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Strongly turbulent Rayleigh–Bénard
convection in mercury: comparison with results

at moderate Prandtl number

By S. C I O N I, S. C I L I B E R T O AND J. S O M M E R I A
Ecole Normale Supérieure de Lyon, Laboratoire de Physique, 46, Allée d’Italie,

69364 Lyon Cedex 07, France

(Received 16 March 1996 and in revised form 10 October 1996)

An experimental study of Rayleigh–Bénard convection in the strongly turbulent
regime is presented. We report results obtained at low Prandtl number (in mercury,
Pr = 0.025), covering a range of Rayleigh numbers 5 × 106 < Ra < 5 × 109, and
compare them with results at Pr ∼ 1. The convective chamber consists of a cylindrical
cell of aspect ratio 1.

Heat flux measurements indicate a regime with Nusselt number increasing as
Ra0.26, close to the 2/7 power observed at Pr ∼ 1, but with a smaller prefactor, which
contradicts recent theoretical predictions. A transition to a new turbulent regime is
suggested for Ra ' 2 × 109, with significant increase of the Nusselt number. The
formation of a large convective cell in the bulk is revealed by its thermal signature
on the bottom and top plates. One frequency of the temperature oscillation is related
to the velocity of this convective cell. We then obtain the typical temperature and
velocity in the bulk versus the Rayleigh number, and compare them with similar
results known for Pr ∼ 1.

We review two recent theoretical models, namely the mixing zone model of Castaing
et al. (1989), and a model of the turbulent boundary layer by Shraiman & Siggia
(1990). We discuss how these models fail at low Prandtl number, and propose
modifications for this case. Specific scaling laws for fluids at low Prandtl number are
then obtained, providing an interpretation of our experimental results in mercury, as
well as extrapolations for other liquid metals.

1. Introduction
Rayleigh–Bénard convection occurs in a horizontal layer of fluid subjected to

uniform heating from below and cooling from above. The dynamics depends on the
Rayleigh number Ra and Prandtl number Pr:

Ra =
gα∆L3

νκ
, (1.1)

Pr = ν/κ, (1.2)

where α is the thermal expansion coefficient, ν the kinematic viscosity, κ the thermal
diffusivity, ∆ is the temperature difference between the bottom and top plates, and L
is the fluid layer height.

We study here the strongly turbulent regime, obtained at high Rayleigh numbers.
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112 S. Cioni, S. Ciliberto and J. Sommeria

The subject has a long history, but interest has been recently renewed by experimental
and theoretical developments (see Siggia 1994 for a review). Early experiments were
reasonably well interpreted by a mixing length theory, put in a final form by Kraichnan
(1962). Scaling laws Nu ∼ Ra1/3 for Pr > 0.1 and Nu ∼ (Ra Pr)1/3 for Pr < 0.1
were predicted. In fact the experimental exponent for Nu versus Ra was found to
be slightly smaller than 1/3, and this discrepancy was clearly established by Threlfall
(1975) using helium gas at low temperature (which allows a wide range of Ra in a
single experimental cell). Castaing et al. (1989) repeated similar experiments, and in
addition found scaling laws for turbulent fluctuations. They have proposed a model
of the mixing zone (see §5.4) explaining their experimental findings, among which is
a scaling law Nu ∼ Ra2/7. Shraiman & Siggia (1992) proposed an alternative model
providing essentially the same results from different hypotheses (see §5.2).

In this context, it is important to study what happens at low Prandtl number. This
case was investigated long ago by Globe & Dropkin (1959) and Rossby (1969), but
measurements were limited to global heat transfers at moderate Rayleigh numbers.
Cioni, Ciliberto & Sommeria (1996) have performed similar heat transfer measure-
ments in mercury at higher Rayleigh numbers (5 × 106–5 × 109). These results are
reviewed in §3, and compared with results for liquids at different Pr. It appears that
for Ra < 4.5 × 108, the experimental results are well fitted by a law Nu ∼ Ra2/7,
but with a lower prefactor than for Pr ∼ 1, while new regimes are obtained beyond
Ra = 4.5× 108.

Cioni et al. (1996) also found that convection in the bulk is spontaneously organized
into a large convective cell. This global circulation was detected by the temperature
anomaly that it induces on the bottom and top plates. It appears to change in
orientation over long time scales, a fact not previously noted in other liquids. In §4
we characterize these fluctuations in more detail, showing that the global circulation
remains remarkably well organized while it fluctuates in orientation and amplitude.

Turbulent temperature fluctuations in the bulk have been analysed in the same
mercury experiment by Cioni, Ciliberto & Sommeria (1995): small-scale fluctuations
behave like a passive scalar in ordinary (Kolmogorov) turbulence (i.e. they are
transported by the flow without influence on the dynamics), although the large scales
are of course actively driven by buoyancy. For moderate Pr, temperature appears
by contrast to be active at small scales, according to the dynamics of Bolgiano–
Oboukhov. We further discuss this difference in Appendix A.

Takeshita et al. (1996) have performed similar convection experiments in mercury,
also using a cylindrical cell with aspect ratio 1, but with a smaller size, and therefore
smaller Ra (in the range 106–108). They have confirmed a law Nu ∼ Ra2/7 with a
lower prefactor than for Pr ∼ 1. In addition they have measured how the global
circulation velocity scales versus Ra, finding a law similar to experiments at Pr ∼ 1.
They have detected an oscillation frequency associated with this global circulation,
scaling like the velocity, as observed for Pr ∼ 1 (Sano, Wu & Libchaber 1989). In §4
we report similar measurements of this oscillation frequency in our experiment. As
a further characterization of this global circulation, we also measure the temperature
anomaly induced in the plates versus Ra.

Takeshita et al. (1996) have also performed local temperature measurements near
the wall, providing strong evidence that in mercury the viscous boundary layer is
nested inside the thermal boundary layer, an essential difference with respect to
experiments at Pr ∼ 1.

These different studies provide a general overview of strongly turbulent Rayleigh–
Bénard convection at low Pr. We examine in §5 how these results fit with the
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Convection in mercury 113

theoretical interpretations developed for experiments at Pr ∼ 1. In particular, the
model of Shraiman & Siggia (1990) predicts that Nu increases at lower Pr (for a
given Ra), while the opposite dependence is measured. We discuss how this model
has to be modified at low Pr, taking into account that the viscous boundary layer
is nested inside the thermal boundary layer, unlike at Pr ∼ 1. We also stress that
the different dynamics for the bulk turbulence at low and high Pr must lead to a
slightly different scaling for the velocity, as detailed in Appendix A. As an alternative
approach, we revisit in §5.4 the model of Castaing et al. (1989), and justify in §5.5 the
lower Nu observed at low Pr.

2. Apparatus and experimental procedure
The cell and experimental procedure have been already described by Cioni et al.

(1995, 1996), and a sketch of the apparatus is given in figure 1. The test chamber is
a cylindrical cell with internal diameter and height equal to 21.3 cm. Both upper and
bottom plates are copper, coated with nickel (50 µm thick) to avoid amalgamation
with mercury. To prevent the formation of bubbles at the walls, the air in the chamber
is initially pumped out, and the fluid is heated in vacuum for several hours before
the tank is completely filled.

The bottom plate is heated at constant power by two Thermocoax electrical
resistances, brazed to the copper with silver to ensure an excellent thermal contact.
These resistances form two interlaced spirals (with a spacing of 13 mm for each),
with currents in opposite directions to avoid electromagnetic effects on mercury flows.
The upper plate is cooled by water circulation. A high cooling efficiency is essential:
the incoming flow is divided into eight parallel pipes, injecting water in short ducts
carved inside the copper plate, and leaving the plate in a symmetric way. These
ducts are along concentric circles, and are designed to produce a uniform cooling. At
moderate heating power (< 300 W, corresponding to Ra < 108), the temperature of
the top plate is regulated by controlling the temperature of the cooling water (with
a commercial thermal bath). At high power we control instead the water flow rate,
using a by-pass fed by a progressive electrovalve, whose aperture is controlled by the
temperature drifts at the centre of the top plate via a PID electronic circuit. The
lateral wall of the cell is a thin (thickness 2 mm) stainless steel cylinder (terminated
by stainless steel flanges 22 mm wide and 12 mm high to support the seals). It is
thermally insulated from the outside by neoprene layers, and surrounded by a thermal
screen at controlled temperature, to minimize heat losses through the lateral walls
and behind the bottom plate. These losses have been measured by imposing various
temperature differences between the fluid and the thermal screen. We have found a
total loss coefficient of 0.2 W ◦C−1. These losses are made negligible in comparison
with the injected electric power (0–3 kW) by setting the top plate temperature such
that the fluid is on average at the temperature of the thermal screen, and close to
room temperature.

The temperature of the upper and lower plates is measured by small calibrated
thermistors inserted in radial boreholes drilled into the copper plates. These temper-
ature sensors are located at 5 cm from the cell axis and 3 mm from the plate surface
in contact with the fluid. There is a small temperature drop associated with heat
conduction across this 3 mm copper gap, but it is less than 1◦C at the maximum
power 3 kW. Temperature is also measured at the centre of the top plate (and 3 mm
from the surface), and used for the thermal regulation. We study the long-time flow
regime for different values of the heating power.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

96
00

44
91

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112096004491


114 S. Cioni, S. Ciliberto and J. Sommeria

Cylindrical cell

Probe support

Thermistor

Plate (Cu)

Thermal screen

Probe

Ni(50 lm)

21
3 

m
m

Insulator

Neoprene213 mm

Thermistor feedback

Cooling system

Stainless steel wall

Heating resistance

20
 m

m

3 
m

m

(a)

(b)

1
8 2

3

4

5
6

7

iii

ii

i

φ

0

315°
(–0.785)

270°
(–1.570)

225°
(–2.355)

180°
(± 3.14)

135°
(+2.355)

90°
(+1.570)

45°
(+0.785)

Figure 1. (a) Sketch of the experimental apparatus. (b) Top view showing the position of the
probes (thermistors) in the bottom and top plates, with their azimuth φ indicated in degrees and
radians. In the text, the probes are labelled by a for the top plate, and b for the bottom plate, with
the subscripts given in the figure (there is also a probe inside the fluid, but the results from it are
not reported in the present paper). The positions of the three feet (i), (ii), (iii) used to tilt the cell
are also indicated.

The convective liquid is mercury (0.021 < Pr < 0.026), covering a range of Rayleigh
numbers 5× 106 < Ra < 5× 109. Experiments performed with water (4 < Pr < 8.6)
in the same cell are also presented for comparison.

The boundary conditions require some discussion. Copper is 40 times more
thermally conductive than mercury, so in the absence of convection, we can consider
that the lower and upper boundaries are each at a uniform temperature. However
convection greatly increases heat transfers, so that the ‘effective conductivity’ of
mercury is increased. The analysis of Appendix B indicates that the actual boundary
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Convection in mercury 115

condition at high Ra tends to a condition of constant heat flux at the wall (with
the temperature at the centre of the top plate fixed by the regulation). The possible
influence on the dynamics of this change of boundary conditions is not clear. The
lateral walls are more simple: they are very thin and efficiently isolated from the
outside, corresponding to a condition of no lateral flux.

3. Heat transfer measurements
3.1. Experimental procedure

The heat flux H∗ across the convective fluid is obtained by dividing the electrical
heating power by the horizontal section 356 cm2. It is represented in non-dimensional
form by the Nusselt number,

Nu =
total heat flux

conductive heat flux
=
HL

κ∆
, (3.1)

where H is the heat flux, H∗, divided the volumic heat capacity CF of the fluid. In
order to study the dependence of Nu versus the Rayleigh number Ra (figure 2a),
we determine the temperature difference, ∆, between the bottom and top plates as a
function of the heating power. The value of ∆ is obtained as an average over several
hours because the temperature at the top and bottom fluctuates (within a few percent
of ∆). Also, a systematic horizontal temperature gradient appears in each plate,
due to a convective roll of the scale of the whole cell: this is the global circulation
discussed in §4. Thus a spatial average over the eight probe locations in each plate is
performed in order to get the mean temperature difference, ∆.

3.2. Results with water

The case of water has been studied first as a control. A linear regression of log(Nu)
versus log(Ra) gives the following formula:

NuH2O = 0.145 Ra0.292, 3.7× 108 < Ra < 7× 109. (3.2)

The results are in excellent agreement (5% difference) with the experimental data of
Chilla et al. (1993a), also shown in figure 2b for comparison (they give a slightly
different fit Nu ' 0.193 Ra0.28). Agreement within 5% is also obtained with Tanaka
& Miyata (1980) and Chu & Goldstein (1973). The Nusselt numbers obtained by
Garon & Goldstein (1973) and Goldstein & Tokuda (1980) are a little lower than
ours, but still within 10%. Since these experiments used different aspect ratios and
cell shapes, we confirm that these parameters have a negligible effect (less than 10%)
when the aspect ratio is larger than 1 (and at sufficiently high Ra).

The fits obtained for these different experiments in water consistently give a power
law Ra0.285±0.01 for our range of Ra (see Goldstein, Chiang & See 1990 for a review).
The same exponent is obtained for experiments in helium (Threlfall 1975; Castaing et
al. 1989), and theoretical models justify it as a 2/7 power law (Castaing et al. 1989;
Shraiman & Siggia 1990). Notice, however, that a slight increase of the exponent is
obtained in water for Ra > 1010 by Goldstein & Tokuda (1980). A similar increase
of the exponent at Ra > 1010 has been also observed recently in helium by Chavanne
et al. (1996), and the exponent continuously increases up to the experimental limit
Ra = 5× 1012 (reaching a value ∼ 0.4).
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Figure 2. (a) Nusselt versus Rayleigh number for water (upper curve) and mercury (lower curves).
∗, Present experiments in mercury; (×), present experiments in water; +, results in water by Chilla
et al. 1993a; o, results in mercury by Rossby (1969); •, results in mercury by Globe & Dropkin
(1959); . ., fit of Takeshita et al. (1996) in mercury. The two solid lines are best fits by power
laws for our experiments in water, and in mercury (region I), extended by dashed lines. (b) Nusselt
number measured at Ra = 1 × 108; ∗, our result in mercury; ×, results in gas from Fitzjarrald
(1976) and Threlfall (1975); +, results in water at various mean temperatures from Chillá et al.
(1993a), Tanaka & Miyata (1980), Chu & Goldstein (1973), Garon & Goldstein (1973); ◦, result in
electro-chemical convection from Goldstein et al. (1990); the dashed line corresponds to the power
law Pr2/7 predicted by (5.38).

3.3. Results with mercury

In the case of mercury, we also observe that Nu depends on Ra as a power law close
to 2/7, for Ra < 5 × 108. A transition with an increased heat transfer is suggested
at Ra = 2 × 109. This contrasts with the progressive increase observed in water and
helium. Furthermore this increase is preceded by a slight decrease of the exponent.

More precisely we distinguish three different ranges, where the least-square fits give
the following results.

(i) Region I of figure 2(a), ranging from Ra = 7.0 × 106 to Ra = 4.5 × 108 obeys
the scaling law

NuHgI = (0.140± 0.005) Ra(0.26±0.02). (3.3)
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Convection in mercury 117

This law also provides an excellent fit to the results of Rossby (1969) (Nu '
0.147Ra0.257), suggesting that it holds in the whole range 2 × 104 < Ra < 4.5 × 108.
The exponent is in agreement with the fit Nu ' 0.155 Ra0.27 obtained by Takeshita
et al. (1996), but the values of Nu are a little lower in our experiments, as shown
in figure 2(a) (although the two experiments have the same cylindrical geometry and
the same aspect ratio 1). There is also a reasonable agreement with the old data of
Globe & Dropkin (1959), also shown in figure 2(a), but these are strongly scattered
and do not provide a reliable fit.

(ii) Region II, ranging from Ra = 4.5× 108 to Ra = 2.1× 109, scales as

NuHgII = (0.44± 0.015)Ra(0.20±0.02). (3.4)

(iii) Finally, for Rayleigh numbers larger than Ra ' 2.1 × 109 a sharp increase of
Nu is observed (region III of figure 2a). This transition is difficult to study as it is
obtained near the maximum Ra that we can reach with our apparatus. Furthermore,
we have observed drifts of the Nusselt number: two extreme behaviours are indicated
(by stars) in figure 2(a). This contrasts with the excellent reproducibility in regions I
and II (including the slope decrease in region II). The transition effect in region III
is quite significant: it corresponds in practice to a decrease of ∆ by 20 ◦C (20% of ∆)
for a given heating power, and could not be explained by any experimental flaw. The
transition is possibly related to the onset of some instability occurring in the viscous
boundary layer, as discussed in §5.3. Such boundary layer instabilities are known to
be very sensitive to the state of the surface of the wall, which could explain the lack
of reproducibility (due to ageing of the wall in contact with mercury).

3.4. Discussion of the Prandtl number dependence

The comparison of heat transfers in water and mercury clearly establishes that Nu
is smaller for smaller Pr, at a given Rayleigh number. For instance, at Ra = 109,
Nu = 30 in mercury, half that for water, in agreement with similar comparisons made
by Globe & Dropkin (1959), Rossby (1969), and Kek & Muller (1993) at lower Ra.

By contrast, different experiments made for Pr equal to or higher than 0.7 indicate
a constant Nu within better than 10%. We have represented in figure 2(b) this
dependence on Prandtl number for a given Ra(= 108). The results for water (Pr ∼ 6)
and air (Pr ∼ 0.7) are the same within the experimental errors, as are the results†
in helium (Pr = 0.8) by Threlfall (1975). Recent numerical computations confirm
that Nu is independent of Pr for Pr ∼ 1 (R. Tripiccione, private communication).
The result for electrochemical convection by Goldstein et al. (1990), equivalent to
thermoconvection at Pr ∼ 2700, is also the same. The much lower Nu obtained in
mercury, therefore, clearly contrasts with results at moderate and high Pr.

This dependence on Pr agrees with the theory of Kraichnan (1962), which predicts
Nu ∼ Pr1/3 for Pr < 0.1 and constant for Pr > 0.1 (with a Ra1/3 law in both
cases). It contradicts the Pr−1/7 law predicted by Shraiman & Siggia (1990): the
sign of variation in Pr is opposite. The same dependence in Pr−1/7 would also result
from the mixing zone model of Castaing et al. (1989). The later theories, however,
successfully predict the Ra dependence, and we propose in §5 adaptations to account

† The Nusselt number obtained by Castaing et al. (1989) at Ra = 108 is about 20% higher, and
the comparison with water would therefore indicate a significant decrease with Pr. However this
experiment was not optimized for absolute measurements of heat flux (but rather designed to cover
a very wide range of Ra). New measurements by Chavanne et al. (1996) suggest that the Nusselt
number obtained by Castaing et al. (1989) for Ra ∼ 108 was too high. These new measurements
are very close to results in water, confirming the very weak dependence on Pr.
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for the observed behaviour at low Pr. However, the various experimental results
cannot be fitted with simple power laws in a wide range of Ra and Pr. Notice
also that the exponent in Ra seems to increase with increasing Pr (0.26 in mercury,
0.28–0.29 for Pr ∼ 1, 0.33 obtained for high Pr by Goldstein et al. 1990), so the
problem is quite complex.

4. Properties of the global circulation
4.1. Characterization of the global circulation

The spontaneous formation of a mean flow, in a cell with large aspect ratio, was
described by Krishnamurti & Howard (1981)†. It is characterized by a systematic
drift of the plumes, appearing for Ra > 2.5× 106, and is therefore quite distinct from
the rolls produced near the instability threshold. A global circulation has been also
noticed in experiments at higher Ra (but in a more confined geometry, with aspect
ratio of order 1). It has been detected in helium by temperature correlations between
two probes (Sano et al. 1989), and visualized and measured in water at Ra ' 109 by
Tilgner, Belmont & Libchaber (1993). Cioni et al. (1996) and Takeshita et al. (1996)
have shown that such a global circulation also forms in mercury, persisting in the
whole explored range 106 < Ra < 5× 109.

The presence of the global circulation is indirectly detected in our experiments by
the dipolar temperature distribution induced along the bottom and top plates. As
shown schematically in figure 3, the side of the top plate receiving the rising flow is
expected to be warmer than average, and the opposite side cooler. On this cooler
side, the bottom plate receives a downward flow and is therefore also expected to be
cooler than average. Such a dipolar temperature structure forms spontaneously along
both plates (see figure 3). It is detected with the eight probes (thermistors) inside the
bottom and top plates respectively (their positions are sketched in figure 1b). The
temperature at the centre of the top plate, used for the thermal regulation, always
corresponds to the average over the eight peripherical probes. This dipolar structure
can be characterized by an amplitude ∆h and an azimuthal angle. Cioni et al. (1996)
found that a slight tilt of the cell directs the dipolar structure in the expected direction:
i.e. the flow follows the azimuth of maximum rising slope along the bottom plate. The
strength of the global circulation, characterized by the amplitude ∆h, is practically
independent of this tilt angle, showing that the global circulation is spontaneously
formed. It is not due to a small tilt, or other experimental defect, but it is oriented
by it.

4.2. Dynamics of the global circulation

When the cell is horizontal, the azimuth of the global circulation slowly changes with
time, resulting in fluctuations on long time scales of the temperature at the periphery
of each horizontal plate. An example of a four-day record of the bottom plate is
shown in figure 4, showing random jumps between two average values. Simultaneous
jumps of opposite direction occur on the other side of the bottom plate, while the
temperature at the centre of the plate remains at the average value (see figure 5 of
Cioni et al. 1996). The same jumps occur on the top plate, so that the vertical
temperature difference at a given azimuth is not modified. All these observations
indicate that the jumps correspond to reversals of the global circulation azimuth.

† Velocity has been measured in earlier experiments, e.g. by Garon & Goldstein (1973), but the
study focused on fluctuations and did not mention a global circulation.
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Figure 3. Spatial structure of the global circulation in mercury (Ra = 3.5 × 108), sketched in the
centre figure, and detected by the plot of temperature versus azimuthal angle φ along the top and
bottom plates. The global circulation azimuth is fixed by raising one of the three feet (i), (ii), (iii) of
the cell, producing a tilt angle of 0.5◦ (the temperature is averaged over 5 min.). The crest-to-crest
temperature is denoted ∆h.
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Figure 4. Typical time signal of a thermistor (b7) in the bottom plate at Ra = 8.7× 108. Note the
random reversals occurring with typical time intervals of several hours.

The global circulation never disappears, maintaining its strength as it changes in
azimuth. This is illustrated by the successive azimuthal temperature profiles during a
reversal, shown in figure 5: the position of the temperature maximum shifts by 180◦,
while the amplitude ∆h does not significantly change. This observation is checked in a
more systematic way by computing at each time t the azimuthal Fourier transform of
the temperatures bi(t). We thus obtain the phase Φ and amplitude |M| of the dipolar
mode from the first Fourier components A1 and B1 given by

A1(t) =
1

2

8∑
i=1

bi(t) cosφi, B1(t) =
1

2

8∑
i=1

bi(t) sinφi,

M(t)2 = A2
1 + B2

1 , Φ(t) = sign(B1) arccos
A1

|M| .

 (4.1)

(The coefficient 1/2 is introduced so that M coincides with ∆h for a pure dipolar
mode.) The time records of figure 6, spanning two days, indicate that the amplitude
fluctuates around a mean value but never vanishes. Jumps in the temperature are due
to 180◦ phase shifts. Probability distribution functions of the temperature at a given
probe (b7) have two peaks (between which the jumps occur). The p.d.f. for the phase
indicates a strong minimum around φ ∼ π (or −π), so the azimuth remains roughly
in the same half-space during reversals. We notice that the p.d.f. of φ is broadly
distributed in this half-space, corresponding to the occurrence of phase drifts as well
as complete reversals.

This dynamics of reversals and phase drifts is probably sensitive to small defects
of the experimental system. To control the system, we tilt the cell slightly (angle 0.5◦),
lowering foot (iii) located at φ = 75◦ (see figure 1b), which produces a maximum
temperature at the opposite azimuth φ ' 255◦. The signal at probe b7 close to this
location is shown in figure 7(a), showing that the reversals are suppressed. This
suppression is confirmed by the phase record in figure 7(c) (compare with figure 6c).
The phase is set to a mean value Φ = −1.61rad = 268◦, close to the value 255◦

expected from the tilt direction. Significant phase fluctuations remain, with r.m.s. 0.42
rad, but much lower than when reversals occur. By contrast the mean amplitude M=
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Figure 5. (a) Time signal of thermistor b7 showing a single reversal (detail of the first hour of the
time series in figure 6a), at Ra = 3.5× 108. (b) Successive azimuthal temperature profiles during the
reversal, at times indicated by the circles in (a): the dipolar structure shifts in azimuth, keeping a
constant amplitude, corresponding to a global rotation of the global circulation azimuth.

1.46 ◦C remains nearly the same as without tilt (M= 1.40 ◦C), and the r.m.s. 0.24 ◦C
is unchanged.

It is remarkable that most of the fluctuations measured in the plates correspond to
these fluctuations of phase and (to a lesser extent) amplitude in the global circulation,
as indicated by the cross-correlations between the signals of the different probes.
In figure 8(a), we represent these cross-correlations for the probes in the bottom
plate with respect to a reference probe (b5), also in the bottom plate. The purely
spatial cross-correlations (with time delay zero) are represented vs. azimuth in the
central graph. The strong negative cross-correlation (−0.7) with the opposite probe
(b1) indicates that at least 70% of the fluctuations are dipolar. Imperfections of
the temperature regulation system would result in fluctuations positively correlated
at all locations, and random noise would lead to uncorrelated fluctuations. The
changes of the global circulation are therefore intrinsic fluctuations, due to some
chaotic dynamics. The cross-correlations with time delay are represented in the outer
plots for the different probes. They indicate that the temperature fluctuations remain
spatially coherent over a correlation time of about 200 s, which can be interpreted as
a typical time for changes of the global circulation. It is about 10 times the convective
circulation time L/U, in agreement with the time necessary for a reversal (see figure
6). Similar results are obtained in figure 8(b) when the reference probe is on the top
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Figure 6. Amplitude and phase of the dipolar structure (Ra = 3.5×108). Time series (over 50 hours)
on the left, and the corresponding probability distribution functions (with logarithmic ordinate) on
the right. (a) Temperature at thermistor b7, showing reversals. (b) Amplitude M, defined by (4.1).
The mean value is 1.40 ◦C with an r.m.s. 0.24 ◦C. (c) Azimuth Φ (in radians). The r.m.s. of Φ is
1.18 rad, around a mean value 0.02 rad.
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Figure 7. Same as figure 6, but with a small tilt 0.5◦ of the cell, obtained by lowering foot (iii)
(see figure 1b) (the recording time is 12 hours). The probe signal b7 in (a) indicates that reversals
are suppressed. The mean amplitude M (1.46 ◦C) is nearly unchanged by the tilt as is the r.m.s.
amplitude (0.24). In contrast, the azimuth is set to Φ = −1.61 rad by the tilt, and the r.m.s. of Φ is
reduced to 0.42 rad.
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Figure 8. Cross-correlations, (a) Between a reference probe b5 and the other probes bj in the
bottom plate (same conditions as figure 7). The cross-correlations are plotted versus time delay at
the periphery, and the value with zero time delay is represented versus azimuth φ in the central
plot. (b) Between a reference probe a5 in the top plate, and the probes in the bottom.
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Figure 9. Horizontal temperature difference ∆h in the bottom plate: (a) ∆h/∆ versus Ra;
(b) Corrected temperature ∆c/∆, estimated in the bulk by (B 12) derived in Appendix B.

plate, confirming the similarity of the dipolar structure on the top and bottom plates,
even during fluctuations.

In summary, the global circulation forms spontaneously and is quite robust and
well defined; its amplitude fluctuates, with a time scale of several minutes, but never
vanishes (figure 6b). It also fluctuates in azimuth, and this azimuthal motion can be
confined by a small tilt of the cell (e.g. by 0.5◦), while the amplitude is not modified
by the tilt. When the cell is horizontal, we would expect that the azimuth uniformly
wanders due to the axisymmetric geometry. In reality our system preferentially
stays in a half-space, clearly set by small defects of our system, probably a slight
inhomogeneity of heating (< 1%).

4.3. Scaling of ∆h with Ra

To study the scaling of the global circulation with Ra, we impose a small tilt (0.5◦),
which avoids reversals of the global circulation, but does not change the amplitude
∆h. We have also checked that the heat transfer is unchanged (by no more than 1%
even for a much higher tilt of 4◦), confirming that this tilt has a negligible influence
on the dynamics, except for maintaining a constant direction global circulation.

The horizontal temperature difference, normalized by ∆, is plotted in figure 9(a)
versus Ra. This ratio ∆h/∆ is nearly constant. The relation between ∆h and the
convection dynamics is unfortunately not straightforward. The simplest hypothesis is
to assimilate ∆h into a typical horizontal temperature difference in the bulk, called
∆c in §5.1. However, the heat conduction in the copper plate tends to filter out the
dipolar structure in a way depending on Nu, as discussed in Appendix B. Another
effect is taken into account in Appendix B: the thermal boundary layer grows along
the plate following the global circulation, so that the heat transfer is more efficient
on the side of incoming global circulation (with a thinner boundary layer). The ratio
∆c/∆ for the bulk obtained after correcting for these effects, using (B 12) of Appendix
B, is plotted in figure 9(b).
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Figure 10. (a) Typical signal of one thermistor (b7) in the bottom plate as a function of time. The
azimuthal angle corresponds to a maximum temperature, Ra = 8.7 × 108; (b) the corresponding
power spectrum, showing the peak at the characteristic frequency fp. This peak corresponds to the
circulation frequency of the large-scale flow inside the cell.

∆c/∆ slowly decreases with increasing Ra. The theoretical prediction (5.40) leads
to ∆c/∆ ∼ Ra−1/7. A prediction of Ra−1/5 will be given in §5.3, equation (5.24), for
region II. Our experimental results are compatible with these predictions. However
our estimate of ∆c/∆ is indirect, using the theoretical relation (B 12) of Appendix B.

4.4. Velocity in the global circulation deduced from an oscillation frequency

Another characterization of the global circulation is provided by a temperature
oscillation occurring near the bottom and top plates, observed in helium by Castaing
et al. (1989) (but wrongly interpreted as an oscillation of a stably stratified bulk). It
was later interpreted by Sano et al. (1989) as a boundary layer instability ‘transported’
along the cell by the global circulation. The oscillation is in quadrature at each corner,
and the oscillation frequency, fp, corresponds to transport by the maximum velocity
U of the global circulation, fp ' U/(4L) (U is a vertical velocity measured along
a sidewall). This oscillation was observed in the whole range of Ra investigated
(108 < Ra < 1011), see figure 14 of Sano et al. (1989). In non-dimensional form,
defining ωp = 2πfp, and Re = UL/ν, we write

ωpL
2

κ
= 1

2
π RePr. (4.2)

Some assertions involving the thermal boundary layer instability are given by Sano
et al. (1989) to explain the mechanism of the oscillation. This interpretation has
been made more precise by Villermeaux (1995), who proposed a dynamical model
of two unstable modes, in the bottom and top boundary layers, coupled with a
delay corresponding to transport by the velocity U. The nonlinear saturation of the
instability occurs after this delay, and leads to a spontaneous oscillation. The resulting
frequency is close to (4.2).

Takeshita et al. (1996) have detected the same oscillation in mercury. They have
checked that its frequency is proportional to the global circulation velocity, measured
from the correlations between two temperature probes (they propose relation (4.2),
but with a prefactor 2 instead of π/2). We have observed the same oscillation from
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Figure 11. The dependence of the characteristic frequency ωp, normalized by κ/L2: (a) versus the
non-dimensional power NuRa, with the best fit (4.3); (b) versus Ra, with the best fit (4.4) (solid line),
compared with the fits of Takeshita et al. (1996) (dotted line), of Castaing et al. (1989) in helium
(dashed line); results in water are indicated by (+) and fitted and extrapolated by the dot-dashed
line (note that the geometry of this experiment by Ciliberto et al. 1996 is different: a box with
square vertical section of 40× 40 cm and relatively narrow width 10 cm).

temperature measurements in the plates. A typical signal is shown in figure 10(a), and
the corresponding Fourier spectrum in figure 10(b). An oscillation period is clearly
identified, although it is superposed on a significant amount of turbulent noise†.
We have measured similar signals at different probes at the top and bottom, and it
appears that the oscillation is only detected where the temperature is extremal (here
at azimuth ∼ 90◦ and ∼ 270◦). The oscillation is not observed where the temperature
is close to average (at azimuth ∼ 180◦ and ∼ 0◦), but rather occurs at positions with a
strong global circulation, as sketched in figure 3. We also observe that the oscillation
is in quadrature between the two sides and between the top and bottom at the same
azimuth. These phase shifts reveal a direction of rotation, which agrees with transport
by the flow. The phase shift reverses when we reverse the tilt. The frequency does not
depend on the tilt angle.

† This oscillation is quite distinct from the fluctuations discussed in §4.2: the time scale is much
shorter, 20 s instead of 200 s or more for reversals, and the amplitude is smaller by more than an
order of magnitude. The pattern of spatial cross-correlations is different.
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The frequency ωp, normalized by κ/L2, is plotted in figure 11(a) versus the non-
dimensional heating power NuRa. The best fit gives

ωpL
2

κ
= 0.81 (NuRa)0.343, (4.3)

in excellent agreement with the exponent 1/3 predicted for a free fall velocity (see
(5.6)). The fit is again limited to region I, but no significant change is observed in
region II. Introducing the relation Nu vs. Ra in the fit (4.3), we then expect that
ωp ∼ Ra0.43 in region I, ωp ∼ Ra0.41 in region II. The representation of ωp versus Ra
is shown in figure 11(b) but the two regimes cannot be really distinguished at our
experimental precision. A fit

ωpL
2

κ
= 0.470 Ra0.424 (4.4)

is obtained. Assuming (4.2), we can deduce

Re = 12.0 Ra0.424. (4.5)

Our result (4.4) is in reasonable agreement with the fit ωpL
2/κ = 0.31 Ra0.46±0.02

obtained by Takeshita et al. (1996), and also shown in figure 11(b).
Castaing et al.’s (1989) results in helium show larger values at a given Pr as

expected. The exponent of Ra in helium disagrees somewhat with the prediction
(5.17) derived in the next section. The ratio of the result in helium to our result
ranges from 2.0 to 3.0 for 5× 106 < Ra < 109. In §5, we give theoretical predictions
of the dependence on Pr, equations (5.39), for Pr < 0.3 and (5.17) for Pr > 0.3. A
ratio of 3.5 between helium and mercury is predicted from these two relations, in the
right direction and range, but not very precise due to the difference in power law
with Ra. We have observed the same oscillation in water, and the non-dimensional
frequency is greater than the frequency in helium, as expected. However we did not
investigate this problem systematically in water with the same apparatus, but plot in
figure 11(b) results from another experiment, by Ciliberto, Cioni & Laroche (1996).

5. Discussion of theoretical predictions
5.1. Scaling in the bulk

All theories of turbulent thermal convection distinguish clearly two regions. In the
bulk, the turbulent mixing is efficient and consequently the mean temperature gradient
is weak. The temperature gradients, expelled from the bulk, are confined to diffusive
boundary layers near the bottom and top walls.

The thickness λ of the diffusive boundary layer is obtained from the exact relation
H = −κ(∂T/∂z)z=0, corresponding to the scaling (using definition (3.1))

λ/L = 0.5 Nu−1 (5.1)

(the coefficient 0.5 indicates that half of the temperature drop is across each boundary
layer).

In the bulk, temperature is transported by the correlation wθ (of the vertical
velocity component w and temperature fluctuations θ). This quantity scales as U∆c
(where U is a typical velocity and ∆c a typical temperature fluctuation in the bulk),
so that we expect the heat flux H (defined in §3.1) to scale like

H ∼ U∆c. (5.2)
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The free fall relation is also assumed in the bulk,

U ∼ (αgL∆c)
1/2. (5.3)

The combination of (5.2) and (5.3) yields ∆c and U as a function of the heat flux. It
is convenient to express these quantities in non-dimensional form, as ∆c/∆ and

Re =
UL

ν
. (5.4)

Then, using the definitions (1.1), (1.2), (3.1), we get

∆c/∆ ∼ Nu2/3 Ra−1/3 Pr−1/3, (5.5)

Re = A (NuRa)1/3 Pr−2/3, with A ' 2.0, (5.6)

where the value of A is a fit to our results, obtained by combining (4.2) and (4.3).
The free fall relation (5.6) can be also obtained by alternative assumptions (without

using (5.2) and (5.3)), starting from the exact relation expressing the energy budget
in the Boussinesq equation:

(Nu− 1)Ra = 〈|∇u|2〉L4/κ2. (5.7)

Physically, the convective heat flux wθ transports a flux of potential energy αgz wθ
(each fluid particle has a potential energy αgzθ). The divergence of this flux is just
αgwθ and in a steady regime, it must be locally balanced by the viscous energy
dissipation ν|∇u|2. Equation (5.7) expresses this balance, averaged over the whole
domain. If we assume ordinary fully developed turbulence in the bulk, the energy
dissipation ν|∇u|2 is controlled by advective effects and scales like U3/L. Introducing
this scaling in (5.7) yields (5.6).

We have seen in §4.4 that this scaling law is in excellent agreement with our
experiments in mercury. By contrast a significant discrepancy has been observed in
helium by Sano et al. (1989). Shraiman & Siggia (1990) interpret this discrepancy by
assuming that kinetic energy dissipation occurs mostly in turbulent boundary layers,
described by the classical logarithmic law. Energy dissipation then basically scales
like U3/L, but with a logarithmic correction, providing a better fit to the experiments
in helium, as shown in figure 5 of Siggia (1994). However, the issue is not clear, as
the boundary layer over a flat plate supposedly becomes turbulent and satisfies the
logarithmic law only for Re > 3 × 105 (see e.g. Schlichting 1968, p. 600). This value
is only reached at Ra ∼ 1012 in helium, close to the upper limit of the experiments.
The Reynolds number is even lower in water (103 at Ra = 109), as stressed by Tilgner
et al. (1993). Therefore significant energy dissipation could occur in the bulk. The
different exponent for Re vs. Ra in helium and mercury could be related instead to
the different turbulence dynamics revealed by temperature time spectra, as discussed
in Appendix A.

In spite of this small discrepancy for the exponent of Ra, (5.6) provides a convenient
estimation of the maximum global circulation velocity, U, measured in various
experiments (either along the horizontal or the vertical walls). The prefactor A was
fitted for our experiments with mercury; it yields for instance Re = 3 × 104 for
Ra = 108. In helium (5.6) predicts, using measured relation Nu vs. Ra, for Ra = 1010

a value Re ' 2.6× 104, close to the value 2× 104 obtained by Sano et al. (1989), from
measurements of the vertical velocity near a sidewall. The prediction for water at
Ra = 109 is Re ' 1000, while the experimental value of Tilgner et al. (1993) is 1400.
However, the latter corresponds to the maximum horizontal velocity near the top
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wall, while the vertical velocity was measured in helium, and the similarity between
these two components remains to be checked.

The velocity profile near the top wall was directly measured by Tilgner et al. (1993):
the global circulation is a parietal jet with a maximum velocity at a distance δ from
the wall of roughly

δ/L ' 0.04. (5.8)

This ratio is also obtained in a gas by Belmonte, Tilgner & Libchaber (1994),
remaining constant in the range of 107 < Ra < 1010. Takeshita et al. (1996) find
a result close to (5.8) in mercury by the same procedure. Notice however that this
velocity is not directly measured, but deduced from the maximum frequency excited
above the noise level in the temperature spectra, which is a questionable method.
A simple interpretation of (5.8) is that it corresponds to the classical result that a
turbulent jet spreads with a constant angle.

The shear γ = (∂u/∂z)z=0 at the wall has been estimated by Shraiman & Siggia
(1990), assuming that the boundary layer is turbulent with the classical logarithmic
velocity profile:

u(z) = u∗ [2.5 ln(u∗z/ν) + 5], (5.9)

where u2
∗ is the turbulent stress, constant across the layer. Matching to the velocity U

measured at the distance δ = 0.04 L from the wall leads to

(u∗/U) [2.5 ln(Re u∗/U)− 3] = 1. (5.10)

For a typical Re ∼ 104, (5.10) yields u∗/U ∼ 0.07. The matching of the turbulent
stress u2

∗ to the viscous stress at the wall yields νγ = u2
∗, so that

γ ' 0.005 U2/ν. (5.11)

Defining the thickness λv of the viscous boundary layer by γλv = U, (5.11) is equivalent
to

λv/L ' 140/Re. (5.12)

Notice that the thickness λv of the viscous sublayer differs from the position of the
velocity maximum δ, representing the thickness of the turbulent boundary layer.

Tilgner et al. (1993) have directly measured λv and find λv/L = 0.02 for Re ∼ 1400
(at Ra = 109 in water). In that case, λv is close to δ (but the ratio of these lengths must
increase with increasing Re, as indicated by (5.12) and (5.8)). In the case of Tilgner
et al. (1993), (5.12) leads to λv/L = 0.1, and including the logarithmic correction of
(5.9) would lead to λv/L = 0.06, still three times thicker than the measurement of
Tilgner et al. (1993). Shraiman & Siggia (1990), using a different constant in (5.9)
would find a result still 3 times thicker than ours. Therefore the estimation of the wall
shear must be considered with caution, especially for Pr > 1 and moderate Ra: this
derivation involves only shear-driven turbulence, while buoyancy-driven turbulence
is also important in the observed Bolgiano–Oboukhov dynamics (see Appendix A).
The validity of (5.9) is probably better justified for low Pr, when turbulence has a
Kolmogorov dynamics.

5.2. The thermal boundary layer and the relation Nu vs. Ra for Pr ∼ 1

Complete predictions must relate Nu, or equivalently λ, to Ra. Shraiman & Siggia
(1990) obtained the 2/7 power law for Nu vs. Ra by assuming that the thermal
boundary layer is nested inside the viscous subrange, which is justified for Pr ∼ 1 as
discussed below. In their view, the only effect of buoyancy is to globally drive the
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global circulation, and temperature in the boundary layer is just passively transported
by this global circulation. Furthermore the thermal boundary layer is assumed to
develop with a velocity u = γz with constant shear γ. Its thickness λ then varies as
(Lκγ−1)1/3. (This can be understood physically by considering that the boundary layer
grows with time t in (κt)1/2, following fluid particles, and the distance travelled is
x ∼ γλt.) The corresponding temperature profile has been analytically determined by
Shraiman & Siggia (1990), and found in good agreement with experiments in water
by Chilla et al. (1993a), and with the numerical computations of Bartoloni et al.
(1993) and Kerr (1996). The solution yields a local heat flux:

H = −κ∂T
∂z

= 0.269 ∆ (κ2γ/L)1/3 (x/L)−1/3, (5.13)

where x is the distance travelled along the boundary layer. Introducing the shear
(5.11) in this relation we get (averaging the flux from 0 to x)

Nu(Pr∼1) = 0.07 Re2/3 Pr1/3 (x/L)−1/3. (5.14)

Combining (5.14) with (5.6) yields

Nu(Pr∼1) = 0.16 Ra2/7 Pr−1/7. (5.15)

We have assumed x/L = 0.1, to fit the prefactor in (5.15) with experiments at Pr ∼ 1.
The estimates (5.5) and (5.6) are then completely specified:

(∆c/∆)Pr∼1 ∼ Ra−1/7Pr−3/7, (5.16)

RePr∼1 = 1.1 Ra3/7Pr−5/7. (5.17)

Note that these results are sensitive to the distance x/L (Nu would vary as
(x/L)−3/7). It can be expected that x is the distance travelled between plumes rather
than L, and the ratio x/L ∼ 1/10 may correspond to a triggering of the plumes by the
large eddies of the jet, which typically scale like L/10. Many assumptions have been
introduced to get (5.15), but interestingly the same scaling is obtained by the model
of Castaing et al. (1989), which does not depend on the presence of a well-organized
bulk flow. We reproduce this model in §5.4, and extend it to the case of low Pr in
§5.5.

The derivation of (5.15) is valid as long as the thermal boundary layer is nested
inside the viscous sublayer. Estimating the latter by (5.12) and the former by (5.1),
we get

λ/λv = 0.004 Re/Nu. (5.18)

Expressing Re and Nu by (5.6) and (5.15), this yields

λ/λv = 0.02 Ra1/7 Pr−4/7. (5.19)

The condition λ/λv < 1 is then satisfied when

Ra < 1012 Pr4. (5.20)

This estimate has the same form as the one given by Shraiman & Siggia (1990), with a
slightly different prefactor. The Pr4 dependence is only weakly modified if we assume
that Nu is independent of Pr (as suggested by experiments) instead of varying as
Pr−1/7.

What is expected beyond this threshold depends on the Prandtl number. For
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Pr ∼ 1, we expect that heat is efficiently mixed by turbulence outside the viscous
sublayer, so that λ/λv ∼ 1. Combining with (5.6) gives the asymptotic regime
Nu ∼ Ra1/2 predicted at very high Ra (e.g. Kraichnan 1962): this exponent 1/2
can be obtained by pure dimensional analysis, assuming that the heat flux becomes
independent of both viscosity and diffusivity.

5.3. The thermal boundary layer and the relation Nu vs. Ra for Pr�1

For mercury (Pr = 0.025), the condition λ/λv < 1 is satisfied only for Ra < 5× 105,
according to (5.20). Even this estimate is too large, as it is based on (5.15) which
overestimates Nu by about a factor of 2 for mercury. Therefore we must instead
assume that λ/λv > 1 for all Ra. This has been experimentally checked by Takeshita
et al. (1996) at Ra ∼ 107 (although by an indirect estimation of λv).

We therefore assume that heat undergoes ordinary diffusion with a uniform advec-
tion velocity U, yielding the classical solution for the heat equation T (x, z)−T(z→∞) =
[T(z=0) − T(z→∞)] [1 − erf (z/2)(κx/U)−1/2], and the corresponding heat flux at
the wall is −κ ∂T/∂z(x, 0) = [T(z=0) − T(z→∞)] (κU)1/2(πx)−1/2. Noticing that
T(z=0) − T(z→∞) = ∆/2, and averaging this flux from 0 to x, yields

NuPr� 1 = π−1/2 (RePr)1/2(x/L)−1/2, (5.21)

instead of (5.14).
Combining with (5.6), and choosing x/L = 0.69 yields a good fit for region II:

NuII = 0.92 (RaPr)1/5. (5.22)

Then (5.6) yields

ReII = 1.95 Ra2/5Pr−3/5, (5.23)

(∆c/∆)II ∼ (RaPr)−1/5, (5.24)

which is consistent with our results in region II.
The law Nu ∼ Ra1/4 closely approximated in region I may be interpreted by

arguments of Jones, Moore & Weiss (1976), also discussed by Kek & Muller (1993).
The idea is that the thermal boundary layer reaches the bulk flow, imposing there
temperature differences ∼ ∆, so that

(∆c/∆) ∼ Const., (5.25)

where Const. is a constant factor smaller than 1. Then the relation (5.3) for the free
fall velocity implies

Re ∼ (Ra/Pr)1/2, (5.26)

and the heat flux (5.21) in the thermal boundary layer becomes

Nu ∼ (RaPr)1/4. (5.27)

Note that (5.6) is not satisfied by the predictions (5.26) and (5.27). This condition
(5.6) is difficult to ignore from a theoretial point of view, as it can be derived from
the exact relation (5.7) and the hypothesis that turbulent dissipation varies as U3/L,
which is quite reasonable for the Kolmogorov turbulence found at low Prandtl number
(Cioni et al. 1995). Our measurements indicate that ∆c/∆ decreases for increasing Ra
(figure 9), contradicting (5.25), and our fit (4.5) for Re supports (5.6) instead of (5.26).
Therefore this model disagrees with our results, in spite of the good prediction for
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Nu. This conclusion must be taken with caution, however, since our measurements of
∆c and Re are indirect (obtained from ∆h and ωp respectively). Busse & Clever (1981)
also propose a law Nu ∼ Ra1/4, but without dependence on Pr, from a ‘flywheel’
assumption. Comparison between different experiments indicates instead that Nu
increases with Pr.

To interpret region I, (5.21) should be corrected for shear effects. When Nu <∼ 12,
the thermal boundary layer extends beyond the jet maximum, λ > δ, and the
approximation of a constant velocity is not good: an actual jet profile should be
introduced in the heat equation. An alternative interpretation for region I is given in
§5.5, using scaling laws for plumes.

At this stage we have considered only the molecular diffusion of heat, and it is
important to estimate the eddy diffusivity. The logarithmic profile (5.9) is associated
with an eddy diffusivity of momentum, νt = u2

∗/(du/dz) = 0.4 u∗z. Using (5.10) with
Re ' 105, we find u∗/U ' 0.05, so that νt ' 0.02 Uz. The eddy difusivity of heat κt
must be of the same order, κt ' 0.02Uz. In the thermal boundary layer, at a distance
from the wall z ∼ λ,

κt/κ ' 0.01 Re Pr /Nu. (5.28)

This estimate leads to a negligible eddy diffusivity in most of our experimental range:
the heat exchange in the boundary layer is just controlled by the advection due to
the global circulation.

However, κt/κ increases with Ra, and we expect a new regime when it reaches values
of order 1. Then the thickness of the diffusive boundary layer would be controlled
by the condition κt/κ ∼ 1, and (5.28) then imposes Nu ∼ 0.01RePr, corresponding
(from (5.6)) to Nu ∼ 0.001(RaPr)1/2. We may reach this regime at our highest Ra:
indeed for Ra = 2 × 109, we find Re = 105, from the fit (4.5), and Nu = 32, so that
(5.28) yields κt/κ ∼ 0.7, possibly explaining the transition observed in region III. The
Reynolds number then corresponds to the threshold for instability in a boundary
layer on a flat plane, leading to sudden enhancement of turbulence, sensitive to the
presence of small perturbations, consistent with our observations of a sudden and
non-reproducible transition.

5.4. The mixing zone model

We reproduce in this subsection the arguments of Castaing et al. (1989) leading to the
same scaling law (5.15) as Shraiman & Siggia (1990), assuming that the diffusive layer
emits plumes in a so-called mixing zone. These plumes have a typical temperature
∆ and scale λ, as they are detached sections of the diffusive layer. As they rise, the
plumes supposedly become unstable and shatter, losing their identity as they reach
the bulk region. The resulting finely structured fluid directly feeds the bulk flow at
scale ∼ L. This fluid has the buoyancy of a homogeneous fluid of temperature f∆,
where f is the volume proportion of hot fluid at the end of the mixing zone. Matching
temperature fluctuations to the bulk then imposes

∆c ∼ f∆. (5.29)

The heat flux is transported by the plumes in the mixing zone, so that

H ∼ whf∆, (5.30)

where wh is the plume velocity at the end of the mixing zone. We deduce from these
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two relations:

f ∼ Rac/Ra ∼ Nu2/3Ra−1/3Pr−1/3, (5.31)

whλ/κ ∼ 1/f ∼ Nu−2/3Ra1/3Pr1/3 (5.32)

(using (5.5) and (5.1) respectively).
The typical time τs between the emission of two successive plumes, at a given

position on the boundary, is estimated as

τs ∼ λ2/κ, (5.33)

which is the time needed to rebuild the diffusive layer by heat conduction after plume
emission. The typical vertical distance dm between the two plumes is the distance whτs
travelled by the first plume during the time τs so that, using (5.33),

dm/λ ∼ whλ/κ. (5.34)

This distance dm is also the typical thickness of the mixing zone: beyond the distance
dm from the wall, we can consider the set of plumes as an effective fluid with
temperature f∆. The volume fraction can be estimated as f ∼ λ/dm, since λ is the
typical size of the plume, and the result from (5.34) coincides with the independent
relation (5.32). Therefore the scaling laws for velocities and temperature fluctuations
in the different zones are determined, provided we have the relation between Nu and
Ra.

To close the derivation, Castaing et al. (1989) further assume that the plumes reach
a steady velocity wh under the balance between buoyancy force and viscous friction,
which yields, for a plume with temperature ∆ and size λ

wh ∼ gα∆λ2/ν. (5.35)

Combining this relation with (5.32) leads again to the scaling (5.15) and its conse-
quences (5.16)–(5.17).

5.5. The mixing zone model adapted to low Prandtl numbers

The estimate (5.35) is not justified at low Pr: the plume cannot reach a steady
velocity. Indeed the time τa for the plume to reach this velocity is equal to the final
velocity (5.35) divided by the initial acceleration αg∆, so τa = λ2/ν, and comparing
with (5.33),

τa/τs ∼ Pr−1. (5.36)

Thus the assumption (5.35) that the plumes reach a constant velocity cannot hold for
low Pr (in fact Castaing et al. 1989 propose their model only for Pr ∼ 1, without
attempting to derive the dependence on Pr). For low Pr, we assume instead that the
plume is steadily accelerating in the whole mixing zone, with acceleration gα∆, so that

wh ∼ gα∆τs ∼ gα∆λ2/κ, (5.37)

instead of (5.35) (we have used (5.33) to get the second equality), yielding

NuPr<0.3 = 0.25 (RaPr)2/7. (5.38)

The coefficient 0.25 is obtained by a fit to our experimental results in mercury. The
expression (5.38) is represented in figure 2(b) by the dashed line. The intersection
with the value of Nu for Pr ∼ 1 occurs for Pr ' 0.3. We thus expect that the low-Pr
regime obtains for Pr 6 0.3. The parameter RaPr depends only on the thermal
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diffusivity, so that the heat flux becomes independent of viscosity at low Prandtl
number, which is reasonable, as diffusivity then dominates viscosity.

The other scaling laws for Pr < 0.3 are then readily deduced from (5.5) and (5.6):

RePr<0.3 ∼ Pr−1(RaPr)3/7, (5.39)

(∆c/∆)Pr<0.3 ∼ (RaPr)−1/7. (5.40)

6. Conclusions
For mercury, the Nusselt number is about half that for fluids with Pr ∼ 1, at

the same Ra. This dependence on Pr agrees with the model of Kraichnan (1962),
predicting Ra ∼ Pr1/3 for Pr < 0.1 and a constant for Pr > 0.1 (at a given Ra). More
recent models of Castaing et al. (1989) and Siggia (1990) predict a variation in Pr with
the opposite sign! However these models were aimed to interpret experimental results
at Pr ∼ 1, in particular the law Nu ∼ Ra2/7 rather than the ‘classical’ law Nu ∼ Ra1/3.
We have revisited these models and found that they are inconsistent for low Pr, and
we propose appropriate modifications in §5. Even at Pr ∼ 1, the predicted dependence
of Ra as Pr−1/7 seems incorrect. Comparison of various experiments supports instead
the prediction of Kraichnan (1962) of a constant Nu (as a function of Pr). The Pr
dependence therefore puts the different theories into perspective, and more studies at
different Pr should be undertaken.

For the dependence of Nu on Ra, we distinguish different ranges of Ra. In region
I, for Ra < 4.5× 108, we find a fit for Ra0.26 in remarkable agreement with the result
of Rossby (1969) at lower Ra. The exponent differs from 1/3, and is close to the 2/7
observed in helium, even decreasing to ∼ 0.2 in region II reached for Ra > 4.5× 108.
Finally we have observed a second transition at Ra = 2× 109, which we interpret as
the onset of turbulent transfers in the thermal boundary layer, perhaps, leading to
the asymptotic regime of convection with Nu ∼ Ra1/2. Experiments at higher Ra are
needed to confirm and study this transition.

The spontaneous formation of a global circulation is observed in mercury as at
Pr ∼ 1. A temperature oscillation in the plate is associated with this global circulation,
as with fluids at Pr ∼ 1. The frequency of this oscillation is proportional to the global
circulation velocity in both cases. This global circulation tends to fluctuate in strength
around a mean value, never disappearing. It also randomly rotates in azimuth, with
reversals between two preferred directions, and fluctuations of smaller extent with a
time scale of a few minutes. It is still an open question whether this dynamics is
specific to low Prandtl number.

The scaling of global circulation velocity with Ra in mercury agrees with the free fall
relation (5.6), while a discrepancy is observed for helium. We interpret this difference
by the different dynamics revealed by time spectra: the scaling (5.6) corresponds to
energy dissipation by the Kolmogorov turbulence that we have observed in mercury. A
different dissipation law is obtained with the Bolgiano–Oboukhov dynamics detected
at Pr ∼ 1, as discussed in Appendix A.

However the main difference is in the boundary layer structure. As shown ex-
perimentally by Takeshita et al. (1996), the viscous boundary layer is nested inside
the thermal boundary layer in mercury, unlike in experiments performed at Pr ∼ 1.
We justify this difference in §5 by estimating the thickness of these two boundary
layers for different Pr: we consider a model involving a direct coupling between a
big convective cell and a thermal boundary layer. The velocity of this convective cell
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is given by the free fall relation (5.6). For Pr ∼ 1 (and Ra not too large, according
to (5.20)), the thermal boundary layer is inside the viscous one, which corresponds
to the model of Shraiman & Siggia (1990) (but we have changed prefactors to fit
better recent experimental results). The opposite case obtains at low Pr, and a law
Nu ∼ (RaPr)1/5 is expected. This analysis interprets region II behaviour, and may
explain the transition that we observe at Ra ' 2 × 109 in mercury (region III). At
this value of Ra two effects are expected: the boundary layer reaches a Reynolds
number at which it becomes intrinsically turbulent, and turbulent heat transport
begins to dominate over diffusion near the boundary (according to (5.28)). Beyond
this threshold an asymptotic regime Nu ∼ (RaPr)1/2 is expected.

Although this model provides a good interpretation of regions II and III, it does not
explain the scaling of Nu in region I. The same boundary layer analysis yields a much
better scaling Nu ∼ (RaPr)1/4 if we use the velocity (5.26) instead of (5.6), following
Jones et al. (1976). However (5.6) is in better agreement with the experiments.

As an alternative approach, we have considered the mixing zone model of Castaing
et al. (1989), §5.4. In this model the plumes reach a steady velocity balancing buoyancy
and viscous friction. Instead, at low Pr, plumes are accelerated steadily until they
mix into the bulk flow, leading to Nu ∼ (RaPr)2/7 (§5.5), in reasonable agreement
with experimental results in region I. Nu is then smaller for smaller Pr, in agreement
with the experiments.

The Chicago experiments (Castaing et al. 1989) displayed beautiful power laws,
interpreted in terms of general scaling arguments involving plumes. In his review
paper, Siggia (1994) stressed, however, that we should not forget the underlying fluid
mechanics. In his model, buoyancy drives the global circulation, but heat transfers are
controlled by the development of a thermal boundary, with temperature transported
by the global circulation like a passive tracor. The two approaches give similar results
at Pr ∼ 1, and it is not clear which description applies, or whether they just consider
different aspects of the same physics. Ciliberto et al. (1996) have shown that heat
transfers are unchanged when the global circulation is suppressed by screens in a water
experiment, supporting plumes model. In the case of low Pr, two models, discussed
in §5.3 and §5.5 respectively, give different results. The plume model provides a good
interpretation of region I, while the boundary layer approach interprets of regions II
and III. However, we do not see the link between these different approaches.

We thank B. Castaing for many discussions. This work has been supported by
“Région Rhone-Alpes” under the grant M 06238 00 01, and by the EEC grant
CIPA-CT-93-0080.

Appendix A. Turbulent energy dissipation in buoyancy-controlled
turbulence

In mercury, Cioni et al. (1995) showed that temperature fluctuations in the bulk
behave like a passive scalar in ordinary turbulence. Therefore the rate of kinetic
energy dissipation is expected to vary as U3/L. In contrast, temperature spectra
varying as k−1.4 have been measured in helium and water (from time spectra, using a
Taylor hypothesis). Such spectra have been related to Bolgiano–Oboukhov dynamics,
controlled by buoyancy effects (Wu et al. 1990; L’vov 1991; Chilla et al. 1993b; Benzi
et al. 1994). A different scaling for the dissipation is then expected.

Both temperature fluctuations and kinetic energy are assumed to be introduced at
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some integral scale assumed of order L, transferred to small scales by turbulence,
and dissipated by diffusive and viscous effects respectively. The rate of kinetic energy
dissipation ε = ν〈|∇u|2〉 is given from the Boussinesq equation by (5.7). Similarly, the
rate of dissipation for the temperature variance N = κ〈|∇T |2〉 is given by averaging
the heat equation (multiplied by T ):

Nu = 〈|∇T |2〉L2/∆2. (A 1)

At each scale r, the r.m.s. temperature fluctuations θ2(r) are transferred to smaller
scales by the typical velocity fluctuations u′(r) at this scale. The time for this process
is r/u′(r), so the local rate of transfer is θ2u′(r)/r. Assuming this rate is constant and
equal to N yields

u′(r) θ2(r) / r = N. (A 2)

The same argument for a conserved kinetic energy u′2 leads to the Kolmogorov scaling
u′ ∼ ε1/3r1/3. In this case (A 2) yields the Kolmogorov scaling for a passive scalar
θ(r) ∼ N1/2ε−1/6r1/3.

In Bolgiano scaling, the kinetic energy is not conserved in the cascade, but is
supplied from potential energy. Velocity and temperature are then related by the free
fall relation at each scale:

u′(r) ∼ (αg θ r)1/2. (A 3)

The combination of (A 2) and (A 3) gives the Bolgiano scaling:

u′(r) ∼ (αg)2/5 N1/5 r3/5, θ(r) ∼ (αg)−1/5 N2/5 r1/5. (A 4)

The Bolgiano and Kolmogorov scalings cross at the Bolgiano scale:

Lb = ε5/4 N−3/4 (gα)−3/2. (A 5)

Bolgiano scaling is expected for r > Lb while Kolmogorov scaling is expected for
r < Lb. The scale Lb can be calculated from the experimental parameters using (5.7)
and (A 1), following Chilla et al. (1993a), yielding

Lb/L = Nu1/2 Ra−1/4 Pr−1/4. (A 6)

Bolgiano scaling dominates for large Pr (Lb small), while the Kolmogorov scaling
prevails for small Pr, in agreement with the different behaviour observed in experi-
ments and numerical simulations at Pr ∼ 1 and in mercury (Cioni et al. 1995). The
existence of the crossover scale Lb was not really demonstrated in the experiments,
due to the limited size of the inertial range. However, we shall consider the influence
of this scale to relate the energy dissipation to the convective velocity U.

In Kolmogorov scaling, the energy dissipation rate ε is controlled by the integral
scale L, ε ∼ U3/L. In Bolgiano dynamics, we must replace this scale by the Bolgiano
scale, where the Kolmogorov cascade begins:

ε = u′(Lb)
3 / Lb. (A 7)

We can relate u′(Lb) to the energy at the energy-containing scale L by (A 4)

u′(Lb)/U ∼ (Lb/L)3/5. (A 8)

Then, (A 7) yields

ε ∼ (Lb/L)4/5 U3 / L, (A 9)

which can be related to the experimental parameters by (A 6):

ε ∼ Nu2/5 Ra−1/5 Pr−1/5 U3/L. (A 10)
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Then (5.7) yields

Re ∼ Nu1/5 Ra2/5 Pr−3/5, (A 11)

instead of (5.6). Introducing a law Ra ∼ Nu2/7, yields an exponent 16/35 ' 0.46 for
Re vs. Ra, instead of the exponent 3/7 ' 0.43 obtained with Kolmogorov scaling. The
correction is very close to the result obtained by Siggia (1994) with the logarithmic
boundary layer, which was observed to fit well the experiments in helium (taking
into account also the dependence on Pr). However, this correction applies only for
Pr ∼ 1, and not for mercury, in agreement with our measurements.

Appendix B. The thermal condition at the bottom plate
The boundary conditions at the top and bottom of the cell are not simple. Indeed

the copper plates are not able to set a uniform temperature along each plate, as often
assumed for Rayleigh–Bénard convection, so the heat transfers in the plates must be
considered.

Suppose that the plate is at temperature TW (x, y, t), while the fluid in the bulk is
at temperature TF (x, y, t). Assume that the plate has small thickness e�L, so that its
temperature is independent of the vertical coordinate. We can then write an equation
for heat conduction in the horizontal plane of the plate, with a (uniform) heat source
S due to the electrical heating power, and a local flux H∗(x, y) toward the fluid:

eCW ∂TW/∂t = eCW κW∇2TW − H∗ + S, (B 1)

where CW denotes the heat capacity (per unit volume) for the bottom plate, and κW
its thermal diffusivity.

The heat flux H∗ = HCF is given by an experimental relationship of form Nu ∼
Ran−1 (n real). Assume this relationship is valid locally, with Nu and Ra calculated
from the local flux H and ∆ = 2(TW − TF ) (considering that the total temperature
difference ∆ is concentrated in the two boundary layers). This leads to

H(x, y, t) = h (TW − TF )n, (B 2)

where h is a constant related to the prefactor in the relation Nu ∼ Ran−1. Assume
that TW and TF fluctuate around their mean values over the plate (denoted by〈.〉),
TW = 〈TW 〉 + θW (x, y, t) and TF = 〈TF〉 + θF (x, y, t). Expanding the heat flux (B 2)
for small fluctuations leads to

H ' 〈H〉 + n〈H〉(θW − θF )/(〈TW 〉 − 〈TF〉). (B 3)

We consider also a spatial modulation of the flux associated with the development
of the thermal boundary layer, occurring even when TW −TF is uniform. In this case
we write

H(x, y, t) = 〈H〉(1 + f(x, y)). (B 4)

For an ordinary thermal boundary layer developing along x, we have

1 + f(x, y) = x−1/2/〈x−1/2〉 ' 0.5(x/L)−1/2, (B 5)

corresponding to the growth of the boundary layer thickness as (κx)1/2 (from a
somewhat arbitrary origin at the edge of the plate).

We expect that both effects occur together, and superpose them for small modula-
tions, writing

H(x, y, t) = 〈H〉 [1 + n(θW − θF )/(〈TW 〉 − 〈TF〉) + f(x, y)]. (B 6)
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The mean flux 〈H〉CF is balanced by the heat source S , so the heat equation (B 1)
becomes

(L2κ−1
W ) ∂θW/∂t = L2∇2θW − 2B Nu [n(θW − θF ) + (〈TW 〉 − 〈TF〉) f(x, y)], (B 7)

where we have used ∆ = 2(〈TW 〉 − 〈TF〉), and introduced the non-dimensional
parameter

B =
CFκ

CWκW

L

e
. (B 8)

For our copper plate with e = 2 cm and mercury, we find B = 0.226.
Consider a dipolar structure which is an eigenfunction of the Laplacian on the

plate:

θF = ΘF (t) J1(kr) cosφ, ∇2θF = −k2θF , (B 9)

where J1 is the Bessel function of first kind of order 1. The boundary condition of
zero radial flux at r = L/2 implies that J ′1(kL/2) = 0, corresponding to kL/2 ' 1.84,
the first zero of J ′1.

We introduce (B 9) in the heat equation (B 7), and assume f(x, y) = FJ1(kr) cosφ
has the same dipolar structure (otherwise we should expand it in Bessel functions),
yielding θW = ΘW (t)J1(kr) cosφ with

[L2κ−1
W ∂/∂t+ k2L2 + 2B n Nu]ΘW = 2B n Nu ΘF − 2B Nu F (〈TW 〉 − 〈TF〉). (B 10)

The thermal inertia time of the plate is (for the dipolar mode) L2κ−1
W (kL)−2 = 30 s.

We consider fluctuations on longer time scales, so we can neglect the time derivative
in (B 10). Then (B 10) yields

ΘF =

[
1 +

6.77

BnNu

]
ΘW +

F∆

2n
. (B 11)

We measure the crest-to-crest amplitude ∆h at radius r = 0.23L, so that ∆h =
2ΘWJ1(kr). The coefficient F can be estimated from (B 5), which yields f = −0.04
at x = 0.5L − r and f = −0.49 at x = 0.5L + r. The crest-to-crest amplitude of f is
therefore 0.45, so that FJ1(kr) = −0.23. Therefore the correspondance between the
amplitude ∆h and the corresponding amplitude ∆c in the fluid is given by

∆c/∆ '
[
1 +

6.77

BnNu

]
∆h/∆− 0.2. (B 12)

Equation (B 12) indicates two sources for the dipolar structure: the presence of
a dipolar structure ΘF in the bulk, and the development of the thermal boundary
layer. Both effects are filtered by the thermal conduction in the plate. At low Nu, this
filtering is efficient, due to the high conductivity of copper in comparison with mercury,
so we are close to a condition of uniform temperature at the wall. However, as Nu
increases, the ‘turbulent conductivity’ of the fluid increases, and we tend to a condition
of constant flux (for the dipolar mode). For water the conductivity is 13 time smaller
(B = 0.017), so the condition of uniform temperature in the plate is better satisfied.
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Rayleigh number convection with gaseous helium at low temperature. J. Low Temp. Phys.
(submitted).

Chilla, F., Ciliberto, S., Innocenti, C. & Pampaloni, E. 1993a Boundary layer and scaling
properties in turbulent thermal convection. Il Nuovo Cimento 15D, 1229–1249.

Chilla, F., Ciliberto, S., Innocenti, C. & Pampaloni, E. 1993b Spectra of local and averaged
scalar fields in turbulence. Europhys. Lett. 22, 23–28.

Chu, T. Y. & Goldstein, R. J. 1973 Turbulent natural convection in a horizontal water layer heated
from below. J. Fluid Mech. 60, 141–159.

Ciliberto, S., Cioni, S. & Laroche, C. 1996 Large scale flow properties of turbulent thermal
convection. Phys. Rev. E 54, 5901–5905.

Cioni, S., Ciliberto, S. & Sommeria, J. 1995 Temperature structure functions in turbulent convec-
tion at low Prandtl number. Europhys. Lett. 32, 413–418.

Cioni, S., Ciliberto, S. & Sommeria J. 1996 Experimental study of High-Rayleigh-Bénard convec-
tion in mercury and water. Dyn. Atmos. Oceans 24, 117–127.

Fitzjarrald, D. E. 1976 An experimental study of turbulent convection in air. J. Fluid Mech. 73,
693–719.

Garon, A. M. & Goldstein, R. J. 1973 Velocity and heat transfer measurements in thermal
convection. Phys. Fluids 16, 1818–1825.

Globe, S. & Dropkin, D. 1959 Natural-convection heat transfer in liquids confined by two
horizontal plates and heated from below. J. Heat Transfer 31, 24–28.

Goldstein, R. J., Chiang, H. D. & See, D. L. 1990 High-Rayleigh-number convection in a
horizontal enclosure. J. Fluid Mech. 213, 111–126.

Goldstein, R. J. & Tokuda, S. 1980 Heat transfer by thermal convection at high Rayleigh numbers.
Intl J. Heat Mass Transfer 23, 738–740.

Jones, C. A., Moore, D. R. & Weiss, N. O. 1973 Axisymmetric convection in a cylinder. J. Fluid
Mech. 73, 353–388.

Kek, V. & Muller, U. 1993 Low Prandtl number convection in layers heated from below. Intl J.
Heat Mass Transfer 36, 2795–2804.

Kerr, B. 1996 Rayleigh number scaling in numerical convection. J. Fluid Mech. 310, 139–179.

Kraichnan, R. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5,
1374–1389.

Krishnamurti, R. & Howard, L. N. 1981 Large-scale flow generation in turbulent convection.
Proc. Natl Acad. Sci. USA 78, 1981–1985.

L’vov, V. S. 1991 Spectra of velocity and temperature fluctuations with constant entropy flux of
fully developed free convective turbulence. Phys. Rev. Lett. 67, 687–690.

Rossby, H. T. 1969 A study of Bénard convection with and without rotation. J. Fluid Mech. 36,
309–335.

Sano, M., Wu, X. Z. & Libchaber, A. 1989 Turbulence in helium-gas free convection. Phys. Rev.
A 40, 6421.

Schlichting, H. 1968 Boundary-Layer Theory. Mc Graw-Hill.

Shraiman, B. I. & Siggia, E. D. 1990 Heat transport in high-Rayleigh-number convection. Phys.
Rev. A 42, 3650.

Siggia, E. D. 1994 High Rayleigh number convection. Ann. Rev. Fluid Mech. 26, 137–168.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

96
00

44
91

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112096004491


140 S. Cioni, S. Ciliberto and J. Sommeria

Takeshita, T., Segawa, T., Glazier, J. A. & Sano, M. 1996 Thermal turbulence in mercury. Phys.
Rev Lett. 76, 1465–1468.

Tanaka, H. & Miyata, H. 1980 Turbulent natural convection in a horizontal water layer heated
from below. Intl J. Heat Mass Transfer 23, 1273–1281.

Threlfall, D. C. 1975 Free convection in low temperature gaseous helium. J. Fluid Mech. 67, 17–28.

Tilgner, A., Belmonte, A. & Libchaber, A. 1993 Temperature and velocity profiles of turbulent
convection in water. Phys. Rev. E 47, 2253–2256.

Villermeaux, E. 1995 Memory-induced low frequency oscillations in closed convection boxes. Phys.
Rev. Lett. 75, 4618–4621.

Wu, X., Kadanoff, L., Libchaber, A. & Sano, M. 1990 Frequency power spectrum of fluctuations
in free convection. Phys. Rev. Lett. 64, 2140–2143.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

96
00

44
91

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112096004491

