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Abstract

Three-dimensional (3D) density distribution of inhomogeneous dense deuterium tritium plasmas in laser fusion is revealed
by the energy loss of fast protons going through the plasmas. The fast protons generated in the laser–plasma interaction can
be used for the simulation of a plasma density diagnostics. The large linear and ill-posed equation set of the densities of all
grids is obtained and then solved by the Tikhonov regularization method after dividing a 3D area into grids and knowing
the initial and final energies of the protons. 3D density reconstructions with six proton sources are done without and with
random noises added to the final energy. The revealed density is a little smaller than the simulated one in most simulated
zones and the error is as much as those of 2D reconstructions with four proton sources. The picture element N is chosen as
2744 with consideration of smoothness and calculation memory of the computers. With fast calculation speed and low
error, the Tikhonov regularization method is more suitable for 3D density reconstructions with large calculation
amount than simultaneous iterative reconstruction method. Also the analytical expressions between the errors and the
noises are established. Furthermore, the density reconstruction method in this paper is particularly suitable for plasmas
with small density gradient. The errors without noises and with 2% noises added to the final proton energies are 3 and
20%, respectively, for the homogeneous plasma.

Keywords: DT plasma; Fast protons; Reconstruction; Three-dimensional density distribution; Tikhonov regularization
method

1. INTRODUCTION

Laser interferometry (Zhang et al., 1987), Thomson scatter-
ing (Snyder et al., 2000), and spectroscopic measurements
(Morgan et al., 1994), have been successfully applied to rel-
atively low plasma densities. However, when the plasma
areal density is beyond 1021/cm2, the optical depth of the
plasma volume becomes excessively high (Golubev et al.,
1998). Therefore, the techniques above fail for dense plas-
mas. Fast protons generated during the interaction of ultra-
intense (I> 1019 W/cm2) short laser pulses with thin solid
targets have large stopping range in plasmas, small source
size, short duration, and large number density, which make
them effective for the diagnostic of dense plasmas.
The generation of the protons using ultra-intense (I> 1019

W/cm2) short laser pulses has been studied in many articles
(Hegelich et al., 2006; Yin et al., 2006; Flippo et al., 2007;
Willi et al., 2007; Zhang et al., 2007). With suitable laser

pulse and thin solid target, quasi-monoenergetic protons are
generated (Fourkal et al., 2005; Hegelich et al., 2006;
Flippo et al., 2007; Zhang et al., 2007). The density gradient
of the laser-driven implosion target can be obtained (Mackin-
non et al., 2006) through the angle deflection of the density
impact on the protons. Also the distribution of electromagnetic
(EM) fields in plasmas and around laser-irradiated targets
(Borghesi et al., 2001, 2005, 2007; Fox et al., 2013; Gao
et al., 2013; Lancia et al., 2014; Levy et al., 2015) can be
explored by fast protons. When the thickness of the probed tar-
gets is much smaller than the collisional stopping distance for
the protons employed, the energy loss of the protons is mainly
due to the EM fields they have passed through (Borghesi et al.,
2001). However, in the following the impact of background
electrons’ collision on the protons will be dominant, ignoring
the impact of the EM fields, which is suitable for much denser
and thicker plasmas (Golubev et al., 1998). Therefore, the pro-
tons can be used for the density diagnostics for extremely
dense and thick plasmas, such as in the case of laser fusion.
When the proton number is low or protons move together

with electrons of equal number, the self-generated EM fields
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by the proton beams can be neglected and only the energy
loss induced by collisions between particles should be con-
sidered (Califano et al., 2003). The interaction physics for
the protons is simpler than that for the electrons when they
are going through the deuterium tritium (DT) plasmas,
since the deflection angle and the mean transverse dispersion
distance for protons are much smaller than those for electrons
(Li et al., 2008). Therefore, the protons can be supposed to
go through the probed plasmas straightly (Smith, 1947).
Then the density distribution of dense plasma can be easily
diagnosed through Coulomb energy loss of protons going
through the plasmas.
The density of the order of 1019/cm3 in the homogeneous

plasma has been obtained through the above method with
only one single proton beam by Golubev et al. (1998). In
our previous works, the two-dimensional (2D) density distri-
butions of inhomogeneous plasmas were revealed by evaluat-
ing the coulomb energy loss of fast proton beams using the
Tikhonov regularization method (Li et al., 2008) and simul-
taneous iterative reconstruction (SIRT) method (Li et al.,
2011). The errors of these two methods are also compared
with each other and it turns out that the error of SIRT
method is a little smaller than that of the Tikhonov regulari-
zation method. However, just as 2D medical Computed To-
mography cannot reveal the illness distribution and find the
precise illness area (Wang, 2007), 2D density reconstruction
also cannot reveal the plasma density distribution precisely
while 3D density reconstruction can do that. The density dis-
tribution only in one section can be obtained from the 2D
density reconstruction and not enough density information
can be known about the plasmas. For example, spherical sym-
metry density distributions are required in the plasmas of in-
ertial confinement fusion under most circumstances. Since
the 2D density reconstruction can only get the density distri-
butions of the cross-sections, it is hard to judge if the density
distributions are spherical symmetry. Therefore, 3D density
reconstruction is carried out in this paper to understand the
detailed information of the density distributions of all parts
of the plasma and to analyze the physical phenomena and
thus the physical mechanisms in the plasmas in the future.
For the ill-posed equation set in the inverse problems, the

standard approach least squares method has the undesirable
tendency of amplifying noise, and singular values are
the largest in the revealed distributions where they were
the smallest in the simulated distributions (Honerkamp &
Weese, 1990). Tikhonov regularization method is often
used for solving inverse problems since it can improve situ-
ations of the ill-posed problems and can obtain the distribu-
tions which are close to the accurate distributions. Liu studied
3D density inversion of gravity gradient data using Tikhonov
regularization method (Liu et al., 2015). Fernández–
Martínez studied the effect of noise and tikhonov’s regulari-
zation in inverse problems (Fernández-Martínez et al., 2014).
3D density reconstructions are also carried out using Tikho-
nov regularization method in this paper to increase the sim-
ulation accuracy.

2. THEORY AND FORMULAS

A 3D area studied is divided into many grids, for example,
N= 14 × 14 × 14, N is the picture element of the area.

As protons propagate in the plasma in the direction of
almost a straight line, the stopping power for the fast protons
in the plasma can be described as (Atzeni & Meyer-ter-vehn,
2004)

dEp

dx
= − 4π(e2/4πε0)2

mevp2
nfeLfe Lfe = ln

2mevp2

h− ωp
. (1)

Here Ep and vp are, respectively, the kinetic energy and the
velocity of fast protons in the probing beam, nfe is the density
of free electrons in the plasma, Lfe is the coulomb logarithm,
ε0 is the permittivity of free space, ωp= (4πnfee

2/me)
1/2 is

the plasma frequency, and −e and me are, respectively, the
electron charge and mass. (International system of unit is
used in our calculation).

The first equation is feasible under three conditions: (1)
The incident velocity of proton vp is much higher than the
thermal velocity of plasma electrons ve= (2Te/me)

1/2

(Smith, 1947); (2) the energy of the protons is more than
0.1 MeV, so that the loss and capture of the electron for
the protons can be neglected and the effective charge of
the protons is always constant as one (Livingston & Beth,
1937). (3) Since the protons are nonrelativistic, the relativis-
tic effect can be neglected. The three conditions are
completely satisfied in this paper as described below,
where the proton energy Ep is several MeVs and plasma tem-
perature Te is much smaller than 10 keVs before the ignition
laser injects the plasma in fast ignition. Because the DT
plasma is fully ionized, no bond electrons play the role in
stopping the protons in the plasmas.

The difference of the stopping number Lfe as a result of
energy difference of incident and final proton beams is
much smaller than the stopping numbers of both the incident
and final proton beams. Therefore, the stopping number Lfe is
considered as a constant in this paper to simplify the density
simulations. The stopping number value can be chosen as the
average value of the incident and final proton beams to in-
crease the reconstruction accuracy. Assuming that the propa-
gating length in a grid for a probing proton is l and the plasma
density is constant inside each grid, and using Ep=mpvp

2/2,
in the nonrelativistic limit the Eq. (1) can be integrated to

nfel = (Ep0
2 − Ep1

2) × a, (2)

with

a = 1

4π(e2/4πε0)2Lfe
me

mp
, (3)

where Ep0 and Ep1 are energies of the injected and the es-
caped protons, respectively. A remarkable feature of Eq.
(2) is that, assuming Ep0 and Ep1 are given, the expression
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contains only one unknown quantity nfe, which can be calcu-
lated directly.
When the probing proton beam propagates in the inhomo-

geneous plasmas in a specific direction, the equation of the
densities of grids is

a × (E2
p0 − E2

pN) = a × (E2
p0 − E2

p1) + a × (E2
p1 − E2

p2)
+ a × (E2

p2 − E2
p3)

+ · · · a × (E2
p(N−2) − E2

p(N−1))
+ a × (E2

p(N−1) − E2
pN)

= n1l1 + n2l2 + n3l3 + · · · + nN−1lN−1 + nNlN,

(4)

l1, l2, l3, … lN−1, lN are the distances of this proton beam
propagating in each grid, n1, n2, n3, …nN−1, nN are the den-
sities of each grid, respectively.

3. TIKHONOV’ REGULARIZATION METHODS
SOLVING THE ILL-POSED EQUATION SET

In order to reveal the density distribution, M (M≥ N ) linear
equations of the densities of each grid should be known,
which requires M sets of the initial and the final protons en-
ergies. Then the following large linear equation set will be
obtained,

Ax = b, (5)

with

A =

l11 l12 l13 · · · l1N
l21 l22 l23 · · · l2N
l31 l32 l33 · · · l3N
· · · · · · · · · · · · · · ·
lM1 lM2 lM3 · · · lMN

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠
, x =

n1
n2

n3

..

.

nN

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

and

b = a × ΔE2 = a ×

E2
10 − E2

1N

E2
20 − E2

2N

E2
30 − E2

3N

..

.

E2
M0 − E2

MN

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The length matrix A can be calculated if the initial position,
the propagating direction of proton beams, and the probed
area can be known. Unfortunately, the equation set (5) is ill-
posed since the matrix A has a very large condition number.
Therefore, it is not easy to reveal accurate plasma density
with the use of this equation set, even quite accurate final
proton energies are measured. In order to reveal accurately
the density distribution by solving Eq. (5), the Tikhonov reg-
ularization method which is very popular in other similar in-
verse problems can be applied (Xiao et al., 2003). Here we

have to solve λ for the minimized question,

min ||Ax− b||22 + λ2I2
{ }

, (6)

where AT is the transpose of the matrix A, λ is regularization
factor, I is the unit matrix. Then, x can be calculated from the
equation set below:

(ATA+ λI2)x = ATb. (7)

The way of finding the right regularization factor λ is the fast
algorithm based on the principle of L-curve. The error of re-
vealing can be described as (Xiao et al., 2003)

Er= norm(D′−D)/norm(D), (8)

where D is simulated density matrix and D′ is the revealed
density matrix though Tikhonov regularization method.

4. NUMERICAL SIMULATIONS

4.1. The Set Plan for the Numerical Simulation

The 3D dense plasma considered has the density order of
1025/cm3. The x, y, and z coordinates of the zone studied
are all between 0 and 210 μm in our coordinate system.
The density distribution studied has the expression

n = 1025/cm3 × exp(−k/36) k < 60
0 k ≥ 60

{
, (9)

where k is the distance between the position and the center of
the area (105, 105, 105). The plasma densities of each grid
are described as the density at the center of each grid. With
this way, a simulated density matrix D of 2744 elements is
obtained.
Six identical proton sources are placed at (−180, −150,

−390), (105, 105, 390), (−390, −150, −120), (390, 150,
120), (−270, −390, −240), and (240, 390, 210), respec-
tively, with the quasi-monoenergy of 15 MeV. The reason
for choosing this energy is described as follows. If the
energy is too big, the differences of final energies of different
proton beams after propagating through the plasmas are too
small to be measured; if the proton energy is too small, the
energy of proton beams have already been vanished inside
the plasmas. If energy distribution of the laser-generated
proton beam is exponential, then the protons with different
velocity will reach the plasma zone at different time and
after passing though the plasma zone they can be also mea-
sured at different time. Therefore, density distributions at dif-
ferent time can be diagnosed and the ultrafast density
evolution of the plasmas can be obtained through the expo-
nential energy distribution of the proton beams. The emitting
angle of proton sources is about 40° in order that the whole
studied zone has been passed through by proton beams. If
the emitting angle decreases, the distance from the proton
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sources to the zone should increase. The energy detectors
facing the six proton sources are around 1 mm away from
probed area. The matrix A in this simulation has a condition
number of the order of 1015, so the equation set (5) is quite
ill-posed.

4.2. The Calculation for the Density Distribution

The final energies of each proton beam in specific directions
are calculated analytically using Eqs. (1) and (9) for the sim-
ulated plasma density, so that an energy matrix of M= 3464
elements is given. With this vector and matrix A, using the
Tikhonov regularization method, the revealed density
matrix D′ of 2744 elements is obtained and the simulated
density profile can be repeated to some degree. The error
of 2D reconstruction using four proton sources is 21%. How-
ever, the error of 3D reconstruction using four proton sources
is 46%, higher than that of 2D reconstruction, which is
mainly attributed to the larger reconstruction area and calcu-
lation quantity. In order to decrease the errors, the number of
proton sources is increased to five, six, and seven, respective-
ly, and the errors are 38, 17, and 16% correspondingly. When
more proton sources are used, the experiment will be more
difficult, although the accuracy of revealing will be im-
proved. Since the errors of six and seven proton sources are
almost the same, six proton sources will be used in this
paper. The set plan of six proton sources has been described
in the previous section and the error of six proton sources is
17%, which is similar to that of 2D reconstruction with four
proton sources. The contour lines of the simulated density D
are shown in Figure 1, also the contour lines of the revealed
density D′ are shown in Figure 2. Comparing the two figures,
we can find that Figure 2 can reflect the correct density dis-
tribution. In the zone where the simulated plasmas appear,
the revealed density is a little smaller than the simulated
one and on the same order of 1025/cm3. As shown in
Figure 3, the isopycnic surface comparison between simulat-
ed plasma and revealed plasma shows that the revealed

density is almost the same as the simulated one except
little edge in few areas. Because the density distribution in
particular face can reflect simulated density more clearly
than isopycnic surface, we will only concentrate on the den-
sity distribution in particular face in the following.

4.3. The Comparisons among Different Picture Elements

Different picture elements can obtain different errors in the
reconstruction simulations. The reconstructions of different
picture elements of 512 (N= 83), 729 (N= 93), 1000 (N=
103), 1331 (N= 113), 1728 (N= 123), 2197 (N= 133),
2744 (N= 143), 3375 (N= 153), 4096 (N= 163), 4913
(N= 173), 5832 (N= 183), 6859 (N= 193), 8000 (N=
203), 9261 (N= 213), 10,648 (N= 223), 12,167 (N= 233),
13,824 (N= 243), and 15,625 (N= 253) are simulated, re-
spectively. The corresponding errors are shown in Figure 4.
The smallest error appears when the picture element is
1000 (N= 103). Then the errors increase to certain level
until the picture element is 2744 (N= 143) and then decrease
when the picture element is 3375 (N= 153). In the following,
the errors will increase again as the picture elements increase
until the picture elements is 5832 (N= 183). Then the errors
remain stable around 23% for the following larger picture el-
ements. When the picture element is 1000, the error is small-
est as 10% but the reconstructed density is not similar to the
simulated density. As shown in Figure 5, the corresponding
contour lines of the revealed density are not smooth as circles
while the contour lines of the simulated density are circular.
When the picture element is 3375, the error is a little smaller
than that of 2744 element as 16% but special computers with
much bigger memory are required, which is not convenient
for the ordinary calculation. In summary, if the picture ele-
ment is too small, the reconstructed density cannot reveal
the simulated density well; if the picture element is too big,
the calculation time and scale are too big to be processed
by ordinary computers. Therefore, the picture element is
chosen as 2744 in this paper.

Fig. 1. The contour lines of the density of the simulated density distribution
(z= 105 μm). (The density values are the product of the value of each con-
tour line and 1025/cm3, and this will apply to the figures in the following).

Fig. 2. The contour lines of the revealed density without noise (z= 105 μm),
the error is described as Er= 17%.
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Generally speaking, as shown in Figure 4, the errors in-
crease at first and then remain stable after certain picture el-
ement (5832). Calculation amounts increase with the
increase of the picture elements, so the errors increase
when the picture elements increase from 83 to 183. However,
the errors remain stable when picture elements are larger than
one certain picture element of 193, which is mainly attributed
to the enough density sample points for these numerical sim-
ulations. The simulated zone has been divided into grids
small enough when picture elements are larger than 193, so
the errors do not change when picture elements increase
from 193 to 253, which is very common in the numerical sim-
ulation. The errors will not change much when the numbers
of the sample points exceed one certain value. As for the
smaller elements (83, 93, 103, 113), the errors do not always
increase as the picture elements increase, which are mainly
attributed to the insufficient density sample points for the
simulated plasmas.

4.4. The Comparison between Tikhonov Regularization
Method and SIRT Method

We can finish one calculation in 10 min using the fast Tikho-
nov regularization method and the error of 3D reconstruction
is at the same level of 2D reconstruction. The calculation
time depends mainly on CPU and memory of the computer.
The CPU of our computer has four Intel cores and the fre-
quency of these cores is 3.40 GHz. The memory capacity
of our computer is 4G. We also have done the reconstruction
with SIRT method which requires 12 h using the same relax-
ing factor (3.3163 × 10−4) as the 2D reconstruction and the
error is 49%. Generally speaking, small relaxing factors in-
crease the calculation accuracy at the cost of calculation
time. However, the error of SIRT with the small relaxing
factor as 3.3163 × 10−4 is still higher than that of the Tikho-
nov regularization method. Judging from the calculation time
and accuracy, the Tikhonov regularization method can calcu-
late faster with smaller error than that of SIRT method.

Fig. 3. The comparison of isopycnic surface of density 0.2 between simulated and reconstructed plasmas.

Fig. 4. The errors of different picture elements.
Fig. 5. The contour lines of the revealed density for picture element of 1000.
The error is described as Er= 9%.

Xuemei Li and Yuhua Wang214

https://doi.org/10.1017/S0263034616000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034616000021


Therefore, we choose the Tikhonov regularization method
for the 3D density reconstruction in this paper.

4.5. The Effect of Noises on the Reconstruction Errors

Radio-Chromic Film is one kind of energy detectors and has
been used for high-flux proton detection in several laser–
plasma experiments. The uncertainty of the measurement is
no more than 5% (McLaughlin et al., 1991), and can even de-
crease to 2% in some measurements (Nichiporov et al., 1995;
Christopher, 2007). So we add two kinds of noises to the
final proton energies:

E′
final = Efinal × (1− 0.02 × rand(size(Efinal))),

E′
final = Efinal × (1− 0.05 × rand(size(Efinal))).

(10)

The corresponding revealing errors are 30 and 44%, also the
contour lines of calculated densities are shown in Figures 6
and 7, respectively.
Furthermore, a relation between the errors and the noises

are established. An analytical expression between them
through fifth degree polynomial fit is obtained as f (x)=
p1 × x+ p2. The coefficients are p1= 5.134, p2= 0.1905, re-
spectively, and the R-square is 0.9981, which proves the high
accuracy of this fitness. The corresponding scatter diagram
and the fit curve are shown in Figure 8, which shows that
they are in good agreement.
For the 2D reconstruction, the density reconstruction is

also done without and with two kinds of noises (2 and 5%)
to the final proton energies and the revealing errors are 20,
26, and 37%, respectively. Comparing the results of 3D re-
construction with those of 2D reconstruction, it shows that
the effects of noises on the 3D reconstruction errors are
higher than that of 2D reconstruction. However, the contour
lines of calculated densities are capable of revealing the sim-
ulated densities as shown in Figures 6 and 7, except at the
points where the simulated plasmas do not appear. In the

zone where the simulated plasmas appear, the density re-
vealed is a little smaller than the simulated one and on the
same order of 1025/cm3. In the zones where the simulated
plasmas do not appear, the revealed density appears in
some of these zones, which is the one reason for the high
effect of the noises on the 3D reconstruction errors. In our
opinion, the high effects of the noises on the errors are
mainly attributed to the appearance of plasmas where there
are no plasmas in the simulated zone and the large calculation
quantity of 3D reconstructions.

In order to prove the reason for the high effects of the
noises on the errors, two other different plasma density dis-
tributions are simulated. One density distribution studied
has the expression

n = 1025/cm3 × exp(−k/36) k < 140
0 k ≥ 140

{
, (11)

where k is the distance between the position and the center of
the area (105, 105, 105). In this way, a simulated density

Fig. 6. The contour lines of the revealed density distribution (z= 105 μm)
with noises level of 2% added to the final proton energies. The error of re-
vealing is described as Er= 30%.

Fig. 7. The contour lines of the revealed density distribution (z= 105 μm)
with noises level of 5% added to the final proton energies. The error of
revealing is described as Er= 44%.

Fig. 8. The scatter diagram and the fit curve between the noises and corre-
sponding errors.
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matrix D of 2744 elements is obtained and none of the matrix
element is zero implying that plasmas appear everywhere in
the simulated zone. The errors are 10 and 25% with no noise
and with 2% noises added to the final protons energies,
respectively, which are both smaller than the errors of the
simulated plasmas distributions represented with Eq. (9).
Therefore, if the borders of the plasma region are roughly de-
termined before the density reconstruction and the density of
each grid in the simulation in not zero, the reconstruction
errors from the energy noises can be decreased. Furthermore,
the effects of density gradient on the reconstruction errors are
also studied through the density reconstruction of homoge-
neous plasmas with the density 0.2 × 1025/cm3. Through
simulation, the errors of simulation without errors and with
2% noises added to the final energies are 3 and 20%, respec-
tively. Therefore, the simulation errors will be increased for
density distribution with significant density gradient while
errors will be decreased for those with small density gradient.

4.6. The Effect of Proton Sources on the Reconstruction
Errors

In our above calculation, six identical proton sources are
placed at (−180, −150, −390), (105, 105, 390), (−390,
−150, −120), (390, 150, 120), (−270, −390, −240), and
(240, 390, 210), respectively. In order to study the effect of
the proton sources arrangements on the reconstruction accu-
racy, different proton sources arrangements are chosen.
Through these different simulation experiments, the best
points obtained are (0, 0, −390), (105, 105, −390), (−390,
105, 105), (90, −390, 90), (390, 150, 150), and (90, 390,
120) with the error of 10% when no noises are added to
the final proton energy. Comparing the two listed arrange-
ments of proton sources, the following conclusion can be ob-
tained. In order to obtain energy information in the whole
simulated plasma and increase the reconstruction accuracy,

the proton sources should spread around the simulated
plasma zone as much as possible.
If the differences of final energies of different proton

beams after propagating through the plasmas are too small,
it indicates that the incident proton energy is too big. If the
energy of proton beams has already been vanished inside
the plasmas, it indicates the incident proton energy is too
small. Therefore, acceptable energies of the incident proton
beam can be chosen according to these principles. In order
to study the effect of these acceptable incident energies of
quasi-monoenergetic proton beams on the reconstruction ac-
curacy, simulations of different initial proton energies are
done in this paper. As shown in Figure 9, the effects of initial
proton energies on the reconstruction errors are not big and
the errors increase slightly with the increase of the incident
proton energies. As mentioned above, density distributions
at different time can be diagnosed and the ultrafast density
evolution of the plasmas can be obtained through the expo-
nential energy distribution of the proton beams.

5. CONCLUSION

Particular properties of the protons generated in the laser–
plasma interaction have made them suitable for the diagnostic
of dense plasmas. Our diagnostics of the density distribution
of the inhomogeneous plasma is most suitable for dense and
thick plasmas, especially in the case of laser fusion. From the
Coulomb energy loss of protons propagating in the inhomo-
geneous plasmas, we obtain a large linear and ill-posed equa-
tion set of each grid density, solved by the Tikhonov
regularization method which is very popular in other inverse
problems. The 3D density distribution can be obtained using
six proton sources and the error is at the same level of that of
2D reconstruction. The picture element N is chosen as 2744
with consideration of smoothness and calculation memory of
the computers. The revealing errors are 17, 30, and 44%
without and with two kinds of noises (2 and 5%) to the
final proton energies and an analytical relation between the
errors and the noises are established in this paper. If the bor-
ders of the plasma region are roughly determined before the
density reconstruction, the reconstruction errors from the
energy noises can be decreased. The speed of Tikhonov reg-
ularization method is faster than the SIRT method with
smaller errors. Therefore, 3D density reconstructions are
done using Tikhonov regularization method in this paper.
In order to obtain energy information in the whole simulated
plasma and increase the reconstruction accuracy, the proton
sources should spread around the simulated plasma zone as
much as possible. The effects of initial proton energies on
the reconstruction errors are not big and the errors increase
slightly with the increase of the incident proton energies.
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