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Abstract

We present a systematic approach to the problem whether a topologically infinite-dimensional space can be
made homogeneous in the Coifman–Weiss sense. The answer to the question is negative, as expected. Our
leading representative of spaces with this property is Tω = T × T × · · · with the natural product topology.
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1. Introduction

Given a nonempty topological space (X,T ), its topological dimension dim(X) is the
smallest number n ∈ N ∪ {0} with the property that each open cover B of X has a
refinement B̃ (that is, a second open cover with all elements being subsets of elements
of the first cover) such that each point x ∈ X belongs to no more than n + 1 elements
of B̃. If no such n exists, then we put dim(X) = ∞.

The following note is devoted to explaining why a topologically infinite-dimensional
space cannot be doubling. We shall refer to the doubling condition by using the notion
of homogeneity in the Coifman–Weiss sense (see Definition 1.6).

THEOREM 1.1. Let (X,T ) be a topological space. If dim(X) = ∞, then it is not possible
to find a quasimetric ρ and a Borel measure μ for which Tρ = T and (X, ρ, μ) is
homogeneous in the Coifman–Weiss sense.

The same is true if the small ind(X) or large Ind(X) inductive dimension is used
instead (for the definitions of the inductive topological dimensions, see for example
[5]). Indeed, homogeneous spaces are metrisable (see Facts 2.2 and 2.3) and separable
(see [14, Proposition 2.2]), while all dimensions are topologically invariant and
ind(X) = Ind(X) = dim(X) holds for separable metric spaces (see [5, Preface]).
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[2] The doubling condition 481

It should be emphasised that Theorem 1.1 can be derived from general theory in
just a few lines, by using several results that are already known, as a black box (see the
proof in Section 2). However, the problem lies at the intersection of different fields of
research, and the solution relies on analytical, geometrical and topological arguments
that should be combined in the appropriate way. Therefore, we believe that it is worth
making the topic more systematic by presenting a detailed approach which will be
both elementary and instructive to the reader. We break down the original problem into
several simpler subtasks, explain the reasons for making each reduction, and comment
on possible obstacles or alternative paths along the way.

Studying this kind of problem was originally motivated by a recent question by Ron-
cal, related to analysis on the infinite-dimensional torus. Since this space can be seen
as a model example of X from Theorem 1.1, we would like to look at the problem from
the standpoint of this particular setting first, and only then pass to the general case.

1.1. The infinite-dimensional torus Tω. By Tω, we mean T × T × · · · , that is, the
product of countably many copies of the one-dimensional torus T. One can equip Tω

with the usual product topology TTω and the normalised Haar measure dx (that is, the
product of uniformly distributed probabilistic measures on T) to make it a compact
Hausdorff group and a metrisable probabilistic space. Then a lot of classical analysis
can be developed in the context of Tω, including harmonic analysis on which we focus
here.

Although the structure of Tω seems nice at the first glance, careful examination of
specific problems in this setting often leads to negative results or counterexamples to
what we know from the Euclidean case Rd. To mention just a few such issues, one
observes:

• divergence of Fourier series of certain smooth functions [7];
• no Lebesgue differentiation theorem for natural differentiation bases [8, 10];
• unboundedness of maximal operators [10, 11];
• problems with introducing a satisfactory theory of weights [11].

The instances we have chosen share one common feature. Precisely, they all
originate in Rd-related questions to which answers are positive in the qualitative sense
for each d but also worse in the quantitative sense the bigger d is. In many cases, the
key reason for this phenomenon is the behaviour of the so-called doubling condition.
Indeed, although the estimate |B(x, 2r)| ≤ C(d)|B(x, r)| is satisfied uniformly in x ∈ Rd

and r ∈ (0,∞) for d fixed, the optimal constants C(d) = 2d grow exponentially with d.
This fact usually becomes the main obstacle while trying to prove results with
dimension-free bounds.

From this point of view, one may expect that for Tω, the doubling condition is
unlikely to hold as, loosely speaking, for each d, a piece of Rd can be embedded in Tω.
In this direction, the following question was asked by Roncal.

QUESTION 1.2. Can one equip Tω with a quasimetric ρ and a measure μ so as to assure
the doubling condition and, at the same time, keep the structure of Tω?
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Several remarks regarding Question 1.2 are in order.

(1) In the literature devoted to studying Tω, the most popular metric is given by

ρTω(x, y) �
∞∑

n=1

ρT(xn, yn)
2n , x = (x1, x2, . . .), y = (y1, y2, . . .) ∈ Tω,

with the toric distance (here x, y ∈ T are understood as elements of [0, 1))

ρT(x, y) � min{|x − y|, 1 − |x − y|}, x, y ∈ T.

For (Tω, ρTω , dx), the doubling condition fails to hold (see [6, Ch. 2.3]).
(2) Bendikov in [2, Remark 5.4.6] defines a family of metrics ρA on Tω by

ρA(x, y) �
( ∞∑

n=1

anρ
2
T(xn, yn)

)1/2
, A = (a1, a2, . . .) ∈ A,

where A is the space of all summable sequences with strictly positive entries.
It was asked in [6, Nota 2.34] whether there exists an assumption on a sequence
A ∈ A under which (Tω, ρA, dx) is a space of homogeneous type. This can be seen
as a special case of Question 1.2.

(3) The last part of Question 1.2 is essential, and omitting it would make the problem
trivial. Indeed, in this case, the following (not insightful) answer could be given:

Yes, because there exist doubling spaces of the same cardinality as Tω.

For example, one could take R with the standard distance and Lebesgue measure,
and equip Tω with ρ and μ transferred from R via a given bijection π : R→ Tω
(in other words, one chooses ρ and μ so that π is a measure-preserving isometry).

We show that the answer to Question 1.2 is negative, as expected. This result has
important consequences for the whole field of harmonic analysis on Tω, as it reveals
that this subject goes beyond the theory of doubling spaces. In what follows, we present
two theorems referring to either the geometrical or topological structure of Tω.

THEOREM 1.3. Suppose that ρ is a bounded translation invariant quasimetric on Tω.
Then it is not possible to find a measure μ, defined on the σ-algebra generated by ρ,
for which (Tω, ρ, μ) is homogeneous in the Coifman–Weiss sense.

THEOREM 1.4. Suppose that ρ is a quasimetric on Tω such that Tρ = TTω . Then it
is not possible to find a Borel measure μ for which (Tω, ρ, μ) is homogeneous in the
Coifman–Weiss sense.

Theorem 1.3 is independent of Theorem 1.1, while Theorem 1.4 is a special case
with a simpler proof. Both results answer the question in [6, Nota 2.34] in the negative.

1.2. Homogeneous spaces. Finally, we briefly recall the notion of homogeneity
(see [3]). Alongside, we conduct a short discussion on quasimetrics, strongly
inspired by [14].
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DEFINITION 1.5. A quasimetric on a nonempty set X is a mapping ρ : X × X → [0,∞)
satisfying the following conditions:

• ρ(x, y) = 0 if and only if x = y;
• ρ(x, y) = ρ(y, x);
• ρ(x, y) ≤ K(ρ(x, z) + ρ(z, y)) for some numerical constant K ∈ [1,∞).

If the last condition is satisfied with K = 1, then ρ is called a metric.

There is a canonical way to introduce a topology on X that corresponds to a given
quasimetric ρ. Namely, for each x ∈ X and r ∈ (0,∞), we denote by

Bρ(x, r) � {y ∈ X : ρ(x, y) < r}

the ball centred at x and of radius r. A set G ⊂ X is said to be open (that is, G ∈ Tρ)
if for each x ∈ G, there exists rx ∈ (0,∞) such that Bρ(x, rx) ⊂ G. This definition turns
out to be good for several reasons (see the detailed comments later on):

(a) it extends the standard definition used in the metric case K = 1;
(b) it ensures that topology properties behave well under perturbations of ρ;
(c) it always leads to a topology which is metrisable.

However, one needs to be careful because, quite surprisingly, in the case where
K > 1, it may happen that balls are not open or even Borel according to the properties
of Tρ.

DEFINITION 1.6. Given a nonempty set X, a quasimetric ρ and a Borel measure μ,
we call the space (X, ρ, μ) homogeneous in the Coifman–Weiss sense if μ(Bρ) ∈ (0,∞)
holds for all balls Bρ ⊂ X (in particular, it is assumed that balls are μ-measurable sets),
and there exists a numerical constant C ∈ [1,∞) such that

μ(Bρ(x, 2r)) ≤ Cμ(Bρ(x, r)) for all x ∈ X, r ∈ (0,∞).

If this last condition holds, then we say that μ is doubling with respect to ρ.

Notice that in general, under the assumption that all balls are measurable, the
doubling condition leads to the following trichotomy:

• μ(Bρ) = 0 for all balls Bρ ⊂ X and, consequently, μ(X) = 0;
• μ(Bρ) ∈ (0,∞) for all balls Bρ ⊂ X;
• μ(Bρ) = ∞ for all balls Bρ ⊂ X.

Thus, the condition μ(Bρ) ∈ (0,∞) in Definition 1.6 excludes only trivial examples.

2. Proofs of Theorems 1.1, 1.3 and 1.4

2.1. Analysis: from quasimetric to metric spaces. Instead of dealing directly with
the problems stated in Section 1, we opt to make some reductions in advance to
get rid of several technicalities such as measurability of balls. The first reduction
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refers to the ‘metamathematical principle’ [14, Section 3], which says that many
quasimetric-related questions can be boiled down to the metric case.

One reason the definition of quasimetric is convenient to use is that if ρ is a
quasimetric and ρ̃ is symmetric and comparable to ρ, then ρ̃ is a quasimetric as well.
For metrics, the corresponding statement is not true. However, the strength of this
flexibility sometimes turns into weakness. Indeed, the definition of topology using
balls is perfectly suited to the metric case and we pay a certain cost to ensure (a).
If K = 1, then the triangle inequality ensures that for an arbitrary reference point x
and two points y, z lying close to each other, the distances ρ(x, y), ρ(x, z) are similar.
Precisely, we have |ρ(x, y) − ρ(x, z)| ≤ ρ(y, z). Thus, if y ∈ Bρ(x, r), then also Bρ(y, r̃) ⊂
Bρ(x, r) for some appropriately chosen r̃, so that the ball Bρ(x, r) is open. This is not
true in general if K > 1. To see this, take R with the standard metric ρR(x, y) = |x − y|
and modify it putting

• ρ̃R(x, y) = 2ρR(x, y) if one of the points is 0 while the other one belongs to a given
set E ⊂ (1, 2);

• ρ̃R(x, y) = ρR(x, y) otherwise.

In view of the discussion above, ρ̃R is a quasimetric. Moreover, looking at the notion
of convergence, we would expect it to generate the same topology on R as the
standard one. However, the exact forms of the balls Bρ̃R(0, r) with r ∈ (1, 4) are strongly
dependent on the form of E itself, while this set is arbitrary. In particular, one can
choose E so that none of these balls is Borel (see [14, Example 1.1] for a simple
example of quasimetric space such that all balls fail to be Borel).

Nonetheless, once we realise that instead of balls, the topology Tρ is what we
should look at, things start to look more optimistic. To see this, we need the following
definition.

DEFINITION 2.1. Two quasimetrics on X, ρ1 and ρ2, are called equivalent if there exists
a numerical constant M ∈ [1,∞) such that M−1ρ1 ≤ ρ2 ≤ Mρ1.

It is easy to verify the result below, which one can relate to (b).

FACT 2.2. If ρ1 and ρ2 are equivalent, then Tρ1 = Tρ2 . Also, for a quasimetric ρ and
α ∈ (0,∞), the mapping ρα defines a quasimetric such that Tρα = Tρ.

The next fact, which justifies (c), can be used to reduce our problems to the metric
case.

FACT 2.3. Consider a quasimetric ρ on X and take q ∈ (0, 1] satisfying (2K)q = 2.
Then,

ρq(x, y) � inf
{ n∑

j=1

ρ(xj, xj−1)q : x = x0, x1, . . . , xn = y, n ∈ N
}

determines a metric on X which is equivalent to ρq. Precisely, one has ρq ≤ ρq ≤ 4ρq.
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The proof of Fact 2.3 can be found in [13, Proposition] (see also [1]). We now
explain briefly the motivation behind such a definition of ρq. If K > 1, then ρ(x, y) >
ρ(x, z) + ρ(z, y) can occur. Thus, to assure the triangle inequality, we would like to
make the distance between x and y not larger than the right-hand side. The same
applies to ρ(x, z), ρ(z, y) so we eventually take into account all finite chains going
from x to y. However then, as the number of intermediate points goes to infinity, the
corresponding expressions may go to zero (for example, if ρ̃(x, y) � (x − y)2, x, y ∈ R,
then limn→∞ ρ̃(0, 1/n) + ρ̃(1/n, 2/n) + · · · + ρ̃((n − 1)/n, 1) = 0). Hence, we need to
adjust our original idea and, as it turns out, penalising long chains by using q close
to zero does the job perfectly.

COROLLARY 2.4. Regarding Theorems 1.1, 1.3 and 1.4, it is enough to consider
metrics.

Indeed, by using Facts 2.2 and 2.3, one can verify that if (Tω, ρ, μ) is a quasimetric
space which is homogeneous in the Coifman–Weiss sense, then (Tω, ρq, μ) is a
homogeneous metric space that enjoys the same topology. Also, if ρ is bounded and
translation invariant, then so is ρq.

From now on, we can concentrate solely on metrics. However, to satisfy the reader’s
curiosity, we shall comment on which results have their quasimetric analogues.

2.2. Geometry: from doubling to geometrically doubling spaces. Our next goal
is to show that yet another important reduction can be made. Namely, although both ρ
and μ are involved in verifying whether (X, ρ, μ) is homogeneous or not, it is actually
the metric that plays the more important role here.

It is clear that if μ is doubling with respect to ρ and the second option in
the above trichotomy occurs, then one should not be able to find arbitrarily many
disjoint balls of radius r/2 centred at points y ∈ Bρ(x, 2r). Indeed, if that would be
the case, then at least one of these balls, say Bρ(y0, r/2), should have very small
measure compared to μ(Bρ(x, 4r)) (because there are many disjoint balls, each of them
satisfying Bρ(y, r/2) ⊂ Bρ(x, 4r)), and the doubling condition would fail for one of the
balls Bρ(y0, r/2), Bρ(y0, r), Bρ(y0, 2r).

The discussion above motivates the following definition.

DEFINITION 2.5. A quasimetric space (X, ρ) is called geometrically doubling if there
exists a number N ∈ N such that every ball Bρ(x, 2r) can be covered by no more than
2N balls of radius r. In this case, we also say that ρ is geometrically doubling.

It turns out that, in some sense, failing to be geometrically doubling is the only
obstacle that prevents a given space from becoming homogeneous after a suitable
choice of μ.

FACT 2.6. If a metric space (X, ρ, μ) is homogeneous in the Coifman–Weiss sense,
then ρ is geometrically doubling. Conversely, if ρ is a geometrically doubling metric
on X, then there exists a Borel measure μ such that (X, ρ, μ) is homogeneous in the
Coifman–Weiss sense, provided that (X, ρ) is complete.
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Indeed, the first part of Fact 2.6 is a known fact mentioned by the authors in [3] (see
also [9]). Precisely, if ρ is not geometrically doubling, then for each M ∈ N, there exist
a ball Bρ(x, 2r) and points y1, . . . , yM ∈ Bρ(x, 2r) such that ρ(yi, yj) ≥ r if i � j, so that
the balls Bρ(y1, r/2), . . . , Bρ(yM , r/2) are disjoint. Then the doubling condition cannot
hold in view of the previous discussion. The reverse part is harder and its proof can also
be found in [12] (see also [15]). The quasimetric analogue of Fact 2.6 is also true (in
the reverse part, we additionally assume that ρ is such that all balls are Borel). Finally,
in general, the completeness assumption cannot be ignored (to see this, consider Q and
ρR restricted to Q × Q, as mentioned in [14]).

COROLLARY 2.7. Regarding Theorems 1.1, 1.3 and 1.4, one only needs to look for
geometrically doubling metrics satisfying the desired properties.

Indeed, this follows clearly by combining Corollary 2.4 and Fact 2.6. Precisely,
we expect negative answers so it suffices to show that each metric ρ which is either
bounded and translation invariant (Theorem 1.3) or such that Tρ coincides with the
given topology (Theorems 1.1 and 1.4) cannot be geometrically doubling.

To use the geometrical doubling property, we introduce the concept of r-separated
sets.

DEFINITION 2.8. For a nonempty quasimetric space (X, ρ), we say that a given subset
E ⊂ X is r-separated, r ∈ (0,∞), if ρ(x, y) ≥ r for all distinct x, y ∈ E. We denote by
ℵ(X, ρ, r) the biggest number n ∈ N such that there exists at least one r-separated
set with n elements. If arbitrarily large r-separated sets can be found, then we put
ℵ(X, ρ, r) = ∞.

The following lemma will be very helpful later on.

LEMMA 2.9. Let (X, ρ) be a bounded metric space. If ρ is geometrically doubling with
some N ∈ N, then there exists C ∈ (0,∞) such that ℵ(X, ρ, 2−l) ≤ C2Nl for all l ∈ N.

PROOF. Take L ∈ Z such that supx,y∈X ρ(x, y) < 2L. Then for an arbitrary reference
point x ∈ X, we have Bρ(x, 2L) = X and iterating the covering procedure, we conclude
that for each l ∈ N, the space X can be covered by 2Nl balls of radius 2L−l, so that
ℵ(X, ρ, 2L−l+1) ≤ 2Nl holds (to see this, notice that if ρ(x, y) ≥ 2r, then there is no ball
of radius r containing both x and y). A suitable reparametrisation gives the statement
with some C depending on L, N. �

A quasimetric version of Lemma 2.9 is also true, but with C2Ml instead of C2Nl,
where C depends on K, L, N, while M depends only on K, N.

We are ready to prove the first of the two Tω-related theorems.

PROOF OF THEOREM 1.3. Suppose that ρ is a bounded translation invariant metric on
Tω. For each n, j ∈ N, consider the set

En,j = {(x1, . . . , xn, 0, 0, . . .) ∈ Tω : x1, . . . , xn ∈ {0 · 2−j, 1 · 2−j, . . . , (2j − 1) · 2−j}}.
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0

2z

z

FIGURE 1. Visualization of the sets En,j, j ∈ N, for n = 2. Thick dots and small dots correspond to the sets
E2,2 and E2,3, respectively. Given z ∈ E2,3, we have 2z ∈ E2,2 and 2z = 0 if and only if z ∈ E2,1.

Then, En,j has precisely 2nj elements, and it is rn,j-separated with rn,j satisfying

rn,j = min
x,y∈En,j:x�y

ρ(x, y) = min
z∈En,j\{0}

ρ(0, z),

where 0 = (0, 0, . . .) ∈ Tω is the neutral element of the group. Indeed, the last equality
follows, since ρ is translation invariant and En,j is a subgroup of Tω.

If z ∈ En,j+1 \ {0} for some j ∈ N, then either z ∈ En,1 \ {0} or 2z ∈ En,j \ {0} (see
Figure 1). In the first case, ρ(0, z) ≥ rn,1, while in the second one, by translation invari-
ance and the triangle inequality, one has ρ(0, z) = 1

2 ( ρ(0, z) + ρ(z, 2z)) ≥ 1
2ρ(0, 2z)

≥ 1
2 rn,j. Thus, rn,j+1 ≥ min{rn,1, 1

2 rn,j} and denoting Cn = rn,1, we conclude that rn,j
≥ Cn2−j+1 for each j ∈ N, so that ℵ(Tω, ρ, Cn2−j+1) ≥ 2nj.

Since both n, j may be arbitrarily large, one can use Lemma 2.9 to deduce that ρ
cannot be geometrically doubling. Indeed, there is no N ∈ N such that ℵ(Tω, ρ, 2−l) ≤
C2Nl holds for all l ∈ N with some C ∈ (0,∞), as otherwise one gets a contradiction
by taking any n greater than N and sufficiently large j depending on N, C, Cn. �

At the expense of additional technical difficulties, one can show Theorem 1.3
directly for all bounded and translation invariant quasimetrics by modifying the proof
presented above.

2.3. Topology: from Hausdorff to topological dimension. Next we prove
Theorem 1.4. Here we use the following classical result that can be seen as a special
case of the Brouwer fixed-point theorem or a multidimensional variant of the Darboux
theorem.

FACT 2.10 (Poincaré–Miranda theorem). For n ∈ N, let f1, . . . , fn be continuous
functions defined on [0, 1]n. Assume that for each i ∈ {1, . . . , n} and (x1, . . . , xn) ∈
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[0, 1]n, there exists ai ∈ R such that fi(x) ≤ ai if xi = 0 and fi(x) ≥ ai if xi = 1. Then,
there exists x∗ ∈ [0, 1]n such that ( f1(x∗), . . . , fn(x∗)) = (a1, . . . , an).

Thanks to Fact 2.10, we can adapt the idea behind the previous proof to the case of
metrics which are not necessarily translation invariant.

PROOF OF THEOREM 1.4. Suppose that ρ is such that Tρ = TTω . Then, ρ is bounded
because (Tω, ρ) is compact. Moreover, E ⊂ Tω is Tρ-compact if and only if it is
TTω-closed.

For each n ∈ N, consider the set

En � {(x1, . . . , xn, 0, 0, . . .) ∈ Tω : (x1, . . . , xn) ∈ [0, 1
2 ]n},

which will play the role of the cube [0, 1]n from Fact 2.10. For i ∈ {1, . . . , n}, denote

E−n,i � {x ∈ En : xi = 0} and E+n,i � {x ∈ En : xi =
1
2 },

and set

Cn � inf{ ρ(x, y) : x ∈ E−n,i, y ∈ E+n,i for some i ∈ {1, . . . , n}}.

Since E−n,i, E+n,i are compact and (x, y) �→ ρ(x, y) is continuous on Tω × Tω (here, it is
important that ρ is a metric), we have Cn ∈ (0,∞). Define auxiliary functions

fn,i(x) � inf
y∈E−n,i

ρ(x, y), x ∈ En.

Using compactness again, we deduce that each fn,i is continuous. Indeed, assuming
fn,i(x) ≥ fn,i(x′), we get 0 ≤ fn,i(x) − fn,i(x′) ≤ ρ(x, y∗) − ρ(x′, y∗) ≤ ρ(x, x′), by taking
y∗ ∈ E−n,i for which the value fn,i(x) is attained (again, it is important here that ρ is a
metric). Moreover, fn,i(x) = 0 for x ∈ E−n,i and fn,i(x) ≥ Cn for x ∈ E+n,i.

Next, choose j ∈ N and take

v = (v1, . . . , vn) ∈
{Cn

2 j ,
2Cn

2 j , . . . ,
2jCn

2 j

}n
.

By Fact 2.10, there exists xv ∈ En such that ( fn,1(xv), . . . , fn,n(xv)) = v. We shall show
that the set

En,j �
{
xv : v ∈

{Cn

2j ,
2Cn

2j , . . . ,
2jCn

2j

}n}

of cardinality 2nj is Cn/2j-separated so that ℵ(Tω, ρ, Cn/2j) ≥ 2nj holds. To this end, let
xv, xv′ ∈ En,j correspond to distinct vectors v, v′ and assume that v′i0 > vi0 for some i0 ∈
{1, . . . , n}. Then, fn,i0 (xv′) ≥ fn,i0 (xv) + Cn/2j by the definition of fn,i0 , while the triangle
inequality gives fn,i0 (xv′) ≤ fn,i0 (xv) + ρ(xv, xv′) (see Figure 2). Thus, ρ(xv, xv′) ≥ Cn/2j.

Both n, j may be arbitrarily large so one can use Lemma 2.9 to deduce that ρ cannot
be geometrically doubling. Indeed, there is no N ∈ N such that ℵ(Tω, ρ, 2−l) ≤ C2Nl

holds for all l ∈ N with some C ∈ (0,∞), as otherwise one gets a contradiction by
taking any n greater than N and sufficiently large j depending on N, C, Cn. �
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xv

xv′

E−2,1 E+2,1

E−2,2

E+2,2

y∗

FIGURE 2. Visualization of the ‘cube’ En for n = 2. Thick dots are the elements of the set E2,j with j = 2,
while dashed lines represent the corresponding level sets of the functions f2,1, f2,2 (this is an

oversimplified scheme, as in general, the structure of the level sets may be much more complicated). We
pick two points xv, xv′ ∈ E2,2 corresponding to vectors v, v′ such that v′i0 > vi0 for i0 = 1. By y∗, we denote

the point from E−2,1 for which f2,1(xv) is attained. Then, f2,1(xv′ ) ≤ ρ(xv′ , y∗) ≤ f2,1(xv) + ρ(xv, xv′ ).

This time, it was crucial that only metrics, not quasimetrics, were considered in the
proof.

It remains to prove Theorem 1.1. To this end, let us recall the concept of the
Hausdorff dimension. Given a metric space (X, ρ), for each E ⊂ X, we define

Hd(E) � lim
δ↓0

(
inf
{ ∞∑

i=1

(diam(Ui))d : E ⊂
∞⋃

i=1

Ui, diam(Ui) < δ
})

, d ∈ [0,∞),

and put dimH (E) � inf{d ∈ [0,∞) : Hd(E) = 0} (with the convention dimH (E) = ∞
if the infimum is taken over the empty set). The proof of Lemma 2.9 reveals that
if (X, ρ) is geometrically doubling with some N ∈ N, and x ∈ X is any reference point,
then dimH (X) = limr→∞ dimH (Bρ(x, r)) ≤ N. Similarly, the proof of Theorem 1.4 hints
that [0, 1]n equipped with any metric generating the standard topology should have
Hausdorff dimension at least n. The latter is a special case of the following general
result.

FACT 2.11. Let (X, ρ) be a separable metric space. Then dim(X) ≤ dimH (X).

Indeed, dim(X) = ind(X) follows for separable metric spaces (see [5, Preface]),
while ind(X) ≤ dimH (X) follows for metric spaces (see [4, Section 3.1]). For separable
quasimetric spaces, dim(X) ≤ dimH (X)/q holds with q ∈ (0, 1] satisfying (2K)q = 2.
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PROOF OF THEOREM 1.1. Assume that ρ is a metric for which Tρ = T and (X, ρ)
is geometrically doubling. Then, dimH (X) is finite by Lemma 2.9. Also, (X, ρ) is
separable because the geometrical doubling property ensures that for any M ∈ N, the
whole space X can be covered by countably many balls of radius 2−M . Thus, Fact 2.11
gives

dim(X) ≤ dimH (X) < ∞ = dim(X).

This contradicts the existence of ρ with the desired properties. �

The following remarks highlight why the problem stated in Question 1.2 was
delicate.

REMARK 2.12. In general, being geometrically doubling is not a topological property.
Indeed, one can change ρR to make R with its natural topology not geometrically
doubling. It suffices to take ρ � log(1 + ρR) and consider the balls Bρ(0, n) with
n→ ∞.

REMARK 2.13. The subspace {0, 1
2 }
ω ⊂ Tω with the topology inherited from Tω can

be made homogeneous in the Coifman–Weiss sense.
Indeed, it suffices to identify {0, 1

2 }
ω with the classical Cantor set C ⊂ [0, 1] with the

metric ρC obtained by restricting ρR to C × C. This can be done through the bijection
π : {0, 1

2 }
ω → C given by π(x) �

∑∞
n=1 4xn/3n. Then, the usual Cantor measure μC on C

is doubling, since for all x ∈ C and n ∈ N, one has μC(BρC(3
−n)) = 2−n (see also [16]).
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