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Turbulent flows within and over sparse canopies are investigated using direct
numerical simulations at moderate friction Reynolds numbers Re, =520 and 1000. The
height of the canopies studied is A"~ 110-200, which is typical of some engineering
canopies but much lower than for most vegetation canopies. The analysis of the
effect of Reynolds number in our simulations, however, suggests that the dynamics
observed would be relevant for larger Reynolds numbers as well. In channel flows,
the distribution of the total stress is linear with height. Over smooth walls, the total
stress is the sum of the viscous and the Reynolds shear stresses, the ‘fluid stress’ 7.
In canopies, in turn, there is an additional contribution from the canopy drag, which
can dominate within. Furthermore, the full Reynolds shear stress has contributions
from the dispersive, element-induced flow and from the background turbulence, the
part of the flow that remains once the element-induced flow is filtered out. For
the present sparse canopies, we find that the ratio of the viscous stress and the
background Reynolds shear stress to their sum, 7, is similar to that over smooth
walls at each height, even within the canopy. From this, a height-dependent scaling
based on 7; is proposed. Using this scaling, the background turbulence within the
canopy shows similarities with turbulence over smooth walls. This suggests that the
background turbulence scales with 1, rather than the conventional scaling based on
the total stress. This effect is essentially captured when the canopy is substituted
by a drag force that acts on the mean-velocity profile alone, aiming to produce the
correct 77, without the discrete presence of the canopy elements acting directly on the
fluctuations. The proposed mean-only forcing is shown to produce better estimates
for the turbulent fluctuations compared to a conventional, homogeneous-drag model.
These results suggest that a sparse canopy acts on the background turbulence primarily
through the change it induces on the mean-velocity profile, which in turn sets the
scale for turbulence, rather than through a direct interaction of the canopy elements
with the fluctuations. The effect of the element-induced flow, however, requires the
representation of the individual canopy elements.

Key words: turbulent boundary layers

1. Introduction

Canopy flows are ubiquitous in both natural and artificial settings. Although
they have mostly been studied in the framework of flows through crops and forests
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(Finnigan 2000; Belcher, Harman & Finnigan 2012; Nepf 2012), they are also relevant
to flows over engineered surfaces, such as pin fins for heat transfer or piezoelectric
filaments for energy harvesting (Bejan & Morega 1993; McCloskey, Mosher &
Henderson 2017). While the latter usually have small to moderate Reynolds numbers,
vegetation canopies typically have much larger ones. The study of turbulent flows
over canopies has wide-ranging applications, including reducing crop loss (de Langre
2008), energy harvesting (McGarry & Knight 2011; McCloskey et al. 2017; Elahi,
Eugeni & Gaudenzi 2018) and improving heat transfer (Fazu & Schwerdtfeger 1989;
Bejan & Morega 1993).

On the basis of the geometry and spacing of the canopy elements, a canopy can be
classified as dense, sparse or transitional (Nepf 2012). In the dense limit, the canopy
elements are in close proximity to each other and turbulence is essentially not able
to penetrate within the canopy layer. In the sparse limit, the spacing between canopy
elements is large and the turbulent eddies can penetrate the full depth of the canopy.
An intermediate or transitional regime lies between these two limits. Turbulent flows
in the dense regime, reviewed by Finnigan (2000) and Nepf (2012), are characterised
by the formation of Kelvin—Helmholtz-like, or mixing-layer, instabilities, originating
from the inflection point at the canopy tips (Raupach, Finnigan & Brunet 1996). As
the sparsity of the canopies is increased, the importance of the Kelvin—Helmholtz-like
instability decreases (Poggi et al. 2004; Huang, Cassiani & Albertson 2009; Pietri
et al. 2009). Eventually, the flow would resemble that over a smooth wall, albeit
perturbed by the discrete presence of the individual canopy elements (Finnigan 2000).
The separation between these regimes is still somewhat unclear. Nepf (2012) proposed
an approximate classification of the canopy regime based on the roughness frontal
density, A;. Nepf observed that canopies are dense for Ay >> 0.1, sparse for Ay < 0.1,
and intermediate for A, ~0.1. However, in addition to the geometric parameter A, the
length scales of the flow should also be considered when determining the regime of
the canopy. The length scales in a turbulent flow may be much larger than the element
spacing at a particular Reynolds number, so that the turbulent eddies are precluded
from penetrating within the canopy. As the Reynolds number is increased, however,
the turbulent length scales will eventually become comparable to the element spacing
and allow the turbulent eddies to penetrate within the canopy efficiently.

In the present work, we study flows within and above sparse canopies using
direct numerical simulation (DNS). While this allows for the full resolution of
turbulence, it restricts our simulations to moderate friction Reynolds numbers,
Re, ~ 520-1000, and element heights, At ~ 110-200. While these heights would
be directly applicable to some of the engineered canopies mentioned above, they are
much smaller than those typical of vegetation canopies, h* ~ 10°~10° (e.g. Green,
Grace & Hutchings 1995; Novak et al. 2000; Zhu et al. 2006), although comparable
to some laboratory experiments, A" &~ 400-800 (Raupach, Hughes & Cleugh 2006;
Bohm et al. 2013). In any event, we provide evidence in § 2.3 of the scaling of the
canopy-flow dynamics with the Reynolds number, which would make our conclusions
of relevance for canopies at larger Reynolds numbers as well. The present canopies
have low roughness densities A, < 0.1, with element spacings large enough to limit
their interaction with the near-wall turbulence dynamics. Owing to the sparse nature
of these canopies, we would expect the flow within them to be dominated by the
footprint of the canopy elements, rather than by a mixing-layer instability.

Conventionally, a homogeneous drag is used to represent the effect of canopies
(Dupont & Brunet 2008; Finnigan, Shaw & Patton 2009; Huang et al. 2009; Bailey
& Stoll 2016). This approach would only be strictly valid to represent very closely
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FIGURE 1. Schematic of the numerical domain. An instantaneous field of the fluctuating
streamwise velocity, scaled, from case TP1 is shown in three orthogonal planes.

packed canopies, where the element spacing is much smaller than any length scale
in the overlying flow, and even small flow structures perceive the canopy elements as
acting collectively (Zampogna & Bottaro 2016). Using a homogeneous drag to capture
the effects of sparser canopies tends to overdamp turbulent fluctuations within the
canopies (Yue et al. 2007; Bailey & Stoll 2013). This is typically attributed to the
inability of homogenised models to capture the element-induced flow, and the lack of
representation of the gaps between the canopy elements, where the fluctuations would
not experience any damping (Bailey & Stoll 2013).

In the present work we separate the effect of the element-induced coherent flow
from the incoherent background turbulence, and focus mainly on the properties of
the latter. We study different element spacings and geometries. We propose a scaling
that suggests that the dynamics of the background turbulence within sparse canopies
is mainly governed by their effect on the mean velocity, rather than by the direct
interaction of the canopy elements with the flow. Based on this scaling, we propose
that the effect on the background turbulence is represented better by a drag acting on
the mean flow alone than by a homogeneous drag. Partial results from some of the
simulations can be found in Sharma & Garcia-Mayoral (2018a,b).

The paper is organised as follows. The numerical methods used and the canopy
geometries simulated are described in §2. The results of the canopy-resolving
simulations and the scaling of turbulent fluctuations are discussed in § 3. The results
obtained from simulations that substitute the canopy by a drag force are discussed in
§ 4. The conclusions are presented in § 5.

2. Numerical simulations

We conduct DNS of an open channel with canopy elements protruding from
the wall. The streamwise, wall-normal and spanwise coordinates are x, y and z,
respectively, and the associated velocities are u, v and w. The size of the simulation
domain is 27§ x § x w8, with the channel height § = 1. This box size has been
shown to be adequate to capture one-point statistics up to the channel height for
the friction Reynolds numbers used in the present study (Lozano-Durdn & Jiménez
2014). A schematic representation of the numerical domain is shown in figure 1. The
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domain is periodic in the x and z directions. No-slip and impermeability conditions
are applied at the bottom boundary, y =0, and free slip and impermeability at the
top, y = 8. It is shown in §3 that the height of the roughness sublayer for the
canopies studied here extends to only half of the domain height, so the top boundary
of the channel does not interfere with the canopy flow. The flow is incompressible,
with the density set to unity. All simulations are run at a constant mass flow rate,
with the viscosity adjusted to obtain the desired friction Reynolds number based
on the total stress. Most simulations are conducted at a friction Reynolds number
Re, =u.8/v~520, and a few at Re, =~ 1000.

The numerical method used to solve the three-dimensional Navier—Stokes equations
is adapted from Fairhall & Garcia-Mayoral (2018). A Fourier spectral discretisation
is used in the streamwise and spanwise directions. The wall-normal direction is
discretised using a second-order centred difference scheme on a staggered grid. For
the simulations at Re, = 520, the grid in the wall-normal direction is stretched to
give a resolution Ay, ~ 0.2 at the wall, stretching to Ay! ~ 2 at the top of the
domain. For the simulations at Re, ~ 1000, wall-normal resolutions of Ay’ = 0.35
and Ay; ~5.5 are used, as dissipation occurs at larger scales near the centre of the
channel at larger Reynolds numbers (Jiménez 2012). The wall-parallel resolutions for
the different cases are given in table 1. The time advancement is carried out using
a three-step Runge—Kutta method with a fractional step, pressure correction method
that enforces continuity (Le & Moin 1991):

Be | n —_ o X ;o n
I— AtR—L u, = u;_,+At|—Lu;_, —vNw;_,)

Re
—ON@w;_,) — (e + BIG(pY) |, kell, 3], (2.1)
DG(¢,) = WD(W)» (2.2)
w, =u;— (. + B At G(¢)), (2.3)
Pi1 =D + ¢ (2.4)

Here I is the identity matrix; L, D and G are the Laplacian, divergence and gradient
operators, respectively; N is the dealiased advective term; oy, B, ¥ and ¢ are the
Runge—Kutta coefficients for substep k from Le & Moin (1991); and At is the time
step.

2.1. Canopy-resolving simulations

We have considered flows over canopies with both permeable and impermeable
elements. The geometry of the impermeable canopy elements is resolved using
an immersed-boundary method adapted from Garcia-Mayoral & Jiménez (2011).
The simulation parameters for the different cases studied here are summarised in
table 1. Case S is an open channel with a smooth-wall floor. The canopy-resolving
simulations include two canopy geometries, as portrayed in figure 2, with varying
element spacings. The first geometry, denoted by the letter ‘P’, consists of collocated
prismatic posts with a square top- view cross-section with sides ¢ = £ &~ 20, and
height ¢ ~ 110. The spacing between the canopy elements in the wall-parallel
directions for cases PD, PO, P1 and P2 are L} = L' ~ 50, 100, 200 and 400,
respectively. The canopy of case PD has a frontal area density of A, ~ 0.88, which
would place it in the dense regime (Nepf 2012). We use this simulation to contrast
sparse and dense canopy dynamics. The second geometry, denoted by the letter T,
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Case N, xN, u Re, A [DY Axt Azf

Smooth S — 0.055 5388 — — 8.8 44

PD 64 x32 0.153 5354 0.88 0.99 438 4.38
PO 32x16 0.182 5325 022 094 436 436

PO-H 0.203 5942 — 093 9.72 4.86
PO-HO — 0.227 5494 — 090 899 449
Impermeable

prismatic elements P1 16 x 8 0.138 520.3 0.05 0.79 4.26 4.26
P1-HO — 0.147 5538 —  0.80 9.06 4.53
P2 8x4 0093 5294 001 057 433 433
P2-HO — 0.092 5229 — 057 855 4.28
P21z, 16 x8 0.082 1068.3 0.01 0.59 437 437
P20k, 8x4 0.091 10004 0.01 0.61 4.09 4.09
Tl 16 x8 0.133 5056 0.07 0.80 414 4.14
I b T1-H — 0.160 5033 — 085 11.00 5.0
mpermeable T1-HO — 0165 5199 — 082 1134 567

T-shaped elements
T2 8x4 009 5133 0.02 0.8 420 4.20
T2-HO — 0.097 5274 —  0.60 8.63 431
Permeable TP1 16 x8 0.160 5055 0.07 0.81 827 4.14
T-shaped elements TP1-L — 0.167 5271  — 0.81 8.62 431

TABLE 1. Simulation parameters: N, and N, are the number of canopy elements in the
streamwise and spanwise directions, respectively; u, is the friction velocity based on the
net drag and scaled with the channel bulk velocity; Re, is the friction Reynolds number
based on u, and §; A; is the roughness frontal density; and [ DT is the net canopy drag
force scaled with u,, that is, the proportion of the total drag on the fluid exerted by
the canopy elements, with the remainder being the friction at the bottom wall. The grid
resolutions in the streamwise and spanwise directions are Axt and Az*, respectively.

consists of frontally extruded T-shaped canopies, as portrayed in figure 2(b,c), in a
collocated arrangement. We consider two element spacings for the T-shaped canopies,
with cases T1 and T2 having L} =L ~200 and 400, respectively. The head of these
canopy elements has dimensions ¢ = ¢ ~ 40 in the wall-parallel directions. The
base of the canopy elements has ¢ 2~ 40 and ¢ ~ 20. The base and the head are
€7~ 80 and ¢} ~ 30 tall, respectively.

We also study how canopies with permeable and impermeable canopy elements
affect the surrounding flow. The permeable canopy elements of case TP1 have the
same geometry and layout as T1, but the elements are represented by a drag force
only applied within them, rather than by immersed boundaries. This method allows
some flow to permeate into the canopy elements, as shown in figure 2(c,f), and has
been observed to be a suitable model for certain natural canopies (Yue et al. 2007;
Yan et al. 2017). The drag force in case TP1, applied only at the grid points that
are within the canopy elements, is of the form C,.u;|u;|, similar to Yue et al. (2007),
Bailey & Stoll (2013) and Yan et al. (2017), where C,. is a drag coefficient and u;
is the instantaneous local velocity in every i direction. The value of C, is set such
that further increasing its magnitude does not significantly increase the net drag force
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FIGURE 2. Contours of instantaneous streamwise velocity in planes passing through the
centre of a canopy element. Panels (a—c) represent cuts in the z—y plane, and (d-f)
represent cuts in the x—y plane. Panels are for cuboidal canopy elements from case
P1 (a,d); and for T-shaped canopy elements from case T1 (b,e) and case TP1 (c,f). The
white lines mark the positions of the canopy elements. The contours are scaled using the
global friction velocity, u,, of each case.

on the mean flow. This forcing provides a local body force opposing the flow inside
the canopy elements, and thus results in a small velocity within the canopy elements.
The net mean drag force for this canopy is similar to that of the impermeable canopy,
T1, as noted in table 1, in spite of the different character of the canopy elements.

In order to ascertain the effect of the Reynolds number on the results, two additional
simulations, P2Iz, and P20g,, are conducted at Re, =~ 1000. The canopy of P2l
matches the parameters of the canopy of P2 in inner units, that is, element widths
0 =7 ~ 20, height £} ~ 110 and element spacings L} = L} ~ 400. The ratio of
channel to canopy height for P2l is §/¢; ~ 10, whereas for case P2 the ratio is
6/€; &~ 5. The simulation P2Ig, is conducted to verify that the channel height used
is large enough not to constrain the canopy-layer dynamics. The canopy of P20k,
matches the parameters of the canopy of P2 in outer units, that is, £,/ =£./6 ~0.04,
height £,/5 ~0.2 and element spacings L,/§ =L,/§~0.8. This simulation is conducted
to assess Reynolds-number effects for a fixed canopy geometry.

The roughness densities of the canopies are given in table 1. All the canopies
studied lie within the sparse to transitional regime empirically demarcated by Nepf
(2012), except that of case PD, which lies in the dense regime. The spanwise spacings
between the sparse canopy elements are L' 2 100, which is comparable to, or larger
than, the width of near-wall streaks, A7~ 100 (Kline et al. 1967). This implies that
the canopies should be sparse from the point of view of the near-wall turbulent
fluctuations as well.
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3 T T

FIGURE 3. Drag coefficients, C,, = D/U?, obtained from T-shaped canopies: red ,
case T1; violet , case TP1; blue , case T2; red ———, cases T1-H/HO; and blue
———, case T2-HO. The inset provides a magnified view of the drag coefficients for cases
T2 and T2-HO.

2.2. Drag force representations

In order to explore the canopy-flow dynamics, we also conduct simulations where the
canopy is replaced by some drag force, which does not resolve the geometry of the
canopy elements. Sparse canopies consisting of bluff elements, such as those in the
present work, are generally better characterised by a quadratic, form drag (Coceal,
Thomas & Belcher 2008), whereas for canopies with slender, filamentous elements,
where viscous effects can dominate, a drag force proportional to the velocity would
be more appropriate (Tanino & Nepf 2008; Sharma & Garcia-Mayoral 2019). For
complex natural canopies with foliage, which can have a range of element scales,
both form and viscous drags can be important (Finnigan 2000). For the canopies
studied here, we find that the drag is essentially quadratic, and thus replace the canopy
elements by a quadratic drag force. Note, however, that whether the drag was linear,
quadratic, or otherwise is of no consequence to the conclusions that we derive.

The drag coefficient, C,, is obtained by approximating the canopy drag force
obtained from the canopy-resolving simulations, D, to a form D = C,U|U|, where
U is the mean streamwise velocity. The drag coefficients obtained from cases Tl1,
TP1 and T2 are portrayed in figure 3. This quadratic form provides a reasonable
approximation of the drag force for yt = 20, once viscous effects are small. This
is consistent with observations made in previous studies (Coceal et al. 2006, 2008;
Bohm et al. 2013).

For the simulations labelled with the suffix ‘-H’, the presence of the canopy is
replaced by a force Cuu;|u;| applied homogeneously below the canopy tips. This is
the conventional homogeneous-drag model. It also requires the prescription of drag
coefficients in the spanwise and wall-normal directions. We estimate these by rescaling
the streamwise drag coefficient based on the relative change in the ‘blockage ratio’ of
the canopy elements in the different directions (Luhar, Rominger & Nepf 2008), in the
spirit of the method proposed by Luhar & Nepf (2013). The blockage ratio in each
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direction is proportional to the frontal area of the canopy elements in that direction. In
the wall-normal and spanwise directions, this would be the top-view and the side-view
areas, respectively. For the wall-normal drag, this assumption is particularly coarse,
but Busse & Sandham (2012) have shown that the flow is relatively insensitive to
moderate changes in the wall-normal drag coefficient.

In the simulations labelled with the suffix ‘-HO’, a forcing C,U|U| is applied in
the region below the canopy tips, where U(y) is the mean-velocity profile. The drag
is only applied to the mean streamwise velocity, and has no fluctuating component.
While the drag force in cases labelled ‘-H’ varies along any given wall-parallel
plane depending on the local velocity, in cases labelled ‘-HO’ the drag force is
homogeneous along any given wall-parallel plane, as it depends only on the mean
velocity and the drag coefficient at that height. Note that, as the aforementioned drag
models do not resolve the shape of the canopy elements, they also cannot capture the
element-induced flow. In order to capture a part of the effect of the element-induced
flow, the simulation labelled with the suffix ‘-’ applies a drag C,,U|U]|, as in cases
HO, but distributed in a reduced-order representation of the canopy elements. This
representation consists of a 24-mode, x—z Fourier truncation of the canopy geometry.

2.3. Effect of Reynolds number

In order to analyse the effect of the Reynolds number on the DNS results presented in
the subsequent sections, we first compare the results of case P2 to those of cases P2lg,
and P20g,. The simulations P2 and P2I;, have the same canopy parameters in friction
units and Re, =~ 520 and 1000, respectively. The root-mean-square (r.m.s.) velocity
fluctuations and the Reynolds shear stresses for these simulations essentially collapse
up to a height y* ~ 20, as shown in figures 4(a,c,e) and 5(a). At heights larger than
yt 2 20, the magnitudes of velocity fluctuations and the Reynolds shear stresses are
larger for case P2Ig, than for case P2. This behaviour is consistent with that observed
for smooth-wall flows at the corresponding Reynolds numbers (Sillero, Jiménez &
Moser 2013), which suggests that the differences in the velocity fluctuations observed
at heights y* > 20 do not result from the presence of the canopy. At heights of
yT 2200, the velocity fluctuations of the canopy simulations collapse with those of
their respective smooth-wall simulations, which indicates the recovery of outer-layer
similarity. In addition, the effective canopy drag coefficients, C,, for the canopies
of cases P2 and P2Ig, also collapse in friction units, as shown in figure 6(a). These
results show that the domain height used in case P2 is sufficiently large and does not
constrain the flow within the canopy layer. Increasing the domain height further simply
results in a larger region above the canopy layer exhibiting outer-layer similarity. This
is consistent with the study of flows over cube canopies by Coceal et al. (2006), who
also noted that increasing the height of the domain beyond §/¢; ~ 4 did not have a
significant effect on the flow within the canopy layer.

We now compare the results from cases P2 and P2Og,, which have the same canopy
parameters when scaled in outer units, but different friction Reynolds numbers.
The canopy heights for both of these cases is £,/§ ~ 0.2, and in both cases the
elements extend well into the logarithmic, self-similar region of the flow. Close
to the wall, y* < 20, the velocity fluctuations and Reynolds shear stresses for these
cases collapse when scaled in friction units. At larger heights, y* > 20, the streamwise
velocity fluctuations and the Reynolds shear stresses essentially collapse when the
wall-normal coordinate is scaled in outer units, as shown in figures 4(b) and 5(b).
The cross-velocity fluctuations in the region between y* ~ 20 and y/8~ 0.2 are larger
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FIGURE 4. The rm.s. velocity fluctuations scaled with the global friction velocity, u.,
from: red , case P2; blue , case P2Ig,; and dark green , case P20g,. In
panels (a,c,e), the wall-normal coordinate is scaled in friction units, and in (b,d,f) in outer
units. The black lines represent the smooth-wall simulations at Re, &~ 520 and 1000. The
smooth-wall data at Re, =~ 1000 are taken from Lee & Moser (2015).

for case P20g, compared to case P2, as illustrated in figure 4(d,f). This increase,
however, is also observed in the cross-velocity fluctuations of the corresponding
smooth-wall simulations. Beyond a height of y/§ ~ (.25, we observe that the velocity
fluctuation and Reynolds shear stress profiles for cases P2, P20g,, P2I;, and the
smooth-wall simulations coincide. Furthermore, the effective canopy drag coefficient
profiles for cases P2 and P20k, portrayed in figure 6(b), also collapse when scaled
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FIGURE 5. Viscous and Reynolds shear stresses scaled with the global friction velocity,
u,, from: red , case P2; blue , case P2lg,; and dark green , case P20g,.
In panel (a), the wall-normal coordinate is scaled in friction units, and in (b) in outer
units. The black lines represent the smooth-wall simulations at Re, &~ 520 and 1000. The
smooth-wall data at Re, ~ 1000 are taken from Lee & Moser (2015).
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FIGURE 6. Drag coefficients, Cy, = D/U?* for red , case P2; blue
and dark green , case P20g,.

in outer units, consistent with the observations of Cheng & Castro (2002) for cube
canopies. Therefore, the drag coefficient of the canopy is essentially independent
of the Reynolds number, implying that the canopy is in the fully rough regime
(Nikuradse 1933). These results therefore suggest that the conclusions drawn in
the following sections from simulations at Re, ~ 520 should also be relevant for
higher-Reynolds-number flows. Note also that the quotient D/U? becomes close to
constant for y* > 25, indicating that the total canopy drag, D, is essentially quadratic
above this height.

3. Canopy-resolving simulations

In this section, we present and discuss the scaling of turbulent fluctuations in sparse
canopies, and compare them with those over a smooth wall. Over a smooth wall, the
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balance of stresses within the channel can be obtained by averaging the momentum
equations in the wall-parallel directions and time, and integrating in y, which yields

P + v + v (3.1)
— Ty =—UV+V—, .
dxy dy

where 1, is the wall shear stress, dP/dx is the mean streamwise pressure gradient,
—uv is the Reynolds shear stress, U is the mean streamwise velocity and v is the
kinematic viscosity. Particularising (3.1) at y = §, we obtain the expression for the
wall shear stress and the friction velocity, u,:

) dpP
u,=1,=—86—. (3.2)
dx
In the presence of a canopy, the stress balance also includes the drag exerted by the
canopy elements,

dp dUu Y
—y+ T, =—uv+ v—/ D dy, (3.3)
dx dy 0

where the canopy drag, D, averaged in x, z and time is zero in the region above the
canopy tips, y > h. This stress balance is typically used in the canopy literature to
calculate the canopy drag stress (Dunn, Lopez & Garcia 1996; Ghisalberti & Nepf
2004). Equation (3.3) can be rewritten as

dp h _ dU
—y+71,+ Ddy=—-uwv+v— + Ddy, (3.4)
dx 0 dy y

so that the net drag, 7, + thDdy, is on the left-hand side, as in (3.1). From this net
drag, a ‘global’ friction velocity can be defined,

5 " dp
u; =71, + Ddy=—-§6—. 3.5)
0 dx

This is the equivalent of the smooth-wall u, of (3.2) for canopy flows.

While in smooth-wall flows the total stress is the sum of the viscous and Reynolds
shear stresses alone and is linear in y, in canopy flows that linear sum has an
additional contribution from the canopy drag as evidenced by the right-hand side
of (3.4). This equation also portrays that, at any given height y, the sum of the
streamwise shear stresses, —uv + vdU/dy, and the drag from the canopy above that
height, fy " Ddy, are balanced by the force exerted by the pressure gradient above.
This can also be obtained from an integral balance of forces between heights y and §,
and is illustrated by the sketch in figure 7. Outside the canopy, the drag term is zero,
and the magnitude of the viscous and Reynolds shear stresses is similar to that over
smooth walls. Within the canopy, however, the canopy drag can dominate, and the
viscous and Reynolds shear stresses are smaller than over smooth walls, as shown in
figure 8(a).

As can be observed in figure 1, the presence of the canopy elements induces a
coherent flow. Several studies have shown that the flow around the canopy elements
and the flow far away from them have significantly different characteristics, and
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FIGURE 7. Schematic representation of the stress balance in a channel with canopy

elements.
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FIGURE 8. Stress profiles within the channel for case Pl. (a) Dark green , full
Reynolds shear stress; dark green ———, background-turbulence Reynolds shear stress; red
, drag stress; and blue , viscous stress; all scaled with u,. (b) Dark green ,
background-turbulence Reynolds shear stress; and blue , viscous stress; both scaled
with u*. The black lines represent the smooth-wall case, S.

consequently they are typically studied separately (Finnigan 2000; Bailey & Stoll
2013; Bohm et al. 2013). A commonly used technique to separate the element-induced
flow from the background turbulence is through triple decomposition (Reynolds &
Hussain 1972)

u=U+u+u, (3.6)

where u is the full velocity. The mean velocity, U, is obtained by averaging the flow in
time and space. The element-induced velocity, also referred to as the dispersive flow,
u, is obtained by ensemble-averaging the flow in time alone. We refer to the remaining
part of the flow, u’, as the incoherent, background-turbulence velocity. Similarly, we
refer to the Reynolds shear stress calculated using the full velocity, uv, as the ‘full’
Reynolds shear stress and that calculated using the incoherent, background-turbulence
velocity, u/v’, as the background-turbulence Reynolds shear stress. The difference
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FIGURE 9. The rm.s. velocity fluctuations and shear stresses scaled with the global
friction velocity, u,, for: red , case TP1; and blue , case T1. Solid lines represent
the full velocity fluctuations and dashed lines represent the background-turbulence
fluctuations. The black lines represent the smooth-wall case, S, for reference.

between these two stresses gives a measure of the element-induced, dispersive stress,
v =uv — w'v'. Note that this is slightly different from the commonly used notation,
where the dispersive and background-turbulence Reynolds shear stresses are treated
distinctly and the ‘full’ Reynolds shear stress is not labelled (e.g. Coceal et al. 2006).
Essentially identical to triple decomposition, ‘double averaging’ (Raupach & Shaw
1982) can also be used to separate the element-induced and background-turbulence
flows (Finnigan 2000; Nepf 2012; Bai, Katz & Meneveau 2015; Giometto et al. 2016;
Yan et al. 2017).

The intensity of the element-induced flow can vary with the shape (Balachandar,
Mittal & Najjar 1997; Taylor et al. 2011), permeability (Yu et al. 2010; Ledda
et al. 2018) and distribution of the canopy elements. It is possible, however, for
canopies to have different element-induced flows but similar background turbulence.
To illustrate this, we compare two canopy simulations, T1 and TP1, which have
similar canopy layouts and roughly the same net drag, as shown in figure 9(d). The
difference between the two cases is that in T1 the canopy elements are impermeable,
whereas in TP1 some flow penetrates into the elements. The r.m.s. fluctuations of
the full and background-turbulence velocity components for these cases are shown
in figure 9. The magnitude of the full streamwise fluctuations within the canopy is
significantly larger for T1 than for TP1. This increase, however, can be attributed
essentially to the stronger element-induced fluctuations generated by the impermeable
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FIGURE 10. The r.m.s. velocity fluctuations scaled with the global friction velocity, u,,
in (a,c,e) and with the local friction velocity, u*, in (b,d,f). The lines represent: red
, case PO; violet , case P1; and blue , case P2. In panels (a,c,e), solid
lines represent the full velocity fluctuations and dashed lines the background-turbulence
fluctuations. In panels (b,d,f), only the background-turbulence fluctuations are portrayed.
The black lines represent the smooth-wall case, S, for reference.

canopy elements. This is evidenced by the fact that the background-turbulence
streamwise fluctuations for both cases essentially collapse, as shown in figure 9(a).
The cross-flow fluctuations and Reynolds shear stress profiles for both these canopies
are also similar. The impermeable canopy, however, has a slightly larger damping
effect on the spanwise fluctuations.

The fluctuating velocities portrayed in figure 10(a,c,e) are scaled using the ‘global’
friction velocity defined by (3.5), which includes the full contribution of the canopy
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FIGURE 11. Variation of (a) y* and (b) u* with height for cuboidal post canopies, with
sparsity increasing from red to blue: red , denser case PO; violet , intermediate
case P1; blue , sparser case P2; and black , smooth-wall case, S.

drag. Tuerke & Jiménez (2013) studied smooth-wall flows with artificially forced mean
profiles, and observed that the turbulent fluctuations in such flows scaled with the local
sum of the viscous and Reynolds shear stresses, or the local stress 7, at each height.
This was the case even when 7; was not linear with y due to the artificial forcing. This
idea has been expanded on by Lozano-Durdn & Bae (2019), who proposed that the
energy-containing turbulent scales in the logarithmic layer in smooth-wall flows also
scale with local velocity and length scales at each height, irrespective of the location
of the wall. Tuerke & Jiménez (2013) defined a ‘local’ friction velocity, u*, by linearly
extrapolating the local stress at each height to the wall:

u(y)’ = 7 (). (3.7)

§—y

Notice that, for a smooth unforced channel, u* =u, at every height. Following Tuerke
& Jiménez (2013), we define the sum of the viscous and background-turbulence
Reynolds stresses as the ‘fluid’ stress 7;. In the present work, we only discuss the
scaling of the background-turbulence fluctuations. Hence, only the contribution of
the background-turbulence Reynolds shear stresses to 7, is considered. A similar
concept was also proposed by Hogstrom, Bergstrom & Alexandersson (1982) for
flows over urban canopies. They scaled turbulence with a local friction velocity,
defined as the square root of the magnitude of the local Reynolds shear stress, but
had measurements only at heights where the contribution of the viscous stress to ¢
would be small. Using u*, a local viscous length scale can also be defined, v/u*, and
from it an effective viscous height, y* = yu*/v. Both u* and y* are portrayed, for the
prismatic-post canopies, in figure 11. Near the canopy tips, where the element-induced
drag is no longer present, the local friction velocity, u*, becomes equal to the global
u,, and y* becomes equal to y". Making the canopy sparser reduces the canopy
drag, and hence the difference between u* and u, within the canopy reduces with
increasing canopy sparsity.

When scaled with u,, as is done conventionally, the viscous and Reynolds shear
stresses near the base of the canopy are highly damped compared to smooth walls.
However, the balance of these stresses in 7; remains close to that over smooth
walls. This is illustrated in figures 8(b) and 12(b), which portray the terms in the
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FIGURE 12. Shear stresses scaled using (a) the global friction velocity, u,, and
(b) the local friction velocity, u*, for: red , case PO; violet , case PI;

and blue , case P2. The solid and dashed lines in panel (a) represent the full
and background-turbulence Reynolds shear stresses, respectively. In panel (b) only the
background-turbulence Reynolds shear stresses are portrayed. The black lines represent the
smooth-wall case, S.

stress balance within a channel with canopies scaled with u, and u*. The similarity
of the viscous and Reynolds shear stresses in the canopy-flow and smooth-wall
cases suggests that the canopy acts on the background turbulence essentially through
changing their local scale, rather than through a direct interaction of the canopy
elements with the flow. To explore the scaling further, the background-turbulence
r.m.s. fluctuations for the prismatic post canopies are portrayed scaled with u* in
figure 10(b,d,f). Scaling the fluctuations with the conventional u, shows a reduction
of the fluctuations within the canopy compared to a smooth wall, as shown in
figure 10(a,c,e). With our proposed scaling with u*, in contrast, the streamwise
fluctuations appear similar to those in a smooth channel. The increase in spanwise
and wall-normal fluctuations, shown in figure 10(b.d,f), suggests, however, that
there is a relative increase in the intensity of the cross-flow within the canopy
compared to a smooth channel. The velocity fluctuations and the shear stresses for
the higher-Reynolds-number simulations and for the T-shaped canopies also exhibit
similar behaviour, and are provided in the Appendix for reference.

Although «* and w'v”" within the canopy appear similar to those over smooth walls,
there are some differences in the distribution of energy across different length scales
in the flow, particularly in the region close to the wall. In order to examine this, we
compare the spectral energy densities, at y* =15, for a smooth wall and for case P1
in figure 13. This is the height roughly corresponding to the location at which the
magnitude of the fluctuations peaks in smooth-wall flows (Jiménez & Pinelli 1999).
In global units, the energy is observed to be in larger wavelengths when compared
to a smooth channel, especially in A,. In local scaling, however, there is a greater
overlap of the regions with highest intensity, particularly for E,, and E,,. In addition,
the canopy case exhibits a concentration of energy at the canopy wavelengths and its
harmonics Note that the canopy spacing, for case P1, at y*~ 15 is reduced to L} =

~ 100, while in global scaling it is LT =L ~200. The increase in the energy in the
canopy wavelengths is a reflection of the element-lnduced flow. The large streamwise
scales, in turn, are damped by the presence of the canopy, which results in a reduction
of their energy.
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FIGURE 13. Pre-multiplied spectral energy densities for case P1 (filled contours) and for
case S (line contours) normalised with their respective r.m.s. values at (a—d) y" =15 and
(e-h) y* = 15. The contours, from the left to right columns, are in increments of 0.03,
0.06, 0.05 and 0.06, respectively.

(a) kkaEuu (b) kkaE v (C ) (d) kxszuv
1000 F T T ] [ i T T ]
AT 100 - 3 3 @ :
100 1000 100 1000 100 1000
A% A% A

FIGURE 14. Pre-multiplied spectral energy densities for case P1 (filled contours) and for
case S (line contours) at y* =105, normalised by their respective u*. The contours in (a—d)
are in increments of 0.125, 0.06, 0.075 and 0.06, respectively.

The differences in the energy distribution observed within the canopy eventually
disappear above it. To illustrate this, figure 14 portrays the spectra near the canopy
tips, y* & 105. Here, the concentration of energy in the canopy wavelengths and its
harmonics is weak, and the smaller scales in the flow are smooth-wall-like. There
is, however, still a deficit of energy in large streamwise wavelengths compared to
a smooth wall, associated with the damping of these scales by the canopy elements,
as discussed in the previous paragraph. This effect diminishes away from the canopy,
and the spectra are essentially smooth-wall-like for y* > 250, as shown in figure 15,
indicating that outer-layer similarity is recovered beyond this height. Consequently,
we can also conclude that this height marks the extent of the roughness sublayer
of the canopies. The recovery of outer-layer similarity is also reflected in the mean-
velocity profiles of the canopy-flow simulations, portrayed in figure 16, which exhibit
logarithmic-law behaviour with a standard Kdrmén constant when shifted by a suitable
displacement height, d (Jackson 1981).


https://doi.org/10.1017/jfm.2019.999

https://doi.org/10.1017/jfm.2019.999 Published online by Cambridge University Press

888 Al1-18 A. Sharma and R. Garcia-Mayoral

(a) ok E (b) kk vy (C)

1000 ¢

Az

100 £

100 1000 100 1000 100 1000 100 1000
A% A% A% A¥

FIGURE 15. Pre-multiplied spectral energy densities at y* =250: red , case PO; violet
, case P1; and blue , case P2. All are normalised by their respective u,. Filled
contours represent case S. The contours in (a—d) are in increments of 0.075, 0.04, 0.06
and 0.03, respectively.
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FIGURE 16. Mean-velocity profiles, from the canopy-resolving simulations. Lines
represent: red , case T1; violet , case TP1; blue , case T2; red ———, case
PO; violet ———, case P1; and blue ———, case P2. Here U, is the mean velocity at y=3.
The black lines represent the smooth-wall case, S.

So far, we have mainly focused on the results for case P1, with prismatic canopy
elements with spacings L7 = L} ~ 200. We now discuss the effect of the canopy
element geometry and spacing. An increased sparsity results in an increase in
the magnitude of both the full and background-turbulence velocity fluctuations, as
shown in figure 10. In local scaling, however, the background-turbulence fluctuations
follow a similar trend to that observed for case P1. We observe that u* and wv’""
appear smooth-wall-like, while there is a relative increase in the magnitude of the
cross-fluctuations compared to those over a smooth wall. For the denser canopy
of case PO, on the other hand, the fluctuations become less similar to those over
smooth walls. The streamwise fluctuations are damped more intensely within the
canopy, and there are additional Reynolds shear stresses near the wall. Figure 17
shows that, compared to the sparser canopies, PO has an accumulation of energy in
streamwise wavelengths corresponding to the canopy harmonics but across a range
of spanwise wavelengths. These regions of excess energy have also been noted by
Abderrahaman-Elena, Fairhall & Garcia-Mayoral (2019), who studied densely packed
cuboidal roughness. They noted that these regions were an imprint of the large,
background-turbulence scales modulating the smaller-scale coherent flow generated by
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FIGURE 17. Pre-multiplied spectral energy densities at y* ~ 115, normalised by their
respective r.m.s. values. The line contours represent: (a—d) case P2; (e-h) case Pl;
(i-l) case PO; and (m—p) case PD. Filled contours represent case S. The contour increments
in the leftmost to rightmost columns are 0.029, 0.048, 0.045 and 0.045, respectively.

the roughness. This effect diminishes as the canopy element spacing is made larger
than the energetic scales in the background turbulence, as evidenced by the lack of
these regions in the spectra of the sparser canopies portrayed in figures 13, 14 and
17. For case P2, the spectra are already close to smooth-wall-like near the canopy
tips, suggesting that both the element-induced flow and the damping of large scales
are already weak at this height.

The results discussed above suggest that there is a progressive departure from
smooth-wall-like behaviour in canopy flows as the element spacing is reduced,
which is consistent with the observations of Poggi et al. (2004) and Huang et al
(2009). If the element spacing was reduced even further, eventually we would expect
the complete breakdown of smooth-wall-like dynamics within the canopy. In the
resulting dense canopy, the flow near the canopy tips would be characterised by the
Kelvin—Helmbholtz-like, mixing-layer instability (Raupach et al. 1996; Finnigan 2000;
Poggi et al. 2004; Nepf 2012). To investigate this effect, we have conducted an
additional simulation of the prismatic post canopies in an even denser arrangement,
case PD. In order to contrast the flow characteristics of sparse canopies with those
of dense ones, we now compare the results from the simulation PD to that of the
sparsest canopy studied, case P2. Deep within the dense canopy of case PD, the
viscous and the Reynolds shear stresses are negligible and the drag stress dominates,
as shown in figure 18(d). While for the sparse canopy of case P2, the magnitude of
the velocity fluctuations near the canopy tips is similar to that over a smooth wall, for
the dense canopy of case PD their magnitude is considerably reduced. Furthermore,
the magnitude of the element-induced streamwise fluctuations in the dense canopy is
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FIGURE 18. The rm.s. velocity fluctuations and shear stresses scaled with the
global friction velocity, u,, from: red , case PD; and blue , case P2.
Solid lines represent the full velocity fluctuations and dashed lines represent the
background-turbulence fluctuations. The vertical dashed line marks the location of the
canopy tip plane. The black lines represent the smooth-wall case, S, for reference.

negligible compared to that of the sparse canopy, where it is observed to constitute
up to 30% of the total fluctuations, similar to the observations of Poggi & Katul
(2008).

Previous studies have noted the formation of Kelvin—Helmholtz-like instabilities
near the canopy tips in dense canopies (Finnigan 2000; Poggi et al. 2004; Nepf 2012).
When present, these instabilities leave a distinct footprint in E,, and E,,, causing
an increase in energy in a narrow range of streamwise wavelengths and for large
spanwise wavelengths (Garcia-Mayoral & Jiménez 2011; Gomez-de Segura, Sharma &
Garcia-Mayoral 2018; Abderrahaman-Elena et al. 2019). For the canopies of cases PO,
P1 and P2, such a footprint is not observed in the spectral energy densities, portrayed
in figure 17. In the energy densities of the wall-normal velocity for the dense
canopy, case PD, we observe some concentration of energy in a range of streamwise
wavelengths, A" € 200-500, consistent with the presence of a Kelvin—Helmholtz-like
instability. The gradual breakdown of the smooth-wall-like behaviour of flows over
canopies with decreasing element spacing can also be observed in instantaneous
realisations of the wall-normal velocity, portrayed in figure 19. Dense canopies are
not the focus of the present study, so the results from case PD are not discussed
extensively here. Increasing the canopy density yet further can result in a more distinct
imprint of the Kelvin—Helmholtz-like instability near the canopy tips, as discussed in
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FIGURE 19. Instantaneous realisations of the wall-normal velocity at y* ~ 120, normalised
by u.. Panels (a)—(e) represent cases S, P2, P1, PO and PD, respectively. The clearest and
darkest colours in (a)-(e) represent intensities of £(1.5, 1.5, 1.5, 1, 1), respectively.
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Poggi et al. (2004) and Sharma & Garcia-Mayoral (2019). Further details about the
formation and development of this instability over dense canopies can be found in
Raupach et al. (1996), Ghisalberti & Nepf (2002), Finnigan et al. (2009) and Bailey
& Stoll (2016).

4. Simulations with artificial forcing

The results discussed so far suggest that sparse canopies affect their surrounding
flow through two mechanisms: an element-induced flow, and a change in the
local scale for the background-turbulence fluctuations. With respect to the second
mechanism, the effect of the canopy elements would be indirect, through modifying
the mean-velocity profile and thus the local stress, ;. The latter would, in turn, set
the scale for the fluctuations. If this is the case, applying the mean drag produced by
the canopy on the mean flow alone should capture the essential effects of the canopy
on the background turbulence. We test this in the simulations labelled with the suffix
‘-HO’. For the cases PO and T1/TP1, we also compare the mean-only-drag simulations
with conventional, homogeneous-drag simulations labelled with the suffix ‘-H’. These
could be expected to be better representations when the canopy is dense enough for
all the turbulent scales to perceive it in a homogenised fashion. Note that simulations
T1-HO and T1-H correspond to both the permeable and impermeable canopies of T1
and TP1, as they have similar net drags and drag coefficients.

The streamwise fluctuations and the Reynolds shear stresses of the mean-only-drag
simulations are in good agreement with the corresponding background-turbulence
fluctuations from the resolved canopies, except for case PO, as shown in figures 20
and 21. For the sparsest canopies, cases P2 and T2, the cross-flow fluctuations,
particularly in the wall-normal direction, are slightly larger than their mean-only-drag
counterparts. A likely reason for this discrepancy is the presence of an unsteady
element-induced flow for these canopies, whose contribution cannot be filtered out by
the conventional triple-decomposition technique that we have used. The fluctuating
velocities scaled by the local friction velocities for the drag-force simulations are
provided in the Appendix for reference.

For case PO, a homogeneous drag provides a better representation of the cross-flow
fluctuations than the mean-only drag, and the streamwise fluctuations are not well
represented by either forcing method. For this case, there is significant interaction
between the element-induced flow and the background turbulence, as discussed in § 3.
Thus, it is not surprising that neither the mean-only drag nor the homogeneous drag
is able to capture the full effect of this canopy on the background turbulence.

For the sparser canopies of Tl and TP1, compared to a mean-only drag, the
homogeneous drag tends to overdamp the fluctuations within the canopy, particularly
in the streamwise direction, as can be observed in figure 21(a). The excessive
damping of fluctuations by a homogeneous drag, in comparison to a resolved canopy,
was also noted by Yue ef al. (2007) and Bailey & Stoll (2013). Figure 22 shows
that this decrease in the intensity of fluctuations within the canopy is mainly a
result of damping of the smaller streamwise wavelengths in the flow, A* < 200.
The homogeneous-drag simulation, T1-H, reproduces well the larger scales of the
resolved canopy simulation, TP1. This suggests that scales much larger than the
canopy spacing still perceive the canopy as homogeneous. Using the mean-only drag
recovers some of the smaller streamwise scales, but it does not act directly on the
larger scales as the actual canopy does. As the element spacing is increased, the
range of scales affected in a homogenised fashion is shifted to larger scales, so that
the energetic turbulent scales become less damped. This is consistent with the results
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FIGURE 20. Background-turbulence r.m.s. velocity fluctuations and shear stresses scaled
with the global friction velocity, u., of the canopy-resolving and mean-only/homogeneous-
drag simulations. The lines represent: red , case PO; red ———, case PO-HO; red ------ s
case PO-H; violet , case P1; violet ———, case P1-HO; blue , case P2; and blue
———, case P2-HO. The black lines represent the smooth-wall case, S.

portrayed in figure 17, which show that, near the canopy tips, the dense canopy PO
damps the energy at A7 ~ 1000-2000, compared to smooth walls, while the sparse
canopy P2 leaves these scales relatively undisturbed.

The accumulation of energy in the length scales of the order of the canopy
wavelengths and its harmonics observed in the canopy-resolving simulations requires
a discrete representation of the canopy elements. Hence, it cannot be captured
by either the mean-only-drag or the homogeneous-drag approaches. To introduce
information of the canopy layout in the model, we distribute the drag calculated from
the mean flow into a reduced-order representation of the canopy elements in case
TP1-L. The representation consists of a truncation in Fourier space in x and z, of the
actual layout. The procedure is illustrated in figure 23 by the streamwise distribution
of the drag force used by this model. In addition to capturing the local scaling of the
flow, discussed in § 4, this model is also able to represent the concentration of energy
in the canopy scales for case TP1, as observed in figure 22. This is reflected by the
collapse of the r.m.s. fluctuations of the full velocity components of TP1-L and TPI,
as shown in figure 24. The magnitude of spanwise velocity fluctuations within the
canopy of TP1-L is slightly larger than TP1, likely due to the fact that TP1-L does
not apply any form of spanwise drag force. The drag force, although only applied
in the streamwise direction, is also able to reproduce the canopy harmonics in the
spectra of E,, and E,,, which are caused by the deflection of the streamwise flow
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FIGURE 21. Background-turbulence r.m.s. velocity fluctuations and shear stresses scaled
with the global friction velocity, u,, of the canopy-resolving and mean-only/homogeneous-
drag simulations. The lines represent: red , case T1l; red ———, case T1-HO; red - -- - - - s
case T1-H; violet , case TP1; blue , case T2; and blue ———, case T2-HO. The
black lines represent the smooth-wall case, S.

around the canopy elements as a result of continuity. The large scales in the flow are
similar to those in the mean-only drag, as the drag in this case also does not act on
these scales directly. This method, however, is only able to capture the weak coherent
flow generated by the permeable canopy, and still underpredicts the full streamwise
velocity fluctuations of the impermeable canopy.

5. Conclusions

In the present work, we have studied turbulent flows within and over sparse
canopies. Two different canopy element geometries have been studied, each for various
different element spacings. We have also compared canopies with permeable and
impermeable elements in the same arrangement. The effect of the Reynolds number
has also been examined by comparing the results from simulations of the same canopy
in both inner and outer scalings at Re, &~ 520 and 1000. The flow was decomposed
into an element-induced component and a background-turbulence component. It was
found that, although the element-induced flow in the permeable and impermeable
canopies studied here differ, the background turbulence was essentially the same.
A new scaling for the background-turbulence fluctuations within sparse canopies was
proposed. This scaling uses the friction velocity based on the local sum at each height
of the viscous and Reynolds shear stresses, 7y, rather than the conventional friction
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FIGURE 22. Pre-multiplied spectral energy densities at (a—d) y* =15 and (e-h) y* =105,
normalised by their respective u*. Filled contours represent case TP1. Lines represent: blue
, case T1-HO; red , case T1-H; and violet , case TP1-L. The contours in
panels (a—h) are in increments of 0.3, 0.075, 0.175, 0.075, 0.12, 0.06, 0.075 and 0.05,

respectively.
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FIGURE 23. Drag force distribution in the streamwise direction in a plane passing through
the canopy heads for case TP1-L (blue ). Distribution of the mean-only drag force,
as in case T1-HO (red ——-). The location of the canopy elements is sketched in black at
the bottom of the figure.

velocity, based on the net drag. When scaled with the proposed local friction velocity,
the background-turbulence fluctuations and the viscous and Reynolds shear stresses
appear more smooth-wall-like, compared to when conventional total-drag scaling is
used. This suggests that the sparse canopy acts in a large part on the background
turbulence through a change in the local scale, rather than through a direct interaction
with the canopy elements. Based on the proposed scaling, we investigated the extent
to which a drag force acting only on the mean flow captures the effect of the canopy
on the background turbulence. The mean-only drag directly modifies the mean flow
alone, which in turn sets 7, and, hence, the scale for the fluctuations. We show that
the mean-only drag is able to capture the background-turbulence fluctuations within
the canopies better than a conventional, homogeneous drag. Neither approach is,
however, sufficient to capture the element-induced flow. The latter can be partially
recovered by redistributing the mean-only drag in a low-order representation of the
canopy.
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FIGURE 24. The r.m.s. fluctuations and shear stresses of the full flow, scaled with the
global friction velocity u,: blue , case TP1; red , case T1; red ———, case TP1-
HO; and violet , case TP1-L. The black lines represent case S.
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Appendix. Turbulence statistics in local scaling

The turbulent velocity fluctuations and Reynolds shear stresses for the simulations
at Re, ~ 1000, P2Ig, and P20g,, are compared with those from case P2 in both global
and local scaling in figure 25.

The turbulence statistics, in both global and local scaling, for the T-shaped canopies
are portrayed in figure 26.
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FIGURE 25. The r.m.s. velocity fluctuations and shear stresses scaled with the global
friction velocity, u,, in (a,c,e,g) and with the local friction velocity, u*, in (b,d,f,h). The
lines represent: red , case P2; blue , case P2Ig,; and dark green , case P20g,.
In (a,c,e,g), solid lines represent the full velocity fluctuations and dashed lines represent
the background-turbulence fluctuations. In (b.d,f,;h), only the background-turbulence
fluctuations are portrayed. The solid black lines represent the smooth-wall simulations at
Re, =~ 520 and 1000. The smooth-wall data at Re, ~ 1000 are taken from Lee & Moser
(2015).
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FIGURE 26. The r.m.s. velocity fluctuations and shear stresses scaled with the global
friction velocity, u,, in (a,c,e,g) and with the local friction velocity, u*, in (b.d,f,h). The
lines represent: red , case T1; violet , case TP1; and blue , case T2. In
(a,c,e,g), solid lines represent the full velocity fluctuations and dashed lines represent
the background-turbulence fluctuations. In (b.d,f,h), only the background-turbulence
fluctuations are portrayed. The black lines represent the smooth-wall case, S, for reference.
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FIGURE 27. Background-turbulence r.m.s. velocity fluctuations and shear stresses, scaled
with the local friction velocity, u*, of the resolved canopy and mean-only/homogeneous-
drag simulations. In the left-hand column, lines represent: red , case PO; red ———,
case PO-HO; red ------ , case PO-H; violet , case P1; violet ———, case P1-HO; blue
, case P2; and blue ———, case P2-HO. In the right-hand column, lines represent: red
, case T1; red ———, case T1-HO; red ------ , case T1-H; violet , case TPI1; blue
, case T2; and blue ———, case T2-HO. The black lines represent case S.
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Figure 27 compares the background-turbulence velocity fluctuations from the
canopy-resolving simulations with their corresponding mean-only-drag or homogene-
ous-drag simulations, in the proposed local scaling.
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