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Abstract

Artemisia adamsii is a weed with low palatability to livestock and is thus recognized as an
indicator of rangeland degradation in Mongolia. We investigated the germination character-
istics of this species, phytotoxic suppression of its germination by its own residue, and the
applicability of such germination behaviour to the control of this species. We also discussed the
ecological consequence of these factors regarding the vegetation dynamics of the Mongolian
steppe. Germination of A. adamsii was tested at different light and temperature conditions.
Germination was also tested for A. adamsii and four native grassland species in the presence
or absence of A. adamsii residue. Germination of A. adamsii was light-demanding and tem-
perature-dependent. Artemisia adamsii residue showed autotoxic but sub-fatal suppression of
germination, and the chemicals causing that suppression were shown to be aqueous and vola-
tile. Phytotoxicity of A. adamsii residue on the germination of grassland species was low,
except for in Artemisia frigida. The applicability of the observed sub-fatal autotoxicity for con-
trolling this species was likely to be low, but the elucidated germination characteristics could
contribute to developing a strategy for controlling this species. The autotoxicity in A. adamsii
germination was suggested to have an ecological consequence that mediates species transition
from A. adamsii to other species in degraded land occupied by A. adamsii. As low-palatability
A. adamsii can act as a nurse plant of palatable species under grazing conditions, the invasion
of A. adamsii into disturbed grasslands may facilitate the recovery of such grasslands in terms
of improving pasture quality.

Introduction

Artemisia adamsii is a perennial forb or subshrub belonging to the Asteraceae and is distributed
across the eastern Eurasian steppe including Mongolia. It colonizes lands degraded by inappro-
priate utilization, such as overgrazing or abandonment of cultivation, and is thus recognized as an
indicator of rangeland degradation (Fernández-Giménez, 2000; Tuvshintogtokh and Ariungerel,
2013). As A. adamsii has low palatability to most livestock, its predominance in overgrazed
grasslands is a serious concern for rangeland management in the Mongolian steppe (Okayasu
et al., 2012; Bruegger et al., 2014). In addition, pollen from Artemisia species is known as a
cause of pollinosis in many parts of the world (D’Amato et al., 2007; Tang et al., 2015), and
A. adamsii is also recognized as an allergen among Mongolians (Konagaya, 2013). Despite its
harmfulness to livestock farming and human health, to date little effort has been made to control
this species (but see Yoshihara et al., 2015; Koyama et al., 2016).

Seed germination is a critical stage for plant establishment, and therefore comprehension
of the germination characteristics of weeds can facilitate the development of effective weed
management (Kurstjens, 2007; Chauhan and Johnson, 2010). For example, in a no-till crop-
ping system, mature cover crop residue applied on the soil surface as a mulch was reported
to reduce light quantity and soil temperature, and thereby suppressed or delayed weed germin-
ation (Teasdale and Mohler, 1993; Mirsky et al., 2012). In addition, living cover crops are
known to have a greater suppressive effect on weed germination than cover crop residue
because living parts absorb red light and reduce the ratio of red to far-red light sufficiently
to inhibit phytochrome-mediated seed germination (Teasdale and Daughtry, 1993; Teasdale
et al., 2007). The germination characteristics of A. adamsii, however, have not been investi-
gated, and the environmental factors inducing or suppressing its germination are still unclear.

Phytotoxic inhibition of germination can be utilized for weed control. Many plants produce
secondary metabolites (allelochemicals) and release them into the environment through lea-
chates, litter decomposition, root exudates and volatilization; in this way, they can inhibit
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seed germination and the growth of other plants (Rice, 1984).
Autotoxicity, the inhibition of germination and growth due to
phytotoxic compounds contained in the body of the plant itself,
has been observed in many crop and wild species (Chou, 1999;
Singh et al., 1999). Autotoxicity in weed species has the potential
to be utilized as a natural bioherbicide (Singh et al., 1999; Qasem
and Foy, 2001; Hegab et al., 2008). It has been shown that many
Artemisia species contain bioactive compounds possessing anti-
fungal, anti-bacterial and phytotoxic functions (Tan et al., 1998;
Chon and Nelson, 2010), some of which have autotoxic activity.
For example, the germination of Artemisia tridentata and
Artemisia cana was inhibited by aqueous extracts and volatile
compounds of their own leaves (Hoffman and Hazlett, 1977), ger-
mination of Artemisia vulgaris was inhibited by aqueous extracts
of its own plant body (Onen, 2007) and, in Artemisia annua, ger-
mination was inhibited by artemisinin, a chemical compound
contained in its own plant body that has anti-fungal, anti-
bacterial and phytotoxic activities (Jessing et al., 2014). More
recently, Arroyo et al. (2018) reported that the germination of
Artemisia herba-alba was inhibited by both volatile and water-
soluble chemicals produced by this plant itself. As for A. adamsii,
it is likely to contain bioactive compounds because this species
has been used as a folk medicine and its essential oil has anti-
bacterial activities (Horváth et al., 2013; Randalova et al., 2017);
moreover, its volatile chemicals are known to affect the growth
of other species (Tsubo et al., 2012). The aforementioned studies
strongly suggest that A. adamsii exhibits the autotoxic inhibition
of germination, but no studies have investigated this to date.

In this study, we thus investigated the germination character-
istics and autotoxic inhibition of germination of A. adamsii, a
weed colonizing degraded lands in the Mongolian steppe that is
harmful to livestock farming and human health. We also dis-
cussed the applicability of these characteristics to the control of
this species. In addition to its practical value, autotoxicity has
been suggested to have some ecological consequences; some pion-
eer invaders in disturbed lands have autotoxic activity on germin-
ation, which restricts self-regeneration and can mediate the
secondary succession (Jackson and Willemsen, 1976; Kobayashi
et al., 1980; Alias et al., 2006; Li et al., 2014). To discuss the con-
tribution of autotoxicity in A. adamsii to the secondary succession
in the Mongolian steppe, we also investigated the allelopathic
effect of A. adamsii on the germination of some native grassland
species.

Materials and methods

We performed four germination experiments to test the germin-
ation characteristics and autotoxic inhibition of germination in
A. adamsii (Experiments 1–3), and to evaluate the phytotoxicity
of A. adamsii residue to the germination of species native to
the Mongolian steppe (Experiment 4). Seeds of A. adamsii and
of four species native to the Mongolian steppe, Artemisia frigida,
Agropyron cristatum, Salsola collina and Stipa krylovii, were col-
lected in late September to early October in 2011, 2014 and
2015 in a semi-arid grassland near Bayan-Unjuul (47°2.3′ N,
105°57.3′ E; elevation, 1215 m), which is approximately 130 km
southwest of Ulaanbaatar, the capital of Mongolia. In this region,
vegetative growth usually begins in May and ends in September,
during which time approximately 85% of the annual precipitation
falls (Fig. S1). Seeds of each species were randomly collected from
several populations, and collected seeds were air-dried and stored
in paper bags at 5°C in a refrigerator until the experiments started.

Experiment 1: Germination characteristics of A. adamsii

Germination characteristics of A. adamsii were tested in the per-
iod from April to August in 2012 for seeds collected in 2011.
Germination tests were conducted in a temperature gradient incu-
bator (TG-300CCFL-3LE; EYELA, Tokyo, Japan) placed in a dark
room using seven temperature treatments (5, 10, 15, 20, 25, 30
and 35°C) under two continuous light conditions, red and far-red
light, and in the dark condition which was created by shading a
container put into the incubator. For red and far-red light treat-
ments, LED lamps were used (EP30-A0E0-00, 660 nm, and
EP30-A0F0-00, 740 nm; EDISON, Taipei, Taiwan).

Before the germination tests, seeds were sterilized by immer-
sion in 80% ethanol for 1 min and rigorously rinsed using dis-
tilled water. Two 5-cm Petri dishes filled with 0.75% (w/v) agar
(gelling temperature, 30–31°C; Nacalai Tesque, Kyoto, Japan)
were prepared for each treatment and 50 seeds were sown in
each dish. The numbers of germinated seeds were counted
every day in the dark room using a green safe light so as to
avoid the induction of germination. Germination was defined as
the time when the radicles first appeared, and germinated seeds
were discarded after counting. Germination tests were ceased
when new germination was not observed for five consecutive
days. After the germination tests, the viability of ungerminated
seeds was tested by the triphenyltetrazolium chloride (TTC) stain-
ing method. Seeds were cut to expose the embryo and then
immersed in 0.1% (w/v) TTC solution (2,3,5-triphenyltetrazolium
chloride; Wako, Japan) in the dark at 30°C for 24 h. Embryos that
turned red were classified as viable.

Experiment 2: Autotoxic inhibition of germination in A. adamsii

Autotoxic activity of the residue of A. adamsii on germination was
tested in 2017. To confirm the phytotoxicity of the residue, effects
on the germination of lettuce (Lactuca sativa cv. Melbourne MT)
and radish (Raphanus sativa cv. Comet), which are highly sensi-
tive to allelochemicals and used as standard indicator species (Wu
et al., 2001), were also tested. The seeds of A. adamsii used for the
test were collected in 2015, and the seeds of lettuce and radish
were obtained from a seed dealer. Germination was tested in a
growth chamber (LH-60FL12-DT; Nippon Medical & Chemical
Instruments, Osaka, Japan) under 20°C with continuous light
treatment by a fluorescent lamp, as the germination of A. adamsii
required light and peaked at about 20°C in Experiment 1. As the
germination of radish is inhibited by light, its germination was
tested in a shading container put into the growth chamber.

Germination was tested on agar medium filled in 5-cm Petri
dishes with two different treatments: agar medium containing
and not containing the residue of A. adamsii (Fig. S2A). Agar
medium not containing residue was prepared in the same manner
as described in Experiment 1. As for agar medium containing
residue, dried residue of A. adamsii was embedded in the agar
medium. The residue of A. adamsii that was collected in grassland
near Bayan-Unjuul in early May 2016 just before the plant grow-
ing season was gently oven-dried at 35°C for more than 5 days
and stored in a desiccator at room temperature until the experi-
ment started. The residue was then cut into 1- to 3-cm pieces,
and 100 mg of this cut residue was put into each Petri dish.
This amount of residue is equivalent to 51 g m−2 when shown
as a ground area basis, which is comparable to the amount of
A. adamsii residue in grasslands dominated by A. adamsii. The
A. adamsii community with an above-ground biomass of 51 g
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m−2 has vegetation cover of about 60% (Fig. S3). Autoclaved agar
was kept at 40–45°C in a water bath, and 5 ml of agar was added
to each Petri dish to embed the residue. After gelatinizing, the
same procedure but with the addition of 4 ml of agar was repeated
twice, and prepared Petri dishes were stored in a refrigerator at 5°
C overnight until the germination test.

Before the germination test, seeds of A. adamsii, lettuce and
radish were sterilized by immersion in 80% ethanol for 1 min
and rigorously rinsed using distilled water. Five 5-cm Petri dishes
were prepared for each treatment in each tested species, and 20
seeds were sown in each Petri dish. The numbers of germinated
seeds were counted every day, until new germination was not
observed for three consecutive days. Germination of radish was
checked in a dark room using a green safe light so as to avoid
the photoinhibition of germination. The procedure for checking
germination followed those in Experiment 1. After finishing the
germination test of A. adamsii in agar medium containing resi-
due, ungerminated seeds were transplanted to new agar medium
not containing residue and continued incubation in the growth
chamber of the same environment as germination test were per-
formed to confirm seed viability.

Experiment 3: Contribution of volatile compounds to the
autotoxicity of A. adamsii

Germination of A. adamsii was tested in the presence or absence
of volatile compounds from A. adamsii residue in 2017. Seeds and
residue of A. adamsii employed for the test were from similar
sources to those used in Experiment 2. Five 5-cm Petri dishes
filled with agar medium were prepared for each of the two treat-
ments: treatment with and without volatile compounds of the
residue. After sterilizing using 80% ethanol and rinsing with dis-
tilled water, 20 seeds were sown in each Petri dish. After seeding,
each Petri dish was put in an 8.5-cm Petri dish and had a lid put
on it (Fig. S2B), followed by placement in a growth chamber at
20°C with continuous light treatment by a fluorescent lamp. In
the treatment with volatile compounds of the residue, 289 mg of
A. adamsii residue was put into the 8.5-cm Petri dish together
with the seeded Petri dish. This amount of residue is equivalent
to that in Experiment 2 when considering the ground area
basis. The numbers of germinated seeds were counted every
day, until new germination was not observed for three consecutive
days. The definition of and procedure for checking germination
followed those in Experiment 1.

After the germination test, samples in Petri dishes for the treat-
ment with volatile compounds of the residue were moved into
new 8.5-cm Petri dishes without residue and continued to
undergo testing of germination to confirm seed viability
(Fig. S2B). However, as new germination was not observed even
3 days after moving, ungerminated seeds were transplanted to
5-cm Petri dishes filled with new agar medium and continued
to undergo testing of germination until new germination was
not observed for three consecutive days.

Experiment 4: Phytotoxicity of A. adamsii residue on
germination of grassland species

The effect of A. adamsii residue on the germination of five grass-
land species native to the Mongolian steppe, namely, A. adamsii,
A. frigida, A. cristatum, S. collina and S. krylovii, was tested in
2017. Artemisia frigida is a perennial forb or subshrub and is
both palatable and nutritious to livestock. This species is found

in grasslands with moderate to heavy grazing intensity (Gao
et al., 2005), and emerges during the mid-vegetation recovery
after land disturbance (Li et al., 2006). Two grass species
(Poaceae), A. cristatum and S. krylovii, are both highly palatable
to livestock, and they are sensitive to grazing (Bat-Oyun et al.,
2016) and to land degradation, especially in the case of S. krylovii
(Li et al., 2006). Salsola collina, an annual forb belonging to
Amaranthaceae, is moderately palatable to livestock and is
found in early vegetation recovery after land degradation (Li
et al., 2006). Seeds were collected in 2015, except for in the case
of A. cristatum, seeds of which were collected in 2014. All seeds
were stored in a refrigerator at 5°C until the experiment.

Five 5-cm Petri dishes were prepared for each species for each
of the two treatments: agar medium containing and not contain-
ing A. adamsii residue. Each Petri dish was seeded with 20 seeds
and placed in a growth chamber at 20°C with continuous light.
The rest of the procedure in the germination test followed that
in Experiment 2.

Data analysis and statistical tests

Germination percentage was calculated as the number of germi-
nated seeds divided by that of germinable seeds (the sum of ger-
minated seeds and ungerminated viable seeds) in Experiment
1. In Experiments 2–4, the germination percentage was calculated
by dividing the number of germinated seeds by that of seeds
tested, with hypothesizing that most of tested seeds were viable.
Actually, viability of tested seeds of A. adamsii exceeded 95% in
Experiment 1, and the number of germinated seeds exceeded
80% of tested seeds in most of the tested species and treatments
in Experiments 2–4. In addition, the relative difference in germin-
ation percentage was more important than the absolute germin-
ation percentage, except in Experiment 1, and the relative
difference in germination percentage can be judged without test-
ing the viability of ungerminated seeds when hypothesizing that
the seed viability was consistent among treatments.

The optimum temperature for the germination of A. adamsii
under red light was estimated by applying a quadratic function
to the relationship between temperature and germination percent-
age (Experiment 1). Germination time defined as the days until
the accumulated number of germinated seeds reached 50% of
the final germination number was estimated by applying the
logistic function shown below to the time course of accumulated
number of seeds germinated (Experiment 4):

N = M
1+ exp(a− bt)

where t, N and M represent days after seeding, accumulated num-
ber of seeds germinated until t and final germination number,
respectively, and a and b are constant values. All fittings of quad-
ratic and logistic functions were performed using the Kaleida
Graph 4.0 software (Synergy Software, Reading, PA, USA).

A generalized linear model (GLM) followed by likelihood-ratio
test were used to test the differences in germination percentage and
in germination date among treatments. GLM with a binomial dis-
tribution and the logistic link function was applied for analysing
germination percentage, and GLM with a gaussian distribution
and the identity link function was for germination date. GLM
and likelihood-ratio test were performed by JMP 13 software
(SAS Institute, Cary, NC, USA). When multiple comparison was
needed, we adjusted P-values using sequential Bonferroni method.
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Results and Discussion

The germination percentage of A. adamsii was significantly
higher under red light than in the dark and under far-red light
at all temperatures except for 35°C, at which little germination
was observed under all light conditions (P < 0.05, Pearson’s χ2

test followed by sequential Bonferroni adjustment) (Fig. 1). This
means that the germination of this species can be limited when
seeds are buried in the soil or covered with vegetation because
sunlight penetrates only 4–10 mm of soil and green leaves absorb
red light at a much higher proportion than far-red light (Baskin
and Baskin 2014). Limited germination of A. adamsii under
far-red light may reflect the survivorship strategy of this species
that colonizes degraded lands: for example, investigating the ger-
mination of a Mediterranean grassland species, Dobarro et al.
(2010) found that increasers, the species becoming abundant in
the presence of grazing, had lower germination percentages at
low red:far-red ratios, and pointed out that this potentially reflects
the ability of those species to avoid germination under highly
competitive conditions. It is likely that A. adamsii also uses
light quality as a key indicator to germinate in suitable sites.

Germination under red light was clearly temperature depend-
ent, with an optimal temperature of about 19°C (Fig. 1). This
means that the germination of A. adamsii is limited by tempera-
ture when the light conditions are appropriate. The optimal
temperature was near the monthly mean temperature of the
growing area in the period from June to August, during which
monthly precipitation is much higher than that in other periods
(Fig. S1). This can allow this species to germinate particularly
in this period. As A. adamsii requires light and an appropriate
temperature for germination, many of seeds that have been dis-
persed would be ungerminated. Ungerminated seeds sometimes
form soil seed banks (Chambers and MacMahon, 1994), but
nearly no seeds were found for A. adamsii in the soil near the
area where seeds were collected (Kinugasa and Oda, 2014). This
may be because seeds of A. adamsii lose viability easily by ageing,
predation or infection by pathogens. In a related species,
Artemisia genipi, the germination percentage rapidly dropped
from 99% to 2% upon seed burial for one winter in the field
(Schwienbacher and Erschbamer, 2002). Similarly, in A. triden-
tata, germinable seeds in the soil decreased and disappeared in
6 months after seed dispersal (Young and Evans, 1989), although
the reduction in seed viability was found to differ among subspe-
cies, burial depths and regions (Wijayratne and Pyke, 2012). As A.
adamsii is a perennial plant, it might rely less on buried seeds at
maintaining its population. The regeneration of A. adamsii
through seed germination might be controlled effectively by sup-
pressing the production and germination of seeds in one or sev-
eral seasons.

The germination of A. adamsii was greatly suppressed when
tested on agar medium containing its own residue, although the
germination of allelochemical-sensitive species, lettuce and radish,
was little reduced (Fig. 2). This implies that the phytotoxicity of A.
adamsii residue is highly species specific. Ungerminated seeds of
A. adamsii in the presence of its own residue started to germinate
rapidly after being transplanted to the agar medium not contain-
ing residue (Fig. S4) and the final germination percentage reached
a high enough level not to differ significantly from that of the
control (Fig. 2). This indicates that the autotoxic inhibition of
germination of this species is sub-fatal. Allelopathic inhibition
of germination has been widely observed, but its physiological
mechanism is not well understood. One suggested mechanism

is the suppression of respiratory ATP production, which is caused
by the inhibition of enzyme activities involved in glycolysis and
the oxidative pentose phosphate pathway, by the induction of
mitochondrial uncoupling, or by the inhibition of reserve mobil-
ization (Weir et al., 2004; Kupidłowska et al., 2006; Cheng and

Fig. 1. Germination percentage of A. adamsii at different temperatures and light
conditions.

Fig. 2. Allelopathic inhibition of germination by A. adamsii residue in A. adamsii
(autotoxicity), lettuce and radish. C and R represent germination tests in agar
medium not containing residue and containing residue, respectively. In A. adamsii,
viability of ungerminated seeds in R was tested by transplanting them into new
agar medium not containing residue, and the overall germination percentage includ-
ing germination in R was calculated (T). Different lower case letters above columns
indicate statistically significant differences in A. adamsii (likelihood ratio test on
GLM followed by sequential Bonferroni adjustment, P = 0.05). *P < 0.05; ns, no statis-
tically significant difference (likelihood ratio test on GLM, P = 0.05). Error bars
represent ± SE (n = 5).
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Cheng 2015). In addition, allelochemicals are suggested to induce
the accumulation of reactive oxygen species (ROS), which causes
lipid peroxidation (Oracz et al., 2007; Ishii-Iwamoto et al., 2012;
Radhakrishnan et al., 2018). ROS may further cause an imbalance
in hormones relating to germination and dormancy; the synthesis
of ethylene that induces germination decreases, while the con-
centration of abscisic acid, which induces seed dormancy,
increases, forcing seeds to become artificially dormant (Bogatek
and Gniazdowska, 2007).

The germination of A. adamsii was significantly suppressed
when it was tested on agar medium in a closed environment
containing A. adamsii residue (P < 0.05, likelihood ratio test on
GLM) (Fig. 3); the suppression continued even after the seeds
were moved into closed environment not containing residue
(Fig. S2B). These suppressive effects are in line with the process
by which volatile allelochemicals reach plants as proposed in earl-
ier studies. That is, volatiles can reach plants directly and/or indir-
ectly by fixing in the soil by dew or rain (Reigosa et al., 1999;
Arimura et al., 2010). It has been shown that volatile allelochem-
icals such as terpenoids are frequently present in plants in arid
regions, while water-soluble allelochemicals such as phenolics
are common in plants in cool temperate regions (Chou, 1999;
Reigosa et al., 1999), although the ecological significance of
these geographical differences is still unclear. Seeds of A. adamsii
that were ungerminated even after moving into the closed envir-
onment not containing residue started to germinate when they
were transplanted on agar medium not containing residue, and
the germination percentage finally reached more than 80% of
that of seeds in the control (Fig. 3). This indicated that the auto-
toxic inhibition of germination by volatile compounds in this
species is sub-fatal.

The germination percentage of plant species native to the
Mongolian steppe was not significantly inhibited by A. adamsii
residue, except for in A. frigida and A. adamsii itself (Table 1,
Fig. S5). The germination time of those uninhibited species was
delayed by A. adamsii residue, but the delay was at most 2
days. The greater autotoxicity in A. adamsii than in other grass-
land species might have some adaptive meaning to A. adamsii
itself. Recently, Renne et al. (2014) demonstrated the adaptive
significance of autotoxicity by testing the hypothesis that the
intraspecific inhibition of germination by phytochemicals will
be greater than the interspecific inhibition if autotoxicity has
adaptive meaning. They tested 12 wild species and found that
the inhibition of germination was greater within species than
among species, and thus concluded that the autotoxicity is an
‘eavesdrop-and-wait’ competition-avoidance strategy performed
by chemically recognizing potential competitors. In our study,
moreover, the germination inhibition in A. adamsii was sub-fatal,
which may support the conclusion that the autotoxicity in this
species is ecologically adaptive. Several advantages other than
the avoidance of intraspecific competition have been proposed
for autotoxicity; for example, plants that have autotoxicity can dis-
perse seeds over longer distances by inhibiting germination near
the parent plants or can avoid inbreeding (Reigosa et al., 1999;
Singh et al., 1999).

The results of the present study may demonstrate the eco-
logical consequence of A. adamsii as a factor promoting plant
succession after disturbance in the Mongolian steppe. The light
requirement and autotoxic inhibition of germination in A. adam-
sii (Figs 1 and 2) imply that the self-regeneration of this species
within its own community through seeds is strongly limited.
On the other hand, in tested grassland species other than

A. adamsii, the light requirement for germination and phytotoxic
inhibition of germination by A. adamsii residue were low, except
in A. frigida (Table 1, Fig. S6; Bai et al., 1995; Ronnenberg et al.,
2007; Kinugasa et al., 2016), indicating that those species can
establish themselves within A. adamsii communities. As A. adam-
sii has low palatability to most livestock in Mongolia, plants grow-
ing within its community can be protected from herbivory
and their survival would be enhanced, especially for highly
palatable grass species like S. krylovii and A. cristatum. Such facili-
tative (or nursing) effect by unpalatable species against palatable
species under grazing conditions has been reported repeatedly
(McNaughton 1978; Callaway, 1992; Smit et al., 2006, 2007;
Graff et al., 2007), and it has been pointed out that it contributes
to the structure, diversity and dynamics of plant communities in
grazed lands (Olff et al., 1999; Callaway et al., 2000, 2005; Danet
et al., 2017). The nursing effect of A. adamsii in combination with
its limited self-regeneration might facilitate species transition in
disturbed lands occupied by this species.

The germination characteristics of A. adamsii shown in this
study may contribute to the improvement of the attempt to con-
trol A. adamsii by prescribed burning (Yoshihara et al., 2015;
Koyama et al., 2016). One of the concerns in prescribed burning is
the increasing germination of some species by improving the light
environment and breaking dormancy (Hatcher and Melander,
2003), implying that the germination of light-requiring seeds of
A. adamsii would be induced by burning. To diminish the recruit-
ment of A. adamsii after prescribed burning, it might be prefer-
able to perform prescribed burning in early spring before the
soil temperature reaches the optimal for its germination (about
19°C) and/or in late summer when germination has been com-
pleted. Although the residue of A. adamsii selectively suppressed
the germination of this species itself and did not suppress the
germination of two palatable grass species, its applicability as a
bioherbicide is likely to be low because the autotoxic suppression
of germination was sub-fatal (Figs 2 and 3). As the longevity of
A. adamsii seeds is expected to be short as already discussed in
the present study, applying extracts from residue or residue itself
for several years might deplete the viability of A. adamsii seeds
that have been dispersed.

Fig. 3. Autotoxic inhibition of germination by volatile compounds of A. adamsii. After
testing germination in the presence of volatile compounds, seed viability was tested
by moving samples in Petri dishes to conditions without residue (Fig. S2B).
Ungerminated seeds were further tested for viability by transplanting into new
agar medium. Error bars represent ± SE (n = 5).
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In summary, the germination of A. adamsii was shown to be
light-demanding and temperature-dependent. The residue of A.
adamsii showed autotoxic but sub-fatal suppression of germin-
ation, and the chemicals contributing to that suppression were
shown to be aqueous and volatile. Phytotoxicity of A. adamsii resi-
due on the germination of grassland species was low, except for in
A. frigida, a related species. The applicability of the observed sub-
fatal autotoxicity to the control of this species is likely to be low, but
the germination characteristics elucidated in this study should con-
tribute to the development of a strategy for controlling this species.
The autotoxicity in A. adamsii germination was suggested to have
ecological consequence to facilitate species transition from A.
adamsii to other species in degraded lands occupied by A. adamsii.
As low-palatability A. adamsii can act as a nurse plant of palatable
species under grazing conditions, invasion of A. adamsii into dis-
turbed grasslands may accelerate the recovery of such grasslands
in terms of improving pasture quality.
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