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Abstract

Let Cn+1
o denote the germ of Cn+1 at the origin. Let V be a hypersurface germ in Cn+1

o

and W a deformation of V over Cm
o . Under the hypothesis that W is a Newton non-

degenerate deformation, in this article we prove that W is a μ-constant deformation
if and only if W admits a simultaneous embedded resolution. This result gives a lot
of information about W , for example, the topological triviality of the family W and
the fact that the natural morphism (W(Co)m)red → Co is flat, where W(Co)m is the
relative space of m-jets. On the way to the proof of our main result, we give a complete
answer to a question of Arnold on the monotonicity of Newton numbers in the case of
convenient Newton polyhedra.

1. Introduction

Before stating and discussing the main problem of this article we give some brief preliminaries
and introduce the notation that is used in the article.

1.0.1 Preliminaries on μ-constant deformations. Let

Ox
n+1 := C{x1, . . . , xn+1}, n ≥ 0,

be the C-algebra of analytic function germs at the origin o of Cn+1 and Cn+1
o the complex-

analytic germ of Cn+1. By abuse of notation we denote by o the origin of Cn+1
o . Let V be a

hypersurface of Cn+1
o , n ≥ 1, given by an equation f(x) = 0, where f is irreducible in Ox

n+1.
Assume that V has an isolated singularity at o. One of the important topological invariants of
the singularity o ∈ V is the Milnor number μ(f), defined by

μ(f) := dimC Ox
n+1/J(f),

where J(f) := (∂1f, . . . , ∂n+1f) ⊂ Ox
n+1 is the Jacobian ideal of f . In this article, we consider

deformations of f that preserve the Milnor number. Let F ∈ C{x1, . . . , xn+1, s1, . . . , sm} be a
deformation of f :

F (x, s) := f(x) +
∞∑
i=1

hi(s)gi(x)
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Simultaneous embedded resolutions

where hi ∈ Os
m := C{s1, . . . , sm}, m ≥ 1, and gi ∈ Ox

n+1 satisfy

hi(o) = gi(o) = 0.

Take a sufficiently small open set Ω ⊂ Cm containing o, and representatives of the analytic func-
tion germs h1, . . . , hi, . . . in Ω. By a standard abuse of notation we denote these representatives
by the same letters h1, . . . , hl. We use the notation Fs′(x) := F (x, s′) when s′ ∈ Ω is fixed. We
say that the deformation F is μ-constant if the open set Ω can be chosen so that μ(Fs′) = μ(f)
for all s′ ∈ Ω.

Let E := {e1, e2, . . . , en+1} ⊂ Zn+1
≥0 be the standard basis of Rn+1. Let g ∈ C{x1, . . . , xn+1}

be a convergent power series. Write

g(x) =
∑
α∈Z

aαx
α, Z := Zn+1

≥0 \{o},

in the multi-index notation. The Newton polyhedron Γ+(g) is the convex hull of the set⋃
α∈Supp(g)(α+ Rn

≥0), where Supp(g) (short for ‘the support of g’) is defined by

Supp(g) := {α | aα �= 0}.
The Newton boundary of Γ+(g), denoted by Γ(g), is the union of the compact faces of Γ+(g).
For a face γ of Γ+(g), the polynomial gγ is defined as follows:

gγ =
∑
α∈γ

aαx
α.

We say that g, is non-degenerate with respect to its Newton boundary (or Newton non-
degenerate) if for every compact face γ of the Newton polyhedron Γ+(g) the partial derivatives
∂x1gγ , ∂x2gγ , . . . , ∂xn+1gγ have no common zeros in (C�)n+1.

We say that a deformation of F of f is non-degenerate if the neighborhood Ω of o in Cm

can be chosen so that for all s′ ∈ Ω the germ Fs′ is non-degenerate with respect to its Newton
boundary Γ(Fs′).

We rewrite the deformation F in the form:

F (x, s) =
∑
α∈Z

aα(s)xα, Z := Zn+1
≥0 \{o},

and let Supp(F ) := {α | aα(s) �≡ 0}. Given a sufficiently small open set Ω ⊂ Cm containing o, we
say that s′ ∈ Ω is a general point of Cm

o if

Γ+(Fs′) = Γ+(Supp(F )).

We remark that

Ω �⊂
⋃

α∈Supp(F )

{s ∈ Ω | aα(s) = 0},

and that s′ is general if whenever s′ belongs to the non-empty open set

Ω\
⋃

α∈Supp(F )

{s ∈ Ω | aα(s) = 0}.

In particular, plenty of general points s′ exist.

1.0.2 Preliminaries on simultaneous embedded resolutions. Let us keep the notation
from the previous section. We put S := Cm

o , and denote by W the deformation of V given by F .
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Then we have the commutative diagram

V
� � ��

��

W
� � ��

�
��

Cn+1
o × S

������������
�

o � � �� S

where the morphism � is flat. Given a sufficiently small open set Ω ⊂ Cm containing o, by
a standard abuse of notation we denote by the same letters the representatives of � and W .
(We usually use this abuse of notation for any representative of a germ). We use the notation
Ws′ := �−1(s′), s′ ∈ Ω.

In what follows we define what we mean by simultaneous embedded resolution of W . We give
the general definition here, even though, as explained in Remark 1.5, the simultaneous embedded
resolutions that we construct in the main theorem are of a special type.

We consider a proper bimeromorphic morphism ϕ : ˜Cn+1
o × S → Cn+1

o × S such that
˜Cn+1
o × S is formally smooth over S, and we denote by W̃ s and W̃ t the strict and the total

transform of W in ˜Cn+1
o × S, respectively.

Denote by Exp(ϕ), the exceptional fiber of ϕ.

Definition 1.1. The morphism W̃ s →W is a very weak simultaneous resolution if there exists
a sufficiently small open set Ω ⊂ Cm containing o such that W̃ s

s′ →Ws′ is a resolution of
singularities for each s′ ∈ Ω.

Definition 1.2. We say that W̃ t is a normal crossing divisor relative to S if W̃ t is locally
embedded trivial, which is to say that for each p ∈ ϕ−1(o, o) there exist sufficiently small open
sets o ∈ Ω ⊂ Cm, o ∈ Ω′ ⊂ Cn+1, o ∈ Ω′′ ⊂ Cn+1 and a neighborhood of p,

U ⊂ ϕ−1(Ω′ × Ω),

such that there exists a map φ,

U
φ

��

���
��

��
Ω′′ × Ω

pr2����
��

��
�

Ω

biholomorphic onto its image, such that W̃ t ∩ U is defined by the ideal φ�I, where I =
(ya1

1 · · · yan+1

n+1 ), y1, . . . yn+1 is a coordinate system at o in Ω′′, and the ai are non-negative integers.
If p ∈ W̃ s

o ∩ ϕ−1(o, o), we require that an+1 = 1 and that W̃ s ∩ U be defined by the ideal
φ�I ′, where I ′ = (yn+1).

Remark 1.3. Assume that W̃ t is a normal crossing divisor relative to S. Then O
W̃ t is a locally

free sheaf of Os
m-modules. In particular, the morphism W̃ t → S is flat.

Definition 1.4. We say ϕ is a simultaneous embedded resolution if, in the above notation, the
morphism W̃ s →W is a very weak simultaneous resolution and W̃ t is a normal crossing divisor
relative to S.

Remark 1.5. In the proof of the main result (Theorem 3.2), the construction of a simultaneous
embedded resolution ϕ goes as follows: first we construct an adapted toric birational proper

morphism π : C̃n+1
o → Cn+1

o (here Cn+1
o is endowed with the natural toric structure respecting
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the chosen coordinates) such that Exp(ϕ) = π−1(o). Then ϕ is the product morphism which is
defined by

ϕ : C̃n+1
o × S → Cn+1

o × S; (x, s) 	→ (π(x), s).

Let us recall that W is defined by

F (x, s) := f(x) +
∞∑
i=1

hi(s)gi(x)

where hi ∈ Os
m, m ≥ 1, and gi ∈ Ox

n+1 such that hi(o) = gi(o) = 0.
Let ε > 0 (respectively, ε′ > 0) be small enough so that f, g1, . . . , gl (respectively, h1, . . . , hl)

are defined in the open ball Bε′(o) ⊂ Cn+1 (respectively, Bε(o) ⊂ Cm), and the singular locus of
W is {o} ×Bε(o). We say that the deformation of W is embedded topologically trivial (in the
classical literature, one often says simply that F is topologically trivial) if, in addition, there
exists a homeomorphism

ξ : Bε′(o) ×Bε(o) → Bε′(o) ×Bε(o); (x, s) 	→ (λ(x, s), s)

such that ξ(W ) = V ′ ×Bε(o), where V ′ := ξ(V ), that is, ξ trivializes W .
The following proposition relates simultaneous embedded resolutions, embedded topologi-

cally trivial deformations and μ-constant deformations.

Proposition 1.6. Let V and W be as previously. Assume that W admits a simultaneous
embedded resolution such that Exp(ϕ) = ϕ−1({o} × S). Then:

(i) the deformation W is embedded topologically trivial;
(ii) the deformation W is μ-constant.

Proof. The Milnor number μ is a topological invariant, hence part (i) implies part (ii), see
Theorem 1.4 of [Tei73]

We apply Thom’s first isotopy lemma (see [Mat12, Proposition 2.11]) to a closed neighbor-
hood C (that we describe in the following) of the compact set ϕ−1(o, o) and to the restriction of
ϕ to C.

We begin by describing C and then we show that the hypotheses of the lemma are satisfied.
As W admits a simultaneous embedded resolution, there exists a proper bimeromorphic

morphism ϕ : ˜Cn+1
o × S → Cn+1

o × S such that ˜Cn+1
o × S is formally smooth over S, and W̃ t is

a normal crossing divisor relative to S. By Definition 1.2, we have that for each p ∈ ϕ−1(o, o)
there exist sufficiently small ε, ε′, ε′′ > 0, and a map φp biholomorphic onto its image

Up
φp

��

��������
Bε′′(o) ×Bε(o)

pr2�����
���

Bε(o)

that trivializes W̃ t ∩ Up, where Up ⊂ ϕ−1(Bε′(o) ×Bε(o)) is a neighborhood of p. Without loss
of generality, we assume that φp is bijective.

As ϕ−1(o, o) is a compact set, there exists a finite set of points {p1, . . . , pl} ⊂ ϕ−1(o, o)
such that ϕ−1(o, o) ⊂ Ω =

⋃l
1 Upi . Moreover, we may assume that ε, ε′ do not depend on pi,

that Ω ⊂ ϕ−1(Bε′(o) ×Bε(o)), and using at most a homothetic transformation that ε′′ does not
depend on p.
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The open set Ω is an open neighborhood of ϕ−1(o, o), and there exist ε′0 > 0 and ε0 > 0
such that ϕ−1(Bε′0(o) ×Bε0(o)) ⊂ Ω. Indeed, if this was not true, there would exist a sequence
xn ∈ ϕ−1(Bε′/n(o) ×Bε/n(o)) such that xn �∈ Ω for all n > 0. The morphism ϕ is proper, hence
ϕ−1(Bε′/n(o) ×Bε/n′(o)) is a compact set. We may assume that the sequence xn converges to
a point q ∈ ϕ−1(o, o) (because ϕ(xn) converge to (o, o)). Then there exists n0 ∈ N such that
xn ∈ Ω for all n ≥ n0, which is a contradiction. Note that we can also assume that ϕ−1(Bε′0(o) ×
Bε0(o)) ⊂ Ω.

Now, it is well known that there exists ε′1 > 0 small enough such that for all 0 < δ ≤ ε′1
the hypersurface V intersects the (2n+ 1)-sphere Sδ(o) := ∂Bδ(o) transversally (see [Mil68]).
There exists ε1 > 0 small enough so that the hypersurface Ws intersects the 2n+ 1-sphere Sδ(o)
transversally for all s ∈ Bε1(o) ⊂ Cm.

Without loss of generality, we assume that ε = ε0 = ε1 and ε′0 = ε′1 (we can replace ε by ε0 in
the definition of Ω). The set C := ϕ−1(Bε′0(o) ×Bε(o)) is a closed set of Ω.

We now verify the hypotheses of Thom’s first isotopy lemma.

(i) The morphisms

ϕ|C : C → Bε′0(o) ×Bε(o)

and

pr2 : Bε′0(o) ×Bε(o) → Bε(o)

are proper, hence so is ψ := pr2 ◦ ϕ|C .
(ii) As each intersection of (C ∩W t) ∪ ϕ−1(Sε′o(o) ×Bε(o)) is transverse, the set (C ∩W t) ∪

ϕ−1(Sε′o(o) ×Bε(o)) induces a Whitney stratification of C (obtained by first considering
the complement in (C ∩W t) ∪ ϕ−1(Sε′o(o) ×Bε(o)) and then by the natural stratification
of (C ∩W t) ∪ ϕ−1(Sε′o(o) ×Bε(o)) which is a union of manifolds intersecting transversally).

Moreover, as ˜Cn+1
0 × S is formally smooth over S, on each stratum X of C the morphism

ψ|X is smooth.
(iii) Observe that, by construction, for each stratum X of C and each q ∈ X there exists a

section r of ψ such that r(ψ|X(q)) = q:

X

ψ|X��
Bε(o)

r

��

hence, ψ|X : X → Bε(o) is a submersive map.

Let Co := C ∩ ψ−1(o) andXo := X ∩ ψ−1(o), whereX is a stratum of C. Thom’s first isotopy
lemma assures us that there exists ε > 0 small enough and a homeomorphism

C
ξ0

��

�����
���

� Co ×Bε(o)

pr2�����
���

Bε(o)

such that ξo(X) = Xo ×Bε(o), see Proposition 11.1 and Corollary 10.3 of [Mat12]. Then the
morphism ξ0 trivializes simultaneously

C◦ := ϕ−1(Bε′0(o) ×Bε(o)) and C◦ ∩W t.
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We denote by ϕo the morphism obtained by restricting ϕ to the special fiber.

C̃n+1
o

ϕ0��

� � �� ˜Cn+1
o × S

ϕ
��

Cn+1
o

� � �� Cn+1
o × S

Consider the morphism

ϕ′ : C̃n+1
o × S → Cn+1

o × S; (x, s) 	→ (ϕ0(x), s).

Then for small enough ε′0 and ε, the map

ξ : Bε′0(o) ×Bε(o) → Bε′0(o) ×Bε(o); (x, s) 	→ ϕ′ ◦ ξ0 ◦ ϕ−1(x, s)

is the desired trivialization. �

1.0.3 On the main result of the article. Keep the notation of the previous sections. Recall
that W is a deformation of V over S := Cm

o given by F . In [Oka89], Oka proved that if W is a
non-degenerate μ-constant deformation of V that induces a negligible truncation of the Newton
boundary then W admits a very weak simultaneous resolution. However, if the method of proof
used is observed with detail, what is really proved is that W admits a simultaneous embedded
resolution in the special case when

F (x, s) := f(x) + sxα ∈ C{x1, x2, x3, s}.
Intuitively one might think that the condition that W admit a simultaneous embedded

resolution is more restrictive than the condition that W is a μ-constant deformation. However,
this intuition is wrong in the case of Newton non-degenerate μ-constant deformations. More
precisely, in this article we prove the following result.

Theorem. Assume that W is a Newton non-degenerate deformation. Then the deformation W
is μ-constant if and only if W admits a simultaneous embedded resolution.

Observe that if W admits a simultaneous embedded resolution it follows directly from
Proposition 1.6 that W is a μ-constant deformation. The converse of this is what needs to
be proved.

From this theorem and Proposition 1.6 we obtain the following corollary.

Corollary 1.7. Let W be a Newton non-degenerate μ-constant deformation. Then W is
topologically trivial.

The result of the corollary was already obtained in Theorem 1.1 of [Abd16].
It was pointed out to us by the referee that Corollary 1.5 follows from the following two

known statements:

(i) every small Newton-non-degenerate deformation is a pullback from a linear one (that is, a
deformation of type f(x) + sg(x));

(ii) every μ-constant family of isolated hypersurface singularities of type f(x) + sg(x), is
topologically trivial; this is a result of Parusinki (Corollary 2.1 of [Par99]).

In the general case, for n �= 2 it is known that if W is a μ-constant deformation, then
the deformation W is topologically trivial (see [LDR76]). The case n = 2 is a conjecture (the
Lê–Ramanujan conjecture).
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Beyond this article, the main result here initiates a new approach to the Lê–Ramanujam
conjecture. In characteristic zero every singularity can be embedded in a higher-dimensional affine
space in such a way that it is Newton non-degenerate in the sense of Khovanskii or Schön (this is
a possible reading of a result of Tevelev, answering a question of Teissier, see [Tei14], [Tev14] and
[Mou17]). Note that Schön (Newton non-degenerate in the sense of Khovanskii) is the notion
that generalizes Newton non-degenerate singularities to higher codimensions, and guarantees
the existence of embedded toric resolutions for singularities having this property. For example,
the plane curve singularity (C, o) embedded in C2

o via the equation (x2
2 − x3

1)
2 − x5

1x2 = 0 is
degenerate with respect to its Newton polygon; but embedded in C3

o via the equations x3 −
(x2

2 − x3
1) = 0 and x2

3 − x5
1x2 = 0, it is non-degenerate in the sense of Khovanskii [BA07, Mou17,

Ngu20]. Now by [Ngu20] (see also [BA07]), we can compute its Milnor number using mixed
Newton numbers. Then the idea is to study the monotonicity of the mixed Newton number and
to prove a generalization of Theorems 2.4 and 2.25. This should allow us to generalize the main
theorem of this article for an adapted embedding and then to apply part (i) of Proposition 1.6.
This idea is a research project that, while not developed in the rest of this paper, we nevertheless
find important to mention.

The theorem has an interesting implication to spaces of m-jets. Let K be a field and Y
a scheme over K. We denote by Y −Sch (respectively, Set) the category of schemes over Y
(respectively, sets), and let X be a Y -scheme. It is known that the functor Y −Sch→ Set :
Z 	→ HomY (Z ×K Spec K[t]/(tm+1), X), m ≥ 1, is representable. More precisely, there exists a
Y -scheme, denoted by X(Y)m, such that HomY (Z ×K Spec K[t]/(tm+1), X) ∼= HomY (Z,X(Y)m)
for all Z in Y −Sch. The scheme X(Y)m is called the space of m-jets of X relative to Y . For
more details see [Voj07] or [LA18]. Let us assume that Y is a reduced K-scheme, and let Z be a
Y -scheme. We denote by Zred the reduced Y -scheme associated to Z.

Corollary 1.8. Let S = C0 and let W be a non-degenerate μ-constant deformation. The
structure morphism (W(S)m)red → S is flat for all m ≥ 1.

Proof. By the previous theorem W admits an embedded simultaneous resolution. Hence, the
corollary is an immediate consequence of Theorem 3.4 of [LA18]. �

Finally, we comment on the organization of the article. In § 2 we study geometric properties
of pairs of Newton polyhedra that have the same Newton number. This allows us to construct the
desired simultaneous resolution. In this section, we give an affirmative answer to the conjecture
presented in [BKW19]. This result together with Theorem 2.4 (see [Fur04]) is a complete solution
to an Arnold problem (No. 1982-16 in his list of problems, see [Arn05]) in the case of convenient
Newton polyhedra. In § 3 we prove the main result of the article. Finally, in § 4 we study properties
of degenerate μ-constant deformations. The main result of this section is Proposition 4.2, which
is a kind of analogue to the existence of a good apex (see Definition 2.21).

2. Preliminaries on Newton polyhedra

In this section we study geometric properties of pairs of Newton polyhedra having the same
Newton number, one contained in the other. In this article we study the deformations of hypersur-
faces Cn+1

o , whereby the natural things would be to study polytopes in Rn+1, n ≥ 1. Nevertheless,
in order to avoid complicating the notations unnecessarily, we work with polytopes in Rn, n ≥ 2.

Given an affine subspace H of Rn, a convex polytope in H is a non-empty set P given by
the intersection of H with a finite set of half spaces of Rn. In particular, a compact convex
polytope can be seen as the convex hull of a finite set of points in Rn. The dimension of a convex
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polytope is the dimension of the smallest affine subspace of Rn that contains it. We say that P
is a polyhedron (respectively, compact polyhedron) if P can be decomposed into a finite union
of convex (respectively, compact convex) polytopes of disjoint interiors. We will say that P is
of pure dimension n if P is a finite union of n-dimensional convex polytopes. A hyperplane K
of Rn is supporting P if one of the two closed half spaces defined by K contains P . A subset
F of P is called a face of P if it is either ∅, P itself, or the intersection of P with a supporting
hyperplane. A face F of P of dimension 0 ≤ d ≤ dim(P ) − 1 is called d-dimensional face. In the
case that d is 0 or 1, F is called a vertex or edge, respectively.

An n-dimensional simplex Δ is a compact convex polytope generated by n+ 1 points of Rn

in general position.
Given an n-dimensional compact polyhedron P ⊂ Rn

≥0 , the Newton number of P is defined
by

ν(P ) := n!Vn(P ) − (n− 1)!Vn−1(P ) · · · (−1)n−1V1(P ) + (−1)nV0(P ),

where Vn(P ) is the volume of P , Vk(P ), 1 ≤ k ≤ n− 1, is the sum of the k-dimensional volumes
of the intersection of P with the coordinate planes of dimension k, and V0(P ) = 1 (respectively,
V0(P ) = 0) if o ∈ P (respectively, o /∈ P ), where o is the origin of Rn. In this section, we are
interested in studying the monotonicity of the Newton Number, we always consider the case
when P is compact.

Let I ⊂ {1, 2, . . . , n}. We define the following sets:

RI := {(x1, . . . , xn) ∈ Rn : xi = 0 if i /∈ I}, RI = {(x1, . . . , xn) ∈ Rn : xi = 0 if i ∈ I}.
Given a polyhedron P in Rn, we write P I := P ∩ RI . Consider an n-dimensional simplex

Δ ⊂ Rn
≥0. A full supporting coordinate subspace of Δ is a coordinate subspace RI ⊂ Rn such

that dim ΔI = |I|. In [Fur04], Furuya proved that there exists a unique full-supporting coordinate
subspace of Δ of minimal dimension. We call this subspace the minimal full-supporting coordinate
subspace (m.f.-s.c.s.) of Δ.

We denote by Ver(P ) the set of vertices of P .
The next result gives us a way of calculating the Newton number of certain polyhedra using

projections.

Proposition 2.1 [Fur04]. Let o /∈ P ⊂ Rn
≥0 be a compact polyhedron that is a finite union of

n-simplices Δi, 1 ≤ i ≤ m, that satisfy

Ver(Δi) ⊂ Ver(P ).

Assume that there exists I ⊂ {1, 2, . . . , n} such that RI is the m.f.-s.c.s. of Δi and P I = ΔI
i for

all 1 ≤ i ≤ m. Then ν(P ) = |I|!V|I|(P I)ν(πI(P )) where πI : Rn → RI is the projection map.

Let E := {e1, e2, . . . , en} ⊂ Zn≥0 be the standard basis of Rn. Let

P ⊂ Rn
≥0

be a polyhedron of pure dimension n. Consider the following conditions:

(i) o ∈ P ;
(ii) P J is homeomorphic to a |J |-dimensional closed disk for each J ⊂ {1, . . . , n};
(iii) Let I ⊂ {1, . . . , n} be a non-empty subset; if (α1, . . . , αn) ∈ Ver(P ), then for each i ∈ I we

must have either αi ≥ 1 or αi = 0 (recall that the αi are real numbers that need not be
integers).
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We say that P is pre-convenient (respectively, I-convenient) if it satisfies conditions (i) and
(ii) (respectively, conditions (i), (ii), and (iii)). In the case when I := {1, . . . , n} we simply say
that P is convenient instead of I-convenient.

Given a closed discrete set S ⊂ Rn
≥0\{o}, denote by Γ+(S) the convex hull of the set⋃

α∈S(α+ Rn
≥0). The polyhedron Γ+(S) is called the Newton polyhedron associated to S. The

Newton boundary of Γ+(S), denoted by Γ(S), is the union of the compact faces of Γ+(S). Let
Ver(S) := Ver(Γ(S)) denote the set of vertices of Γ(S)

Remark 2.2. Note that when we refer to vertices of Γ(S) we are speaking about zero-dimensional
faces of Γ(S). For example, if

S := {(0, 3), (1, 2), (2, 1), (4, 0), (3, 1)},
then Ver(S) = {(0, 3), (2, 1), (4, 0)}.

We say that a closed discrete set S ⊂ Rn
≥0\{o} is pre-convenient (respectively, I-convenient)

if Γ−(S) := Rn
≥0\Γ+(S) is pre-convenient (respectively, I-convenient). The Newton number of a

pre-convenient closed discrete set S ⊂ Rn
≥0\{o} is

ν(S) := ν(Γ−(S)).

Note that this number can be negative. In the case when P is the polyhedron Γ−(S) associated
with a closed discrete set S, condition (i) holds automatically and condition (ii) can be replaced
by the following:

(ii′) for each e ∈ E there exists m > 0 such that me ∈ Ver(S).

Consider a convergent power series g ∈ C{x1, . . . , xn}:
g(x) =

∑
α∈Z

aαx
α, Z := Zn≥0\{o}.

We define Γ+(g) = Γ+(Supp(g)) and Γ(g) = Γ(Supp(g)). We say that g is a convenient power
series if for all e ∈ E there exists m > 0 such that me ∈ Supp(g).

Observe that the closed discrete set Supp(g) is convenient if and only if the power series g is
convenient. We use the following notation: Ver(g) := Ver(Supp(g)), and ν(g) = ν(Supp(g)).

Remark 2.3. Observe that in the case that S is a closed discrete, pre-convenient set, there exists
at least one finite subset S′ ⊂ S such that Γ+(S′) = Γ+(S) (in fact, it suffices to consider S′ =
Γ(S) ∩ S). Nevertheless, it is more comfortable to work with S than with finite choices, above
all because in our proofs we eliminate or move points of S.

Theorem 2.4 [Fur04]. Let P ′ ⊂ P be two convenient polyhedra. We have ν(P ) − ν(P ′) =
ν(P\P ′) ≥ 0, and ν(P ′) ≥ 0.

Corollary 2.5.

(i) Let S and S′ be two convenient closed discrete subsets of Rn
≥0\{o}, and assume that Γ+(S) �

Γ+(S′). We have

0 ≤ ν(S) − ν(S′) = ν(Γ−(S)\Γ−(S′)).

(ii) Let S, S′, and S′′ be three convenient closed discrete subsets of Rn
≥0\{o} such that their

Newton polyhedra satisfy

Γ+(S) ⊂ Γ+(S′) ⊂ Γ+(S′′)

and ν(S) = ν(S′′). Then ν(S) = ν(S′) = ν(S′′).
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For a set I ⊂ {1, . . . , n}, we write Ic := {1, . . . , n}\I. The following result gives us a criterion
for the positivity of the Newton number of certain polyhedra.

Proposition 2.6. Let o /∈ P be a pure n-dimensional compact polyhedron such that there exists
I ⊂ {1, . . . , n} such that dim(P J) < |J | (respectively, P J is homeomorphic to a |J |-dimensional
closed disk) for all I �⊂ J (respectively, I ⊂ J). Assume that if

(β1, . . . , βn) ∈ Ver(P )

then for each i ∈ Ic we have βi ≥ 1 or βi = 0. Then there exists a sequence of sets I ⊂
I1, I2, . . . , Im ⊂ {1, . . . , n}, and of polyhedra Zi, 1 ≤ i ≤ m, such that:

(i) P =
⋃m
i=1 Zi;

(ii) ν(P ) =
∑m

i=1 ν(Zi);
(iii) ν(Zi) = |Ii|!V|Ii|(ZIii )ν(πIi(Zi)) ≥ 0.

In particular, ν(P ) ≥ 0.

Given S ⊂ Rn
≥\{o} and R ⊂ Rn

≥0, we denote S(R) := S ∪R.

Remark 2.7. Let S be a closed discrete subset of Rn
≥0\{o} and α ∈ RI

>, I ⊂ {1, . . . , n}.
If α �∈ Γ+(S), then P := Γ+(S(α))\Γ+(S), S(α) := S ∪ {α}, is homeomorphic to an

|n|-dimensional closed disk. Furthermore, by induction on n we obtain that dim(P J) = |J | for all
J ⊃ I if and only if P J is topologically equivalent to a |J |-dimensional closed disk. In addition,
we observe that dim(P J) < |J | for all J �⊃ I.

Proof. The method of proof that we use is similar to the proof of Theorem 2.3 of [Fur04].
As P is a pure n-dimensional compact polyhedron, there exists a finite simplicial subdivision

Σ of P such that:

(i) if Δ ∈ Σ, then dim Δ = n;
(ii) for all Δ ∈ Σ, Ver(Δ) ⊂ Ver(P );
(iii) given Δ,Δ′ ∈ Σ, we have dim(Δ ∩ Δ′) < n whenever Δ �= Δ′.

Let S be the set formed by all the subsets I ′ ⊂ {1, . . . , n} such that there exists Δ ∈ Σ such that
its m.f.-s.c.s. is RI′ .

As dimP J < |J | for all J �⊃ I, we obtain that I ′ ⊃ I for all I ′ ∈ S. We define

Σ(I ′) = {Δ ∈ Σ : the m.f.-s.c.s. of Δ is RI′}.
Let us consider the set

ΣI′ := {ΔI′ : Δ ∈ Σ(I ′)} = {σ1, . . . , σl(I′)}.
Given σi ∈ ΣI′ , let Ci := {Δ ∈ Σ(I ′) : ΔI = σi}. Consider the closed set

Z(i,I′) :=
⋃

Δ∈Ci

Δ.

Observe that given α ∈ σ◦i (where σ◦i is the relative interior of σi), there exists ε > 0 such that
for each J ⊃ I ′, we have Bε(α) ∩ ZJ(i,I′) = Bε(α) ∩ RJ

≥0. Indeed, as P J is topologically equivalent
to a |J |-dimensional closed disk for all J ⊃ I ′, there exists ε > 0 such that Bε(α) ∩ RJ

≥0 ⊂ P J .
Making ε smaller we may assume that Bε(α) ∩ RJ

≥0 ⊂ ZJ(i,I′). This implies that πI′
(
Z(i,I′)

)
is a

convenient polyhedron in RI′ (remember that if (β1, . . . , βn) ∈ Ver(P ), then for each i ∈ Ic we
have βi ≥ 1 or βi = 0), from which it follows that ν

(
πI′
(
Z(i,I′)

)) ≥ 0 (see Theorem 2.4). Now
using Proposition 2.1 we obtain ν

(
Z(i,I′)

)
= |I|!V|I|(σi)ν

(
πI′
(
Z(i,I′)

)) ≥ 0.
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By construction, we obtain

P =
⋃
I′∈S

l(I′)⋃
i=1

Z(i,I′)

and

dim(ZJ
′

(i,I′) ∩ ZJ
′

(i′,I′′)) < |J ′| for all (i, I ′) �= (i′, I ′′).

This implies that

ν(P ) =
∑
I′∈S

l(I′)∑
i=1

ν
(
Z(i,I′)

)
.

Rearranging the indices, we obtain the desired subdivision. �
Let S and S′ be two closed discrete subsets of Rn

≥0\{o} such that

Γ+(S) ⊂ Γ+(S′).

We define Ver(S′, S) := Ver(S′)\Ver(S). The following result tells us where the vertices
Ver(S′, S) are found.

Proposition 2.8. Let S, S′ be two convenient closed discrete subsets of Rn
≥0\{o}. Suppose that

Γ+(S) � Γ+(S′) and ν(S) = ν(S′). Then

Ver(S′, S) ⊂ (Rn
≥0\Rn

>0

)
.

Proof. Let us suppose that Ver(S′, S) �⊂ (Rn
≥0\Rn

>0). Let

W = Ver(S′, S) ∩ (Rn
≥0\Rn

>0)

and α ∈ Ver(S′, S)\W . Let us consider S′′ := S ∪ {α}. As the closed discrete sets S, S′, and S′′

are convenient and

Γ+(S) ⊂ Γ+(S′′) ⊂ Γ+(S′),

we obtain ν(S′′) = ν(S) = ν(S′) (see Corollary 2.5). Let us prove that this is a contradiction. In
effect, by definition of Newton number we have

ν(S) = n!Vn − (n− 1)!Vn−1 + · · · (−1)n−1V1 + (−1)n,

ν(S′′) = n!V ′′
n − (n− 1)!V ′′

n−1 + · · · (−1)n−1V ′′
1 + (−1)n,

where Vk := Vk(Γ−(S)) and V ′′
k := Vk(Γ−(S′′)) are the k-dimensional Newton volumes of Γ−(S)

and Γ−(S′′), respectively. By construction, V ′′
n < Vn and V ′

k = Vk, 1 ≤ k ≤ n− 1, which implies
that ν(S′′) < ν(S). �

If we suppose that ν(S′) = ν(S), it is not difficult to verify that this equality is not preserved
by homotheties of Rn

≥0. The following result describes certain partial homotheties of Rn
≥0 which

preserve the equality of the Newton numbers.
Let us consider D(S, S′) = {I ⊂ {1, 2, . . . , n} : Γ−(S) ∩ RI �= Γ−(S′) ∩ RI} and I(S, S′) =⋂

I∈D(S,S′) I. It may happen that

I(S, S′) /∈ D(S, S′)

or

I(S, S′) = ∅.
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Proposition 2.9. Let S, S′ ⊂ Rn
≥0\{o} be two pre-convenient closed discrete sets such that

Γ+(S) ⊂ Γ+(S′). Suppose that {1, 2, . . . , k} ⊂ I(S, S′), and consider the map

ϕλ(x1, . . . , xn) = (λx1, . . . , λxk, xk+1, . . . , xn), λ ∈ R>0.

Then ν(ϕλ(S′)) − ν(ϕλ(S)) = λk(ν(S′) − ν(S)).

Proof. We use the notation Vm(S) := Vm(Γ−(S)). Recall that

Vm(S) =
∑
|I|=m

Volm(Γ−(S) ∩ RI),

where Volm(·) is the m-dimensional volume.
Let J = {1, 2, . . . , k}. Observe that if J �⊂ I, then

Γ−(S) ∩ RI = Γ−(S′) ∩ RI ,

which implies that Vol|I|(Γ−(ϕλ(S)) ∩ RI) = Vol|I|(Γ−(ϕλ(S′)) ∩ RI). In particular, if m < k we
have Vm(ϕλ(S)) = Vm(ϕλ(S′)). Let us suppose that m ≥ k. Then

Vm(ϕλ(S′)) − Vm(ϕλ(S)) =
∑
|I|=m
J⊂I

(Volm(Γ−(ϕλ(S′)) ∩ RI) − Volm(Γ−(ϕλ(S)) ∩ RI)).

From this we obtain that Vm(ϕλ(S′)) − Vm(ϕλ(S)) = λk(Vm(S′) − Vm(S)) and ν(ϕλ(S′)) −
ν(ϕλ(S)) = λk(ν(S′) − ν(S)). �

The following corollary is an analogue of Proposition 2.8 in the pre-convenient case.
Remember that given S ⊂ Rn

≥\{o} and R ⊂ Rn
≥0, we use the notation S(R) := S ∪R.

Corollary 2.10. Let S ⊂ Rn
≥0\{o} be a pre-convenient closed discrete set, and α ∈ Rn

>0, such
that Γ+(S) � Γ+(S(α)). Then ν(S(α)) < ν(S).

Proof. Observe that there exists λ > 0 such that the closed discrete sets ϕλ(S), ϕλ(S(α)) are con-
venient where ϕλ is the homothety consisting of multiplication by λ. As I(S, S(α)) = {1, . . . , n},
we have

ν(ϕλ(S)) − ν(ϕλ(S(α))) = λn(ν(S) − ν(S(α)))

(see Proposition 2.9). By Theorem 2.4, we have ν(ϕλ(S(α))) ≤ ν(ϕλ(S)), hence
ν(S(α)) ≤ ν(S). If

ν(S(α)) = ν(S)

then ν(ϕλ(S)) = ν(ϕλ(S(α)). This contradicts Proposition 2.8. �
Take a set I ⊂ {1, . . . , n}.

Corollary 2.11. Let S, S′, and S′′ be three Ic-convenient closed discrete sets such that
Γ+(S) ⊂ Γ+(S′) ⊂ Γ+(S′′). Suppose that

I ⊂ I(S, S′) ∩ I(S′, S′′)

Then ν(S) ≥ ν(S′) ≥ ν(S′′).

Proof. Without loss of generality, we may take I = {1, . . . , k}. As S, S′, and S′′ are
Ic-convenient, there exists λ > 0 such that after applying the map ϕλ given by ϕλ(x1, . . . , xn) =
(λx1, . . . , λxk, xk+1, . . . , xn), the closed discrete sets ϕλ(S), ϕλ(S′), and ϕλ(S′′) are convenient.
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As I ⊂ I(S, S′) ∩ I(S′, S′′), we have

ν(ϕλ(S)) − ν(ϕλ(S′)) = λk(ν(S) − ν(S′)),

and
ν(ϕλ(S′)) − ν(ϕλ(S′′)) = λk(ν(S) − ν(S′′)).

By Theorem 2.4, we obtain 0 ≤ ν(S) − ν(S′) and 0 ≤ ν(S′) − ν(S′′). �
Convention. From now until the end of the paper, whenever we talk about a vertex γ of a
certain polyhedron and an edge (one-dimensional face) of this polyhedron denoted by Eγ , it
should be understood that γ is one of the endpoints of Eγ .

Given I ⊂ {1, 2, . . . , n}, let RI
>0 := {(x1, x2, . . . , xn) ∈ RI : xi > 0 if i ∈ I}. Let S ⊂ Rn

≥\{0}
be a closed discrete set, and let α ∈ RI

>0 be such that

Γ+(S) � Γ+(S(α)).

Let Eα be an edge of Γ(S(α)) such that α is one of its endpoints. Given a set J with

I � J ⊂ {1, 2, . . . , n},
we say that Eα is (I, J)-convenient if for all

β := (β1, . . . , βn) ∈ (Eα ∩ Ver(S))

we have βi ≥ 1 for i ∈ J\I and βi = 0 for i ∈ Jc. We say that Eα is strictly (I, J)-convenient if
Eα is (I, J)-convenient and whenever

β ∈ (Eα ∩ Ver(S)),

there exists i ∈ J\I such that βi > 1.

Example 2.12. Let 0 < a < 1, S := {(2, 0), (0, 2), (3
2(1 − a), 2a)}, and α := (3

2 , 0). For the edge
Eα of Γ+(S(α)) (with endpoints (3

2 , 0) and (0, 2)), we have

Eα ∩ Ver(S) = {(0, 2), (3
2(1 − a), 2a)}.

Then Eα is ({1}, {1, 2})-convenient (respectively, strictly ({1}, {1, 2})-convenient) if and only
if 1

2 ≤ a < 1 (respectively, 1
2 < a < 1).

Example 2.13. Let 0 < a < 1, S := {(1, 0, 0), (0, 2, 0), (3
4(1 − a), 2a, 0), (0, 0, 1)}, and α := (3

4 , 0, 0).
For the edge Eα of Γ+(S(α)) (with endpoints (3

4 , 0, 0) and (0, 2, 0)) we have

Eα ∩ Ver(S) = {(0, 2, 0), (3
4(1 − a), 2a, 0)}.

Then Eα is ({1}, {1, 2})-convenient (respectively, strictly ({1}, {1, 2})-convenient) if and only
if 1

2 ≤ a < 1 (respectively, 1
2 < a < 1).

The following proposition allows us to eliminate certain vertices.

Proposition 2.14. Let S ⊂ Rn
≥0\{0} be an Ic-convenient closed discrete set, J a set such that

I � J ⊂ {1, . . . , n}, and α ∈ RI
>0 such that

Γ+(S) � Γ+(S(α))

and ν(S(α)) = ν(S). Assume that at least one of the following conditions are satisfied:

(i) α′ ∈ Γ+(S(α))\Γ+(S) ∩ RI ;
(ii) α′ ∈ Γ+(S(α))\Γ+(S) ∩ RJ

>0 and there exists a strictly (I, J)-convenient edge Eα of
Γ(S(α)).

Then ν(S(α′)) = ν(S).
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Remark 2.15. In Example 2.12 we have ν(S) = ν(S(α)) if and only if

a = 1
2 .

In particular, if ν(S) = ν(S(α)) then there are no strictly ({1}, {1, 2})-convenient edges for α.
Observe that for each 0 < a < 1, if α′ ∈ (Γ+(S(α))\Γ+(S)) ∩ R2

>0, then μ(S) �= μ(S(α′)).
In Example 2.13 we have ν(S) = ν(S(α)) for all 0 < a < 1. Furthermore, for all α′ ∈

Γ+(S(α))\Γ+(S) ∩ R{1,2} we have ν(S(α′)) = ν(S), which indicates that the hypotheses of the
preceding proposition are just sufficient.

Observe that Γ+(S(α))\Γ+(S) ∩ R{1,2} is the region of the plane bounded by the triangle of
the vertices (3

4 , 0, 0),(2, 0, 0) and (3
4(1 − a), 2a, 0)).

Proof. Let us assume that α′ ∈ Γ+(S(α))\Γ+(S) ∩ RI . We may assume that Γ+(S) �
Γ+(S(α′)) � Γ+(S(α)) (otherwise there is nothing to prove).

Observe that the closed discrete sets S, S(α′), and S(α) are Ic-convenient and

I ⊂ I(S, S(α′)) ∩ I(S(α′), S(α)).

Using Corollary 2.11, we obtain ν(S) = ν(S(α′)) = ν(S(α)). This completes the proof in
case (i).

Next, assume that case (ii) holds. Consider a strictly (I, J)-convenient edge Eα of Γ(S(α)).
Let β := (β1, . . . , βn) ∈ Eα ∩ Ver(S). Let E′ ⊂ Eα be the line segment with endpoints α
and β. Without loss of generality, we may assume that E′ ∩ Ver(S) = {β}. As Eα is strictly
(I, J)-convenient, there exists i ∈ J\I such that βi > 1. Let δ > 0 be sufficiently small so that
βi − δ ≥ 1 and let β′ ∈ RI

≥0 be such that γ := β − δei + β′ ∈ Γ(S(α)) ∩ RJ
>0. Then

Γ+(S) � Γ+(S(γ)) � Γ+(S(α)).

Observe that the closed discrete sets Ss, S(γ), and S(α) are Ic-convenient and

I ⊂ I(S, S(γ)) ∩ I(S(γ), S(α)).

Then ν(S(γ)) = ν(S(α)) = ν(S).
If α′ ∈ Γ+(S(γ))\Γ+(S) ∩ RJ , we have

Γ+(S) ⊂ Γ+(S(α′)) ⊂ Γ+(S(γ)).

The closed discrete sets S, S(α′), and S(γ) are Jc-convenient and

J ⊂ I(S, S(α′)) ∩ I(S(α′), S(γ)).

Then ν(S(α′)) = ν(S(γ)) = ν(S).

We still need to study the case α′ ∈ (Γ+(S(α))\Γ+(S(γ))) ∩ RJ
>0.

Consider the compact set C := (Γ+(S(α′))\Γ+(S)) ∩ RJ , and the map

νS : C → R; τ 	→ νS(τ) := ν(S(τ)) =
n∑

m=0

(−1)n−mm!Vm(S(τ))

where Vm(S(τ)) := Vm(Γ−(S(τ)))). The map νS is continuous in C. In effect, recall that
Vm(S(τ)) =

∑
|I′|=m Volm(Γ−(S(τ)) ∩ RI′). Hence,

Vm(S(τ)) = V (τ) + V ′(τ),
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where

V (τ) :=
∑

|I′|=m
I′⊇J

Volm(Γ−(S(τ)) ∩ RI′), V ′(τ) :=
∑

|I′|=m
I′ 	⊃J

Volm(Γ−(S(τ)) ∩ RI′).

The function V : RJ → R; τ 	→ V (τ) is continuous, because each summand is continuous in
RJ . The function V ′ : C → R; τ 	→ V ′(τ) is constant, because Γ−(S(α′)) ∩ (RJ

≥0\RJ
>0) = Γ−(S) ∩

(RJ
≥0\RJ

>0). Then each Vm(S(τ)) is continuous in τ ∈ C, which implies that the function νS is
continuous in C.

Let us assume that α′ ∈ (Γ+(S(α))\Γ+(S(γ))) ∩ RJ
>0 and α′ /∈ Γ(S(α)). Let us suppose that

νS(α′) = ν(S(α′)) �= ν(S). Let us consider the set C := {τ ∈ C : νS(τ)) = νS(α′))}. The continu-
ity of νS implies that C is compact. We define the following partial order on C. For τ, τ ′ ∈ C we
will say that τ ≤ τ ′ if Γ+(S(τ ′)) ⊂ Γ+(S(τ)). Let us consider an ascending chain

τ1 ≤ τ2 ≤ · · · ≤ τn ≤ · · · .
We prove that this chain is bounded above in C. Let us consider the convex closed set

Γ =
⋂
i≥1

Γ+(S(τi)).

As C is compact, the sequence {τ1, τ2, . . . , τn, . . .} has a convergent subsequence
{τi1 , τi2 , . . . , τin , . . .}. Observe that

Γ+(S(τ)) =
⋂
n≥1

Γ+(S(τin)),

where τ := limn→∞ τin ∈ C. By definition, Γ ⊂ Γ+(S(τ)), and by construction for each i ≥ 1
there exists n ≥ 1 such that Γ+(S(τin)) ⊂ Γ+(S(τi)). Then Γ = Γ+(S(τ)), which implies that
τi ≤ τ for all i ≥ 1. By Zorn’s lemma C contains at least one maximal element. Let τ ∈ C be
a maximal element. Recall that we consider α′ /∈ Γ(S(α)), and we made the assumption that
ν(S(α′)) �= ν(S). Hence, τ /∈ (Γ+(S(γ))\Γ+(S)) ∩ RJ .

Observe that for all α′′ ∈ Γ+(S(α)) we have

Γ+(S) ⊂ Γ+(S(α′′)) ⊂ Γ+(S(γ, α′′)) ⊂ Γ+(S(α)).

As the closed discrete sets S, S(α′′), and S(γ, α′′) are Ic-convenient and

I ⊂ I(S(α′′), S(γ, α′′)) ∩ I(S(γ, α′′), S(α)),

we obtain ν(S(γ, α′′)) = ν(S(α′′)) = ν(S).
As τ /∈ Γ+(S(γ))\Γ+(S) ∩ RJ and γ ∈ Γ(S(α)), there exists a relatively open subset Ω of the

relative interior of Γ+(S(α))\Γ+(S) ∩ RI such that τ belongs to the relative interior of

(Γ+(S(γ, α′′))\Γ+(S(α′′)) ∩RJ

for all α′′ ∈ Ω. We obtain

Γ+(S(α′′)) � Γ+(S(τ, α′′)) � Γ+(S(γ, α′′)).

The closed discrete sets S(α′′), S(τ, α′′), and S(γ, α′′) are Jc-convenient, and

J ⊂ I(S(α′′), S(τ, α′′)) ∩ I(S(τ, α′′), S(γ, α′′)).

Hence, ν(S(τ, α′′)) = ν(S(α′′)) = ν(S).
Given an edge Eτ of Γ(S(τ)) that connects τ with a vertex in Ver(Γ(S)), let E′

τ be the
subsegment of Eτ containing τ such that |E′

τ ∩ Ver(S)| = 1. We choose α′′ ∈ Ω′ such that for each
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edge Eτ of Γ(S(τ)) connecting τ with an element of Ver(Γ(S)) we have dim(E′
τ ∩ Γ(S(α′′))) = 0.

In other words, no subsegment of E′
τ is contained in the Newton boundary Γ(S(α′′)).

Let us consider the compact polyhedron P := Γ+(S(τ, α′′))\Γ+(S(α′′)). Observe that
ν(P ) = 0 (see Theorem 2.4).

Given the choice of α′′, there exists τ ′ ∈ P such that

Γ+(S(τ ′)) � Γ+(S(τ))

and Q0 := (Γ+(S(τ))\Γ+(S(τ ′))) ⊂ P (it is for achieving the last inclusion that the choice of α′′

is really important).
LetQ1 := P\Q0. As dim(QJ

′
0 ∩QJ ′

1 ) < |J ′|, for all J ′ ⊂ {1, . . . , n}, we obtain ν(P ) = ν(Q0) +
ν(Q1). The polyhedra Q0 and Q1 satisfy the hypotheses of Proposition 2.6. In effect, we have
the following.

(i) By construction Q0 and Q1 are pure n-dimensional compact polyhedra and
o �∈ P = Q0 ∪Q1.

(ii) Recall that τ ∈ RJ
>0. The polyhedron P satisfies

dim(P J
′
) < |J ′| for all J ′ �⊃ J,

which implies dim(QJ
′

0 ) < |J ′| and dim(QJ
′

1 ) < |J ′| for all J ′ �⊃ J .
(iii) Now we verify that QJ

′
0 is homeomorphic to a |J ′|-dimensional closed disk for all J ′ ⊃ J . As

S is Ic-convenient and τ ∈ RJ
>0, we have dim(QJ

′
0 ) = |J ′| for each J ′ ⊃ J . By Remark 2.7

we obtain that QJ
′

0 is homeomorphic to a |J ′|-dimensional closed disc. The proof for QJ
′

1 is
analogous to the proof for QJ

′
0 .

(iv) As S is Ic-convenient (in particular, Jc-convenient), we obtain that if (β1, . . . , βn) ∈ Ver(P ),
then for each i ∈ Jc we have βi ≥ 1 or βi = 0. This property is inherited by Q0 and Q1.

By Proposition 2.6 we have ν(Q0) ≥ 0, ν(Q1) ≥ 0. As ν(P ) = 0, we obtain ν(Q0) = ν(Q1)=0.
We have τ < τ ′ ∈ C, which contradicts the maximality of τ in C. As a consequence, we obtain
ν(S(α′)) = ν(S).

Now let us suppose that α′ ∈ Γ(S(α)) ∩ RJ
>0, and let v ∈ RJ

>0. For ε > 0 small enough αε :=
α′ + εv belongs to the relative interior of Γ+(S(α′))\Γ+(S). For the continuity of νS in C :=
(Γ+(S(α′))\Γ+(S)) ∩ RJ we obtain

lim
ε→0

νS(αε) = ν(S(α′)),

which implies that ν(S(α′)) = ν(S). �
Corollary 2.16. Let I � J := {1, . . . , n}. Let S, S′ ⊂ Rn

≥0\{o} be two convenient closed dis-
crete sets such that Γ+(S) � Γ+(S′) and ν(S) = ν(S′). Suppose that there exists α ∈ Ver(S′, S) ∩
RI
>0 and an edge Eα of Γ(S) that is (I, J)-convenient. Then there exists

(β1, . . . , βn) ∈ Ver(S) ∩ Eα
such that βi = 1 for all i ∈ Ic.

Proof. Let R := Ver(S′, S)\{α} and S(R) = S ∪R. The closed discrete sets S, S(R) and S′ are
convenient, and Γ+(S) ⊂ Γ+(S(R)) � Γ+(S′). Then

ν(S(R)) = ν(S′).
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We argue by contradiction. If there is no (β1, . . . , βn) as in the corollary, then the edge Eα is
strictly (I, J)-convenient. By Proposition 2.14, for all α′ ∈ Γ+(S(α)\Γ+(S) ∩ Rn

>0 we have

ν(S(R)) = ν(S(R ∪ {α′})),
which contradicts Proposition 2.8. �

The following proposition allows us to fix a special coordinate hyperplane and gives informa-
tion about the edges not contained in the hyperplane that contain a vertex of interest belonging
to the hyperplane.

Proposition 2.17. Let S, S′ ⊂ Rn
≥0\{o} be two convenient closed discrete sets such that

Γ+(S) � Γ+(S′) and ν(S) = ν(S′). Let us suppose that

α ∈ Ver(S′, S) ∩ RI
>0, I � {1, . . . , n}.

Then there exists i ∈ Ic such that for all the edges Eα of Γ(S′) not contained in R{i} there exists
(β1, . . . , βn) ∈ Ver(S) ∩ Eα such that βi = 1.

Proof. First we prove the following lemma.

Lemma 2.18. Let S ⊂ Rn
≥0\{o} be an Ic-convenient closed discrete set and

α ∈ RI
>0, I ⊂ {1, . . . , n},

such that ν(S) = ν(S(α)). Then there exists i ∈ Ic such that for each edge Eα of Γ(S(α)) not
contained in R{i} there exists (β1, . . . , βn) ∈ Ver(S) ∩ Eα such that βi = 1.

Proof of Lemma 2.18. By Corollary 2.10, we have |I| < n. Let k be the greatest element of
{1, . . . , n− 1} such that the lemma is false for some I with |I| = k. In other words, for all i ∈ Ic

there exists an edge Eα, not contained in R{i}, such that for all (β1, . . . , βn) ∈ Ver(S) ∩ Eα
we have βi > 1. Let J ⊂ {1, . . . , n} be a set of the smallest cardinality such that Eα ⊂ RJ .
Then Eα is a strictly (I, J)-convenient edge. Using Proposition 2.14 we obtain that for all α′ ∈
Γ+(S(α)\Γ+(S) ∩ RJ

>0 we have ν(S(α′)) = ν(S). Now let us choose α′ sufficiently close to α so
that for each edge Eα′ of Γ(S(α′)), and β ∈ Eα′ ∩ Ver(S) adjacent to α′ in Eα′ , there exists an
edge Eα of Γ(S(α)) such that β ∈ Eα. Then the closed discrete sets S, S(α′) are Jc-convenient
and do not satisfy the conclusion of the lemma, which is a contradiction, because |J | > k. �

The proof of the proposition is by induction on the cardinality of Ver(S′, S). Lemma 2.18
says that the proposition is true whenever |Ver(S′, S)| = 1. Let us assume that the proposition
is true for all S, S′ such that

|Ver(S′, S)| ≤ m− 1.

Let S, S′ with |Ver(S′, S)| = m ≥ 2 be such that the proposition is false. Then there exists
α ∈ Ver(S′, S) such that for each i ∈ Ic there exists an edge Eα of Γ+(S′), not contained in R{i},
that satisfies the following condition:

(∗) for all β = (β1, . . . , βn) ∈ Ver(S) ∩ Eα we have βi > 1;

note that condition (∗) is vacuously true if

Ver(S) ∩ Eα = ∅. (1)

Observe that for each α′ ∈ Ver(S′, S)\{α}, we have |Ver(S′, S(α′))| = m− 1 and, by
Corollary 2.11, ν(S(α′)) = ν(S′).

First, let us suppose that there exists i ∈ Ic such that (1) does not hold for the correspond-
ing edge Eα. Let us fix α′ ∈ Ver(S′, S)\{α}. Then Eα connects α with a vertex β of S, hence
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α′ /∈ E′, where E′ ⊂ Eα is the line segment with endpoints α and β. We obtain that the polyhe-
dra Γ+(S(α′)) � Γ+(S′) do not satisfy the conclusion of the Proposition, which contradicts the
induction hypothesis.

Next, let us suppose that there exists i ∈ Ic such that (1) is satisfied for the corresponding
edge Eα. Then |Eα ∩ Ver(S′, S)| = 2. Now, take

α′′ = (α′
1, . . . , α

′
n) ∈ Eα ∩ Ver(S′, S)

such that α′ �= α. If α′
i > 1, then the Newton polyhedra

Γ+(S(α′)) � Γ+(S′)

do not satisfy the Proposition and (1) does not hold, which is a contradiction. Hence, α′
i = 1.

Let ε > 0 be such that
α′
ε := α′ + εei ∈ (Γ+(S′)\Γ+(S)).

Put
R := (Ver(S′, S)\{α′}) ∪ {α′

ε}.
Then Γ+(S) � Γ+(S(α′

ε))) � Γ+(S(R))) � Γ+(S′).
The closed discrete sets S, S(α′

ε), S(R), and S′ are convenient. We have

ν(S(α′
ε)) = ν(S(R)) = ν(S).

Let us assume that ε is small enough so that there exists an edge E′
α � α of Γ(S(R)) such that

α′
ε ∈ E′

α. Then the Newton polyhedra Γ+(S) � Γ+(S(R)) satisfy the preceding case (namely,
α′
i > 1). This completes the proof of the proposition. �

Corollary 2.19. Assume given two convenient closed discrete sets

S, S′ ⊂ Rn
≥0\{o}

such that Γ+(S) � Γ+(S′) and ν(S) = ν(S′). Assume that

α ∈ Ver(S′, S) ∩ RI
>0.

Then, for the i ∈ Ic of Proposition 2.17 there exists an edge Eα of Γ(S′), and (β1, . . . , βn) ∈
Eα ∩ Ver(S), such that βj = δij , j ∈ Ic, where δij is the Kronecker delta.

Proof of the corollary. By Proposition 2.17 there exists i ∈ Ic such that for all the edges Eα of
Γ(S′), not contained in R{i}, there exists

(β1, . . . , βn) ∈ Ver(S) ∩ Eα
such that βi = 1. As the set S is convenient, there exists m > 1 such that mei ∈ Ver(S). Let
J = I ∪ {i}. As α,mei ∈ RJ , there exists a chain of edges of Γ(S′) connecting α with mei,
contained in RJ . The edge Eα belonging to this chain and containing α satisfies the conclusion
of the corollary. �
Remark 2.20. Using the same idea as in Corollary 2.19, but using Lemma 2.18 instead of
Proposition 2.17, we can prove the following fact: let I � {1, . . . , n} and let S ⊂ Rn

≥0\{o}
be an Ic-convenient closed discrete set. Let α ∈ RI

>0 be such that Γ+(S) � Γ+(S(α)), and
ν(S) = ν(S′). Then for the i ∈ Ic of Lemma 2.18 there exists an edge Eα of Γ(S(α)), and
(β1, . . . , βn) ∈ Eα ∩ Ver(S), such that βj = δij , j ∈ Ic, where δij is the Kronecker delta.

The following theorem generalizes to all dimensions the main theorem of [BKW19]. In
[BKW19] this result is conjectured.
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Definition 2.21. Let S, S′ ⊂ Rn
≥0\{o} be two closed discrete sets such that

Γ+(S) � Γ+(S′),

I � {1, . . . , n} and α ∈ Ver(S′, S) ∩ RI
>0. We say that α has an apex if there exists i ∈ Ic and a

unique edge Eα of Γ(S′) that contains α, and is not contained in R{i}.
In this case the point β ∈ Ver(S) ∩ Eα adjacent to α in Eα is called the apex of α. We say

that an apex, β := (β1, . . . , βn), is good if βj = δij , j ∈ Ic.

Remark 2.22. Let S ⊂ Rn
≥0\{o} be a convenient closed discrete set,

I � {1, . . . , n}
and α ∈ RI

>0 such that Γ+(S) � Γ+(S(α)). The condition that α has a good apex β ∈ RI∪{i}
>0 ,

i ∈ Ic, is equivalent to P := Γ+(S(α))\Γ+(S) being a pyramid with apex β and base P ∩ R{i}.

Example 2.23. For example, in the case of the μ-constant deformation of Briançon–Speder
convenient version (see [BS75]),

F (x, y, z, s) := x5 + y7z + z15 + y8 + sxy6,

the pyramid is formed by the base with vertices (5, 0, 0), (0, 8, 0), α = (1, 6, 0), and the good
apex β = (0, 7, 1). Note that the vertices (5, 0, 0), (0, 7, 1), (1, 6, 0), (0, 0, 15) are coplanar.

Remark 2.24. The element i ∈ Ic of condition (ii) of Definition 2.21 may not be
unique, and the edge Eα is unique only for the chosen i. For example, if S =
{(2, 0, 0), (0, 2, 0), (1, 0, 1), (0, 1, 1), (0, 0, 3)} and α = (0, 0, 2), we have I = {3}.

If i = 1, the unique edge Eα is the segment between the point α = (0, 0, 2) and the good
apex β = (1, 0, 1).

If i = 2, the unique edge Eα is the segment between the point α = (0, 0, 2) and the good
apex β = (0, 1, 1).

Theorem 2.25. Let S, S′ ⊂ Rn
≥0\{o} be two convenient closed discrete sets such that Γ+(S) �

Γ+(S′). Then ν(S) = ν(S′) if and only if each α ∈ Ver(S′, S) has a good apex.

Proof. First we prove the following Lemma.

Lemma 2.26. Let S ⊂ Rn
≥0\{o} be a closed discrete set and α ∈ RI

>0, I � {1, . . . , n}, such that
Γ+(S) � Γ+(S(α)), and α has a good apex. Then

ν(S(α)) = ν(S).

Proof of Lemma 2.26. Let β be a good apex of α. Let i ∈ Ic be such that β ∈ RI∪{i}
>0 .

Given an element m ∈ {1, . . . , n} and J ⊂ {1, . . . , n} such that |J | = m, we use the notation

Vm(α, J) = Volm(Γ−(S(α)) ∩ RJ) − Volm(Γ−(S) ∩ RJ).

As α ∈ RI
>0, we have

ν(S(α)) − ν(S) =
n∑

m=|I|
(−1)m

∑
|J |=m
I⊂J

|J |!Vm(α, J)

=
n−1∑
m=|I|

(−1)m
∑

|J |=m
i/∈J,I⊂J

(|J |!Vm(α, J) − (|J | + 1)!Vm+1(α, J ∪ {i})).
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As the apex of α is good, we obtain

|J |!Vm(α, J) = (|J | + 1)!Vm+1(α, J ∪ {i}),
which implies that ν(S) = ν(S(α)). �

Now we prove that if each α ∈ Ver(S′, S) has a good apex, then

ν(S) = ν(S′).

The proof is by induction on the cardinality of Ver(S′, S). Let us assume that the implication is
true for all S and S′ such that |Ver(S′, S)| < m. To verify the implication for |Ver(S′, S)| = m,
let α ∈ Ver(S′, S) and R = Ver(S′, S)\{α}. By the induction hypothesis ν(S(R)) = ν(S) and by
Lemma 2.26 we have ν(S′) = ν(S(R)). This proves that ν(S′) = ν(S).

To finish the proof of the theorem we need the following lemma.

Lemma 2.27. Let S ⊂ Rn
≥0\{o} be a closed discrete set and let α ∈ RI

>0, I � {1, . . . , n}, be such
that Γ+(S) � Γ+(S(α)). Let us suppose that S(α) is Ic-convenient and that ν(S(α)) = ν(S).
Then α has a good apex.

Proof of Lemma 2.27. Let i ∈ Ic be as in Remark 2.20. Then there exists Eα of Γ(S(α)), and β :=
(β1, . . . , βn) ∈ Eα ∩ Ver(S), such that βj = δij , j ∈ Ic. We want to prove that β is a (necessarily
good) apex of α. Let us assume that β is not an apex of α, aiming for contradiction. Then there
exits another edge α ∈ E′

α de Γ(S(α)), and β′ := (β′1, . . . , β′n) ∈ E′
α ∩ Ver(S) adjacent to α in E′

α

such that β′i = 1.
Let us consider β′ε := β′ + εei, and the closed discrete set Sε = (S\{β′}) ∪ {β′ε}, ε > 0. Let

us assume that ε is small enough so that:

(i) Ver(Sε) = (Ver(S)\{β′}) ∪ {β′ε};
(ii) there exists an edge Eεα of Γ(Sε(α)) such that βε ∈ Eεα ∩ Ver(Sε) is adjacent to α in Eεα.

Let P ε = (Γ+(Sε(α)\Γ+(Sε)). Let Q0 be the convex hull of the set

{β} ∪ (P ε ∩ R{i})

(observe that Q0 does not depend on ε) and Qε1 := P ε\Q0. Recall that β satisfies βj = δij ,
j ∈ Ic. Then, using the same idea as in the proof of Lemma 2.26 we obtain ν(Q0) = 0. As
dim(QJ0 ∩ (Qε1)

J) < |J | for all J ⊂ {1, . . . , n}, we have

ν(P ε) = ν(Q0) + ν(Qε1). Then ν(P ε) = ν(Qε1).

As Sε(α) is Ic-convenient, Qε1 satisfies the hypotheses of Proposition 2.6 (to prove this
statement use the same idea as in the proof of Proposition 2.14). Let us consider the sequence

I ∪ {i} ⊂ I1, I2, . . . , Im ⊂ {1, . . . , n},
and the polyhedra Zεj , 1 ≤ j ≤ m, such that:

(i) Qε1 =
⋃m
j=1 Z

ε
j ;

(ii) ν(Qε1) =
∑m

j=1 ν(Z
ε
j );

(iii) ν(Zεj ) = |Ij |!V|Ij |((Zεj )Ij )ν(πIj (Zεj )) ≥ 0;

(the existence of these objects is given by Proposition 2.6). For each j, 1 ≤ j ≤ m, we may choose
the family Zεj of polyhedra to vary continuously with ε. More precisely, we can choose the Zεj to
satisfy the following additional condition: for each j, 1 ≤ j ≤ m, either Zεj = Z0

j for all small ε
or Ver(Zεj ) differs from Ver(Z0

j ) in exactly one element, β′ε �= β′, for all small ε > 0. As i ∈ Ij , we
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have πIj (β
′
ε) = πIj (β

′). This implies that ν(πIj (Z
ε
j )) is independent of ε for all 1 ≤ j ≤ m. For

ε = 0, we have
ν(πIj (Z

0
j )) = 0.

Hence, ν(P ε) = ν(Qε1) = 0 for ε small enough. Then there exists a set J , {i} ∪ I ⊂ J ⊂
{1, 2, . . . , n}, such that the edge Eεα is strictly (I, J)-convenient. By Proposition 2.14, given
α′ ∈ Γ+(Sε(α))\Γ+(Sε) ∩ RJ

>0 we have

ν(Sε(α′)) = ν(Sε).

This proves that |I| < n− 1: indeed, if |I| = n− 1, then α′ ∈ Rn
>0, which contradicts

Corollary 2.10.
Let r be the largest element of {1, . . . , n− 1} such that the lemma is true for all I such that

|I| > r. Now let us assume that |I| = r. Let us choose α′ sufficiently close to α so that for each
edge Eα′ of Γ(Sε(α′)) and

β ∈ Eα′ ∩ Ver(Sε)

adjacent to α′ in Eα′ , there exists an edge Eα of Γ(Sε(α)) such that β ∈ Eα. This implies that
α′ does not have a good apex, which contradicts the choice of r, since |J | > r. This completes
the proof of the lemma. �

Now we can finish the proof of the theorem. We prove that if

ν(S) = ν(S′),

then each α ∈ Ver(S′, S) has a good apex. The proof is by induction on the cardinality of
Ver(S′, S). Lemma 2.27 shows that the implication is true for |Ver(S′, S)| = 1. Let us assume that
this is true for every pair (S, S′) of convenient closed discrete sets such that |Ver(S′, S)| < m.
Let us prove the result for |Ver(S′, S)| = m. Let α ∈ Ver(S′, S), R = Ver(S′, S)\{α} and αε =
(1 + ε)α, where ε > 0. Then

Γ+(S) ⊆ Γ+(S(αε)) � Γ+(S(αε)(R)) ⊆ Γ+(S′).

By Corollary 2.5 we have ν(S(αε)(R)) = ν(S(αε)). Observe that

|Ver(S(αε)(R), S(αε))| ≤ m− 1.

By the induction hypothesis, each α′ ∈ R has a good apex β ∈ Ver(S(αε)) for the inclusion
Γ+(S(αε)) � Γ+(S(αε)(R)) of Newton polyhedra. As all the non-zero coordinates of αε are
strictly greater than one, we have β �= αε, so that β ∈ Ver(S). We take ε small enough so that
for every α′ ∈ R every edge Eα′ of Γ(S(αε)(R)) that connects α′ with a vertex in Ver(S) is an
edge of Γ(S′). Thus, every α′ ∈ R has a good apex for the inclusion

Γ+(S) ⊂ Γ+(S′)

of Newton polyhedra.
Now it suffices to verify that α has a good apex for the inclusion

Γ+(S) ⊂ Γ+(S′) (2)

of Newton polyhedra. Let ε > 0 and put Rε := {(1 + ε)α′ : α′ ∈ R}. Then

Γ+(S) ⊂ Γ+(S(Rε)) � Γ+(S(Rε)(α)) ⊂ Γ+(S′).

By Corollary 2.5 we have ν(S(Rε)) = ν(S(Rε)(α)) = ν(S). Observe that Ver(S(Rε)(α),
S(Rε)) = {α}. By Lemma 2.27, α has a good apex

β ∈ Ver(S(Rε)).
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As every non-zero coordinate of every element of Rε is strictly greater than one, we have β /∈ Rε,
so that β ∈ Ver(S). Take ε small enough so that every edge Eα of Γ(S(Rε)(α)) that connects α
with a vertex in Ver(S) is an edge of Γ(S′). Then β is a good apex of α for the inclusion (2), as
desired. This completes the proof of the theorem. �

We end this section by recalling a result that relates the Milnor number to the Newton
number.

If the formal power series g is not convenient, we can define the Newton number ν(g) of g
(ν(g) could be ∞) in the following way. Let E ′ ⊂ E such that there does not exist m ∈ Z>0, such
that me ∈ Ver(g). We define the Newton number of g as

ν(g) := sup
m∈Z>0

ν(Supp(g) ∪ E ′
m),

where E ′
m := {me : e ∈ E ′}.

Theorem 2.28 [Kou76]. Let h ∈ Ox
n+1. Then μ(h) ≥ ν(h). Moreover, μ(h) = ν(h) if h is non-

degenerate.

Remark 2.29. Let h ∈ Ox
n+1 be non-degenerate and convenient. Then μ(h) <∞, which implies

that h has, at most, an isolated singularity in the origin o.

Example 2.30. Consider the following families of non-degenerate deformations:

F λ(x, y, z, s) := x5λ + y7λz + z15 + y8λ + sxλy6λ, λ ≥ 1.

Observe that F 1 is a μ-constant deformation of Briançon–Speder (convenient version), see [BS75].
By virtue of Theorem 2.28 and Proposition 2.9, for each λ ≥ 1 the deformation F λ is μ-constant.

3. Characterization of Newton non-degenerate µ-constant deformations

First, let us recall some information regarding the Newton fan and toric varieties. Given S ⊂
Zn+1
≥0 \{o}, consider the support function

hΓ+(S) : Δ → R; α 	→ hΓ+(S)(α) := inf{〈α, p〉 | p ∈ Γ+(S)},
where Δ := Rn+1

≥0 is the standard cone and 〈·, ·〉 is the standard scalar product. Let 1 ≤ i ≤ n and
let F be an i-dimensional face of the Newton polyhedron Γ+(S). The set σF := {α ∈ Δ : 〈α, p〉 =
hΓ+(S)(α), ∀p ∈ F} is a cone, and Γ�(S) := {σF : F is a face of Γ+(S)} is a subdivision of the fan
Δ (by abuse of notation we denote by Δ the fan induced by the standard cone Δ). The fan Γ�(S)
is called the Newton fan of S. Given a formal power series g, we define Γ�(g) := Γ�(Supp(g)).

Let Δ′ ň Δ be a strict face of the standard cone Δ and (Δ′)◦ its interior relative to Δ′.
Observe that if there exists α ∈ (Δ′)◦ such that hΓ+(α) = 0, then Δ′ is a cone of the fan Γ�(S).
We say that Σ is an admissible subdivision of Γ�(S) if Σ is a subdivision that preserves the above
property, which is to say that if there exists α ∈ (Δ′)◦ such that hΓ+(S)(α) = 0, then Δ′ ∈ Σ. In
the case that the closed discrete set S is convenient, an admissible subdivision of Γ�(S) is a fan
where there are no subdivisions of strict faces of Δ.

Given a fan Σ, we denote by XΣ the toric variety associated to it. Given σ ∈ Σ, we denote by
Xσ the open affine of XΣ associated with the cone σ. Let Σ′ be a subdivision of Σ. It is known
that there exists a proper, birational and equivariant morphism π : XΣ′ → XΣ, induced by the
subdivision. Given σ′ ∈ Σ′, we write πσ′ := π|Xσ′ .

Now we use the notation from § 1.0.1. Let V be a hypersurface of Cn+1
o having a unique

isolated singularity at the point o. Let us assume that V is given by the equation f(x) = 0,
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where f ∈ Ox
n+1 is irreducible, and let � : W → Cm

o be a deformation of V given by F (x, s) ∈
C{x1, . . . , xn+1, s1, . . . , sm}.

Without loss of generality we may assume that the germ of analytic function f is convenient.
In effect, the Milnor number μ(f) := dimC Ox

n+1/J(f) is finite. Hence, for each e ∈ E there exists
m� 0 such that xme belongs to the ideal J(f). This implies that the singularities of f and of
f + xme have the same analytic type.

Let s be a general point of Cm
o , and let Σ be an admissible subdivision of Γ�(Fs) (not

necessarily regular). Denote by π : XΣ → Cn+1 the morphism given by the subdivision of Δ.
Using the morphism Cn+1

o → Cn+1 we can consider the base change of π and XΣ to the base
Cn+1
o . By abuse of notation we denote by π : XΣ → Cn+1

0 the resulting morphism after the base
change.

Let us recall the following known fact. Let V ′ be a hypersurface of Cn+1
o , n ≥ 1, having a

unique isolated singularity at the point o. Let us assume that V ′ is given by the equation g(x) = 0,
where g ∈ Ox

n+1. Let us assume that Σ is a regular admissible subdivision of a Newton fan Γ�(g).
If g is non-degenerate with respect to the Newton boundary, then the morphism π : XΣ → Cn+1

o

of toric varieties defines an embedded resolution of V ′ in a neighborhood of π−1(o) (see [Var76],
[Oka87] or [Ish07]). This shows that if Γ+(Fs) = Γ+(f), where s is a general point of Cm

o , and
F is a Newton non-degenerate deformation of f (in particular, a μ-constant deformation of f
by Theorem 2.28), a regular admissible resolution of the Newton fan defines a simultaneous
embedded resolution of W . In view of this, for the rest of this section we assume:

(i) F (x, s) ∈ C{x1, . . . , xn+1, s1, . . . , sm} is a Newton non-degenerate μ-constant deformation
of f ;

(ii) Γ+(Fs) �= Γ+(f). In particular, Ver(Fs, f) := Ver(Fs)\Ver(f) �= ∅.
Let ϕ : XΣ × Cm

o → Cn+1
o × Cm

o be the morphism induced by π. Let s be a general point of
Cm
o . Given α ∈ Ver(Fs) we denote by σα the (n+ 1)-dimensional cone of Γ�(Fs) generated by

all the non-negative normal vectors to faces of Γ+(Fs) which contain α. Denote by W̃ t the total
transform of W under ϕ.

Proposition 3.1. Let s be a general point of Cm
o , and assume that

ν(Fs) = ν(f).

There exists an admissible subdivision, Σ, of Γ�(Fs) having the following properties.

(i) For each α ∈ Ver(Fs, f), the fan Σ defines a subdivision, {σ1
α, . . . , σ

r
α}, regular to σα.

(ii) For each j ∈ {1, . . . , r}, W̃ t ∩ (X
σj

α
× Cm

o ) is a normal crossings divisor relative to Cm
o .

Proof. Let us recall that E := {e1, e2, . . . , en+1} ⊂ Zn+1
≥0 is the standard basis of Rn+1. First we

construct a simplicial subdivision of Γ�(Fs). Let Γ�(Fs)(j) be the set of all the j-dimensional
cones of Γ�(Fs). Let us consider a compatible simplicial subdivision, ΣS, of

⋃n
j=1 Γ�(Fs)(j),

such that if σ′ is a simplicial j-dimensional cone of Γ�(Fs)(j), 1 ≤ j ≤ n, then σ′ ∈ ΣS and
ΣS(1) = Γ�(Fs)(1), where ΣS(1) is the set of all the one-dimensional cones of ΣS.

Let us consider the case

α ∈ Ver(Fs, f).

By Theorem 2.25, α has a good apex. Then there exists I � {1, . . . , n+ 1} such that α ∈ RI
>0

and i ∈ Ic such that there exists a single edge Eα � α, of Γ(Fs) not contained in R{i}. Let
β = (β1, . . . , βn+1) ∈ Ver(Fs) ∩ Eα be the good apex, which is to say βi = δij , j ∈ Ic.
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Observe that ei ∈ E , is an extremal vector of σα. Let us consider the following simplicial
subdivision of σα:

Σs(σα) := {Cone(ei, τ) : τ ∈ ΣS and τ ⊂ σα} ∪ {τ ∈ ΣS : τ ⊂ σα},
where cone Cone({·}) is the cone generated by {·}. Now let us consider the case

α ∈ Ver(Fs)\Ver(Fs, f) = Ver(Fs) ∩ Ver(f),

let Σs(σα) be an arbitrary simplicial subdivision of σα that is compatible with ΣS. Then

Σs :=
⋃

α∈Ver(Fs)

Σs(σα)

is a simplicial subdivision of Γ�(Fs). As Fs is convenient, the faces of σα, α ∈ Ver(Fs), contained
in a coordinate plane are simplicial cones, then Σs is an admissible subdivision.

Now we define a subdivision of Σs to obtain the sought after fan.
Let α ∈ Ver(Fs, f). By abuse of notation we denote for σα a cone in Σs(σα)(n+ 1). Without

loss of generality we can suppose i = n+ 1, in this manner we have that σα = Cone(en+1, τ) with
τ ∈ ΣS. We denote H0 = R{n+1} ∩ Γ+(Fs) and H1,. . . ,Hn the n-dimensional faces of Γ+(Fs) that
define σα, then

⋂n
j=0Hj = {α}. Then Eα :=

⋂n
j=1Hj

Let p1, . . . , pn be non-negative normal vectors to the faces H1, . . . , Hn. Then

σσ := Cone(p1, . . . , pn, en+1).

Now we construct a regular subdivision of σα. Let us consider the cone

τ := Cone(p1, . . . , pn) ⊂ σα,

and a regular subdivision RS(τ) of τ that does not subdivide regular faces of τ . Then RS(τ)
does not subdivide faces Δ′ ň Δ. Let τ ′ ∈ RS(τ), then there exists q1, . . . , qn ∈ Cone(p1, . . . , pn)
such that τ ′ := Cone(q1, . . . , qn). Observe that the cones

(�) σ′α := Cone(q1, . . . , qn, en+1)

define a subdivision of the cone σα that can be extended to a subdivision Σ of Σs that does not
subdivide faces Δ′ ň Δ, which implies that Σ is admissible.

Now we prove that σ′α := Cone(q1, . . . , qn, en+1) is regular. Looking at qj as column vectors,
and consider the matrix of the size (n+ 1) × n:

A := (q1 · · · qn) =

( q1 1 · · · qn 1
...

...
q1 n+1 · · · qn n+1

)
.

For each j ∈ {1, . . . , n+ 1} let Aj be the matrix of the size n× n obtained by deleting the
row j of the matrix A. As τ ′ := Cone(q1, . . . , qn) is regular, we have that the greatest common
divisor, gcd(d1, . . . , dn+1), where

dj = |det(Aj)|,
is equal to 1. Let us suppose that the cone

σ′α := Cone(q1, . . . , qn, en+1)

is not regular, then |det(q1, . . . , qn, en+1)| = dn+1 ≥ 2. For each Hj , 1 ≤ j ≤ n we have that
α, β ∈ Hj , then 〈α, pj〉 = 〈β, pj〉 for all 1 ≤ j ≤ n, which implies that 〈α, qj〉 = 〈β, qj〉 for all
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1 ≤ j ≤ n. From this we obtain that

qj n+1 =
n∑
k=1

(αk − βk)qjk

for all 1 ≤ i ≤ n (remember that β is the good apex of α). Then dn+1 divides to dj for all
1 ≤ j ≤ n, which contradicts the fact that gcd(d1, . . . , dn+1) = 1. This implies that σ′α is regular.

Observe that there exist coordinates y1, . . . , yn+1 of Xσ′
α
∼= Cn+1 (before the base change)

such that the morphism

πσ′
α
(y) := πσ′

α
(y1, . . . , yn+1) = (x1, . . . , xn+1)

is defined by

xn+1 := y
q1 n+1

1 · · · yqn n+1
n yn+1 and xi := yq1i

1 · · · yqni
n , 1 ≤ i ≤ n.

From this we obtain

F (πσ′
α
(y), s) = ym1

1 · · · ymn
n F (y, s), mi = 〈qi, α〉, 1 ≤ i ≤ n.

Let us assume that r = (r1, . . . , rn+1) is a singular point of F (y, o). Then there exists 1 ≤
j ≤ n such that rj = 0. Without loss of generality, we can suppose that rn = 0. We know that
for each β′ ∈ Eα ∩ Ver(f) we have that 〈α, qi〉 = 〈β′, qi〉, for all 1 ≤ i ≤ n, and as α has a good
apex, we obtain

F (y, s) = c0(s) +H(y, s) +K(yn+1, s) + ynG(y, s),

where y = (y1, . . . , yn−1), c0(o) = 0, and

K(yn+1, s) = c1(s)yn+1 + · · · + cl(s)yln+1, c1(o) �= 0.

If Eα ∩ Ver(f) = {β}, then K(yn+1, s) = c1(s)yn+1. This shows that r cannot be a singular
point of F . If |Eα ∩ Ver(f)| > 1, then the singular point r = (r1, . . . , rn+1) satisfies

dK(rn+1, 0)
dyn+1

= 0.

This implies that rn+1 �= 0. We prove that this is contradiction.
Let W = Ver(Fs, f) ∩ Rn+1 and we define

F ′(x, s) = f(x) +
∑
γ∈W

dγ(s)xγ , dγ(o) = 0 for all γ ∈W.

We may assume that F ′ is a non-degenerate deformation of f . As

Γ+(f) ⊂ Γ+(F ′
s) ⊂ Γ+(Fs),

we have ν(F ′
s) = ν(f) (see Corollary 2.5). By the definition of F ′, the point α belongs to

Ver(F ′
s, f) = W . We note σα the cone of Γ�(F ′

s) associated with α. By construction, the cone σα
of Γ�(F ′

s) is the cone σα of Γ�(Fs) defined previously. Using the same regular subdivision of σα
we can define a regular admissible subdivision Σ′ of the fan Γ�(F ′

s).
Let σ′α be one of the two regular cones of the subdivision of σα (see (�)). As we previously

obtained

F ′(πσ′
α
(y), s) = ym1

1 · · · ymn
n F ′(y, s), mi = 〈qi, α〉, 1 ≤ i ≤ n.

Then r is a singular point of F (y, o) if and only if r is a singular point of F ′(y, o) (in fact,
F (y, o) = F ′(y, o)). We recall that |Eα ∩ Ver(f)| > 1, and that Eα is the only edge of Γ+(Fs) not
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contained in Ri, which contains α and its good apex. Observe that Eα also is the unique edge
Γ+(F ′

s) which satisfies the previous properties. Let β′ �= α an end point of Eα, and σβ′ ∈ Γ�(Fs)
the cone associated with β′. As |Eα ∩ Ver(f)| > 1, and Ver(F ′

s, f) ⊂ Rn+1, we have that the
cone σβ′ belongs to Γ�(f). Then the regular subdivision σ1

β′ ,. . . ,σtβ′ of σβ′ defined by the reg-
ular admissible subdivision Σ′ can be extended to regular admissible subdivision Σ′′ of Γ+(f).
By construction, there exists 1 ≤ j ≤ t such that r ∈ X

σj

β′
∼= Cn+1. But f is non-degenerate,

which implies that Ṽ s ∩Xσi
β′ is smooth, from where we obtain the sought after contradiction.

This implies that F (πσ′(y), s), which is a normal crossings divisor relative to Cm
o around

π−1
σ′

α
(o) × Cm

o . �
The following theorem is the main result of this article. Let s be a general point of Cm

o .
We construct a regular admissible subdivision, Σ, of Γ�(Fs) in the manner that ρ : XΣ ×
(Cm, o) → Cn+1

o × Cm
o is the sought after simultaneous embedded resolution. Observe that for

the result commented upon previously, π : XΣ → Cn+1
o defines an embedded resolution of Ws.

Theorem 3.2. Assume that W is a Newton non-degenerate deformation. The deformation W
is μ-constant if and only if W admits a simultaneous embedded resolution.

Proof. The ‘if’ part is given by Proposition 1.6. We prove ‘only if’.
By Proposition 3.1 there exists an admissible subdivision, Σ, of Γ�(Fs) (where s is a general

point of Cm
o ) such that for each α ∈ Ver(Fs, f), the fan Σ defines a subdivision σ1

α, . . . , σ
r
α,

regular of σα, such that W̃ t ∩Xσi
α
× Cm

o is a normal crossings divisor relative to Cm
o for i ∈

{1, . . . , r}. Consider the set, Σ(j), of all the cones of dimension j of Σ. Observe that given a
regular admissible subdivision of Σ(j), there exists a regular admissible subdivision of Σ(j + 1)
compatible with the given subdivision. Using recurrence we have that there exists a regular
admissible subdivision of Σ that does not subdivide its regular cones. By abuse of notation we
denote for Σ the regular admissible subdivision. To finish the proof we still need to consider α ∈
Ver(Fs) ∩ Ver(f). Let us consider the cone σ ⊂ Rn+1

≥0 generated by all the non-negative normal
vectors to faces of Γ+(Fs) which contain a α, and let σ1, . . . , σr be the regular subdivision defined
by Σ. Let us suppose that pi1, . . . , p

i
n+1 are the extremal vectors of σi. As σi is regular, we have

that Xσi
∼= Cn+1 (before the base change). Then we can associate the coordinates y1, . . . , yn+1

to Xσi such that πσi := π|Xσi is defined by

πσi(y) := πσi(y1, . . . , yn+1) = x := (x1, . . . , xn+1),

where xj := y
pi
1j

1 · · · yp
i
n+1 j

n+1 , pij := (pij1, . . . , p
i
j n+1), 1 ≤ j ≤ n+ 1. Then

F (πσi(y), s) = ym1
1 · · · ymn+1

n+1 F (y, s), mj = 〈pij , α〉, 1 ≤ j ≤ n+ 1.

Let c(s) be the degree zero term of F (y, s). As α �∈ Ver(Fs, f), there exits a sufficiently small open
set 0 ∈ Ω ⊂ Cm such that c(s′) �= 0 for all s′ ∈ Ω. Moreover, for each s′ ∈ Ω, we have σi ⊂ σα,s′ ,
1 ≤ i ≤ r, where σα,s′ is the (n+ 1)-dimensional cone of Γ�(Fs′) generated by all the non-negative
normal vectors to faces of Γ+(Fs′) which contain α. Observe that for each s′ ∈ Ω we can extend
the fan formed by the cones σi, 1 ≤ i ≤ r, to a subdivision of the cone σα,s′ ∈ Γ�(Fs′) without
subdivisions of strict faces of Δ (this allows us to return to the classical case of non-degenerate
hypersurface for each s′ ∈ Ω). Then the property of non-degeneracy of F implies that Fs′(πσi(y))
is a normal crossings divisor for each s′ ∈ Ω. This implies that F (πσi(y), s) is a normal crossings
divisor relative to Cm

o around π−1
σi (o) × Cm

o . �
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4. The degenerate case

Let us recall that V is a hypersurface of Cn+1
o , n ≥ 1, given by f ∈ Ox

n+1 irreducible such that
V has an isolated singularity at o. Let F ∈ C{x1, . . . , xn+1, s1, . . . , sm} be a deformation of
f ∈ C{x1, . . . , xn+1}:

F (x, s) := f(x) +
∞∑
i=1

hi(s)gi(x),

where hi ∈ Os
m := C{s1, . . . , sm}, m ≥ 1, and gi ∈ Ox

n+1 such that hi(o) = gi(o) = 0. Consider
the relative Jacobian ideal

Jx(F ) := (∂x1F, . . . , ∂xn+1F ) ⊂ C{x1, . . . , xn+1, s1, . . . , sm}.
The following theorem gives a valuative criterion for the μ-constancy of a deformation.

Theorem 4.1 [Gre86, LDS73, Tei73]. The following are equivalent:

(i) F is a μ-constant deformation of f ;
(ii) for all i ∈ 1, . . . ,m we have that ∂siF ∈ Jx(F ), where Jx(F ) denotes the integral closure of

the ideal Jx(F );
(iii) for all analytic curve γ : (C, o) → (Cn+1 × Cm, o), γ(o) = o, and for all i ∈ {1, . . . ,m} we

have that Ordt(∂siF ◦ γ(t)) > min{Ordt(∂xjF ◦ γ(t)) | 1 ≤ j ≤ n+ 1}.
(iv) same statement as in statement (iii) with ‘>’ replaced by ‘≥’.

Next, we state and prove an analogue of Corollary 2.19 for deformations that do not satisfy
the non-degeneracy assumption. Let s be a general point of Cm

o , I a proper subset of {1, . . . n+ 1}
and consider

Γ+(f) � Γ+(Fs)

such that Ver(Fs, f) ∩ RI
>0 �= ∅. If F is a μ-constant non-degenerate deformation of f , then by

virtue of Corollary 2.19 there exists i ∈ Ic such that βi = δij for j ∈ Ic, which is analogous to
statement (ii) of the following proposition.

In the rest of the section, we use the following notation. Given that J � {1, . . . , n+ 1},
we denote by CJ

o the complex-analytic germs at the origin of CJ := {(x1, . . . , xn+1) ∈ Cn+1 :
xi = 0 if i /∈ J} and by fJ (respectively, FJ) the natural restriction of f (respectively, F ) to CJ

o

(respectively, CJ
o × Cm

o ). Let VJ be the subset of CJ
o defined by the equation fJ(x) = 0.

Let Supp(F, f) := Supp(F )\ Supp(f).

Proposition 4.2. Fix a set I � {1, . . . , n+ 1}. Let us assume that F is a μ-constant deforma-
tion of f , and that Supp(Fs, f) ∩ RI

>0 �= ∅.
Then given

I ⊂ J � {1, . . . , n+ 1},

at least one of the following conditions is satisfied.

(i) The restriction fJ is reduced, VJ is a hypersurface of CJ
0 with an isolated singularity at o,

and FJ is a μ-constant deformation of fJ .
(ii) There exists i ∈ Jc and β := (β1, . . . , βn+1) ∈ Supp(F ) such that βi = δij , for j ∈ Jc.

A difference between the degenerate and the non-degenerate cases is that the point β ∈
Supp(Fs) of the previous proposition need not, in general, belong to the set Supp(f).
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Example 4.3. Consider the following deformation

F (x1, x2, x3, s) := x5
1 + x6

2 + x5
3 + x3

2x
2
3 + 2sx2

1x
2
2x3 + s2x4

1x2.

In [Alt87] it was shown that F is a μ-constant degenerate deformation of the non-degenerate
polynomial f(x1, x2, x3) := x5

1 + x6
2 + x5

3 + x3
2x

2
3 . In this example, we have that Ver(Fs, f) :=

{(4, 1, 0)} ⊂ R{1,2}
>0 and β := (2, 2, 1). Observe that β /∈ Supp(f).

Proof of Proposition 4.2. There is no loss of generality in supposing that J = {1, . . . , k}, k ≤ n.
We can always write F in the following manner:

F (x1, . . . , xn+1, s) = G(x1, . . . , xk, s) +
∑
k<i

xiGi(x1, . . . , xk, s) +
∑
k<i≤j

xixjGij(x1, . . . , xn+1, s),

where s = (s1, . . . , sm). Observe that FJ = G, and let g := fJ = G|s=0. Let us suppose that
condition (ii) is not satisfied, then Gi(x1, . . . , xk, s) ≡ 0 for all k < i ≤ n+ 1, then

F (x1, . . . , xn+1, s) = G(x1, . . . , xk, s) +
∑
k<i≤j

xixjGij(x1, . . . , xn+1, s).

Thus, we obtain that:

(i) ∂lF = ∂lG+
∑

k<i≤j xixj∂lGij , for 1 ≤ l ≤ k;
(ii) ∂lF =

∑
k<i≤l xiGil +

∑
l≤j xjGlj +

∑
k<i≤j xixj∂lGij , for k < l;

(iii) ∂sj′F = ∂sj′G+
∑

k<i≤j xixj∂sj′Gij , for 1 ≤ j′ ≤ m.

Let us suppose that the singularity of g(x) = G(x1, . . . , xk, 0) is not isolated in the origin o, or
g ≡ 0, or g not reduced. Then for each open set o ∈ Ω ⊂ Ck there exists (p1, . . . , pk) ∈ Ω such
that:

(a) g(p1, . . . , pk) = 0,
(b) ∂lg(p1, . . . , pk) = 0, for 1 ≤ l ≤ k.

Then (p1, . . . , pk, 0, . . . , 0) ∈ Cn+1 is a singularity of f , which is a contradiction.
Let us suppose that G(x1, . . . , xk, s) is not a μ-constant deformation of g. Then by virtue of

Theorem 4.1 there exists 1 ≤ j ≤ m, and an analytic curve

γ(t) := (tr1a1(t), . . . , trkak(t), tq1b1(t), . . . , tqmbm(t)), ri, qi ∈ Z>0,

such that

Ordt ∂sjG ◦ γ(t) ≤ min
1≤i≤k

{Ordt ∂iG ◦ γ(t)}.

Let us consider the following analytic curve:

β(t) := (tr1a1(t), . . . , trn+1an+1(t), tq1b1(t), . . . , tqmbm(t)).

Using (i), (ii), and statement (iii), we observe that we can choose the large enough
rk+1, . . . rn+1, and the ak+1(t), . . . an+1(t), which are general enough in the manner that:

(i) Ordt ∂sjF ◦ β(t) = Ordt ∂sjG ◦ γ(t) for 1 ≤ j ≤ m;
(ii) Ordt ∂iF ◦ β(t) = Ordt ∂iG ◦ γ(t) for 1 ≤ i ≤ k;
(iii) Ordt ∂lF ◦ β(t) ≥ max1≤i≤k{Ordt ∂iF ◦ β(t)} for k < l.

This implies that

Ordt ∂sjF ◦ β(t) ≤ min
1≤i≤n+1

{Ordt ∂iF ◦ β(t)}.
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This contradicts Theorem 4.1 since F defines a μ-constant deformation. Then G(x1, . . . , xk, s) is
a μ-constant deformation of g or there exists at least one non-zero Gi. �
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BS75 J. Briançon and J. P. Speder, La trivialité topologique n’implique pas les conditions de Whitney,

C. R. Acad. Sci. Paris Sér. I Math. A-B280 (1975), 365–367.
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Instituto de Matemáticas, Universidad de Talca, Camino Lircay S\N, Campus Norte, 3460787,
Talca, Chile

Hussein Mourtada hussein.mourtada@imj-prg.fr
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