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Abstract

This paper presents an investigation of the focusing of dark hollow Gaussian electromagnetic beams (HGB) in plasma,
considering collisional, ponderomotive, and relativistic nonlinearities. A paraxial like approach, in which the
parameters are expanded, in terms of radial distance from the maximum of irradiance rather than that from the axis, has
been adopted. To highlight the nature of focusing, both critical curves and the divider curves have been obtained as a
plot of dimensionless radius vs. power of the beam. The effect of the order of HGB (n), and nature of nonlinearity on
self focusing of the beam has also been explored.
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INTRODUCTION

The propagation dynamics of laser beams through nonlinear
media has been extensively investigated; among many of the
non-linear phenomena, the one which has attracted most
attention is the self-focusing of the laser beams (Chioa
et al., 1964; Kelley, 1965; Sodha et al., 1976; Rasmussen
& Rypdal, 1986; Silberbarg, 1990; Kothari & Abbi, 1990;
Snyder et al., 1990; Hora, 1991; Sprangle & Esarey, 1991;
Desaix et al., 1991; Karlsson & Anderson, 1992; Milchberg
et al., 1995; Berge, 1998; Upadhyaya et al., 2002, Saini &
Gill, 2006; Gill & Saini, 2007; Yu et al., 2007), because
the nonlinear effects are highly sensitive to the irradiance dis-
tribution along the wavefront of the beam, which gets signifi-
cantly affected by self focusing. The interest in self focusing
can also be appreciated in the context of promising appli-
cations in laser-plasma interaction, specifically optical har-
monic generation (Sprangle & Esarey, 1991; Milchberg
et al., 1995; Zhou et al., 1996), X-ray generation (Eder
et al., 1994), inertial confinement fusion (Tabak et al.,
1994; Deutsch et al., 1996), and laser driven accelerators
and particle beams (Sprangle et al., 1988; Umstadter et al.,
1996; Mora & Antonsen, 1996; Andreev et al., 1997,
1998; Amiranoff et al., 1998; Sari et al., 2005; Neff et al.,
2006; Zhou et al., 2007; Chen et al., 2008; Niu et al., 2008).

So far the main thrust of the theoretical and experimental
investigations on self focusing of a laser beam in a plasma
has been directed toward the study of the propagation charac-
teristics of a Gaussian beam (Akhmanov et al., 1968; Hora,
1969; Sodha et al., 1974a, 1976; Hora, 1975; Jones et al.,
1982; Hauser et al., 1992; Esarey et al., 1997; Osman
et al., 1999; Umstadter, 2001; Sharma et al., 2003, 2004).
Nevertheless, a few papers have been published on the self
focusing of super Gaussian beams (Nayyar, 1986; Grow
et al., 2006; Fibich, 2007), self trapping of degenerate
modes of laser beams (Karlsson, 1992), and self trapping of
Bessel beams (Johannisson et al., 2003). Apart from these,
great interest has recently been evinced in optical beams
with central shadow, usually known as dark hollow beams
(DHB) on account of their wide and attractive applications
in the field of modern optics, atomic optics, and plasmas
(Soding et al., 1995; Kuga et al., 1997; Ovchinnikov et al.,
1997; Yin et al., 1998; Song et al., 1999; Xu et al., 2002;
Cai et al., 2003; Yin et al., 2003; York et al., 2008). To describe
the DHBs (the beam with zero central intensity), several theor-
etical models like TEM01 mode doughnut beam, some higher
order Bessel beams, superposition of off-axis Gaussian beams,
and dark-hollow Gaussian beams etc. have been introduced
(Arlt & Dholakiyia, 2000; Zhu et al., 2002; Ganic et al.,
2003; Cai & Lin, 2004; Deng et al., 2005; Mei & Zhao,
2005); a number of experimental methods have been devel-
oped for the production of hollow laser beams (Herman &
Wiggins, 1991; Wang & Littman, 1993; Lee et al., 1994).
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In the relatively recent studies the propagation of various
DHBs in paraxial optical systems and turbulent atmosphere,
has been investigated in detail (Cai & He, 2006; Cai &
Zhang, 2006a, 2006b; Gao & Lu, 2006; Mei & Zhao,
2006). A review of the literature highlights the fact that the
propagation characteristics of DHBs in a plasma or other non-
linear media have not been studied to a significant extent; as an
exception, the beam propagation in the TEM10 mode has been
studied to some extent, in a plasma for regions around the axis
and the maximum of irradiance, in the geometrical optics
approximation (Sodha et al., 1974b; Sharma et al., 2005).
Prakash et al. (2006) modified the theory by taking the satur-
ating nature of nonlinearity and diffraction into account and
considering a doughnut (TEM01) beam.

In this communication, the authors have investigated the
self focusing of dark cylindrical hollow Gaussian beams
(HGBs), in which the irradiance along the axis is zero, and
the maximum is away from the axis. It should however be
realized that some interesting effects (Feit & Fleck, 1988;
Vidal & Johnston, 1996; Johnston et al., 1997) predicted
by detailed numerical simulation like breaking up into a
number of beams can not be recovered in the cylindrical geo-
metry; hence the theory has some limitations, particularly for
beams with powers above the critical value. However, since
cylindrical beams are commonly used, a theory for cylindri-
cal beams (even approximate) is in order. A paraxial like
approach, similar to the one given by Akhmanov et al.
(1968) and developed by Sodha et al. (1974a, 1976) has
been used in the present analysis; the nonlinear dielectric
function has been expanded in terms of radial distance
from the maximum of irradiance, rather than that from the
axis, as is the case with Gaussian beams.

Before proceeding further, it is instructive to consider the
nonlinearities, responsible for focusing in plasma. In colli-
sional plasmas, the electrons get heated to different tempera-
tures in the transverse plane on account of the radial
distribution of the field of the beams; in the steady-state the
electron temperature distribution is determined by the
balance of the Ohmic heating and the power loss by col-
lisions with heavier particles (ions, molecules etc.), and
thermal conduction. The radial redistribution of electron
density (and thereby the dielectric function) is determined
by balancing the gradient of the partial pressure of electrons
and ions by the space charge field and making use of the
charge neutrality condition. The collisional nonlinearity
sets up in periods on the order of 1/dcne, where dc is the frac-
tion of excess energy lost by an electron in a collision, and ne

is the electron collision frequency. The role of conduction is
significant when (dc r0

2/l2) � 1, where l is the mean free path
of electrons; thermal conduction has not been considered in
this paper. In this paper, the ions have been considered to
be at constant temperature, which is justified when nim .

dc,einei and the neutral atoms are abundant enough to
provide a constant temperature sink; here nim refers to the fre-
quency of ion-neutral atom collisions and the subscripts ei
refer to electron ion collisions. The process of Ohmic

heating of electrons by the wave and subsequent loss of
energy to ions/atoms is also some times referred to as
inverse bremsstrahlung.

For collisionless plasma, the ponderomotive force on elec-
trons, proportional to the gradient of irradiance at a point
causes a redistribution of electron density, and thereby the
dielectric function; this nonlinearity sets in a period on the
order of r0/cs, where r0 is the width of the beam, and cs is
the ion sound speed.

For very high powers of the beams, the quiver velocity of the
electrons is comparable to the speed of light in vacuum, and it
causes a change in the electron mass, and thereby in the plasma
frequency and the dielectric function. Thus the radial distri-
bution of the irradiance of the beam causes a corresponding
redistribution of the electron mass and hence of the dielectric
function. This nonlinearity sets in periods on the order of
vpe

21, where vpe is the plasma frequency. Situations, when
ions play a significant role have not been considered.

In the present paper, to illustrate the nature of focusing/
defocusing, the critical curves and the divider curves have
been given as a plot of dimensionless radius of the beam
r0 and the power of the beam P0 (Figs 1, 2a, and 2b). The
regions, (1) above the critical curve, (2) between the critical
and divider curves and (3) below the divider curve, character-
ize (1) focusing, (2) oscillatory divergence, and (3) steady
divergence of the beam, respectively. The dependence of
the focusing parameter on the distance of propagation has
also been illustrated for typical points in the three regions
of the beam power-radius space.

FOCUSING OF HOLLOW GAUSSIAN BEAM (HGB)

Propagation

Consider the propagation of a linearly polarized hollow
Gaussian beam with its electric vector polarized along the

Fig. 1. Variation of the initial beam width r0 (¼r0v/c) with the initial
power P0, for the propagation of various order HGBs in a collisionless
plasma with dominant ponderomotive nonlinearity, for the parameter
V2 ¼ 0.8; the curves c and d refer to the critical power curve and divider
curve respectively while the numerical subscripts 0, 1, 2, and 3 correspond
to the order of the HGB n.
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y-axis, propagating in a homogeneous plasma along the
z-axis. In the steady-state, the electric field vector E for
such a beam may be expressed in a cylindrical coordinate
system with azimuthal symmetry as

E ¼ ĵE0(r, z) exp ivt, (1)

where

(E0)z¼0 ¼ E00
r2

2r2
0

� �n

exp �
r2

2r2
0

� �
, (2)

E0 refers to the complex amplitude of the hollow Gaussian
beam of initial beam width r0, E00 is a real constant charac-
terizing the amplitude of the HGB, n is the order of the HGB
and a positive integer, characterizing the shape of the HGB
and position of its maximum, v is the wave frequency, ĵ is
the unit vector along the y-axis, and jE0j describes the electric
field maximum at r ¼ rmax ¼ r0

ffiffiffiffiffi
2n
p

. For n ¼ 0, Eq. (2)

represents a fundamental Gaussian beam of width r0;
however the interest of the present investigation is in
higher order HGBs (i.e., n . 0).

The electric field vector E satisfies the wave equation
(stationary frame),

r2E� r(r � E)þ
1(r, z)

c2

@2E

@t2
¼ 0, (3)

where 1 is the effective dielectric function of the plasma, and
c is the speed of light in free space.

For transverse beams, the second term on Eq. (3) is zero.
One can thus write the wave equation for the electromagnetic
beam, as

r2E0 þ (v2=c2)1(r, z)E0 ¼ 0: (4)

Following Akhmanov et al. (1968) and Sodha et al. (1974a,
1976), the solution of Eq. (4) can be chosen as

E0(r, z) ¼ A(r, z) exp �i

ð
k(z)dz

� �
, (5)

where A(r, z) is the complex amplitude of the electric field
E0, k(z) ¼ (v=c)

ffiffiffiffiffiffiffiffiffiffi
10(z)
p

, 10(z) is the dielectric function, corre-
sponding to the maximum electric field on the wavefront of
the HGB (see Eq. (11)).

Substituting E0(r, z) from Eq. (5) in Eq. (4) and neglecting
the term @2A/@z2 (assuming A(r, z) to be a slowly varying
function of z), one obtains

2ik
@A

@z
þ iA

@k

@z
¼

@2A

@r2
þ

1
r

@A

@r

� �
þ

v2

kc2
(1� 10): (6)

The complex amplitude A(r, z) may be expressed as,

A(r, z) ¼ A0(r, z) exp (�ik(z)S(r, z)), (7)

where S(r, z) is termed the eikonal associated with the hollow
Gaussian beam. Substitution for A(r, z) from Eq. (7) in Eq. (6)
and the separation of the real and imaginary parts, yields

2S

k

@k

@z
þ 2

@S

@z
þ

@S

@r

� �2

¼
1

k2A0

@2A0

@r2
þ

1
r

@A0

@r

� �
þ

v2

k2c2
(1

� 10) (8)

and

@A2
0

@z
þ A2

0
@2S

@r2
þ

1
r

@S

@r

� �
þ
@A2

0

@r

@S

@r
þ

A2
0

k

@k

@z
¼ 0: (9)

To proceed further, one can adopt an approach, analogous
to the paraxial approximation. Thus one may start by

Fig. 2. (a) Variation of the initial beam width r0 (¼r0v/c) with the initial
power P0, for the propagation of various order HGBs in an electron-ion col-
lision dominant plasma s ¼ 23 for V2 ¼ 0.8. The curves c and d refer to the
critical power curve and divider curve respectively while the numerical sub-
scripts 0, 1, 2, and 3 correspond to the order of the HGB n. (b) Critical power
curves: The variation of the initial beam width 1/r0

2 with the initial power P0

for the propagation of HGBs of various orders in a collisional plasma for
V2 ¼ 0.8. The curves a, b and c refer to the order of the HGB n ¼ 1, 2
and 3 respectively while the subscripts ei and en correspond to s ¼ 23
and s ¼ 1, respectively.
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expressing Eqs (8) and (9) in terms of variables h and z,
where

h ¼ (r=r0f )�
ffiffiffiffiffi
2n
ph i

, (10)

r0 f (z) is the width of the beam, and r ¼ r0f
ffiffiffiffiffi
2n
p

is the position
of the maximum irradiance for the propagating beam; it is
shown later that in the paraxial like approximation, i.e.,
when h ,,

ffiffiffiffiffi
2n
p

, Eqs (8) and (9) lead to the maintenance
of the HGB character during propagation. Since the irradi-
ance of the beam is a function of r and z only, expansions
of expressions for relevant parameters made along r, near
the irradiance maximum via r ¼ r0f (z)

ffiffiffiffiffi
2n
p

, are certainly jus-
tified in the paraxial like approximation; for n ¼ 0 (Gaussian
beam), the expansion is made (likewise) around r ¼ 0 (as
usual). Like the paraxial theory, the present analysis is
strictly applicable when h ,,

ffiffiffiffiffi
2n
p

.
Thus from Eqs (8), (9), and (10) one obtains,

2S

k

@k

@z
þ 2

@S

@z
þ

1

r2
0 f 2

@S

@h

� �2

¼
1

k2A0r2
0 f 2

�
@2A0

@h2
þ

1

(
ffiffiffiffiffi
2n
p
þ h)

@A0

@h

� �
þ

v2

k2c2
(1� 10)

(11)

and

@A2
0

@z
þ

A2
0

r2
0 f 2

@2S

@h2
þ

1

(
ffiffiffiffiffi
2n
p
þ h)

@S

@h

� �

þ
1

r2
0 f 2

@A2
0

@h

@S

@h
þ

A2
0

k

@k

@z
¼ 0:

(12)

In the paraxial like approximation the relevant parameters
(i.e., the dielectric function 1(r, z), eikonal and irradiance)
may be expanded around the maximum of the HGB, i.e.,
around h ¼ 0. Thus, one can express the dielectric function
1(h, z) around the maximum (h ¼ 0) of the HGB as

1(h, z) ¼ 10(z)� h212(z), (13)

where 10(z) and 12(z) are the coefficients associated with h0

and h2 in the expansion of 1(h, z) around h ¼ 0. The
expressions for these coefficients have been derived later.

Substitution for 1(h, z) from Eq. (13) in Eqs (11) and (12)
leads to

2S

k

@k

@z
þ 2

@S

@z
þ

1

r2
0 f 2

@S

@h

� �2

¼
1

k2A0r2
0 f 2

�
@2A0

@h2
þ

1

(
ffiffiffiffiffi
2n
p
þ h)

@A0

@h

� �
� h2 v2

k2c2
12

(14)

and

@A2
0

@z
þ

A2
0

r2
0 f 2

@2S

@h2
þ

1

(
ffiffiffiffiffi
2n
p
þ h)

@S

@h

� �

þ
1

r2
0 f 2

@A2
0

@h

@S

@h
þ

A2
0

k

@k

@z
¼ 0:

(15)

One can express the solution of Eq. (15) following the
paraxial like approximation h ,,

ffiffiffiffiffi
2n
p

as

A2
0 ¼

E2
0

22nf 2

ffiffiffiffiffi
2n
p
þ h

� �4n
exp �(

ffiffiffiffiffi
2n
p
þ h)2

� �
, (16)

with

S(h, z) ¼
(
ffiffiffiffiffi
2n
p
þ h)2

2
b(z)þ w(z), (17)

where

b(z) ¼ r2
0 f

df

dz
,

E2
0 ¼ E2

00
k(0)
k(z)

� �
¼ E2

00
10(0)
10(z)

� �1=2

,

w(z) is an arbitrary function of z, and f (z) is the beam width
parameter for the HGB.

Most of the power of the beam is concentrated in the
region around h ¼ 0. There is certainly some power of the
beam beyond this limitation, which is accounted for in an
approximate manner by Eq. (16), which in common with
the variational and moment approaches, assures that the
nature of r dependence of irradiance does not change with
propagation. Eq. (16) also ensures conservation of power
as the beam propagates.

Substituting from Eqs (16) and (17) for A0
2 and S into

Eq. (14) and equating the coefficients of h0 and h2 on both
sides of the resulting equation, one obtains

10 f
d2f

dj2 ¼
4
f 2
� r2

012

� �
�

1
2

f
df

dj

d10

dj
, (18)

and

1
10

nf
df

dj
þF

� �
d10

dj
þ

2
f 2

� �
þ 2nf

d2f

dj2 þ 2
dF

dj
¼ 0, (19)

where

j ¼ (c=r2
0v)z is the dimensionless distance of propagation,

r0 ¼ (r0v=c) is the dimensionless initial beam width,
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and

F ¼ (v=c)w is the dimensionless function

associated with the eikonal:

The dependence of the beam width parameter f on the
dimensionless distance of propagation j can be obtained by
the numerical integration of Eq. (18) after putting suitable
expressions for 10 and 12, and using the initial boundary
conditions f ¼ 1, df/dj ¼ 0 at j ¼ 0; F is obtained by
simultaneous solution of Eqs 18 and 19, taking the additional
boundary condition F ¼ 0, at j ¼ 0 into account.

The Dielectric Function

Following Sodha et al. (1974a), the effective dielectric func-
tion of the plasma can be expressed as

1(r, z) ¼ 1�V2(N0e=N0), (20)

where V ¼ (vpe/v), vpe ¼ (4pN0e2/m)1/2 is the electron
plasma frequency, N0 is the undisturbed electron density of
the plasma, N0e is the electron density of the plasma in the
presence of the electromagnetic field, m is the mass of the
electron, and e is the electron charge.

Following the paraxial like approximation (i.e. h ,,
ffiffiffiffiffi
2n
p

)
one can expand the dielectric function 1(h, z) in axial and
radial parts around the maximum of E (h ¼ 0). Thus one
obtains from Eq. (13) and Eq. (20),

10(z) ¼ 1(h ¼ 0, z), (21)

and

12 ¼ �
@1(h, z)
@h2

� �
h¼0

: (22)

To obtain the above coefficients, one should expand E . E*
in powers of h2; thus

E � E� ¼ A2
0 ¼

E2
0

22nf 2

ffiffiffiffiffi
2n
p
þ h

� �4n
exp �(

ffiffiffiffiffi
2n
p
þ h)2

� �

� F1(z)� h2F2(z),

(23)

where

F1(z) ¼
E2

0

f 2
n2n exp (�2n) (24)

and

F2(z) ¼
2E2

0

f 2
n2n exp (�2n): (25)

With the help of Eqs (24) and (25) one can easily obtain 10

and 12 for a specific nature of the nonlinearity.

Ponderomotive Nonlinearity

For a collisionless plasma, the ponderomotive force on the
electrons is proportional to the gradient of the irradiance,
which causes a redistribution of the electron density, and
thereby the dielectric function; this nonlinearity sets in a
period on the order (r0/cs), where r0 is the width of the
beam, and cs is the ion sound speed.

Hence, for a collisionless plasma at moderate fields (when
the quiver speed of the electron is much smaller than the
speed of light in vacuum), the modified electron density
function N0e is given (Akhmanov et al., 1968; Sodha
et al., 1976),

N0e ¼ N0 exp (�bEE�), (26)

where,

b ¼ (e2=8kBT0v
2m),

kB is the Boltzmann constant, and T0 is the temperature of the
atoms/ions.

Substituting for N0e from Eq. (26) in Eq. (20) and using
Eqs (21), (22), (24), and (25), one can easily obtain 10(z)
and 12(z) as

10(z) ¼ 1�V2 exp (�pn2n exp (�2n)), (27)

and

12(z) ¼ V2(2pn2n exp (�2n)) exp (�pn2n exp (�2n)), (28)

with p ¼ bE0
2/f2 being proportional to the irradiance of the

HGB at h ¼ 0.

Collisional Nonlinearity

In collisional plasmas, the distribution of electron and ion
temperatures takes place in the transverse plane on account
of the nonuniform distribution of the electron temperature,
caused by the radial dependence of the irradiance of the
beam; this nonuniformity in temperature creates the pressure
gradients of the electron and ion gases. In the steady state
with plasma neutrality these pressure gradients are balanced
by the space charge field, and lead to a redistribution of the
electron density and hence the modified dielectric function.
The collisional nonlinearity sets in a period 1/dcne, where dc

is the fractional loss of excess energy by an electron in a col-
lision with heavier species (ions and neutral particles), and
ne is the electron collision frequency. For collisional
plasmas, the modified electron density N0e may thus be
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expressed as (Akhmanov et al., 1968; Sodha et al., 1976)

N0e ¼ N0(1þ aEE�)(s=2)�1, (29)

where

a ¼ e2=6kBT0v
2mdc

� �

and the collision frequency ne is proportional to the sth

power of the random electron speed. For electron-ion col-
lision dominated plasma, one has s ¼ 23 and for
electron-neutral collision dominated plasma, it is s ¼ 1.
Eq. (21) is based on the fact that thermal conduction does
not play a significant part in the energy balance of electrons,
which is justified when (dcr0

2/l2)�1 (see Sodha et al.,
1976). It is also assumed that the heavier particles are abun-
dant enough to provide a heat sink at almost constant temp-
erature for energy loss by the electrons.

Substituting for N0e from Eq. (29) in Eq. (20) and by using
Eq. (21), (22), (24), and (25), one can obtain expressions for
10(z) and 12(z) as,

10(z) ¼ 1�V2 1þ pn2n exp (�2n)
� �(s�2)=2

, (30)

and

12(z) ¼ V2(2� s) pn2n exp (�2n)
� �

� 1þ pn2n exp (�2n)
� �(s�4)=2

, (31)

where p ¼ aE0
2/f2.

Relativistic Nonlinearity

For very high powers of the beams, the quiver speed of the
electrons is comparable to the speed of light in vacuum,
causing a change in the mass of the electron, and hence a
change in the plasma frequency leads the modified dielectric
function. Thus, the relativistic variation of the electron mass
may also cause nonlinearity (Hora, 1975; Kane & Hora,
1977). This nonlinearity sets in a period on the order vpe

21.
The dielectric function for a circularly polarized beam can
be expressed as

1 ¼ 1�V2(1þ gEE�)�1=2, (32)

where g¼(e2/m0
2v2c2), m0 is the rest mass of the electron and

E is the amplitude of the beam.
From Eqs (21), (22), (24) (25), and (32) one can easily

express 10(z) and 12(z) as

10(z) ¼ 1�V2(1þ pn2n exp (�2n)
� ��1=2

(33)

and

12(z) ¼ V2 pn2n exp (�2n)
� �

1þ pn2n exp (�2n)
� ��3=2

, (34)

where p ¼ gE0
2/f 2.

Nature of Self Focusing: Critical and Divider Curves

Ponderomotive Nonlinearity

Using the expression for 12(z) from Eq. (28), Eq. (18)
ensures vanishing of d2f/dj2 for a value of p (say pc), corre-
sponding to a beam width r0f, when

pr2
0f 2 ¼

2 exp pn2n exp (�2n)
� �

V2n2n exp (�2n)
, (35)

which at j ¼ 0 reduces to

p0r
2
0 ¼

2 exp p0n2n exp (�2n)
� �

V2n2n exp (�2n)
, (36)

where p0 ¼ bE00
2 .

Eq (36) represents the critical power curve plotted as
r0 versus p0 and separates the self focusing region from the
rest. For the points lying above the critical power curve, the
beam undergoes oscillatory convergence (self focusing),
while for the points below this curve, the beam executes
oscillatory divergence or steady divergence. The points on
the curve lead to self trapped mode propagation of the HGB.

One should notice that Eqs (35) and (36) have the same
algebraic form; this suggests that if during its propagation,
the beam power and the beam width ( p, r0 f ) satisfy
Eq. (35), the corresponding point in the f 2 j curve will
be a point of inflection (d2f/dj2 ¼ 0), a necessary condition
for oscillatory convergence/divergence. However, all the
points below the critical curve do not lead to a point of
inflection, and hence lead to a steady divergence of the
beam. The condition for any point ( p, r0 f ) to be a point
of inflection is that it must satisfy Eq. (35). One can write
Eq. (27) as

exp pn2n exp (�2n)
� �

¼
V2

(1� 10(z))
: (37)

Therefore Eq. (35) reduces to

pr2
0f 2 ¼

2
n2n exp (�2n)(1� 10(j))

or

p0r
2
0 ¼

2(10(j)=10(0))1=2

n2n exp (�2n)(1� 10(j))
: (38)
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For p . 0, from Eq. (36) one has

V2 . (1� 10(z))

or

10(z) . (1�V2):

These relations lead to

ffiffiffiffiffiffiffiffiffiffi
10(z)
p

(1� 10(z))
.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2

p
V2 :

Therefore from Eq. (38) one obtains

p0r
2
0 .

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2

p
n2n exp (�2n)V2(10(0))1=2

: (39)

Thus, for the point ( p, r0 f ) to arrive at a point of inflec-
tion (d2f/dj2 ¼ 0), one must have the beam having initial
point ( p0, r0) lying above the curve

p0r
2
0 ¼

2

n2n exp (�2n)V2

1�V2

10(0)

� �1=2

: (40)

Eq. (40) represents a curve (r0 versus p0) that further divides
the region below the critical power curve in two regions, and
has hence been termed the divider curve by Sharma et al.
(2003). The area between the divider curve and the critical
power curve represents the region of oscillatory divergence,
while the area below the divider curve describes the region
of steady divergence.

Collisional Nonlinearity

Using Eqs (30) and (31) for 10(z) and 12(z) with Eq. (18) and
following a similar treatment (as in the preceding case) one can
obtain the critical power curve and the divider curve as,

Critical power curve

p0r
2
0 ¼

4 1þ p0n2n exp (�2n)
� �(4�s)=2

V2(2� s)n2n exp (�2n)
(41)

Divider curve

p0r
2
0 ¼

4

V2(2� s)n2n exp (�2n)

1�V2

10(0)

� �1=2

, (42)

with p0 ¼ aE00
2 .

Relativistic Nonlinearity (Circularly Polarized Beam)

Using the expression for 10(z) and 12(z) from Eqs (33) and
(34) with Eq. (18), and following similar algebraic treatment
as above, the expressions for the critical power curve and
the divider curve can be written as,

Critical power curve

p0r
2
0 ¼

4 1þ p0n2n exp (�2n)
� ��3=2

V2n2n exp (�2n)
, (43)

Divider curve

p0r
2
0 ¼

4

V2n2n exp (�2n)

1�V2

10(0)

� �1=2

, (44)

with p0 ¼ gE00
2 .

Power of the Hollow Gaussian Beam
The power of the hollow Gaussian beam with the irradiance
distribution

EE� ¼
E2

0

22nf 2

r2

r2
0 f 2

� �2n

exp �
r2

r2
0 f 2

� �
,

can be expressed as

P ¼
c

8p

ð1

0

11=2EE�2prdr, (45)

where 1(r, z) is the dielectric function of the plasma. For the
circularly polarized beams, the right-hand-side gets multi-
plied by two. One can obtain the power of the HGB by
using an appropriate dielectric function for all three kinds
of nonlinearities.

Ponderomotive Nonlinearity

Using the dielectric function 1(r, z) from Eq. (20) and
Eq. (26), Eq. (45) reduces to

P ¼
cr2

0

8b
p

22n

ð1

0

l2n exp (�l)

� 1�V2 exp �(p=22n)l2n exp (�l)
� �	 
1=2

dl,

where l ¼ (r2/r0
2f2). The dimensionless power of the beam
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may be expressed as

P ¼
8b

cr2
0

P ¼
p

22n

ð1

0

l2n exp (�l)

� 1�V2 exp �(p=22n)l2n exp (�l)
� �	 
1=2

dl,

(46)

with p ¼ bE0
2/f2. Further at z ¼ 0, f ¼ 1 the initial power

is given as

P0 ¼
p0

22n

ð1

0

l2n exp (�l)

� 1�V2 exp �(p0=2
2n)l2n exp (�l)

� �	 
1=2
dl,

(47)

with p0 ¼ bE00
2 .

Similarly the initial power of the HBG for collisional and
relativistic nonlinearities may be expressed as

For Collisional Nonlinearity

P0 ¼
p0

22n

ð1

0

l2n exp (�l)

� 1�V2 1þ (p0=2
2n)l2n exp (�l)

� �(s�2)=2
h i1=2

dl

(48)

with p0 ¼ aE00
2 .

For Relativistic Nonlinearity

P0 ¼
p0

22n

ð1

0

l2n exp (�l)

� 1�V2 1þ (p0=2
2n)l2n exp (�l)

� ��1=2
h i1=2

dl

(49)

with p0 ¼ gE00
2 .

SCHEME OF COMPUTATION

To have a numerical appreciation of the results, the critical
power curve, the divider curve, and the dependence of the
beam width parameter f of the HGB on j have been com-
puted for a chosen set of parameters and different kinds of
nonlinearities.

To obtain the critical curve between initial power P0 and
initial beam width r0, one first computes the critical curve
with r0 and p0, as parameters using the appropriate equations
(Eqs (36), (40), (41), (42), (43), and (44)) obtained herein and
also computes the power P0, corresponding to a set of values
( p0, r0) on the critical curve, using Eq. (45). Thus one can
obtain the critical curve with r0 and P0, as the parameters.
The critical power curve and the divider curve r0 versus P0

have been plotted for different kinds of nonlinearities for

chosen sets of parameters V, s and n. The computations
have also been made to investigate the dependence of the
beam width parameter f, associated with the propagation of
the hollow Gaussian beam on the dimensionless distance of
propagation j in homogeneous plasmas. Starting with a com-
bination of the parameters P0, r0, n, and V one can obtain the
solution for the beam width parameter f by simultaneous
numerical integration of Eqs (18) and (19) using suitable
expressions for 10 and 12 under appropriate boundary con-
ditions viz f ¼ 1, df/dj ¼ 0 and F ¼ 0 at j ¼ 0.

NUMERICAL RESULTS AND DISCUSSION

In the present study, the propagation characteristics of a hollow
Gaussian beam in plasma have been investigated; these are
determined by the modified dielectric function around the
maximum of the irradiance on the wavefront of the HGB.
One can see from the irradiance distribution profile for HGB
(Eq. (2)) that the radius of the bright ring increases when the
order of the HGB n increases, which means that the area of
the dark region across the HGB increases as n increases. It
is instructive to remember that (1) the collisional nonlinearity
sets in a period 1/dn, (2) the ponderomotive nonlinearity sets
in a period r0/cs where cs is the ionic sound speed, and (3) the
relativistic nonlinearity sets in a period vpe

21. The present
steady state theory is valid when the duration of the laser radi-
ation is longer than these characteristic times.

To have a better understanding of the phenomena and
numerical appreciation of the results, the critical curves and
the beam width parameter f as a function of dimensionless
distance of propagation j have been computed for a set of
parameters P0, r0, n, and for all the three kinds of nonlinea-
rities. Further, these results for higher order HGB have been
compared with corresponding results for a fundamental
Gaussian beam (n ¼ 0).

Figure 1 illustrates the dependence of the dimensionless
initial power P0 on the dimensionless initial beam width
r0 for self trapping, corresponding to the ponderomotive
nonlinearity for various orders of the HGB. The figures
show the critical as well as divider curves; thus the r0 2

P0 space can be divided into three regions namely those cor-
responding to oscillatory focusing, oscillatory divergence,
and steady divergence. If any initial point (P0, r0) lies on
the critical power curve then d2f/dj2 vanishes at j ¼ 0;
since df/dj is initially zero (for a plane wavefront) it con-
tinues to be zero and f remains equal to one as the HGB pro-
pagates through the plasma. Such propagation is termed as
uniform waveguide propagation. For the initial point (P0,
r0) lying above the critical power curve, d2f/dj2 , 0 and
hence when the beam propagates through the plasma the
power P increases and the beam width r0f decreases.
Therefore, when the beam propagates the point (P, r) will
move in the r0 2 P0 space in the right downward direction
and at some value of f it will reach the critical power curve
(i.e., the point of inflection); beyond this df/dj starts decreas-
ing until df/dj vanishes, i.e., f reaches a minimum. Thus,

M.S. Sodha et al.64

https://doi.org/10.1017/S0263034609000081 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034609000081


during the propagation of the beam, the beam width par-
ameter f corresponding to such a point (lying above the criti-
cal power curve) oscillates between the initial value unity and
a minimum. Similarly, for the initial point (P0, r0) lying
between the critical power curve and the divider curve, the
beam width parameter f oscillates as the beam propagates
in the plasma between a maximum and the initial value
unity. The points lying below the divider curve will never
be able to attain a point of inflection and hence the beam
having an initial point (P0, r0) in this region steadily
diverges. The curves in Figure 1 indicate that the region for
oscillatory divergence becomes narrower while self focusing
and steady divergence occupy larger areas in the r0 2 P0

space as the order of the HGB increases. The trend of the
critical power curve gets reversed beyond some value of
the critical power. This can be understood in terms of
12(z), which at first rises rapidly to a maximum value (i.e.,
minimum self trapping width) and then falls sharply with
increasing power of the beam for lower order HGBs. The
divider curve shows that the beam width associated with
the region of steady divergence increases with increasing
order of the HGB. Further, a comparative study has been
made for fundamental Gaussian beam, which follows a
similar variation. The figure also suggests that the
minimum self trapping width is lowest for n ¼ 0 and
increases with increasing order of the HGB.

Figure 2a describes the curves corresponding to critical
conditions for focusing and defocusing of the beam in an
electron-ion collision dominant plasma (s ¼ 23) for
various orders of the HGBs; the curves display a trend like
Figure 1. Further, the self focusing region occupies a larger
area and a higher value of absolute minimum of the beam
width for self trapping to occur for an electron-neutral col-
lision dominant plasma (s ¼ 1), in comparison with that for
an electron-ion collision dominated (s ¼ 23) plasma, in
the r0 2 P0 space; this comparison has been demonstrated
in Figure 2b. The figure also suggests that for the same
initial beam width r0, self focusing is stronger for s ¼ 23
for low power HGBs, it gets more pronounced for s ¼ 1
with increasing power of the beam.

Figure 3a expresses the dependence of the beam width par-
ameter f on the dimensionless distance of propagation j for a
collisionless plasma with dominant ponderomotive nonli-
nearity. The figure describes the characteristic propagation
of the HGB in the three regions namely self focusing, oscil-
latory divergence, and steady divergence for chosen points
(P0, r0) from Figure 1 for n ¼ 1; the focusing is more pro-
nounced for the beam having high initial power and larger
initial beam width. The effect of higher order of HGBs on
the propagation has been depicted in Figure 3b, starting
with fixed (P0, r0) for all the beams. It is seen that for low
power beams that the self focusing character of the HGB
decreases and leads to oscillatory divergence as n increases,
but as the power of the beam increases the trend is seen to get
reversed i.e., self focusing is more pronounced for higher
order HGBs; this has been shown in Figure 3c.

Fig. 3. (a) Dependence of the dimensionless beam width parameter f on
the dimensionless distance of propagation j, in a collisionless plasma
with dominant ponderomotive nonlinearity, for the parameters V2 ¼ 0.8
and first order HGB (n ¼ 1); the curves refer to an arbitrarily chosen set
of initial power and initial beam width (P0, r0) as indicated over the
curves. (b) Variation of the dimensionless beam width parameter f on
the dimensionless distance of propagation j, in a collisionless plasma
with dominant ponderomotive nonlinearity for various order HGBs for
V2 ¼ 0.8, P0 ¼ 2 and r0 ¼ 4; the curves a, b, c and d refer to the order
of the HGB n ¼ 0, 1, 2 and 3 respectively. (c) Dependence of the dimen-
sionless beam width parameter f on the dimensionless distance of propa-
gation j, in a collisionless plasma with dominant ponderomotive
nonlinearity for various order HGBs, for the parameters V2 ¼ 0.8 and
r0 ¼ 3; the curves a and b refer to the initial power of the beam P0 ¼ 2
and 10 respectively, while subscripts 1 and 3 correspond to the order of
the HGB n.
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The propagation of the various order HGBs in a collisional
plasma has been illustrated in Figure 4 for s ¼ 1, 23 starting
with the same (P0, r0) for all the beams. The figure suggests
stronger self focusing for s ¼ 23 than for s¼ 1 (due to stron-
ger nonlinearity for s ¼ 23). Further, self focusing is more pro-
nounced for s ¼ 23 with increasing order of the HGB, while
the opposite trend is observed for s ¼ 1. All the f 2 j curves
are in conformance with the above discussed critical curves.

One should notice that an expression for the dielectric
function for relativistic nonlinearity (Eqs (33) and (34)),
is exactly obtained by substituting s ¼ 1 in the expression
for the dielectric function for collisional nonlinearity
(Eqs (30), (31)) with modified definition of p(¼gE0

2/f 2);
therefore the results (in terms of p and P) for relativistic non-
linearity are the same as those for s ¼ 1 in collisional
nonlinearity.

CONCLUSION

It is interesting to compare the propagation characteristics
of the HGBs to those of the fundamental Gaussian beam.
It is seen that the HGBs also exhibit three regions in the
r0 2 P0 space which follow a nature similar to that in the
case of the Gaussian beam. The regions for self focusing
and steady divergence occupy larger areas while the oscil-
latory divergence becomes narrower with respect to the
Gaussian beam in r0 2 P0 space for higher order HGBs.
The nature of the critical curve involves that self focusing
is more pronounced for lower orders for low power HGBs,
while the trend just reverses for high power of the beam.
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