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A surfactant-covered droplet on a solid surface subject to a three-dimensional shear
flow is studied using a lattice-Boltzmann and finite-difference hybrid method, which
allows for the surfactant concentration beyond the critical micelle concentration. We
first focus on low values of the effective capillary number (Cae) and study the
effect of Cae, viscosity ratio (λ) and surfactant coverage on the droplet behaviour.
Results show that at low Cae the droplet eventually reaches steady deformation and
a constant moving velocity ud. The presence of surfactants not only increases droplet
deformation but also promotes droplet motion. For each λ, a linear relationship is
found between contact-line capillary number and Cae, but not between wall stress
and ud due to Marangoni effects. As λ increases, ud decreases monotonically, but
the deformation first increases and then decreases for each Cae. Moreover, increasing
surfactant coverage enhances droplet deformation and motion, although the surfactant
distribution becomes less non-uniform. We then increase Cae and study droplet
breakup for varying λ, where the role of surfactants on the critical Cae (Cae,c) of
droplet breakup is identified by comparing with the clean case. As in the clean case,
Cae,c first decreases and then increases with increasing λ, but its minima occurs
at λ = 0.5 instead of λ = 1 in the clean case. The presence of surfactants always
decreases Cae,c, and its effect is more pronounced at low λ. Moreover, a decreasing
viscosity ratio is found to favour ternary breakup in both clean and surfactant-covered
cases, and tip streaming is observed at the lowest λ in the surfactant-covered case.

Key words: contact lines, breakup/coalescence, Marangoni convection

1. Introduction

Flow-induced motion, deformation and breakup of droplets on a solid surface
have been the subject of intense research because of their scientific and technical
importance (Dimitrakopoulos & Higdon 1998; Spelt 2006; Dimitrakopoulos 2007;
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Ding & Spelt 2008; Gupta & Basu 2008; Sugiyama & Sbragaglia 2008; Ding, Gilani
& Spelt 2010). In many applications involving droplets on a solid surface, surfactants
are often present as impurities or are added deliberately to the bulk fluid, which
can critically affect the dynamics of multiphase flow systems. For example, in the
petroleum industry, enhanced oil recovery depends strongly on the displacement of
oil droplets through rock formation, and surfactants are commonly used to increase
oil production by decreasing the interfacial tension between fluids and altering the
wetting properties of rock surfaces (Shah & Schechter 2012; Hou et al. 2016; Wei
et al. 2019). In the coating industry, surfactants can mitigate the wetting failure
(Schunk & Scriven 1997; Liu et al. 2016a,b), which occurs when the liquid no
longer entirely displaces the ambient gas at the contact line, thus improving the
uniformity required for precision film coating. Recently, rapid developments in
microfluidic technologies have enabled reliable fabrication and manipulation of small
droplets with controlled size using low-cost devices, where the addition of surfactants
is essential to stabilise the droplets against coalescence (Binks et al. 2010; Li, Wang
& Luo 2017; Zinchenko & Davis 2017; Riaud et al. 2018; Roumpea et al. 2019).

There have been a number of experimental studies investigating the motion of a
liquid droplet on a solid surface in the presence of surfactants (Rafaïet al. 2002;
Tan, Gee & Stevens 2003; Nikolov & Wasan 2015; Jiang, Sun & Santamarina 2016;
Roumpea et al. 2019). Nevertheless, it is still very challenging to conduct precise
experimental measurements of the local surfactant concentration and flow fields
during the droplet movement, and experimental studies suffer from the difficulty
to assess the effect of each influencing factor. Theoretical studies based on a
lubrication approximation have been used for analysing the spreading and stability
of a surfactant-covered droplet with a sufficiently small aspect ratio (defined by
the maximum height of the droplet to its length) on a substrate (Clay & Miksis
2004; Jensen & Naire 2006; Karapetsas, Craster & Matar 2011a,b; Weidner 2012;
Wei 2018). Unfortunately, they are unable to solve the instantaneous behaviour of a
spherical cap droplet with a large contact angle due to the limitation of lubrication
approximation. Numerical simulations can complement theoretical and experimental
studies, providing additional insights into how the flow and physical parameters
influence the dynamical behaviours of droplets on a solid surface in the presence of
surfactants.

The efficient and accurate computational modelling of droplet motion on a solid
surface with surfactants is a challenging task. The surfactant concentration at the
interface alters the interfacial tension locally, and a non-uniform distribution of
surfactants creates non-uniform capillary forces and tangential Marangoni stresses,
which affect the flow field in a complicated manner. In turn, the flow field advects
the surfactants and influences their distribution, causing the surfactant concentration
and flow field to couple. From a numerical point of view, the surfactant evolution
equation must be solved together with the hydrodynamic equations at moving and
deforming interfaces, which may undergo topological changes such as breakup and
coalescence. In addition, when the droplet moves over a solid surface, the contact
angle should dynamically vary with the local surfactant concentration and the moving
contact lines (MCL) need to be handled properly, which have for many years remained
an issue of controversy and debate (Sui, Ding & Spelt 2014), posing an additional
numerical challenge.

To tackle the aforementioned challenges, many efforts have been dedicated to the
study of interfacial flows with both surfactants and contact-line dynamics. Yon &
Pozrikidis (1999) studied the effect of insoluble surfactants on a droplet attached
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to a plane wall and subject to an overpassing shear flow in the limit of Stokes
flow. To simplify the problem, they assumed that the contact line retains a circular
shape and pins on the solid surface during the droplet deformation. Their results
revealed that the overall behaviour of the droplet is determined not only by the
capillary number and viscosity ratio, but also by the sensitivity of interfacial tension
to variations in surfactant concentration. Schleizer & Bonnecaze (1999) presented a
boundary-integral method to investigate the role of surfactants on the displacement
of a two-dimensional (2-D) immiscible droplet over a solid wall in both shear and
pressure-driven flows. They considered the contact lines either fixed or mobile, and
assumed that, when the contact lines are allowed to move, the contact angle is
independent of the slip velocity and is therefore equal to its static value. They found
that for a neutral surface the critical capillary number, above which the droplet
cannot reach a steady shape, is larger for droplets with MCL compared to those
with pinned contact lines. Axisymmetric spreading of a liquid droplet containing
soluble surfactants on an ideal substrate was numerically investigated by Chan &
Borhan (2006), where the slip velocity of a contact line was related to the dynamic
contact angle through a constitutive equation. Lai, Tseng & Huang (2010) developed
an immersed boundary method to simulate a droplet on a solid substrate under
the influence of insoluble surfactants. An unbalanced Young stress, resulting from
the deviation of the dynamic contact angle from the static one, was incorporated
into the momentum equations as a driving force for the contact-line motion. An
arbitrary Lagrangian–Eulerian finite element scheme for a soluble surfactant droplet
impingement on a horizontal surface was presented by Ganesan (2013). In his work,
the dynamic contact angle was expressed as a function of the static contact angle
and the local surfactant concentration. Xu & Ren (2014) presented a level-set method
for the simulation of two-phase flows with insoluble surfactants and MCL. A contact
angle condition, which relates the unbalanced Young stress to the slip velocity of
the contact line, was used to include the effect of surfactants on surface wettability.
By decomposing the fluid interface into segments with local Eulerian grids, af
Klinteberg, Lindbo & Tornberg (2014) developed a numerical method for two-phase
flows with insoluble surfactants and contact-line dynamics in two dimensions. To
drive the movement of the contact line, they defined the tangential velocity in the
vicinity of the contact line and used the Navier slip condition on the walls away
from the contact line. Based on thermodynamic principles, Zhang, Xu & Ren (2014)
derived a continuous model for the dynamics of two immiscible fluids with MCL
and insoluble surfactants, in which the condition for the dynamic contact angle
was obtained by the consideration of energy dissipations. Recently, we presented a
lattice-Boltzmann (LB) and finite-difference hybrid method for the simulation of a
2-D droplet moving on a solid wall subject to a linear shear flow (Zhang, Liu & Ba
2019). To model the fluid–surface interactions, a dynamic contact angle formulation
that describes the dependence of the local contact angle on the surfactant concentration
was derived, and the resulting contact angle was enforced by a geometrical wetting
condition. By comparing a clean droplet with a surfactant-covered droplet at the
same effective capillary number (Cae), we explored, for the first time, how the
presence of surfactants influences the droplet motion, deformation and breakup for
varying Cae. Wei et al. (2019) conducted a pore-scale study of ternary amphiphilic
fluid flow through a porous media using a bottom-up LB model, in which a dipole
is introduced to capture the amphiphilic structure of surfactant molecules. It was
found that surfactants could improve the oil recovery in all wetting conditions, but
the surfactant loss due to adsorption onto walls diminishes the effect of interfacial
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tension reduction. In addition, Tang et al. (2019) carried out molecular dynamics
simulations to study the surfactant flooding driven detachment of oil droplet in a
nanosilica channel. They revealed that the surfactant molecules tend to migrate to
the rear bottom of the oil molecular aggregate caused by the water flow effect and
hydration of polar head groups of surfactants, which facilitate the penetration of water
molecules into the oil–rock interface, and the oil molecule detachment occurs at the
rear bottom of the oil molecular aggregate.

As reviewed above, most of the studies focus on developing numerical methods for
computation of interfacial flows with both surfactants and contact-line dynamics, but
these methods are not applicable when the local surfactant concentration approaches or
exceeds the critical micelle concentration (CMC, at which surfactant molecules begin
to self-associate to form stable aggregates known as micelles). In addition, although
several works have studied the dynamical behaviour of a surfactant-covered droplet
on a solid surface subject to a shear flow, e.g. Schleizer & Bonnecaze (1999), Yon
& Pozrikidis (1999), Zhang et al. (2019), they commonly suffer from the following
drawbacks: (I) they either have not considered the MCL or are limited to two
dimensions, which cannot reproduce the physical three-dimensional test conditions
accurately; (II) the factors influencing the droplet motion and deformation have not
yet been studied systematically; and (III) the critical conditions of droplet breakup,
e.g. for varying viscosity ratio, have been rarely explored so far.

In this work we will extend our recently developed hybrid method to three
dimensions for the simulation of a surfactant-covered droplet moving on a solid
surface subject to a linear shear flow, where the droplet is of equal density to the
ambient fluid and the Reynolds number is fixed at 1. Unlike its 2-D counterpart
(Zhang et al. 2019), the present method is able to deal with the surfactant
concentration beyond the CMC. In order to break the limitations of the existing
works, we will study not only the droplet deformation and motion for varying
effective capillary number, viscosity ratio and surfactant coverage, but also the
critical conditions of droplet breakup for varying viscosity ratio, in which the roles
of surfactants will be identified by comparing with the results of a clean droplet.
The paper is organised as follows. In § 2 the mathematical model and numerical
method are described briefly, and in § 3 the results of droplet motion, deformation
and breakup are presented and discussed. The paper closes with a summary of the
main results in § 4.

2. Problem statement and numerical method

We consider the dynamical behaviour of a surfactant-covered droplet moving on a
solid surface and subject to a three-dimensional (3-D) linear shear flow. As sketched
in figure 1, two infinite walls, both parallel to the x–y plane, are separated by a
distance H. The bottom wall is stationary, and the top wall moves to the right with a
constant velocity uw, thus creating a shear flow with the shear rate γ̇ = uw/H. Initially,
a hemispherical droplet (red fluid) with the radius of R rests on the bottom wall. Both
droplet and ambient fluid (blue fluid) are assumed to be incompressible, viscous and
immiscible, and to have equal densities. The dynamic viscosities for the droplet and
ambient fluid are µR and µB, respectively. For the sake of simplicity, the surfactants
are considered to be insoluble and present only at the interface between the droplet
and the ambient fluid, and they are initially distributed uniformly at the droplet surface
with a concentration of ψ0.
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FIGURE 1. A hemispherical droplet sitting on a solid wall subject to a linear shear
flow. The shear flow is created by moving the top wall with a constant velocity uw. The
computational domain has a size of L×W × H = 560× 400× 100, and the droplet has
an initial radius of R= 50. The droplet and the ambient fluid are assumed to have equal
densities, and their dynamic viscosities are µR and µB, which give a viscosity ratio of
λ=µR/µB.

Using the continuum surface force formulation, the fluid flow for such a multiphase
system is governed by a single set of Navier–Stokes equations (NSE):

∇ · u= 0, (2.1)
∂t(ρu)+∇ · (ρuu)=−∇p+∇ · [µ(∇u+∇uT)] +Fs, (2.2)

where t is the time, µ is the dynamic viscosity and ρ, u and p are the total density,
fluid velocity and pressure, respectively. The last term in (2.2) represents the interfacial
force which includes not only the interfacial tension force but also the Marangoni
stress, and is defined as

Fs = σκnδΓ + δΓ∇sσ , (2.3)

where σ is the interfacial tension, κ is the interface curvature, n is the unit normal
to the interface, ∇s = ∇ − n(n · ∇) is the surface gradient operator and δΓ is the
Dirac delta function which should satisfy

∫
∞

−∞
δΓ dχ = 1 in order to recover properly

the stress jump condition in the sharp-interface limit. Here χ is the spatial location
normal to the interface.

In addition to (2.1) and (2.2), an advection equation has to be solved to capture
the interface evolution in traditional multiphase solvers, e.g. the volume-of-fluid
and level-set methods, where the sophisticated interface reconstruction algorithm or
unphysical reinitialization process is often required. In order to avoid these issues,
we use an improved LB colour-gradient model for immiscible two-phase flows with
variable interfacial tension, where the surfactant concentration can be above the
CMC. In the colour-gradient model, the red and blue distribution functions f R

i and
f B
i are introduced to represent the droplet and the ambient fluid, respectively. The

implementation of this model consists of three steps, i.e. collision, recolouring and
streaming. The recolouring and streaming steps are exactly the same as those in Liu
et al. (2018) and thus are not shown here. For the collision step, the total distribution
function fi = f R

i + f B
i evolves as

f †
i (x, t)= fi(x, t)+Ωi(x, t)+ F̄i, (2.4)

where fi(x, t) is the total distribution function in the ith velocity direction at the
position x and time t, f †

i (x, t) is the post-collision total distribution function, Ωi(x, t)
is the collision operator and F̄i is the forcing term.
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To obtain viscosity-independent wall location and contact-line dynamics, the
multiple-relaxation-time collision operator is adopted instead of its Bhatnagar–Gross–
Krook counterpart, and is given by (Zhang et al. 2019)

Ωi(x, t)=−
∑

j

(M−1SM)ij( fj(x, t)− f eq
j (x, t)), (2.5)

where M is the transformation matrix that linearly maps the distribution functions
onto their moments and S is a diagonal relaxation matrix. Here f eq

i is the equilibrium
distribution function defined as

f eq
i = ρwi

[
1+

ei · u
c2

s

+
(ei · u)2

2c4
s

−
u2

2c2
s

]
, (2.6)

where ρ is calculated by ρ=ρR
+ρB with the superscripts ‘R’ and ‘B’ referring to the

droplet and ambient fluid respectively, ei is the lattice velocity in the ith direction, wi

is the weighting factor and cs is the speed of sound. For the 3-D 19-velocity (D3Q19)
lattice model used in the present study, the speed of sound cs = δx/(

√
3δt) = 1/

√
3,

where the lattice spacing δx and the time step δt are both taken as 1, and the explicit
expressions of M , ei and wi can be found in D’humières et al. (2002).

The diagonal relaxation matrix S reads as (Ginzburg & d’Humières 2003; Wang,
Liu & Zhang 2017)

S = diag [0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s10, s9, s10, s13, s13, s13, s16, s16, s16] , (2.7)

with the relaxation rates si given as

s1 = s2 = s9 = s10 = s13 =ω, s4 = s16 =
8(2− s1)

8− s1
, (2.8a,b)

where ω is the dimensionless relaxation parameter related to the dynamic viscosity
µ by µ= (1/ω− 0.5)ρc2

sδt. To account for unequal viscosities of the two fluids, the
dynamic viscosity µ is determined by the harmonic mean as

1
µ
=

1+ ρN

2µR
+

1− ρN

2µB
, (2.9)

where ρN is the phase field function responsible to identify the interface location, and
is defined by

ρN(x, t)=
ρR(x, t)− ρB(x, t)
ρR(x, t)+ ρB(x, t)

. (2.10)

The CMC is the surfactant concentration above which surfactant molecules
aggregate to form micelles, and it is an important parameter that characterises
the surfactant behaviour. Before reaching the CMC, the interfacial tension decreases
rapidly with the surfactant concentration, and the Langmuir equation of state can
be adopted to describe the relation between the surfactant concentration and the
interfacial tension. However, after reaching the CMC, the interfacial tension changes
slowly with the surfactant concentration or even remains a constant (Zhao et al.
2017; Kovalchuk et al. 2018). To allow for surfactant concentration beyond the CMC,
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a modified Langmuir equation of state is often used and it reads as (Pawar & Stebe
1996; Young et al. 2009; Ngangia et al. 2013)

σ(ψ)=max{σ0[1+ E0 ln(1−ψ/ψ∞)], σmin}, (2.11)

where ψ∞ is the surfactant concentration at the maximum packing, σ0 is the interfacial
tension of a clean interface (i.e. ψ = 0), E0 is the elasticity number that measures
the sensitivity of σ to the variation of ψ and σmin is the interfacial tension after
reaching the CMC. Note that the value of σmin varies for different combinations of
fluids and surfactants. In the present study, we follow the previous works (De Bruijn
1993; Ngangia et al. 2013) to simply take σmin=σ0/10. The value of CMC, according
to its definition, can be computed by equating the two terms in max function. As
previously done by Xu et al. (2006) and Liu et al. (2018), we also quantify the initial
average surfactant concentration ψ0 through the surfactant coverage, which is defined
as xin =ψ0/ψ∞.

By defining n=−∇ρN/|∇ρN
| and δΓ =|∇ρN

|/2 and substituting the above equation
of state, (2.3) can be further written as

Fs =


−

1
2
σκ∇ρN

−
1
2
|∇ρN

|
σ0E0

ψ∞ −ψ
[∇ψ − (n · ∇ψ)n] , ψ <CMC,

−
1
2
σκ∇ρN, ψ > CMC,

(2.12)

where the interface curvature κ is related to n by κ = −∇s · n. With the interfacial
force given by (2.12), the forcing term F̄i that is applied to realize the interfacial
tension effect reads as (Yu & Fan 2010)

F̄=M−1
(
I − 1

2 S
)

MF̃, (2.13)

where I is a 19× 19 unit matrix, F̄= [F̄0, F̄1, F̄2, . . . , F̄18]
T and F̃= [F̃0, F̃1, F̃2, . . . ,

F̃18]
T is given by Guo, Zheng & Shi (2002):

F̃i =wi

[
ei − u

c2
s

+
(ei · u)ei

c4
s

]
·Fsδt. (2.14)

Using the Chapman–Enskog multiscale expansion, equation (2.4) can reduce to the
NSE in the low frequency, long wavelength limit with the pressure and the fluid
velocity given by

p= ρc2
s , ρu(x, t)=

∑
i

fi(x, t)ei +Fs(x, t)δt/2. (2.15)

With a diffuse-interface description, the surfactant transport is governed by a
convection–diffusion equation with the Dirac function (Teigen et al. 2011)

∂t(δΓψ)+∇ · (δΓψu)=Ds∇ · (δΓ∇ψ), (2.16)

where Ds is the surfactant diffusivity. The asymptotic analysis showed that (2.16)
could converge to the commonly used surfactant evolution equation of sharp-interface
form as the interface thickness approaches zero (Teigen et al. 2009). Unlike the
evolution equation of sharp-interface form, equation (2.16) not only allows for the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

41
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.416


897 A33-8 H. Liu, J. Zhang, Y. Ba, N. Wang and L. Wu

solution of surfactant concentration in the entire fluid domain without additional
extension or initialization procedures, but also offers great simplicity in dealing with
topological changes such as the droplet breakup and coalescence. Some remarks are
made here on the surfactant transport. When the surfactant concentration exceeds the
CMC, from the physical point of view, an additional equation should be introduced to
describe the evolution of micelle concentration (Edmonstone, Matar & Craster 2006;
Craster & Matar 2009), which would greatly increase the complexity of numerical
modelling and simulation. For the sake of simplicity, we assume that the surfactant
transport still follows (2.16) even though the surfactant concentration exceeds the
CMC, as previously done by De Bruijn (1993), Pawar & Stebe (1996), Young et al.
(2009) and Ngangia et al. (2013). Finally, it should be noted that, to the best of our
knowledge, none of the existing simulations have considered the surfactant transport
with micelle dynamics.

After replacing δΓ with |∇ρN
|/2, equation (2.16) can be solved by the finite-

difference method (Liu et al. 2018). Specifically, a modified Crank–Nicholson
scheme is used for the time discretization, and the resulting spatial derivatives are all
discretized using the standard central difference schemes except for the convection
term ∇ · (|∇ρN

|ψu), which is discretized by the third-order weighted essentially
non-oscillatory (WENO) scheme (Jiang & Shu 1996; Xu & Zhao 2003; Liu et al.
2018). In order to apply the third-order WENO scheme, two layers of solid nodes
(also termed as ghost nodes) neighbouring to a solid wall need to be considered.
Take the bottom wall, which is located halfway between the first layer of solid
nodes z = 0 and the first layer of fluid nodes z = 1, as an example, the values of
u, ψ and |∇ρN

| at the ghost nodes, i.e. z = −1 and z = 0, can be specified as
ux,y,−1 =−ux,y,2, ux,y,0 =−ux,y,1, ψx,y,−1 = ψx,y,2, ψx,y,0 = ψx,y,1, |∇ρN

|x,y,−1 = |∇ρ
N
|x,y,2

and |∇ρN
|x,y,0 = |∇ρ

N
|x,y,1, which can ensure the continuity of velocity and zero

flux of surfactants across the solid wall. The algebraic equation system arising from
the discretization is then solved by the successive over relaxation method with the
relaxation factor of 1.2. In addition, we impose the conservation of surfactant mass
at each time step, which is achieved by multiplying the surfactant concentration by a
constant factor (Xu et al. 2006).

It is known that the presence of surfactants not only reduces the interfacial tension
between fluids but also alters the wetting properties of solid surfaces. The wetting
properties are usually evaluated through the contact angle, which is defined as the
angle between the tangent to the droplet surface and the solid surface at the contact
line. Assuming that the surfactants are only present at the interface between the
droplet and the ambient fluid, a dynamic contact angle formulation, which describes
the dependence of the contact angle on the local surfactant concentration, can be
established (Zhang et al. 2019)

θ(ψ)= arccos
(
σ0 cos θ0

σ(ψ)

)
, (2.17)

where θ0 is the static contact angle in the absence of surfactants (ψ = 0) and θ is
the dynamic contact angle in the presence of surfactants. Note that (2.17) is only
valid within the range of −1 6 (σ0 cos θ0)/(σ ) 6 1. However, for a hydrophilic or
hydrophobic surface (i.e. θ0 6= 90◦), the value of (σ0 cos θ0)/(σ ) may be beyond this
range as the interfacial tension decreases. To avoid the unsolvability of (2.17), two
threshold values of contact angle, e.g. θmin = 10◦ and θmax = 170◦, are introduced,
and we directly take θ = θmin when (σ0 cos θ0)/(σ ) > cos(θmin) and θ = θmax when
(σ0 cos θ0)/(σ ) < cos(θmax).
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A surfactant-covered droplet on a solid surface 897 A33-9

Once the dynamic contact angle θ is determined on the solid surface, it can be
enforced through the geometrical formulation proposed by Ding & Spelt (2007):

nw · ∇ρ
N
=− tan

(π

2
− θ
) ∣∣∇ρN

− (nw · ∇ρ
N)nw

∣∣ . (2.18)

Here nw is the unit normal vector to wall pointing towards the fluids. The enforcement
of (2.18) is realized also through a layer of ghost nodes, which are a half-lattice
spacing away from the wall. Again, we consider the case of the bottom wall, where
the no-slip boundary condition is imposed by the halfway bounce-back scheme (Ladd
1994). Spatial discretization of (2.18) leads to (Huang, Huang & Wang 2014)

ρN
x,y,0 = ρ

N
x,y,1 + tan

(π

2
− θ
)
ξ, (2.19)

with

ξ =

√
(1.5∂xρN|x,y,1 − 0.5∂xρN|x,y,2)2 + (1.5∂yρN|x,y,1 − 0.5∂yρN|x,y,2)2, (2.20)

where all the derivatives can be easily evaluated by the second-order central difference
approximation. Using the values of ρN

x,y,0, we are then able to compute the partial
derivatives of ρN at all fluids nodes through the fourth-order isotropic finite-difference
scheme (Liu, Valocchi & Kang 2012). As such, the dynamic contact angle is implicitly
imposed on the solid surface.

As a diffuse-interface model, the present method simulates the contact-line dynamics
with an artificially enlarged interface thickness, which results in an effective slip length
far greater than the one that an experiment represents. Thus, the obtained droplet
velocity is faster than the experimental result (Ding et al. 2018). Even so, the diffuse-
interface simulations are still able to produce impressive results and important insights
in the interplay between the macroscopic motion and the contact-line dynamics (Sui
et al. 2014). For example, Ding et al. (2018) obtained experiment-matched droplet
shapes for a climbing droplet on a vibrated oblique plate; using the LB colour-gradient
model, we quantitatively reproduced the two-phase displacement process observed in
micromodel experiments (Xu, Liu & Valocchi 2017).

We run the simulations in a lattice domain of L × W × H = 11.2R × 8R × 2R.
The droplet is initially centred at a distance of 2R away from the left boundary. The
boundary conditions are imposed as follows. In the x and y directions, the periodic
boundary conditions are used; while on the top and bottom walls in the z direction, the
wetting boundary condition described above is imposed with the static contact angle
θ0 = 90◦.

3. Results
In the presence of surfactants, the dimensionless parameters that characterize the

droplet behaviour could be defined as follows: the Reynolds number Re= ρBγ̇R2/µB

(the ratio of inertial to viscous forces), the capillary number Ca=µBγ̇R/σ0 (the ratio
of viscous to capillary forces), the surface Péclet number Pe = γ̇R2/Ds (the ratio
of the convective to diffusive transport of surfactants) and the viscosity ratio λ =
µR/µB. Since the presence of surfactants leads to a reduction of interfacial tension,
the effective capillary number

Cae =
µBγ̇R

σ0[1+ E0 ln(1− xin)]
=

Ca
1+ E0 ln(1− xin)

(3.1)
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Grid size (L×W ×H) S/S0 ud/uw ψ∗min ψ∗max

280× 200× 50 1.0198 0.3964 0.3405 1.8419
560× 400× 100 1.0196 0.3887 0.3627 1.8012
728× 520× 130 1.0201 0.3829 0.3627 1.7948

TABLE 1. Steady state results of different grid sizes for Cae = 0.15 and xin = 0.3.

is used instead of Ca in order to rule out the effect of average surfactant concentration
in reducing interfacial tension. Throughout this study, the Reynolds number and the
surface Péclet number are fixed at 1 and 10, respectively. Unless otherwise stated, we
choose λ= 1 and xin = 0.3. In many cases, the numerical results are compared with
those of a clean droplet at the same value of Cae, and the difference in their results is
attributed to two factors: (1) non-uniform effects from non-uniform capillary pressure
at the droplet interface and Marangoni stresses along the interface; and (2) surfactant
dilution due to the interfacial stretching. In addition, the elasticity number is set as
E0 = 0.5 and the effective interfacial tension, defined as σe = σ0[1+ E0 ln(1− xin)], is
fixed at 1× 10−3 for both clean (xin = 0) and surfactant-covered droplets.

Since the grid resolution may influence the simulation results, it is necessary
to carry out a grid independence test to minimise the simulation error. The grid
independence test is conducted for Cae = 0.15, xin = 0.3 and λ = 1. Three different
grid resolutions, i.e. R= 25, 50 and 65, are considered, and the corresponding domain
sizes are 280× 200× 50, 560× 400× 100 and 728× 520× 130, respectively. Table 1
shows the steady state results at three different grid resolutions. In this table, S0
and S are the surface areas of the initial droplet and the equilibrium droplet, ud is
the moving velocity of the equilibrium droplet, and ψ∗min and ψ∗max are the minimum
and maximum values of ψ∗ on the droplet surface (represented by ρN

= 0), where
ψ∗ = ψ/ψ0 is the dimensionless surfactant concentration. It is seen that the grid
resolutions of R = 50 and R = 65 produce nearly identical results (with a relative
difference below 1.5%). Therefore, the grid resolution of R= 50 lattice cells will be
used in the subsequent simulations.

3.1. Droplet deformation
In this section we restrict our simulations to low values of Cae where the droplet
eventually reaches a steady shape, and investigate the influence of effective capillary
number, viscosity ratio and surfactant coverage on the droplet motion and deformation
in a 3-D linear shear flow. Note that only the steady state results will be presented in
the following discussion.

3.1.1. Effect of effective capillary number
The effect of Cae on the droplet deformation is investigated by increasing Cae

from zero with an increment of 0.05. In the deformation mode, the droplet eventually
reaches a steady shape and moves over the solid surface at a constant velocity. It
is found that droplet deformation occurs at Cae 6 0.3 for the surfactant-covered
droplet, but at Cae 6 0.34 for the clean droplet. Figure 2 illustrates the snapshots of
the moving droplet at the effective capillary numbers of 0.15 and 0.3 for the clean
and surfactant-covered droplets. In this figure, the droplet surface is coloured by the
dimensionless surfactant concentration ψ∗ for the surfactant-covered droplet. As Cae
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FIGURE 2. The snapshots of a droplet sliding along the solid wall for (a,b) Cae= 0.15 at
γ̇ t= 15 and (c,d) Cae= 0.3 at γ̇ t= 25; (a) and (c) correspond to the clean droplet, while
(b) and (d) correspond to the surfactant-covered droplet, for which the surface is shaded
by the dimensionless surfactant concentration ψ∗.

increases, droplet deformation increases in both the clean and surfactant-covered
cases. At the same Cae, the surfactant-covered droplet exhibits a larger deformation
and moves faster than the clean one. The increased droplet deformation in the
surfactant-covered case is attributed to the non-uniform distribution of surfactants,
which is shown in figure 2(b,d). In the presence of surfactants, the shear flow sweeps
the surfactants along the droplet interface from the rear to the front, which results in
a high surfactant concentration and thus a low interfacial tension at the droplet front.
Since the interfacial tension acts to resist against the droplet deformation, the low
interfacial tension at the droplet front contributes to the increased droplet deformation
in the surfactant-covered case.

Figure 3 plots the dimensionless surfactant concentration ψ∗ as a function of the
arclength s in the x–z mid-plane for various values of Cae. The arclength s, measured
clockwise along the droplet interface from the receding to advancing contact points
(i.e. the intersection points between the contact line and x–z mid-plane), is normalized
by the initial droplet radius R. When the shear flow is imposed, i.e. Cae > 0, the
surfactant distribution becomes non-uniform, and there exist a maximum surfactant
concentration (ψ∗max) and two minimum surfactant concentrations (ψ∗min) which occur
at the front and rear interfaces bounded by the droplet tip. As Cae increases, the
enhanced shear flow can sweep more surfactants from the rear to the front, so ψ∗min
at the rear decreases and ψ∗max increases (see the inset of figure 3). Meanwhile, ψ∗min
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FIGURE 3. The dimensionless surfactant concentration ψ∗ as a function of the arclength
s in the x-z mid-plane for various values of Cae. The inset shows the variation of the
maximum and minimum surfactant concentrations (denoted as ψ∗max and ψ∗min, respectively)
with Cae. It should be noted that there are two minimum surfactant concentrations, which
occur at the front (downstream) and rear (upstream) interfaces bounded by the droplet tip.

at the front is expected to monotonously increase. However, it does not increase but
rapidly decreases with increasing Cae from 0.25 to 0.3. This is because at relatively
high Cae the droplet is highly stretched, leading to an excessive dilution of surfactants.
As can be seen from figure 3, for each Cae, the non-uniformity of surfactants consists
of two parts, namely the rear part and the front part, which can be quantified by the
difference between ψ∗max and ψ∗min at the rear and by the difference between ψ∗max and
ψ∗min at the front, respectively. It is clear that both differences increase and, thus, the
non-uniformity of surfactants increases with Cae. In addition, we note that ψ∗min at
the rear and ψ∗min at the front are positioned close to the receding contact point and
the advancing contact point, respectively. On the other hand, the position of ψmax

gradually moves away from the advancing point with the increase of Cae, which
can be explained as the increased interface curvature at the droplet tip where the
surfactants prefer accumulation.

The droplet deformation can be quantified by the relative surface area, defined as
Sr = (S− S0)/S0. It is noted that the greater Sr is, the more the droplet will deform.
Figure 4 shows the variation of Sr with Cae for both clean and surfactant-covered
droplets. Consistent with the observation in figure 2, the droplet deformation increases
with Cae in both the clean and surfactant-covered cases, and the surfactant-covered
droplet always undergoes a larger deformation at each value of Cae. Similar results
were also obtained by Schleizer & Bonnecaze (1999) for a droplet adhering to a
substrate subject to a shear flow. As stated above, the increased droplet deformation
in the surfactant-covered case is caused by the non-uniform distribution of surfactants,
and thus increasing non-uniformity of surfactants leads to a bigger difference in Sr

between the clean and surfactant-covered droplets. The results of figure 3 suggest that
the non-uniformity of surfactants increases with Cae, so the difference in Sr between

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

41
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.416


A surfactant-covered droplet on a solid surface 897 A33-13
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FIGURE 4. The relative interfacial area Sr as a function of the effective capillary number
Cae for both clean and surfactant-covered droplets.

the clean and surfactant-covered droplets increases with Cae, which can be clearly
seen in figure 4.

When the droplet eventually moves over the surface at a constant velocity ud, the
forces acting on the droplet would reach a balance, which consist of the viscous force
exerted by the ambient fluid, the wall stress on the wetted surface and the capillary
force at the contact line (CL). The force balance can be written as (Ding et al. 2010)∫

SI

n · T dS−
∫

Sw

nw · T dS+
∮

CL
σ t dl= 0, (3.2)

where SI is the fluid–fluid interface, Sw is the wetted area by the droplet, T is the
stress tensor and t is the unit vector tangent to the fluid–fluid interface in the plane
spanned by the vectors normal to the substrate and to the CL. As previously done by
Ding et al. (2010), the capillary force

∮
CL σ t dl can be written as

∮
CL σex · nc cos θdl,

where ex and nc are the unit vectors in the x direction and normal to the CL in
the x–y plane, respectively. In this work, a static contact angle of θ0 = 90◦ is only
considered, which leads to θ = 90◦ from (2.17), so the capillary force is 0 no matter
if the surfactants are present or not. For a clean droplet, the viscous force exerted by
the ambient fluid and the wall stress can be analytically expressed as

∫
SI

n · T dS =
ανµ

Bγ̇R2 and
∫

Sw
nw · T dS = αmµ

RuclR (Ding et al. 2010), where the contact-line
velocity ucl equals the terminal velocity ud of the droplet, and the coefficients αν and
αm depend on the specific simulation parameters. Thus, the force balance will lead to

Cacl =
αν

αm

1
λ

Cae, (3.3)

where Cacl is the contact-line capillary number, defined as Cacl = µBucl/σe.
Equation (3.3) suggests that Cacl increases linearly with Cae for a constant viscosity
ratio λ.

Figure 5 plots the contact-line capillary number as a function of Cae for both clean
and surfactant-covered droplets. It can be clearly seen that in the clean case, Cacl
linearly increases with Cae, consistent with the force-balance analysis, i.e. (3.3). In
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FIGURE 5. The contact-line capillary number Cacl as a function of the effective capillary
number Cae for both clean and surfactant-covered droplets. The simulation data of
the clean droplet and the surfactant-laden droplet are fitted separately using a linear
relationship, and the resulting fitting lines are represented by the solid and dashed lines,
respectively.

the surfactant-covered case, Cacl also exhibits linear dependence on Cae but the slope
is always higher than in the clean case. We note that similar results were recently
reported by Zhang et al. (2019) in a 2-D case, and the linear relationship between Cacl

and Cae was earlier found by Schleizer & Bonnecaze (1999) for a 2-D droplet in the
absence of surfactants. In addition, the slope refers to the ratio of Cacl to Cae, which
can be further expressed as K=Cacl/Cae= 2ud/uw. By the linear fitting, we obtain the
terminal velocity ud= 0.1076uw and ud= 0.124uw for the clean and surfactant-covered
droplets, respectively. This indicates that the presence of surfactants is able to promote
the droplet motion, different from the role of surfactants in the bubble rising (Griffith
1962; Bel Fdhila & Duineveld 1996; Palaparthi, Papageorgiou & Maldarelli 2006) and
droplet sedimentation (Chen & Stebe 1996; Poddar et al. 2018), where the surfactants
retard the droplet or bubble motion. In the present shear flow, the enhanced droplet
motion in the presence of surfactants is attributed to the Marangoni-induced viscous
force, which acts on the droplet surface and is directed towards the low interfacial
tension region, i.e. in the same direction as the droplet motion (Zhang et al. 2019).

In addition to an additional viscous force on the droplet surface, the Marangoni
stresses also generate a flow inside the droplet, which exerts a hydrodynamic force on
the solid surface that points in the direction of the surfactant concentration gradient.
The solid surface, which is held immobile, exerts an equal and opposite reaction
on the droplet that retards the droplet motion as an additional wall stress (Paratap,
Moumen & Sbramanian 2008). Thus, it is observed in figure 6 that the wall stress
in the surfactant-covered case is always higher than in the clean case. Moreover, in
the surfactant-covered case, the wall stress no longer exhibits a linear dependence
on µRucl due to the Marangoni effects, and how to obtain its analytical expression
so that a comprehensive force-balance analysis is attainable still remains an open
question.

The wetting area is an important parameter influencing mass and energy transfer
in many industrial applications, and it is defined as the contact area between the
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FIGURE 6. The integrated wall stress, defined by τw=
∫

Sw
nw ·T dS, as a function of µRucl

for both clean and surfactant-covered droplets. The simulation data of the clean droplet
are fitted using a linear relationship, and the resulting fitting line is represented by the
black solid line.

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35
x/R

y/R

Cae

Cae

-0.08

-0.06

-0.04

-0.02Ar

(a) (b)

0

0.02

0.04

-1.0

-0.5

0

0.5

1.0

-1.5 -1.0 -0.5 0 0.5 1.0 1.5

Surfactant-covered droplet
Clean droplet

FIGURE 7. (a) The relative wetting area Ar as a function of the effective capillary number
Cae and (b) the wetting shapes at different values of Cae for both clean and surfactant-
covered droplets. In (b) the solid and dash–dot lines correspond to the clean and surfactant-
covered droplets, respectively, and the values of Cae are 0.1, 0.2 and 0.3 along the arrow
direction.

droplet and the solid surface. In the present study, the wetting area is quantified by
Ar, defined as Ar = (A − A0)/A0, where A0 and A are the initial wetting area and
the steady-state wetting area, respectively. In figure 7(a) we plot Ar as a function of
Cae in both the clean and surfactant-covered cases. As Cae increases, Ar increases
in the clean case but decreases in the surfactant-covered case. Also, for each Cae,
the surfactant-covered droplet always exhibits a smaller wetting area than the clean
one, even though its corresponding wall stress is higher (see figure 6). Figure 7(b)
shows the wetting shapes of both clean and surfactant-covered droplets for different
values of Cae. As we expect, because of the stretching of shear flow, the wetting
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width decreases but the wetting length increases with increasing Cae in both cases.
The presence of surfactants is found to decrease the wetting width, which is more
significant at higher Cae; however, it only has a slight effect on the wetting length. In
addition, we note that at high values of Cae, e.g. Cae = 0.3, the wetting shape looks
like an egg for both clean and surfactant-covered droplets, and its curvature radius is
bigger at the front than the rear, consistent with the previous results of Ding et al.
(2010).

3.1.2. Effect of viscosity ratio
The effect of the viscosity ratio on the droplet motion and deformation is studied

for Cae=0.15 and xin=0.3. Different values of viscosity ratio are achieved by varying
µR solely. Figure 8 shows the snapshots of the surfactant-covered droplet for different
viscosity ratios, i.e. λ = 0.125, 0.25, 0.5, 1, 2, 4, 10 and 20 at steady state. Note
that all the droplets have reached the steady state at γ̇ t = 20. As λ increases, the
region of high surfactant concentration extends from the droplet tip to the advancing
contact line, and at the same time the region of low surfactant concentration expands
from the left top corner of the droplet to the receding contact line. It seems that the
non-uniformity of surfactants first increases and then decreases with increasing λ. In
addition, as λ increases, the droplet is closer to its initial position, suggesting that the
droplet slides more slowly over the substrate.

Figure 9 shows the distribution of the dimensionless surfactant concentration ψ∗

along the arclength s in the x–z mid-plane for different values of λ. As λ increases,
the lowest surfactant concentration gradually moves towards the receding contact
point, while the highest surfactant concentration tends to move towards the advancing
contact point. Also, we can notice that the surfactant concentration monotonously
varies along s when the viscosity ratio is increased to λ= 4 or higher. As shown in
the inset of figure 9, with increasing λ from 0.125 to 2, the difference between ψ∗max
and ψ∗min on the droplet interface increases, suggesting an increased non-uniformity of
surfactants. This is because increasing λ is able to slow down the droplet motion and
thus a stronger shear flow is exerted on the droplet, which sweeps more surfactants
downstream. However, upon further increasing λ from 2 to 20, the difference between
ψ∗max and ψ∗min on the droplet interface gradually decreases. This is likely attributed
to the decrease of the droplet height (see figure 10a below), which offsets the
enhancement of shear flow caused by the slowdown of the droplet.

In figure 10(a) we present the variation of the wetting area Ar and the droplet
height hr with λ for both clean and surfactant-covered droplets, where hr is defined
by the initial droplet height h0 and the equilibrium droplet height h as hr = (h −
h0)/h0. Overall, the clean and surfactant-covered droplets exhibit similar variations in
Ar and hr: Ar increases but hr decreases with increasing λ. This could be explained
as follows: for a given Cae, as λ increases, the influence of the bottom wall on the
droplet becomes important due to the increased droplet viscosity µR, which increases
the contact area between the droplet and bottom wall and decreases the droplet height.
In spite of the similar variation trends, we also notice some differences between the
clean and surfactant-covered droplets. At each value of λ, Ar in the surfactant-covered
case is smaller than in the clean case, consistent with the result shown in figure 7.
Such a trend is also reflected in figure 10(b), from which we can see that the wetting
shape gradually deviates from a circle with an increase in λ. For low viscosity ratios,
i.e. λ< 1, hr in the surfactant-covered case is bigger than that in the clean case. This
is because at low λ the droplet preferentially deforms to a horn with a pointed tip
(see figure 19 below), where the accumulation of surfactants dramatically decreases
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FIGURE 8. The snapshots of a surfactant-covered droplet sliding along a solid surface at
γ̇ t = 20 for different values of λ. From top to bottom, the values of λ are 0.125, 0.25,
0.5, 1, 2, 4, 10 and 20. The droplet surface is shaded by the dimensionless surfactant
concentration ψ∗.

the interfacial tension and thus favours the interface stretching. With increasing λ to
the range of 1 to 4, the region of high surfactant concentration at the downstream
interface extends from the droplet tip towards the advancing contact line, which offsets
the stretching of the tip. As a result, hr in the surfactant-covered case is smaller than
that in the clean case. As λ is further increased, hr in the surfactant-covered case is
again bigger than that in the clean case. In addition, it is observed in the clean case
that Ar and hr are both insensitive to the variation of viscosity ratio as long as λ< 1,
which can be greatly modified by the presence of surfactants.

Figure 11 displays the contact-line capillary number Cacl and the relative surface
area Sr plotted against the viscosity ratio λ. In either the clean or surfactant-covered
case, Sr first increases and then decreases with increasing λ. The former increase
can be explained as follows: as λ increases, the droplet moves more slowly, so a
stronger viscous force will be exerted on the droplet, leading to a larger droplet
deformation. The later decrease is due to the weakened shear flow past the droplet,
which is caused by the decreased droplet height (see figure 10a). In addition, Cacl
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FIGURE 9. The dimensionless surfactant concentration ψ∗ as a function of the arclength
in the x-z mid-plane for various values of λ. The inset shows the maximum and minimum
surfactant concentrations at the whole interface versus λ. The other parameters are fixed
at Cae = 0.15, Pe= 10 and xin = 0.3.
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FIGURE 10. (a) The wetting area Ar and the droplet height hr, and (b) the wetting shapes
at different values of λ for both clean and surfactant-covered droplets. In (b) the solid and
dash–dot lines correspond to the clean and surfactant-covered droplets, respectively, and
the values of λ are 0.15, 4 and 20 along the arrow direction. The other parameters are
fixed at Cae = 0.15, Pe= 10 and xin = 0.3.

monotonously decreases with λ, indicating a reduction of the droplet velocity ud. This
is attributed to the increased wall friction caused by the increase of droplet viscosity.
For a constant viscosity ratio, the surfactant-covered droplet usually moves faster than
the clean one, and the velocity difference between the clean and surfactant-covered
droplets decreases with increasing viscosity ratio. As λ increases, although the
difference between ψ∗max and ψ∗min may increase slightly (see figure 9), the surfactant
dilution becomes pronounced due to the increased droplet deformation, which means
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FIGURE 11. The contact-line capillary number Cacl and the relative surface area Sr as a
function of the viscosity ratio λ for both clean and surfactant-covered droplets. The other
parameters are fixed at Cae = 0.15, Pe= 10 and xin = 0.3.

that the Marangoni stress decreases with increasing λ. Since the increased droplet
velocity in the surfactant-covered case is a result of the Marangoni-induced viscous
force, increasing λ and thus decreasing Marangoni stress, would lead to the decrease
in the velocity difference between the clean and surfactant-covered droplets. It is
also noticed that the presence of surfactants has almost no effect on the droplet
deformation at high values of λ, which was also found by Yon & Pozrikidis (1999)
for λ= 10.

The results in figure 5 show that the contact-line capillary number linearly increases
with Cae for the viscosity ratio of unity. Now we adjust the viscosity ratio for the
surfactant-covered droplets and find that Cacl still obeys a linear relation with Cae
for each λ, which can be seen from figure 12(a). However, the slopes are different
for different viscosity ratios and, specifically, a lower viscosity ratio corresponds to
a higher slope, indicating that the less viscous droplet always moves faster for a
fixed wall velocity uw. It is noted that in the clean case, the viscosity ratio exhibits a
similar effect on the droplet motion, which can be seen from (3.3). We also quantify
the droplet deformation by Sr for varying Cae at λ= 0.25, 1, 4, 10 and 20, and the
results are shown in figure 12(b). As anticipated, increasing Cae always increases the
droplet deformation for each viscosity ratio. By contrast, the viscosity ratio exhibits
a relatively complex effect on the droplet deformation. For each Cae, the droplet
deformation first increases and then decreases with increasing viscosity ratio, and
the maximum deformation occurs at the viscosity ratio of λm. We record the values
of λm at various Cae, and find that λm shows an overall decreasing trend with an
increase in Cae, and λm = 1 is reached at the highest Cae. Considering the inherent
analogies, such a variation trend could be explained with the aid of the MMSH
model (Vananroye, Puyvelde & Moldenaers 2007), which was derived for predicting
the deformation of a clean droplet suspended in a simple shear flow where the droplet
does not contact with the solid wall. Note that the MMSH model has been extensively
validated against experimental and simulation data and exhibits excellent prediction
accuracy (Vananroye et al. 2007, 2008; Jensen et al. 2010; Wang et al. 2017; Liu
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FIGURE 12. (a) The contact-line capillary number Cacl and (b) the relative interfacial
area Sr as a function of the effective capillary number Cae at different viscosity ratios.
The other parameters are fixed at Pe= 10 and xin = 0.3.

et al. 2018). According to the MMSH model, for the confinement ratio (R/H) of 0.5,
the values of the deformation parameter (defined as D = (a − b)/(a + b), where a
and b are the half-lengths of the major and minor axes of the ellipsoidal droplet) are
0.117, 0.1268, 0.1281, 0.1036 and 0.0716 for λ= 0.25, 1, 4, 10 and 20 at Ca= 0.1,
while the values of the deformation parameter are 0.3822, 0.3909, 0.2974, 0.1919 and
0.1352 for λ= 0.25, 1, 4, 10 and 20 at Ca= 0.3. From these values of deformation
parameter, we easily obtain λm = 4 at Ca= 0.1 and λm = 1 at Ca= 0.3. Clearly, our
results agree well with the predictions from the MMSH model in trend.

3.1.3. Effect of surfactant coverage
The initial surfactant concentration is quantified by xin, and its effect is investigated

for Cae = 0.15, λ = 1 and Pe = 10. Figure 13(a) shows the distribution of the
dimensionless surfactant concentration ψ∗ along the arclength s in the x-z mid-plane
for different values of xin. It is seen that the non-uniformity of surfactants decreases
with increasing xin. For a high value of xin, the small non-uniformity in surfactant
concentration could give rise to large Marangoni stresses, which prevent the
further accumulation of surfactants, thus resulting in more uniformly distributed
surfactants along the droplet interface. For a constant σe, the interfacial tension can
be written as σ = σe(1+ E0 ln(1−ψ∗xin))/(1+ E0 ln(1− xin)), which suggests that
the non-uniformity of the interfacial tension cannot be represented solely by ψ∗ for
varying xin. Thus, we plot the dimensionless interfacial tension (σ ∗ = σ/σe) as a
function of s for various xin in figure 13(b). It is clear that the lowest interfacial
tension decreases with increasing xin. Since the lowest interfacial tension is most
related to the droplet deformation, the droplet deformation, i.e. Sr, would increase
with xin, as can be seen in figure 14 (represented by the solid lines with squares).
In addition, figure 13(b) shows that as xin increases, the non-uniformity of interfacial
tension increases and thus the Marangoni stress increases. The Marangoni-induced
drag force is known to promote the droplet motion, so the contact-line capillary
number would rise with xin, which is shown in figure 14 (represented by the dashed
lines with circles).

3.2. Droplet breakup
As the effective capillary number Cae increases, the droplet deformation increases
until a critical value Cae,c is reached, above which the droplet finally breaks up into
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FIGURE 13. The distributions of (a) the dimensionless surfactant concentration ψ∗ and
(b) the dimensionless interfacial tension σ ∗ along the arclength s in the x–z mid-plane for
different values of xin.
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FIGURE 14. (a) The contact-line capillary number Cacl and (b) the relative surface area
Sr as a function of xin for Cae = 0.15, Pe= 10 and λ= 1.

several daughter droplets. Following previous works (Jensen et al. 2010; Liu et al.
2018), the Cae,c is defined as the lowest effective capillary number at which an initial
hemispherical droplet breaks up. In our simulations, the effective capillary number is
increased by 0.02 at most each time to obtain Cae,c, so the error of Cae,c is small
enough. In this section we focus on the effect of the viscosity ratio λ on Cae,c and
the droplet breakup mode, where the results of clean and surfactant-covered droplets
are compared to show the role of surfactants. For either the clean or surfactant-covered
droplet, seven different values of λ are considered, i.e. λ= 0.125, 0.25, 0.5, 1, 2, 4
and 10, which are achieved by varying µR while keeping µB fixed.

First, we study the effect of λ on Cae,c for the clean droplet, and the results
are shown in figure 15. In this figure no droplet breakup and droplet breakup are
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FIGURE 15. Effective capillary numbers at which the clean droplet obtains a steady shape
or undergoes breakup for different values of λ. No droplet breakup and droplet breakup
are represented by the empty squares and the filled squares, respectively. Each inset plots
the droplets before and after the breakup. The dashed lines are to show the variation of
Cae,c with λ.

represented by the empty squares and the filled squares, respectively. For each
viscosity ratio, the inset plots the droplet shapes before and after the breakup at Cae,c.
It is found that the values of Cae,c are respectively 0.53, 0.44, 0.38, 0.35, 0.36, 0.43
and 0.73 for λ = 0.125, 0.25, 0.5, 1, 2, 4 and 10. Evidently, Cae,c first decreases
sharply and then increases mildly with a minimum value occurring at λ = 1. This
trend could be explained as follows: for λ 6 1, decreasing λ increases the droplet
moving velocity ud, so a weaker shear stress would act on the droplet which hinders
the droplet breakup; whereas for λ > 1, increasing λ increases the wetting area and
decreases the droplet height, which enables the ambient fluid to bypass the droplet
more easily (see, e.g. figure 10), thus hindering the droplet breakup. As illustrated
in the insets of figure 15, the droplet eventually breaks into two daughter droplets
for λ > 1, known as binary breakup; whereas, for λ 6 1, the droplet breaks into
three daughter droplets, i.e. ternary breakup. It is known that for a spherical droplet
suspended in an infinite shear flow, there is a critical value of the viscosity ratio,
λc ≈ 4, above which the droplet does not break regardless of the capillary number.
However, in the present study, the clean droplet exhibits continued elongation until
the breakup occurs at any value of λ as long as Cae is sufficiently large, which
suggests that the critical value λc either does not arise or is much greater than 10
for a droplet attached on a solid wall subject to a linear shear flow. This result is
consistent with the previous finding by Yon & Pozrikidis (1999), where the contact
line is assumed to remain a prescribed circular shape. In addition, we interestingly
note that after the breakup, the daughter droplet remaining behind on the solid wall
keeps growing in size with λ.

We then turn to the surfactant-covered case (xin= 0.3) and obtain the values of Cae,c
for varying λ, which are shown in figure 16. In this figure no droplet breakup and
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FIGURE 16. Effective capillary numbers at which the surfactant-covered droplet obtains
a steady shape or undergoes breakup for different values of λ. No droplet breakup and
droplet breakup are represented by the empty circles and the filled circles, respectively.
Each inset plots the droplets before and after the breakup. The dashed lines are to show
the variation of Cae,c with λ.

droplet breakup are represented by the empty circles and the filled circles, respectively.
Again, the inset plots the droplet shapes before and after the breakup at Cae,c for
each viscosity ratio. It can be observed that the values of Cae,c at λ = 0.125, 0.25,
0.5, 1, 2, 4 and 10 are 0.35, 0.32, 0.3, 0.31, 0.35, 0.41 and 0.69, respectively. This
suggests that Cae,c first decreases and then increases with λ, and the minimum value
of Cae,c occurs at λ= 0.5, consistent with the results of droplet deformation at Cae=

0.3 (see figure 12, where the droplet exhibits a bigger deformation at λ ≈ 1). In
addition, we can see from the insets that a ternary breakup occurs instead of the binary
breakup at low viscosity ratios, i.e. λ 6 0.5. Unlike in the clean case, the daughter
droplet remaining behind on the solid wall after the breakup, first decreases and then
increases in size with increasing λ, and its minimum size is reached at λ= 0.5. For
the lowest viscosity ratio of 0.125, an interesting phenomenon is observed that the
surfactant-covered droplet breaks up via tip streaming (see the insets of figure 16),
different from the droplet breakup in the clean case. Tip streaming has been long
studied (e.g. De Bruijn (1993), Stone (1994), Eggleton, Tsai & Stebe (2001), Booty
& Siegel (2005)) since the pioneering work by Taylor (1934), and it is caused by the
severe accumulation of surfactants at the droplet tip or end, which reduces the local
interfacial tension to an extremely low level and so facilitates the formation of pointed
ends.

In order to show the role of surfactants on Cae,c, we plot Cae,c as a function of
the viscosity ratio for both clean and surfactant-covered droplets in figure 17, where
the solid lines with squares and the dashed lines with circles are directly adapted
from figures 15 and 16, respectively. Also, we use discrete symbols without a ‘+’ to
represent binary breakup and discrete symbols with a ‘+’ to represent ternary breakup.
Clearly, at a fixed viscosity ratio, Cae,c is always lower in the surfactant-laden case
than that in the clean case. This is because the accumulation of surfactants at the
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FIGURE 17. The critical effective capillary number Cae,c as a function of the viscosity
ratio λ for both clean and surfactant-covered droplets. Binary and ternary breakups
are represented by discrete symbols without a ‘+’ and discrete symbols with a ‘+’,
respectively.

droplet tip reduces the interfacial tension and so promotes local deformation and
breakup. For both clean and surfactant-covered droplets, the variations of Cae,c with
λ exhibit the same trend, and the viscosity ratios corresponding to the minimum
value of Cae,c are fairly close: λ = 1 for the clean droplet and λ = 0.5 for the
surfactant-covered droplet. This justifies the use of the MMSH model for explaining
the effect of viscosity ratio and capillary number on the droplet deformation, as we
have done in § 3.1.2. In addition, we can clearly see that the effect of surfactants
on the droplet breakup is more significant when λ 6 1. This can be explained by
the non-uniformity of surfactants during the stretching stage. As shown below in
figure 19, in the stretching stage, the distribution of surfactants is more non-uniform
for less viscous droplets, which can increase droplet deformation and promote droplet
breakup, so the surfactants can decrease Cae,c more significantly at low values of λ.

Figure 17 also shows that as the viscosity ratio increases from 0.125 to 10, the
droplet breakup mode undergoes the transition from binary breakup to ternary breakup
in both the clean and surfactant-covered cases. To deeply understand the effect of λ
on the droplet breakup mode, we first plot the snapshots of a clean droplet undergoing
binary breakup (λ=4 and Cae=0.43) and ternary breakup (λ=0.5 and Cae=0.38) in
figure 18. In this figure the dimensionless time is defined as τ = γ̇ t. At low viscosity
ratio, i.e. λ= 0.5, it is seen in figure 18(a) that the droplet is first stretched to a long
thread in the middle part, then breaks up into two daughter droplets (τ = 45), and
finally a small satellite droplet is formed owing to the Rayleigh–Plateau instability
(Rayleigh 1878) as the long thread retracts (τ = 45.5). By contrast, at high viscosity
ratio (see figure 18b), the droplet is stretched to a more obtuse shape and only a short
neck is formed in the necking stage (τ = 28.4), so no additional droplet is produced
during the neck retraction (τ = 30). Moreover, it can be seen in figure 18 that the
droplet breaks up much earlier at a high viscosity ratio due to a higher Cae. By
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FIGURE 18. Snapshots of the droplet breakup process at (a) λ= 0.5, Cae = 0.38 and (b)
λ= 4, Cae = 0.43 for a clean droplet.

comparing the results in figures 18(a) and 18(b), it can be found that a liquid ligament
has a tendency to break up into more droplets as its length increases, consistent with
the previous findings (Tjahjadi, Stone & Ottino 1992; Ashgriz & Mashayek 1995;
Liang et al. 2014; Liu et al. 2016c).

Then, we focus on the breakup mode of a surfactant-covered droplet for various
viscosity ratios at xin= 0.3 and Pe= 10. Figure 19 shows the snapshots of the droplet
breakup process at (a) λ = 0.125 and Cae = 0.35, (b) λ = 0.5 and Cae = 0.3, and
(c) λ= 4 and Cae = 0.41, where the droplet surface is coloured by the dimensionless
surfactant concentration ψ∗. At λ = 0.125 (figure 19a), the droplet is first deformed
into the shape of an ox horn, and at the same time the surfactants accumulate at the
droplet tip where the interface curvature is quite high (τ = 40). A visible neck is then
formed near the droplet tip (τ = 52.5), and the surfactant concentration in the necking
region increases due to the increased interface curvature, which accelerates the necking
process. Quickly, this neck fragments and a small daughter droplet is emitted from the
pointed end, which decreases the surfactant concentration of the remanent droplet (τ =
52.6). Afterwards, the surfactant concentration at the tip of the remanent droplet keeps
increasing and again a visible neck is formed near the tip (τ = 53.1), leading to the
formation of another droplet at τ = 53.4. Notably, as the daughter droplets with high
surfactant concentration detach from the remanent one, the surfactant concentration
of the remanent droplet decreases, which increases the interfacial tension and thus
prevents further interface breaking. Moreover, we emphasise that the CMC has reached
for τ > 52.5, which means extremely low interfacial tension near the droplet tip, so
the interface over there can break up easily and small droplets are often generated
(also known as the tip-streaming mode).

When the viscosity ratio is increased to 0.5 (figure 19b), a neck forms near the
middle of the droplet (τ =50) after the droplet undergoes an initial stretching, then the
neck gradually thins until the droplet breaks up into two similar-sized droplets (τ=67–
67.5). Finally, a small satellite droplet is formed via the Rayleigh-Plateau instability
(Rayleigh 1878) as the neck retracts (τ = 67.8). In addition, we note that in the
necking stage (τ = 50–67.4) the non-uniformity of the surfactants, represented by the
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FIGURE 19. Snapshots of the droplet breakup process at (a) λ= 0.125, Cae = 0.35, (b)
λ= 0.5, Cae= 0.3 and (c) λ= 4, Cae= 0.41 for a surfactant-covered droplet. It should be
noted that the droplet surface is coloured by the dimensionless surfactant concentration ψ∗.

difference between ψ∗max and ψ∗min, decreases progressively, exhibiting a pronounced
dilution of the surfactants.

Upon further increasing λ to 4 (figure 19c), it is found that the droplet prefers to
adhere on the solid wall due to the higher viscosity, which leads to a more obtuse
shape in the stretching stage (τ = 5 and 10) and thus a shorter neck in the necking
stage (τ = 30 and 34). Finally, the droplet breaks up into two unequal-sized droplets
and no satellite droplet is formed as the neck retracts (τ = 35.1), like those observed
in the clean case (see figure 18b). Again, the non-uniformity of the surfactants
progressively decreases in the necking stage. Similar findings were also reported in
previous studies (Stone & Leal 1990; Teigen et al. 2011; Liu et al. 2018), which
considered a surfactant-covered droplet suspended in an extensional or a shear flow,
away from the solid wall.

4. Conclusions
In this paper a lattice Boltzmann and finite difference hybrid method is developed

to simulate the dynamical behaviour of a surfactant-covered droplet on a solid surface
subject to a 3-D linear shear flow, where the simulation is limited to density-matched
fluids and a constant Reynolds number of 1 is only considered. This method, as
an extension of its 2-D counterpart (Zhang et al. 2019), not only allows for the
computation of 3-D interfacial flows with both insoluble surfactants and contact-line
dynamics, but also is able to handle the surfactant concentration up to CMC and
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even higher. First, we conduct the simulations at low values of effective capillary
number (Cae) and study the effect of Cae, viscosity ratio (λ) and surfactant coverage
(xin) on the droplet behaviour. Results show that at low Cae, the droplet eventually
reaches a steady deformation and moves at a constant velocity. Consistent with
the previous 2-D results (Zhang et al. 2019), it is found that in either the clean
or surfactant-covered case, the contact-line capillary number of a moving droplet
linearly increases with Cae, but the slope is always higher in the surfactant-covered
case, where the droplet exhibits a bigger deformation. This suggests that the presence
of surfactants can not only increase droplet deformation but also promote droplet
motion. In the surfactant-covered case, the wall stress exerted on the moving droplet
no longer exhibits a linear dependence on µRucl because of the Marangoni effects,
and its value is always higher than in the clean case. Increasing viscosity ratio of the
droplet to ambient fluid always slows down the droplet motion due to the increased
viscous resistance between the droplet and solid surface. In contrast, the viscosity
ratio exhibits a complicated effect on the droplet deformation: for each Cae, the
droplet deformation first increases and then decreases with increasing λ; the viscosity
ratio at which the highest deformation is reached overall decreases with Cae, and its
value is down to λ ≈ 1 at relatively high Cae. Increasing xin significantly decreases
the non-uniformity of surfactant distribution, but it favours the droplet deformation
and promotes the droplet motion because for high xin a small non-uniformity in
surfactants gives rise to large Marangoni stresses.

In addition, the droplet breakup is studied for varying λ, where the role of
surfactants on the critical Cae (Cae,c) for droplet breakup is identified. In the clean
case, Cae,c first decreases and then increases with increasing λ, and the minimum
Cae,c occurs at the viscosity ratio of 1; in the surfactant-covered case, Cae,c exhibits
the same variation in trend, but the minimum Cae,c is reached at the viscosity ratio
of 0.5. The presence of surfactants always decreases the value of Cae,c, and its effect
is more pronounced at low values of λ. This is because for less viscous droplets, the
surfactant distribution is more non-uniform in the stretching stage, which enhances
the droplet deformation and thus the subsequent breakup. We also find that decreasing
viscosity ratio favours the ternary breakup in both clean and surfactant-covered cases,
and the tip streaming occurs only at the lowest viscosity ratio in the surfactant-covered
case where the surfactant concentration at the droplet tip has reached the CMC.
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