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Invasion around a horizontal wellbore
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A mathematical model is developed for mud cake growth and fluid invasion around a

horizontal wellbore during drilling. The non-axisymmetry of the invasion front is addressed

for the case of water based drilling mud and isotropic rock formation. It is shown that the

invasion profile may lose convexity due to gravitation even though the filtrate density is the

same as that of the pore fluid in the rock.

1 Introduction

It is well known that formation damage caused by drilling-fluid invasion should be taken

into account, both for correct interpretation of logging data and for prediction of well

performance for natural clean-up when the well is subject to a pressure drawdown [3].

A series of laboratory experiments was conducted to study the mud induced formation

damage around a horizontal wellbore [1], [10], [14].

Motivated by these experiments, we consider invasion of filtrate from a horizontal

wellbore into pores of surrounding rock. The pressure within the wellbore is higher

than that within the pores of the formation. In addition, the density of the drilling

mud is different from that within the pores. This leads to a boundary condition on the

pressure within the wellbore that depends on the vertical position x2, thereby breaking

the axisymmetry. Fluid leaves the wellbore and deposits particles (typically clay particles

or barite weighting agent particles within the mud suspension) on the surface of the rock.

Due to this deposition, a mud cake grows with time. To describe the growth, we derive

a rather general transport equation for mud cake thickness considering the mud as a

two-phase fluid. The mud cake face is treated as a shock surface propagating through the

mud, with the solid-phase parameters (velocity, density and concentration) undergoing

jumps in agreement with the solid mass conservation law; the solid phase stiffens behind

the shock front and contributes to the growing rigid mud cake. It is the Rankine-Hugoniot

jump condition that gives rise to the mud cake transport equation. Then we find a good

approximation of the mud cake equation for the case when mud circulation in the wellbore

is not strong and concentration of solids in mud is small. Relating mud cake growth with

fluid flux into the formation, this simpler mud cake equation enables us to evaluate the

formation damage by means of analytical tools only.

Measurements with water-saturated sands [10] have revealed loss of convexity of the

brine invasion front with time. This effect is captured by our model as can be seen from

the calculations in Section 10; it is an interesting feature of the invasion profile that it
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has a cusp sometimes forming on the upper or lower part of the profile depending on the

mud fluid density–pore fluid density ratio (see Figure 4).

In some research, the growing mud cake is modelled as if it were an extension to the

porous formation; such an approach requires a remeshing for the next time step while

developing a finite element code [4]. Our mathematical model takes into account the mud

cake hydraulic resistance by means of a boundary-value condition for pressure in a fixed

formation domain. In comparison with the results of [3], the novelty is that this condition

depends strongly both on the mud cake thickness and the difference in density between

the mud and a formation fluid. To determine the pressure drop across the mud cake we

use an asymptotic argument, with the mud cake thickness being a small parameter.

Mud cake build-up for vertical wellbores has been the subject of a number of other

investigations [8], [13] but no advanced electro-kinetic theory has been developed yet to

identify the mud cake porosity and permeability, so it is commonly assumed that these

two basic parameters are given by specific measurements.

As mentioned in the above laboratory experiments, we do not take into account the

mud cake disturbance by motion of the drill string, which will generally rest on the lower

surface of a horizontal well.

The paper is organised as follows. In Sections 2 and 3 we discuss how the mud cake

interferes between the wellbore and the rock formation, and we derive a free-boundary

problem for the mud cake growth. In Section 4, under the hypothesis of thin mud cake,

we simplify by passing to a fixed-domain problem which still allows for both the invasion

of drilling mud into the formation and the accumulation of solid particles on the inside

of the wellbore. Section 5 is devoted to an asymptotic analysis of the reservoir pressure

equations. Invasion-front equations are derived in Section 6. In final sections we analyse

the governing equations analytically and numerically.

2 Governing equations for pressure

As soon as the drilling bit comes in contact with the reservoir, there is a rapid fluid

invasion (spurt loss) because there is no filter cake to prevent fluid solid particles from

entering into the pay zone. During this period, there is a progressive deposition of these

particles which creates an internal filter cake.

We consider here the process when this internal filter cake is well established, most of

the solid particles are retained outside the formation, generally creating a thin external

mud cake, which mainly controls the rate of filtration invasion.

The mathematical model proposed below describes the situation where the invading

and formation fluids have identical viscosities and the mud density ρm differs from the

density of the formation fluid ρrf only slightly. In this case, the fluid invading the formation

loses clay particles on the wellbore wall, overcomes the additional hydraulic resistance of

the filtrate cake and, when entering the formation, has the same density as the formation

fluid [11].

We study two-dimensional flows in a vertical (x1, x2)-plane perpendicular to the hori-

zontal wellbore. The flow scheme is depicted in Figure 1. The cross-section of the wellbore

is a circle of radius R0 with centre at the coordinate origin. The x2-axis is vertical and the

x1-axis is directed to the right parallel to the plane tangent to the ground. We consider
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Figure 1. 1-line is the mud cake face, 2-line is the wellbore wall, 3-line is the invasion front.

the flow in the region separated from the centre of the wellbore by a distance not larger

than R∞; therefore cylindrical variables (r, θ) are used below and the angle θ is measured

anti-clockwise from the x1-axis.

Incompressible flows in the formation are governed by the Darcy law

q = −λr∇
(
p+ ρrfgx2

)
, div q = 0, rc ≡ R0 < r < R∞. (2.1)

Here, q is the Darcy velocity vector, p is the pressure, h is the discharge or potential, λr is

the mobility of the formation fluid, g is the gravitational acceleration constant. We recall

that λr = kr/µr , where kr is the formation permeability, µr is the viscosity of the reservoir

fluid.

Equations (2.1) are valid in the annulus R0 < r < R∞. Away from the wellbore,

at r = R∞, the pressure is distributed according to the hydrostatic law and hence the

following boundary condition is satisfied:

r = R∞ : h ≡ p+ ρrfgx2 = p∞ = const. (2.2)

As for the flows in the mud cake, governing equations are the same:

q = −λc∇
(
p+ ρrfgx2

)
, div q = 0, rc ≡ R0 − σ(θ) < r < R0. (2.3)

Here, σ(θ) is the mud cake thickness, λc = kc/µr , with kc being the mud cake formation

permeability. It is assumed that the formation fluid density and the mud filtrate density

coincide and take a value ρrf while the drilling mud density ρm may be different.

Given a function f(r), we introduce its jump at a point of discontinuity R0:

f|R0±0 = f± = lim
δ→0

f(R0 ± δ), [f] = f+ − f−.

In what follows, ∂x = ∂/∂x denotes the partial derivative in a variable x.

Pressure, density and mass flux are continuous across the surface r = R0. Hence, h

obeys the boundary conditions [h] = 0 and [λ∂rh] = 0, i.e.

h|r=R0−0 = h|r=R0+0, λc∂rh|r=R0−0 = λr∂rh|r=R0+0. (2.4)

Let us calculate the jump of h across the surface r = rc, assuming that the mud

circulation is governed by the Euler equations for irrotational incompressible flows. In

this case, the Bernoulli integral holds, i.e.

ρmv2/2 + p+ ρmgx2 = const.
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Therefore, the potential p + ρmgx2 is constant along the mud cake face as long as |v| is

constant. Thus, we require that

h|r=rc−0 ≡ (p+ ρmgx2)|r=rc−0 = pw = const.

The constant pw is identified as the value of the potential h in the wellbore mud close to

the mud cake face. Particularly, the above equality holds if the drilling mud pressure at

the mud cake surface is distributed according to the hydrostatic law.

Pressure is continuous across the free boundary, so we write [p] = 0 at r = rc, i.e.

h|r=rc+0 = pw + [h] = pw + [ρ]g sin θ(R0 − σ),

where [ρ] = ρrf − ρm.

In the next section, we derive an evolution equation for the unknown mud cake thickness

function σ(t, θ).

3 Mud cake dynamics: free-boundary equation

Here we discuss the question of deposition of solid particles on the inside of the wellbore

for general three-dimensional mud flows. Our approach is based on the mass conservation

law for the solid phase of the mud fluid [6]:

∂(ρsϕs)

∂t
+ div (ρsϕsvs) = 0. (3.1)

Here, ρs is the density of solid particles in the mud, ϕs is the volume concentration of

solids in the mud and vs is the solid phase velocity. We recall that ϕs + ϕf = 1, where ϕf
is the volume concentration of the mud fluid phase. Equation (3.1) is considered in the

three-dimensional domain

−∞ < x3 < +∞, R1 < r < R0,

where R1 stands for the drill string radius.

We assume that:

(i) equation (3.1) holds in the distributional sense in the entire domain R1 < r < R0;

(ii) equation (3.1) holds in the classical sense both in the shear flow domain R1 < r <

rc(t, θ, x3) and in the mud cake domain rc(t, θ, x3) < r < R0, with the functions ρs ϕs and

vs being continuous everywhere except the shock surface:

r = rc(t, θ, x3), (3.2)

separating the rigid zone rc(t, θ, x3) < r < R0 from the flowing solid phase R1 < r <

rc(t, θ, x3). In the mud cake zone, we have

ρs = ρc, ϕs = 1 − Φc, vs = 0,

where ρc is the skeleton density and Φc is the mud cake porosity.
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Let us write equation (3.1) for flows in the cylindrical variables:

∂(rρsϕs)

∂t
+

∂(rρsϕsus)

∂r
+

∂(rρsϕsws)

∂z
+

∂(ρsϕsvs)

∂θ
= 0, (3.3)

where us is the radial velocity component, vs is the circumferential velocity component

and ws is the axial velocity component.

The calculation of jumps across the free-boundary (3.2) can be performed as in the

theory of shocks in conservation laws [12]. Let [f] stand for the jump of a function

f(t, r, θ, x3) across the surface (3.2). Then the usual Rankine-Hugoniot condition for (3.3)

leads to the jump condition

[rρsϕs]
∂rc
∂t

− [rρsϕsus] + [rρsϕsws]
∂rc
∂x3

+ [ρsϕsvs]
∂rc
∂θ

= 0.

We write this as a general transport equation for the mud cake thickness σ:

∂σ

∂t
+

[ρsϕsus]

[ρsϕs]
= − [ρsϕsws]

[ρsϕs]
· ∂σ

∂x3
− [ρsϕsvs]

[ρsϕs](R0 − σ)
· ∂σ

∂θ
. (3.4)

We recall that vs|rc+0 = 0, so

[ρsϕsus] = −ρ−
s ϕ

−
s u

−
s , [ρsϕsws] = −ρ−

s ϕ
−
s w

−
s , [ρsϕsvs] = −ρ−

s ϕ
−
s v

−
s . (3.5)

Equation (3.4) holds for any three-dimensional mud flow in the wellbore. Let us simplify

it. First, in two-dimensional case ∂σ/∂x3
= 0. Second, if the circulation of the viscous mud

is not strong and concentration of solids in mud is small, the last term on the right-hand

side of (3.4) is negligible. Under these assumptions, equation (3.4) becomes

∂tσ + [ρsϕsus]/[ρsϕs] = 0. (3.6)

Let Φc and ρc stand for the mud cake porosity and mud cake skeleton density. Then

[ρsϕs] = (ρsϕs)|r=rc+0 − (ρsϕs)|r=rc−0 = ρc(1 − Φc) − ρ−
s ϕ

−
s ,

where ρ−
s is the density of the mud solids and ϕ−

s is the volume concentration of solid

particles in the mud.

One can assume that

u+
s = 0, u−

s = αu−
f , (3.7)

where α is a relative velocity factor and uf is the radial component of the velocity vector

of the mud fluid phase. In Section 7, we comment on the evaluation of the parameter α.

The fluid mass conservation law at the mud cake face reads

ρwf ϕ
−
f u

−
f,n = ρrfΦcu

+
f,n, (3.8)

where ρwf is the density of the fluid phase in the mud and uf,n is the projection of the fluid

velocity vector onto the unit normal n to the mud cake face curve r + σ(t, θ) − R0 = 0;
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the vector n is directed into the mud cake. We find that

n = (cos θ − r−1
c ∂θσ sin θ, sin θ + r−1

c ∂θσ cos θ)/
√

1 + |∂θσ|2/r2c , (3.9)

where rc = R0 − σ.

Let us find a relationship between the radial fluid velocity uf and the normal fluid

velocity uf,n. By definition, uf,n = vf ·n. We have vf = (uf cos θ−vf sin θ , uf sin θ+vf cos θ),

so

vf · n = n1(uf cos θ − vf sin θ) + n2(uf sin θ + vf cos θ),

where vf is the circumferential component of velocity vector of the mud fluid phase. The

mud fluid angular circulation near the mud cake face is negligible, i.e. v−
f = 0. Thus,

u−
f,n = u−

f /

√
1 + |∂θσ|2/r2c .

We calculate

ρ−
s ϕ

−
s u

−
s

[ρsϕs]
=
αρ−

s ϕ
−
s ρ

r
fΦcu

+
f,n

[ρsϕs]ρ
w
f ϕ

−
f

√
1 + |∂θσ|2/r2c .

By the Darcy law,

Φcu
+
f,n = −λc∇h · n|r=rc+0,

where h is the mud cake potential. Hence, equation (3.6) becomes

∂tσ = −A
√

1 + |∂θσ|2/r2c ∇h · n|r=rc+0, A =
αρ−

s ϕ
−
s ρ

r
fλc

[ρsϕs]ρ
w
f ϕ

−
f

. (3.10)

Finally, the complete formulation of the free-boundary problem is now obtained by

combining all the equations and the boundary conditions. We look for two functions

h(t, r, θ) and σ(t, θ) such that

div (λ∇h) = 0, rc ≡ R0 − σ(t, θ) < r < R∞,

h|r=R∞ = p∞, [h]|r=R0
= 0, [λ∇h · n]|r=R0

= 0,

h|r=rc+0 = pw + g(R0 − σ)(ρrf − ρm) sin θ,

∂tσ = −A
√

1 + |∂θσ|2/r2c ∇h · n|r=rc+0, σ|t=0 = 0,

(3.11)

where

λ(r) = (λr − λc)
sign(r − R0)

2
+
λr + λc

2
,

and n at r = rc is given by (3.9).

We remark that one should apply the general equation (3.4) as far as mud circulation is

strong. In that case, the right-hand side terms are ‘removable terms’ which are responsible

for the mud cake stabilisation.

4 Non-dimensionalisation and approximate equations

The free-boundary problem formulated above is strongly degenerate since the two-

dimensional mud cake domain is initially a one-dimensional line. The most natural
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way forward is to develop a suitable approximation procedure. To this end we need to

characterize the problem in terms of the sizes of various parameters. These parameters

are introduced by defining a set of non-dimensional variables

ĥ = h/p∞, η = σ/σ∗, p̂w = pw/p∞, s = t/τ, r∞ = R∞/R0, ε = σ∗/R0,

where σ∗ is the typical mud cake thickness, ε is the relative mud cake thickness and τ is

the characteristic time interval.

By the change of variables (r, θ) → (ξ, θ), where

ξ =
r − R0

σ∗η(θ)
+ 1,

we map the ε-dependent mud cake domain 1 − εη(θ) < r/R0 < 1 onto a fixed domain

0 < ξ < 1, −π < θ < π,

which does not depend on ε. In this domain, the function ĥ(ξ, θ), which is 2π-periodic

with respect to θ, solves the equation

(
ε2η2(ξ − 1) + εη + ε2(1 − ξ)

(
∂2
θη − |∂θη|2

))
∂ξĥ+ 2ε2∂θη(1 − ξ)∂θ∂ξĥ

+ (ε2η2(ξ − 1)2 + 2εη(ξ − 1) + 1 + ε2(ξ − 1)2|∂θη|2)∂2
ξĥ+ ε2η2∂2

θĥ = 0. (4.1)

The transformation (r, θ) → (ξ, θ), ξ = r/R0 maps the reservoir annulus R0 < r < R∞
onto the domain

1 < ξ < r∞, −π < θ < π.

In this domain, the Laplace equation for ĥ becomes

ξ∂ξ(ξ∂ξĥ) + ∂2
θĥ = 0 with ĥ|ξ=r∞ = 1 and ĥ(ξ,−π) = ĥ(ξ, π). (4.2)

The continuity conditions (2.4) at r = R0 are now written as

[ĥ]|ξ=1 = 0, λ̃εη∂ξĥ|ξ=1+0 = ∂ξĥ|ξ=1−0, λ̃ ≡ λr/λc. (4.3)

The free-boundary reduces to the line ξ = 0 and the free-boundary conditions become

ĥ|ξ=0 = p̂w + δ(1 − εη) sin θ, a∂sη = −
(

∂ξĥ

ε2η
+

∂θη(∂θĥ+ η−1∂ξĥ∂θη)

(1 − εη)2

)∣∣∣∣
ξ=0

, (4.4)

where

δ = g
(
ρrf − ρm

)
R0/p∞, a =

R2
0

Aτp∞
(4.5)

are dimensionless parameters.
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In applications, both ε and δ are small. When δ is not related to ε, it suggests that we

seek a solution in the form of the asymptotic expansion

ĥ = h(0)(s, r, θ) + εh1,0(s, r, θ) + δh0,1(s, r, θ) + εδh1,1(s, r, θ) + · · · ,
η = η(0)(s, r, θ) + εη1,0(s, r, θ) + δη0,1(s, r, θ) + εδη1,1(s, r, θ) + · · · .

But this approach does not work. Indeed, tedious calculations reveal the equation

aη(0)∂sη
(0) = η1,0(p̂w − 1)/ ln r∞.

It means that to determine the zero-order approximation term one should know first the

first-order term. Similar irregular equations occur for higher-order terms. The reason is

that the right-hand side of (4.4)2 is not an analytic function of ε [9].

In order to make the problem more manageable, we argue as in the theory of surface

waves of small amplitude [7]. We substitute the evaluation on the unknown free surface

ξ = 0 by an evaluation on the known surface ξ = 1, even though the unknown mud

cake thickness η still appears in the equations. We look for a mud cake potential ĥ and

thickness η given by the asymptotic series:

ĥ =

∞∑
0

εkh(k)(s, ξ, θ, δ), η =

∞∑
0

εkη(k)(s, ξ, θ, δ). (4.6)

Putting (4.6) in (4.1), (4.3)1, and (4.4)1 one can write each of these equalities in the form

∞∑
0

εk(· · ·)k = 0.

To find all the coefficients h(k)(s, ξ, θ, δ), one should solve all the equations (· · ·)k = 0.

Particularly to find h(0) and h(1), one should solve the following boundary-value problems:

∂2
ξh

(0) = 0, h(0)|ξ=0 = p̂w + δ sin θ ≡ γ0, h(0)|ξ=1 = h0
+,

∂2
ξh

(1) + η(0)∂ξh
(0) + 2η(0)(ξ − 1)∂2

ξh
(0) = 0, h(1)|ξ=0 = −δη(0) sin θ, h(1)|ξ=1 = h1

+,

where

ĥ|ξ=1+0 = h0
+ + εh1

+ + o(ε).

Solutions are given by the representation formulas

h(0) = γ̂ξ + γ0, γ̂ ≡ h0
+ − γ0,

h(1) = −ξ2η(0)γ̂/2 + ξ
(
h1

+ + η(0)δ sin θ + η(0)γ̂/2
)

− δη(0) sin θ.

The function h(0) + εh(1) could be taken as a first-order approximation of the mud cake

potential ĥ|0<ξ<1. Since

εη = εη(0) + o(ε), ĥ|ξ=1+0 −
(
h0

+ + εh1
+

)
= o(ε),
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the function

ξ(ĥ|ξ=1+0 − γ0) + γ0 − ξ2εη(ĥ|ξ=1+0 − γ0)/2 + ξ(εηδ sin θ + εη(ĥ|ξ=1+0 − γ0)/2) − δεη sin θ

(4.7)

is a first-order approximation also. Then we make use of the function ĥ|0<ξ<1 given by

the representation formula (4.7) to calculate the right-hand sides of equalities (4.3)2 and

(4.4)2. As a result, we obtain, denoting σ̂ = εη, the following boundary conditions for the

reservoir potential ĥ|1<ξ<r∞ at ξ = 1:

λ̃σ̂∂ξĥ+ (p̂w − ĥ)(1 − σ̂/2) + δ(1 − 3σ̂/2) sin θ = 0, (4.8)

aσ̂∂sσ̂ = (p̂w − ĥ)(1 + σ̂/2)

(
1 +

|∂θσ̂|2
(1 − σ̂)2

)
− δσ̂∂θσ̂ cos θ

(1 − σ̂)

+ δ sin θ

(
1 − σ̂/2 + (1 + σ̂/2)

|∂θσ̂|2
(1 − σ̂)2

)
, σ̂|s=0 = 0. (4.9)

Thus, under the hypothesis of thin mud cake we have derived a boundary-value problem

in the fixed reservoir domain 1 < ξ < r∞ for the reservoir potential ĥ and the mud cake

thickness η. In what follows, this boundary-value problem, consisting of the equations

and boundary conditions (4.2), (4.8) and (4.9), will underlie our analysis of the invasion

front.

5 Mud cake growth and reservoir pressure development

We perform an asymptotic analysis of problem (4.2), (4.8) and (4.9), assuming that the

parameter δ is small. We look for a solution in the form

ĥ =

∞∑
0

δkhk, σ̂ =

∞∑
0

δkσk. (5.1)

Putting (5.1) into (4.2), (4.8) and (4.9), we find that h0 and σ0 solve the problem

ξ∂ξ(ξ∂ξh0) + ∂2
θh0 = 0, (5.2)

ξ = 1 : λ̃σ0∂ξh0 + (p̂w − h0)(1 − σ0/2) = 0, h0|ξ=r∞ = 1, (5.3)

ξ = 1 : aσ0∂sσ0 = (p̂w − h0)(1 + σ0/2)

(
1 +

|∂θσ0|2
(1 − σ0)2

)
. (5.4)

Given functions h0 and σ0, one can find functions h1 and σ1 from the system

ξ∂ξ(ξ∂ξh1) + ∂2
θh1 = 0, h1|ξ=r∞ = 0, (5.5)

ξ = 1 : λ̃(σ0∂ξh1 + σ1∂ξh0) = (p̂w − h0)σ1/2 +
(
1 − σ0/2

)
h1 − (1 − 3σ0/2) sin θ, (5.6)
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ξ = 1 : aσ0(1 − σ0)
2∂sσ1 + a∂sσ0(σ1(1 − σ0)

2 − 2σ0(1 − σ0)σ1)

= 2(p̂w − h0)(1 + σ0/2)(∂θσ0∂θσ1 − σ1(1 − σ0)) − σ0(1 − σ0)∂θσ0 cos θ

+ ((1 − σ0)
2 + |∂θσ0|2)

(
σ1

2
(p̂w − h0) − h1

(
1 +

σ0

2

))

+ ((1 − σ0)
2(1 − σ0/2) + (1 + σ0/2)|∂θσ0|2) sin θ (5.7)

The solution of problem (5.2)–(5.3) is given by the formula

h0 = −δpα0(σ0) ln ξ + β0(σ0), (5.8)

where

α0 =
1 − σ0/2

(1 − σ0/2) ln r∞ + λ̃σ0

, δp = p̂w − 1, β0 = 1 + δpα0 ln r∞.

With such a function h0 at hand, problem (5.4) admits a solution σ0(s, θ) which does not

depend on θ. To find σ0(s), one should solve the following Cauchy problem:

dσ0

ds
=

∆pλ̃(1 + σ0/2)

(1 − σ0/2) ln r∞ + λ̃σ0

, σ0|s=0 = 0, ∆p =
δp

a
≡ Aτ(pw − p∞)

R2
0

. (5.9)

Now, it follows from (5.8) that h0 does not depend on θ.

Problem (5.6)–(5.7) admits a solution

h1 = H(s, ξ) sin θ, σ1 = ν(s)δ−1
p sin θ,

where the functions H and ν satisfy the system

ξ∂ξ(ξ∂ξH) = H, 1 < ξ < r∞, H |ξ=r∞ = 0, (5.10)

ξ = 1 : λ̃

(
σ0∂ξH +

ν

δp
∂ξh0

)
= (p̂w − h0)

ν

2δp
+ (1 − σ0/2)H − (1 − 3σ0/2), (5.11)

ξ = 1 : aσ0(1 − σ0)
2δ−1
p

dν

ds
+ a

dσ0

ds
δ−1
p ν(1 − σ0)(1 − 3σ0)

= (1 − σ0)
2(1 − σ0/2) − 2δ−1

p ν(p̂w − h0)(1 + σ0/2)(1 − σ0)

+ (1 − σ0)
2
(
δ−1
p ν(p̂w − h0)/2 − (1 + σ0/2)H

)
, ν|s=0 = 0. (5.12)

It follows from (5.10)–(5.11) that

H = −α1(σ0, ν)ξ + β1(σ0, ν)/ξ,

with

α1 =
1 − 3σ0/2 − ν(λ̃α0 + (1 − α0 ln r∞)/2)

λ̃σ0(r2∞ + 1) + (1 − σ0/2)(r2∞ − 1)
, β1 = α1r

2
∞.

To find ν, one should put H(s, 1) into (5.12). As a result, one obtains the following linear
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ordinary differential equation for ν(s):

∆−1
p

dν

ds
+ α2(σ0)ν = β2(σ0), ν|s=0 = 0, (5.13)

where

α2 =
λ̃(r2∞(λ̃− 1) + 1 + λ̃)

((1 − σ0/2) ln r∞ + λ̃σ0)(λ̃σ0(r2∞ + 1) + (1 − σ0/2)(r2∞ − 1))

and

β2 =
λ̃(r2∞ + 1)(1 − σ0/2)

λ̃σ0(r2∞ + 1) + (1 − σ0/2)(r2∞ − 1)
.

One can use two principal terms of the series (5.1) for σ to analyse the mud cake

growth. We have

σ̂(s, θ) = σ0(s) + δδ−1
p ν(s) sin θ + o(δ).

Hence, the mud cake is non-axisymmetrical provided δ � 0. The time dependent coeffi-

cients σ0 and ν can be calculated easily using (5.9) and (5.13).

The mud cake face equation

ξ = 1 − σ0(s) − δδ−1
p ν(s) sin θ

in the dimensionless variables yi = xi/R0 becomes

(
y2

1 + y2
2

)2
+ 2δδ−1

p νy2

(
y2

1 + y2
2

)
+ δ2δ−2

p ν2y2
2 = (1 − σ0)

2
(
y2

1 + y2
2

)
.

Neglecting the term δ2δ−2
p ν2y2

2 , one obtains the circle

y2
1 +

(
y2 + δδ−1

p ν
)2

= (1 − σ0(s))
2 + δ2δ−2

p ν2(s) ≡ d2(s).

As time grows, the radius d(s) of the circle decreases with the centre point (0,−δδ−1
p ν)

going down when δ > 0 and rising up when δ < 0.

In what follows, we use two principal terms of the series (5.1) for ĥ to analyse the

invasion front.

6 Invasion front equations

Since the density of the formation fluid is constant and coincides with that of the invading

fluid, the salt distribution in the formation is described by the following equations [2]:

Φr
∂c

∂t
+ div (c q) = 0, div q = 0, q = −λr∇h, h ≡ p+ ρrfgx2. (6.1)

The following notations are adopted: c is the salt mass concentration and Φr is the

reservoir porosity. The rock reservoir mobility λr does not depend on c and hence the

salt transport equation in (6.1) is uncoupled from the last two equations. The only role of

the first equation in (6.1) is to work out the interface between the original pore fluid and

the invading filtrate. Having the same density and the same viscosity, these two fluids are

distinguished by the salt concentration only.
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The salt boundary and initial conditions are:

c|r=R0
= c1, c|t=0 = c0. (6.2)

Hence, the salt concentration c in the invasion domain and in the virgin rock formation

takes the values c1 and c0 respectively. We note that the first of conditions (6.2) for c is

meaningful only for those points of the circle r = R0 at which the seepage velocity q is

directed into the formation, i.e. the following inequality should be satisfied:

r = R0 : ∂rh � 0. (6.3)

Let us return to the dimensionless variables. Neglecting terms of order o(δ), we have

the following representation formula for the reservoir potential ĥ:

ĥ = β0(s) − δpα0(s) ln ξ + δ(−α1(s)ξ + β1(s)/ξ) sin θ. (6.4)

This representation implies that the flow pattern is symmetric with respect to the vertical

axis. In terms of the dimensionless variables yi = xi/R0, we find the stream function ψ

from the conditions ψy1
= ĥy2

, ψy2
= −ĥy1

using the curvilinear integral

ψ(y1, y2) =

(y1 ,y2)∫
(y0

1 ,y
0
2 )

− ĥy1
dy2 + ĥy2

dy1 =

∫
L1

· · · +

∫
L2

· · · .

Here,

(y1, y2) = (ξ cos θ, ξ sin θ),
(
y0

1 , y
0
2

)
= (1, 0).

The segment L1 connects the point (y0
1 , y

0
2) with the point (y∗

1 , y
∗
2) = (ξ, 0). The segment

L1 is defined in the parametric form

L1 : y1 = 1 + ζ(ξ − 1), y2 = 0, 0 � ζ � 1.

The curvilinear segment L2 is a part of the circumference defined in the parametric form

L2 : y1 = ξ cos(ζθ), y2 = ξ sin(ζθ), tan θ = y1/y2, 0 � ζ � 1.

Each integral
∫
Li

is evaluated parametrically to give the following representation for the

dimensionless stream function ψ in the polar coordinates:

ψ(ξ, θ) = δpα0θ − δ(α1ξ + β1/ξ) cos θ + const.

Now, the trajectory of each fluid particle that issues from the point of the wellbore (1, θ0)

is specified by the equality ψ(ξ, θ) = ψ(1, θ0).

The salt transport equation in the dimensionless polar variables becomes

∂sĉ− Λ(∂ξĉ ∂ξĥ+ ξ−2∂θĉ ∂θĥ) = 0, Λ =
λrp∞τ

R2
0Φr

,
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or

∂sĉ+ Λ
(
δpα0ξ

−1 + δ
(
α1 + β1ξ

−2
)
sin θ

)
∂ξĉ− δΛ cos θ

(
− α1ξ

−1 + β1ξ
−3

)
∂θĉ = 0.

The characteristics of this equation are specified by

dξ

ds
=Λ1α0(σ0)ξ

−1 + Λ2(α1(σ0, ν) + β1(σ0, ν)ξ
−2) sin θ, ξ(0) = 1,

dθ

ds
=Λ2(α1(σ0, ν)ξ

−1 − β1(σ0, ν)ξ
−3) cos θ, θ(0) = θ0 ∈

[
− π

2
,

π

2

]
,

(6.5)

where

Λ1 = δpΛ =
λrτ(pw − p∞)

R2
0Φr

, Λ2 = δΛ =
λrτg

(
ρrf − ρm

)
R0Φr

.

To construct the invasion front, it suffices to find a solution of system (6.5):

ξ = ξ(s, θ0), θ = θ(s, θ0), θ0 ∈
[

− π

2
,

π

2

]
. (6.6)

Equations (6.6) define a parametric specification of this front, with θ0 being a parameter.

Elimination of θ0 results in the front equation

ξ = ξ(s, θ). (6.7)

We denote

v = sin θ, B1 = Λ2α1(σ0, ν), B2 = Λ2β1(σ0, ν), B3 = Λ1α0(σ0),

then problem (6.6) becomes equivalent to

dξ

ds
=B3ξ

−1 +
(
B1 + B2ξ

−2
)
v, ξ(0) = 1,

dv

ds
=(1 − v2)

(
B1ξ

−1 − B2ξ
−3

)
, v(0) = v0 ∈ [−1, 1].

(6.8)

We remark that the three-dimensional invasion cone along a horizontal wellbore can

be calculated by system (6.8) as far as the drilling velocity is known [3].

The behavior of the front is strongly determined by the parameters δp and δ. Depending

on the sign of δ, three cases are possible: δ = 0, δ > 0 and δ < 0. We consider them

sequentially.

7 Axisymmetrical invasion

Let ρrf = ρm. Due to (6.4), the necessary invasion condition (6.3) in the case δ = 0 becomes

max
θ

∂ξĥ|ξ=1 ≡ −δpα0 � 0.

Clearly it is valid if δp � 0. The mud cake is an annulus domain, with the dimensionless

thickness equal to σ0 and growing according to the law (5.9). When B1 = B2 = 0, the
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front is defined by the equations

dξ

ds
=
B3(σ0)

ξ
,

dv

ds
= 0, ξ(0) = 1, v(0) = v0 ∈ [−1, 1]. (7.1)

It follows from (5.9) and (7.1) that

dξ2

dσ0
=

2aΛ(1 − σ0/2)

λ̃(1 + σ0/2)
.

Hence, the front is a circumference with centre at the coordinate origin and radius specified

by the formula

ξ2 = 1 + γ(ln(1 + σ0/2) − σ0/4), γ = 8aΛ/λ̃. (7.2)

Particularly, this law enables one to evaluate the invasion zone by means of the mud

cake thickness growth given by Caliper measurements. (Observe, that the right-hand

side of (7.2) is an increasing function of σ0.) The law (7.2) helps also to determine the

relative velocity factor α introduced by (3.7). Indeed, let the invasion front radius ξ = r�
correlate statistically with the mud cake thickness σ0 = σ�0 , as far as the vertical wellbore

is concerned. Then one can calculate the constant a and eventually the constant α by the

formula

r2� − 1

ln(1 + σ�0/2) − σ�0/4
= γ,

and formulas (3.10) and (4.5).

There is one more conclusion from (7.2). Let ξ = r� and σ0 = σ�0 be laboratory

measurement data (obtained at the same instant); then the in situ data (ξ(s), σ0(s)) should

obey the formula

ξ2(s) − 1

ln(1 + σ0(s)/2) − σ0(s)/4
=

r2� − 1

ln(1 + σ�0/2) − σ�0/4
, (7.3)

provided the laboratory and in situ conditions are characterized by the same dimensionless

parameter γ.

8 Non-axisymmetrical invasion

Assume δ � 0. There is a time interval (0, s∗), such that both α1(s) and β1(s) are strictly

positive when 0 < s < s∗. Due to (6.4), the invasion condition (6.3) becomes

max
θ

∂ξĥ|ξ=1 ≡ |δ|(α1(s) + β1(s)) − δpα0(s) � 0, 0 < s < s∗.

Particularly, this inequality is valid if the parameters δp and δ obey the restriction

δp

|δ| ≡ pw − p∞
gR0|ρrf − ρm| � D, (8.1)

https://doi.org/10.1017/S0956792507007279 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792507007279


Invasion around a horizontal wellbore 55

where

D ≡ sup
0�σ�2/3

(1 + r2∞)(1 − 3σ/2)(λ̃σ + (1 − σ/2) ln r∞)

(1 − σ/2)(λ̃σ(1 + r2∞) + (1 − σ/2)(r2∞ − 1))
.

Clearly, D � D∗ ≡ ((1 + r2∞) ln r∞)/(r2∞ − 1). Below, some simulations will be performed at

the minimal pressure overbalance condition with

pw = pw,min ≡ p∞(1 + D∗|δ|). (8.2)

Observe, that low pressure overbalance is widely applied in the drilling practice to minimize

the formation damage.

Let the inequality (8.1) hold with δ > 0. We analyse the invasion front using the

following mathematical claim. The function ξ(s, θ) in (6.7), which specifies the front,

increases monotonically with increase in θ for θ ∈ [−π/2, π/2]. In this case

∂θξ > 0 if − π

2
< θ <

π

2
and ∂θξ = 0 if θ = ±π

2
. (8.3)

Let us prove this statement locally in time. Since ∂θξ = ∂vξ cos θ, it suffices to establish

that

∂vξ(s, v) > 0 for 0 < s < s0, −1 � v � 1, (8.4)

where (0, s0) is a time interval and

ξ = ξ(s, v), (8.5)

is the equation of the boundary of the invasion front in the dimensionless variables v and

ξ for fixed s > 0.

Let us differentiate equality (8.5) with respect to v0:

dξ

dv0
=
dξ

dv

dv

dv0
,

dξ

dv
=
χ

ω
, χ ≡ dξ

dv0
, ω ≡ dv

dv0
.

The functions χ(s, v0) and ω(s, v0) obey the initial conditions

χ(0, v0) = 0, ω(0, v0) = 1, (8.6)

and satisfy the equations:

dχ

ds
= −B3ξ

−2χ− 2B2ξ
−3vχ+

(
B1 + B2ξ

−2
)
ω,

(8.7)
dω

ds
= (1 − v2)

(
− B1ξ

−2 + 3B2ξ
−4

)
χ− 2

(
B1ξ

−1 − B2ξ
−3

)
vω,

which are obtained by differentiation of (6.8) with respect to v0. Considering the first

equation of system (8.8) as an ordinary differential equation for χ, we obtain the following
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representation:

χ(s, v0) =A1

s∫
0

ω(t, v0)G1(t, v0)dt, A1(s, v0) = exp

⎛
⎝

s∫
0

F1(t, v0)dt

⎞
⎠ ,

F1(s, v0) = − B3

ξ2
− 2vB2

ξ3
, G1(s, v0) =

(
B1 +

B2

ξ2

)
A−1

1 (s, v0).

(8.8)

Due to the initial conditions (8.6) for ω, there is a time interval [0, s1] such that ω(s, v0) is

strictly positive uniformly in v0 ∈ [−1, 1]. On the other hand, there is a time interval [0, s2]

such that B1(s) � 0 and B2(s) � 0 for 0 < s < s2. It follows from (8.8) that χ > 0 for all

0 < s < s3, s3 = min{s1, s2}, uniformly in v0 ∈ [−1, 1]. Therefore, χ/ω > 0 for 0 < s < s3
uniformly in v0 ∈ [−1, 1]. Thus, inequality (8.4) and relations (8.3) are verified.

In the case δ < 0, the front geometry is analysed performed by the same scheme as

for δ > 0. For this, it suffices to replace the positive functions B1 and B2 by the negative

ones: B1 := −|B1|, B2 := −|B2|. We give only the final results. At each fixed time, the

monotonicity property of the front is expressed by the conditions

∂θξ < 0 if − π

2
< θ <

π

2
and ∂θξ = 0 if θ = ±π

2
. (8.9)

Interestingly, the front is a symmetric reflection (relative to the horizontal axis x2 = 0) of

the front obtained for the case δ > 0. This is a consequence of the fact that system (6.5) has

the following symmetry. Let δ < 0. We denote the solution of problem (6.5) by (ξ(s; δ, θ0),

θ(s; δ, θ0)) and introduce the functions ξ∗(s) = ξ(s; δ, θ0) and θ∗(s) = −θ(s; δ, θ0). Then, it

is easy to verify that (ξ∗, θ∗) is a solution of problem (6.5) if δ is replaced by |δ| and θ0 by

−θ0, i.e.

dξ∗
ds

=B3ξ
−1
∗ + (|B1| + |B2|ξ−2

∗ ) sin θ∗, ξ∗(0) = 1,

dθ∗
ds

=(|B1|ξ−1
∗ − |B2|ξ−3

∗ ) cos θ∗, θ∗(0) = −θ0 ∈
[

−π

2
,

π

2

]
.

9 Loss of convexity

Let us consider the case δ < 0. Clearly, system (6.8) has two solutions (ξ = ξ1(s), v = −1)

and (ξ = ξ2(s), v = 1), where

dξ1

ds
=
B3

ξ1
− B2

ξ2
1

− B1,
dξ2

ds
=
B3

ξ2
+
B2

ξ2
2

+ B1, ξ1(0) = ξ2(0) = 1. (9.1)

Hence, the distances ξ1(s) and ξ2(s) are the largest and smallest offset front distances from

the centre at the moment s. In what follows, we will show numerically that the invasion

front can lose convexity with time at the closest front’s point P2 = (x1, x2) = (0, ξ2(s)).

Observe that the front maintains its convexity for some time because of continuous

dependence upon initial data. The calculation scheme is formed as follows. Given an

instant s, we compare the line tangent to the front point P2 and the horizontal line x2 =

ξ2(s). The latter is specified in the polar coordinates (ξ, v), v = sin θ, by the equation
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ξ = ξ2(s)v
−1. For such a line, dξ/dv = −ξ2(s)v

−2. Therefore, for the front equation

ξ = ξ(v, s), it suffices to establish that the inequality

J(s) :=
dξ

dv
|v=1 < −ξ2(s), (9.2)

holds starting from a certain moment. Setting v = 1 in formulas (6.8), we find that the

function J(s) := χ/ω|v=1, with χ and ω defined in Section 8, satisfies the equation

dJ

ds
= −

(
4B2

ξ3
2

+
2B1

ξ2
+
B3

ξ2
2

)
J + B1 +

B2

ξ2
2

, J(0) = 0. (9.3)

One can solve numerically equation (9.3) jointly with (5.9), (5.13) and equation (9.1) for r2
to show that inequality (9.2) may be valid starting from a certain moment with a special

choice of data (for example, δp should be sufficiently small).

If δ > 0, the convexity loss occurs by symmetry at the nearest front point where

θ = −π/2. Observe, that in [11], the loss of convexity was proved analytically for the

invasion model with a stable mud cake.

10 Numerical results

The data below are taken from [3] for the water based mud. Making use of Mathematica 5,

we perform a series of calculations varying some data. First, we list the invariable

data: R0 = 10 cm, r∞ = 40, ρrf = 0.84 g/cm3, ρc = 3.0 g/cm3, ρ−
f = 1.0 g/cm3, ρ+

f =

1.00001 g/cm3, ρ−
s = 2.4 g/cm3, ρ+

s = 3.0 g/cm3, ϕ−
s = 2.65%, ϕ−

s + ϕ−
f = 1, Φc = 20%,

ϕ+
s = 1 −Φc, ρm ≡ ϕ−

s ρ
−
s +ϕ−

f ρ
−
f = 1.037 g/cm3, Φr = 36%, µc = 0.6 cp = 0.006 g/(cm · s),

µr = 3 cp = 0.03 g/(cm · s), τ = 3600 s, r∗ = 10.

In the simulations below, we calculate the farthest front point with the coordinates

(0,−R0ξ1(s)), the front point (0, R0ξ2(s)) which is nearest the wellbore centre, the loss of

axisymmetry R0ξ1(s) − R0ξ2(s) and the mean value of the mud cake thickness R0σ0(s).

Their is no a loss of convexity in the first two simulations. Let us denote ri = R0ξi and

σ = R0σ0.

Simulation 1. Here kr = 100md = 0.987 × 10−9 cm2, kr/kc = 100, p∞ = 100 bar =

106 g/(cm · s), pw = 120 bar, σ∗
0 = 0.03. The following results are obtained at s = 16 hours:

δ = −0.193158 × 10−4, r1 = 175 cm, r1 − r2 = 3 × 10−4 cm, σ = 3.0 cm. Clearly, both the

mud cake and the invasion zone can be considered annuli (Figure 2).

Simulation 2. Here kr = 100md, kr/kc = 100, p∞ = 100 bar, pw = pw,min = 100.007 bar,

σ∗
0 = 0.03. The following results are obtained at s = 16 hours: δ = −0.193158×10−4, r1 =

11.75 cm, r1−r2 = 1.75 cm, σ = 0.00008 cm. The front non-axisymmetry is strong (Figure 3).

A loss of convexity is observed in the next five simulations. Simulation 3. Here kr =

100md, kr/kc = 100, p∞ = 1 bar, pw = pw,min = 1.007 bar, σ∗
0 = 0.03. The following results

are obtained at s = 800 hours: δ = −0.193158 × 10−2, r1 = 35 cm, r1 − r2 = 16.5 cm,

σ = 0.04 cm. A loss of convexity occurs soon after s = 400 hours (Figure 4).

Next four simulations are characterized by the same value of δ = −0.193158 × 10−2.

Their common features are σ∗
0 = 0.1 and the minimal pressure overbalance conditions

(8.2), i.e. p∞ = 1 bar, pw = 1.00713 bar. We vary only values of kr and kc.
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Figure 2. Mud cake face and invasion front calculated in Simulation 1 for s = 30 h.

Figure 3. Invasion front in Simulation 2 at s = 30 h. Plot of J + ξ2.

Simulation 4 with the data kr = 10000md and kr/kc = 10 hours. The following results

are obtained at s = 10: r1 = 40 cm, r1 − r2 = 22 cm, σ = 0.175 cm. An invasion front

non-axisymmetry is clearly developed and a loss of convexity is observed for s > 3.75

hours.

Simulation 5 with the data kr = 1000md and kr/kc = 10. The following results are

obtained at s = 100 hours: r1 = 40 cm, r1 − r2 = 20 cm, σ = 0.175 cm. An invasion front

non-axisymmetry is clearly developed and a loss of convexity is observed for s > 37 hours.

Simulation 6 with the data kr = 100md and kr/kc = 10. The results are obtained at

s = 800 hours: r1 = 40 cm, r1−r2 = 18 cm, σ = 0.14 cm. An invasion front non-axisymmetry

is clearly developed and a loss of convexity is observed for s > 375 hours.

Simulation 7 with the data kr = 100md and kr/kc = 1. The results are obtained at

s = 1000 hours: r1 = 45 cm, r1 − r2 = 20 cm, σ = 0.175 cm. An invasion front non-

axisymmetry is clearly developed and a loss of convexity is observed for s > 350 hours.
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Figure 4. Invasion front in Simulation 3 at s > 400 h. Invasion front in Simulation 7 at s = 1500 h.

Conclusions

The goal of the study is to estimate the role of gravitation as far as the drilling mud-

filtrate invasion around a horizontal wellbore is concerned. A mathematical model is

formulated to simulate both the invasion and mud cake development under application of

overbalanced pressure. Real drillings with the water based mud are characterised by small

values of the dimensionless gravitational parameter |δ| = gR0(ρm−ρrf)/p∞(≈ 10−2 −10−5).

Under the assumption that the mud cake is thin, an asymptotic theory is developed to

reduce the model to four ordinary differential equations. As the theory reveals, there are

five principal dimensionless parameters

λr

λc
,

R∞
R0
,

λrτ(pw − p∞)

R2
0Φr

,
λrτg

(
ρrf − ρm

)
R0Φr

,
τ(pw − p∞)αρ−

s ρ
r
fϕ

−
s λc

ρwf ϕ
−
f (ρc(1 − Φc) − ρ−

s ϕ
−
s )

which characterise the evolution both of the invasion front and of the mud cake. This

implies that a laboratory experiment is meaningful and simulate an in situ experiment

provided the laboratory input principal parameters and the in situ principal parameters

coincide.

We have proved by analytical tools that non-axisymmetry both of invasion front and

of mud cake always occurs if a water based drilling mud is applied. The invasion region

annulus is the most thicker below and the most thinner above. The same is true for the

mud cake annulus.

Numerical calculations have demonstrated that the non-axisymmetry degree strongly

depends on the pressure overbalance parameter ∆p = (pw − p∞)/(gR0|ρrf − ρm|). For high

values of ∆p, both the mud cake and the damage zone can be assumed regular annuli.

Invasion profile non-axisymmetry manifests itself for low values of ∆p. One more feature

of simulations with low values of ∆p is a loss of the front convexity.

The impact of different parameters on the invasion profile has been studied. Among

the most influential are formation permeability and mud cake permeability as well. This

is why accurate laboratory measurements of mud cake permeability are necessary. Being

simple, the model should be improved by taking into account mud circulation and by

integrating more general reservoir properties.
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