 is a minimal combinatorial
model.
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