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Abstract

It is shown that the above-threshold electron de Broglie waves, generated by an intense laser pulse at a metal surface are
interfering to yield attosecond electron pulses. This interference of the de Broglie waves is an analog on of the
superposition of high harmonics generated from rare gas atoms, resulting in trains of attosecond light pulses. Our
model is based on the Floquet analysis of the inelastic electron scattering on the oscillating double-layer potential,
generated by the incoming laser field of long duration at the metal surface. Owing to the inherent kinematic dispersion,
the propagation of attosecond de Broglie waves in vacuum is very different from that of attosecond light pulses, which
propagate without changing shape. The clean attosecond structure of the current at the immediate vicinity of the metal
surface is largely degraded due to the propagation, but it partially recovers at certain distances from the surface.
Accordingly, above the metal surface, there exist “collapse bands,” where the electron current is erratic or noise-like,
and there exist “revival layers,” where the electron current consist of ultrashort pulses of about 250 attosecond
durations in the parameter range we considered. The maximum value of the current densities of such ultrashort electron
pulses has been estimated to be on order of couple of tenth of mA/cm2. The attosecond structure of the electron
photocurrent can perhaps be used for monitoring ultrafast relaxation processes in single atoms or in condensed matter.

Keywords: Charged particle beam sources; Laser-plasma interactions; Matter waves; Photoemission; Quantum
mechanics; Strong-field excitation; Surface plasmas

1. INTRODUCTION

The generation of attosecond (10218 s) light pulses has first
been proposed by Farkas and Tóth (1992). The first exper-
imental indication of attosecond localization in time for the
high-harmonic signal stemming from the nonlinear response
of rare gas jets excited by high-intensity laser pulses was
reported by Papadogiannis et al. (1999). The generation of
attosecond light pulses is in complete analogy with mode-
locking producing picosecond pulse trains through the
Fourier synthesis of the laser cavity Eigenmodes. Because
the spacing of the high-harmonic components (namely the
optical frequency v ¼ 2pn) is much larger than the
spacing of the cavity Eigenmodes (on the order of 1 GHz)
for a usual laser, the Fourier synthesis results in a series of
spikes whose width can be much smaller than the optical
period (which is roughly of the order of 10215 s), i.e., we

receive here a train of sub-femtosecond (attosecond) pulses.
At the beginning, it was questionable whether the phases
of the high-harmonic components are really locked (i.e.,
the difference between the phases is a smooth (possibly a
constant) function of the harmonic order, which is crucial
to have constructive interference), but in the meantime,
many thorough analysis have been carried out, e.g., by
L’Huillier et al. (1992), Lewenstein et al. (1994), Antoine
et al. (1996), and Saliéres (2001), and it has become clear
that the phase-locking usually automatically takes place
due to the generating mechanism itself. Paul et al. (2001)
have measured first an attosecond pulse train with sub-pulses
of 250 attosecond duration, and Tzallas et al. (2003) repeated
a refined version of the earlier experiments by Papadogiannis
et al. (1999) for 780 attosecond pulse trains. López-Martens
et al. (2005) have produced by now the cleanest attosecond
pulse trains of 170 attosecond generated routinely. Christov
et al. (1997) have predicted theoretically the appearance of
a single attosecond pulse, and such a pulse of duration 650
attosecond were first produced by Hentschel et al. (2001).
Later, Sansone et al. (2006) produced one single 120
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attosecond pulse by using an optical gate, and it has been pre-
dicted by Tsakiris et al. (2006) that from the cut-off region of
the high-harmonic spectrum of an overdense plasma layer,
where the spectrum is essentially a quasi-continuum, isolated
single attosecond light pulses can be obtained.

Recently, there has been much labor put into the classical
simulations of various processes (generation of coherent
X-rays and laser acceleration of electrons) in laser-plasma
interaction (see e.g., Pukhov & Meyer-ter-Vehn, 2002,
Kiselev et al., 2004, Quèrè et al., 2006; Tsakiris et al.,
2006). Moreover, Hidding et al. (2006) showed the first
experimental results for the generation of quasi-
monoenergetic electron bunch by strong laser fields.
Eliezer et al. (2005) have reported on the production by fem-
tosecond laser pulses on crystal nanoparticles for aluminum
and nanotubes for carbon on a transparent heat-insulating
glass substrate. Kanapathipillai (2006) have worked out a
nonlinear oscillator model to describe the nonlinear absorp-
tion of ultrashort laser pulses by clusters. Sherlock et al.
(2006) have shown by a numerical study that it is necessary
to take into account the collisional heat transport into the
target to correctly model the absorption rate of laser pulses
of duration of 100 fs, and of intensities on the order 1015

W/cm2 at the front of the target surface. According to the
theoretical studies on the interaction of a short laser pulse
with metals performed by Anwar et al. (2006), the laser-
induced electric field inside the target is responsible for an
induction of the current density, which causes, after all, elec-
tronic heat conduction. Laser-induced acceleration and
manipulation of high-energy charged particle beams are
still subjects of extensive theoretical and experimental
research. For instance, Lifschitz et al. (2006) have recently
proposed a new scheme for a compact GeV laser plasma
accelerator. According to the simulations performed by
these authors, their method would yield the production of
high quality, monoenergetic, and sub-50 fs electron
bunches at the GeV energy level. Willi et al. (2007) have pro-
posed a novel technique for focusing and energy selection of
high-current MeV proton beams. In their scheme, the transi-
ent electrostatic field induced by an ultrashort laser pulse is
responsible for the “micro-lensing,” i.e., for the focusing
and for the selection of a narrow band out of the broadband
spectrum of protons generated from a separate laser-
irradiated thin foil target. The distortion of the Fermi distri-
bution and the step-like occupation of the energy levels of
the electrons due to the influence of a 100 fs strong laser
pulse have been recently studied by Schwengelbeck et al.
(2002), on the basis of a time-dependent exact quantum-
mechanical analysis of a many-electron system. Besides
these investigations of the interaction of ultrashort but “non-
attosecond” laser pulses with matter, there has been a wide
experimental and theoretical research carried out concerning
attosecond electron pulses, too. Lindner et al. (2005) per-
formed attosecond electron double-slit experiments and
Johnsson et al. (2005) studied electron-wave packet
dynamics in strong laser fields. A time-dependent calculation

has been carried out by Mauritsson et al. (2005) in order to
study the properties of electron wave packets generated by
attosecond laser-pulse trains. In this context, see also the
work by Remetter et al. (2006) on attosecond wave packet
interferometer, Breidbach and Cederbaum (2005) on the atto-
second response to the removal of an electron, Niikura et al.
(2005) on attosecond electron wave packet motion, Hu and
Collins (2006) on the possibility of attosecond pump-probe
experiments for exploring the ultrafast electron motion
inside an atom, and Fill et al. (2006) on sub-fs electron
pulses for ultrafast electron diffraction. Quite recently, attose-
cond real-time observation of electron tunneling in atoms has
been reported by Uiberacker et al. (2007).

The above-threshold electron spectra of nonlinear photoio-
nization induced by relatively long laser pulses, analyzed
thoroughly, e.g., by Agostini (2001), Paulus and Walther
(2001), and by Banfi et al. (2005), have common features
with the corresponding high-harmonic spectra. The initial
fall-off, the (occasionally rising) plateau and the sharp
cut-off are present in each case. In case of multiphoton
photoelectric effect of metals, Farkas and Tóth (1990) and
Farkas et al. (1998) measured very high-order above-
threshold electrons coming from metal targets. The theoreti-
cal interpretation of these results has been given by Varró and
Ehlotzky (1998) and recently by Kroó et al. (2007), on the
basis of the so-called laser-induced oscillating double-layer
potential model. This model is based on a Floquet-type
analysis of the inelastic electron scattering on the oscillating
double-layer potential generated by the incoming laser field
at the metal surface. The model has already been successfully
used to interpret the experimental results on very high order
surface photoelectric effect in the near infrared (Farkas &
Tóth, 1990) and in the far infrared regime (Farkas et al.,
1998). By analogy, one may think that if the phases of
the above-threshold electron de Broglie waves generated at
the metal surface are locked (i.e., the difference in the
phases of the neighboring components is a smooth, possibly
a constant function on the order, namely the number of
absorbed photons), then the Fourier synthesis of these com-
ponents yields an attosecond electron pulse train emanating
perpendicularly from the metal surface, quite similarly to
the generation of attosecond light pulses from high harmo-
nics (which, on the other hand, are propagating in the specu-
lar direction). This expectation is quite natural; because the
spacing of the electron peaks in the frequency space is just
the optical frequency hn/h ¼ n, like in the case of high-
harmonic generation.

We emphasize that, owing to the inherent kinematic dis-
persion, the propagation of the attosecond de Broglie
waves in vacuum is very different from that of attosecond
light pulses, since the rest mass of the electrons is not zero,
in contrast to that of the photons. The clean attosecond struc-
ture at the immediate vicinity of the metal surface is largely
spoiled due to the propagation, even in vacuum, but it par-
tially recovers at certain distances from the surface. On the
basis of the existence of a plateau in the electron spectrum
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too, as has been discussed, e.g., by Agostini (2001), Paulus
and Walther (2001), and Kystra et al. (2001), we conjecture
that a similar effect of interference of de Broglie waves may
exist in the case of the widely studied above-threshold ioniz-
ation of atoms.

In the present paper, in Section 2, we briefly describe the
construction of the laser-induced oscillating double-layer
potential (energy) of a test electron scattered by the metal
surface, and derive the basic wave function matching
equation of the scattered electron. Moreover, we give an
approximate analytic expression for the multiphoton scatter-
ing amplitudes valid for large final electron energies. This
model serves as our basis for studying the high-order multi-
photon photoelectric effect. In Section 3, we present the
results of the numerical solutions of the matching equations
for the scattering amplitudes corresponding to the elementary
n-photon absorption of the test electron. The time-averaged
above-threshold current components and the phases of the
multiphoton transmission amplitudes will be discussed. In
Section 4, we study the detailed temporal behavior of the
total transmitted current which results from the superposition
of the above-threshold de Broglie waves. It will turn out that
the ideal attosecond electron pulse train appearing at the
immediate vicinity of the metal surface collapses to an
almost noise-like signal, by the inherent kinematic dispersion
of the electron waves as they perpendicularly propagate from
the surface. On the other hand, there are regions quite far
from the surface (even at macroscopic distances) where the
clean attosecond structure of the electron current revives.
Accordingly, in propagation of the electron signal from the
metal surface, there appear consecutively “collapse bands”
and “revival layers” of a few nanometer thicknesses. In
Section 5, a short summary closes our paper.

2. LASER-INDUCED OSCILLATING
DOUBLE-LAYER POTENTIAL AT THE METAL
SURFACE AND THE ELECTRON’S WAVE
FUNCTION MATCHING

In this section, in order to illustrate the appearance of
enhanced nonlinearities in the above-threshold electron
excitations due to the enlarged electric field of surface
inside the metal, let us first calculate the electron displace-
ments in the bulk of the metal caused by the z-component
of the penetrating electric field F(x 0, z 0, t) ¼ F0exp(z 0/d)
sin(vt 2 kx 0). Here F0 and v ¼ 2pn are the peak field
strength and the circular frequency of the laser, d ¼ 1/
kmetal � c/vp is the skin depth, and k ¼ (v/c) sinu denotes
the plasmon wave number, respectively. Moreover, we
have introduced the plasma frequency vp ¼

p
(4pnee

2/m),
where e and m are the electron’s charge and mass, respect-
ively, and ne denotes the free electron density in the metal.
The displacement j(x 0, z 0, t) ¼ a0exp(z0/d)sin(vt 2 kx 0) of
an electron in the bulk, at an average position (x 0, y 0, z 0)
can be obtained from the solution of the corresponding
Newton equation, where the amplitude of oscillation is

given as a0 ¼ eF0/mv2. Here we have taken into account
parametrically the z 0 and x 0 dependence of the penetrating
electric field, which is a justified approximation at relatively
moderate incoming laser intensities to be considered below.
The potential energy Ud(x, t; x 0) of a test electron at position
x ¼ (x, y, z) in the joint Coulomb field of a background ionic
core at a fixed position x 0 ¼ (x 0, y 0, z 0) and of an associated
oscillating background electron, is given by Ud(x, t; x 0) ¼
e2/j�x 2 �x 0(t)j 2e2/j�x 2 �x 0j. Here �x 0(t) ¼ �x 0 þ �1zj(x 0, z 0,
t) is the instantaneous position of the oscillating background
electron, with 1z being a unit vector perpendicular to the
metal-vacuum interface, pointing to the positive z-direction.
The total potential energy of a test electron is the sum of
all the contributions coming from the interactions originating
at the positions x 0, i.e.,

Ud(�x, t) ¼
X

�x 0
Ud(t; �x 0)! nee2

ð
d3x0

j(x 0, z 0, t 0)(z� z 0)

j�x� �x 0j3

þ O(j2): (1)

In obtaining Eq. (1), we have used the continuum limit of the
summation, and we have expanded the joint Coulomb inter-
action of the background in powers of the oscillating displa-
cement j. The first term on the right-hand side of Eq. (1) can
be calculated analytically,

Ud ¼ 2pnee2 sin(vt � kx)
ð0
�1

dz0ez 0=de�kjz�z 0 j z� z 0

jz� z 0j

¼ UD sin(vt � kx)

2ez=d

1� k2d2 �
ekz

1� kd
, (z , 0),

e�kz

1þ kd
, (z . 0)

8>><
>>: (2)

UD ; (vp=2v)2(d=l)m(2mc2),

m ; eF0=mcv ¼ 10�9I1=2=Eph, m2 ¼ 10�18Il2: (3)

In Eq. (3), we have introduced the amplitude UD of the oscil-
lating collective potential energy of the test electron, Eq. (2),
which can take on very large values even for relatively mod-
erate laser intensities (notice the factor 2mc2 being just the
pair-creation energy �106 eV). The dimensionless intensity
parameter m usually shows up in any strong field calculation,
its magnitude governs the nonlinearity of the direct laser-
electron interactions. In Eq. (3) I denote the peak laser inten-
sity in W/cm2, Eph is the photon energy measured in eV, and
l is the central wavelength in microns (1024 cm). We note that
the gradient of the potential energy, Eq. (2), essentially equals
to the force acting on a test electron due to a corresponding col-
lective electric field. The potential given by Eq. (2) looks very
similar to the so-called surface-plasmon polariton potential
discussed in detail, e.g., Zayats et al., (2005) in the context of
nano-optics. In dipole approximation, i.e., for jkzj and
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jkxj ,,1, the potential energy in Eq. (2), for relatively mod-
erate laser intensity can be well approximated by the following
double-layer potential energy Ud � sign(z)UDsin(vt), where
sign (z . 0)¼ 1 and sign(z , 0)¼ 21, thus the maximum
total jump in the energy equals 2UD. Because of this property,
henceforth, we will call Ud “laser-induced oscillating double-
layer potential,” and describe the scattering of a Sommerfeld
electron on this ideal non-conservative potential with the tech-
nique of wave function matching. At this point, we have to
mention that normal electric field strengths F0 in the vacuum
undergoes a reduction on the order of (v/vp)

2 by crossing
the metal-vacuum interface, but, on the other hand, if we
repeat the above same procedure, by using the force term
2@Ud/@z in the Newton equation of an oscillating back-
ground electron, in this second iteration, we receive essentially
the same expression summarized in Eqs. (1), (2), and (3)
with the original field strength F0. In this way, the reduction
factor is completely compensated by the enhancement factor
(vp/v)2 due to the collective surface plasmon polaritons. So
in this “second iteration,” the value of UD is essentially the
same as is given by Eq. (3) with the original vacuum ampli-
tude of field strength F0. The next iteration would be meaning-
less, because then the amplitude of oscillation of the
background electrons a0 would be comparable with the skin
depth d, hence the parametric substitution in Newton’s
equation could be justified. These details will not be discussed
any further in this paper, so henceforth, we are planning to use
the idealized laser-induced oscillating double-layer potential
(energy) in dipole approximation Ud � sign(z)UDsin(vt)
throughout the paper, where UD is defined in Eq. (3).

The concept of the laser-induced oscillating double-layer
potential (energy), outlined above has been first introduced
in our earlier study (Varró & Ehlotzky, 1998), in order to
explain a surprising outcome from one of our experiments
(Farkas & Tóth, 1990), namely, the appearance of very
large (�600 eV) energy photoelectrons induced by
Nd:Glass laser radiation (hn ¼ 1.17 eV) at moderate intensi-
ties of some 10 GW/cm2. The main problem there was
that the very large nominal order of the photon absorption
processes corresponding to the experimental results (n ¼
5–600) could not have been deduced even from the usual
non-perturbative approach based on Gordon–Volkov states
(Kylstra et al., 2001), since the intensity parameter m ¼

eF0/mcv was very small, on the order of 1024 in that case.
That time we have realized that instead of m, another basic
dimensionless parameter “a” appears in the analysis in a
natural way, when we introduce the interaction with the
double-layer potential, which builds up due to the coherent
collective excitation of all the electrons within the skin
depth. The parameter a is defined as a ¼ 2UD/hn, where
UD � (vp/4v)m(2mc2) is the amplitude of the double layer
potential energy of a test electron. The size of this a govern-
ing the degree of nonlinearity turned out to be just on the
order of 500 for the mentioned experiment, hence we were
able to explain the basic features of the measured electron
spectra. In the meantime, we have applied the same

method (Kroó et al., 2007) for the theoretical interpretation
of another strange experimental results (Farkas et al., 1998)
concerning electron emission from gold cathodes (work
function �4.7 eV) irradiated by mid-infrared radiation (gen-
erated by the Orsay Free Electron Laser) of wavelength up to
12 mm (hn ¼ 0.1 eV) in the I ¼ 10 MW/cm2 intensity
regime. The intensity parameter is extremely small in this
case: m � 3 � 1025. The minimum number of photons
required for the deliberation of an electron from the
binding is on the order of 50. As was pointed out, both the
tunneling model and the multiphoton model predict results
many (about 200) orders off the experimental figures.

Now let us turn to the Schrödinger equation of an electron
under the joint action of the Sommerfeld step-potential of
depth V0 and the double-layer potential derived above. We
restrict our analysis to a one-dimensional scattering in dipole
approximation, as in our earlier study (Varró & Ehlotzky,
1998), which is justified in case of incoming laser intensities
on the orders of ,109–1011 W/cm2 for Ti:Sa lasers, which
we have been using in our numerical calculations. Further,
to simplify the following analysis, we shall take the asymptotic
amplitude of the double-layer potential for z! 21 as 2UD

and for z! þ1 as þUD, thus we get an idealized double-
layer potential that oscillates at circular frequency v between
2UD and þUD at a phase difference p between z . 0 and
z , 0. For the sake of completeness of the paper, in the follow-
ing few lines we outline the basic equations presented already
in Varró and Ehlotzky (1998). The wave function of an elec-
tron will then obey the two Schrödinger equations

( p̂2=2m� V0 � UD sinvt)CI ¼ i h� @tCI (z , 0), (4a)

(p̂2=2mþ UD sinvt)CII ¼ i h� @tCII (z . 0), (4b)

where the subscript I refer to the interior region (metal) and II
to the exterior region (vacuum), respectively. In order to fulfill
the continuity conditions at the metal surface at z ¼ 0, we
make Floquet-type ansätze in terms of the fundamental sol-
utions of Eqs. (4a) and (4b), satisfying the proper mass-shell
relations, i.e., the proper free-particle dispersion relations con-
necting the energies, and the corresponding momenta of the
reflected and transmitted components,

CI ¼ x(þ)
0 � x(�)

0 þ
Xþ1

n¼�1

Rnx
(�)
n

" #

� exp �i
UD

h�v cosvt

� �
(z , 0), (5a)

CII ¼
Xþ1

k¼�1

Tkw
(þ)
k exp þi

UD

h�v cosvt

� �
(z . 0), (5b)

where x (+)
n ¼ exp +iqnz=h� � i E0 þ nh�vð Þ � t=h�½ � with qn ¼

2 m V0 þ E0 þ nh�vð Þ½ �1=2 and, correspondingly, w(þ)
k ¼

exp ipkz=h� � i E0 þ kh�vð Þ � t=h�½ � with pk ¼ 2m E0 þ kh�vð Þ½ �1=2.
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Notice the opposite signs in the exponential factors in Eqs. (5a)
and (5b), which transforms out the interaction with the double-
layer potential in Eqs. (4a) and (4b). Here the energy parameter
E0 denotes the initial energy of the electron impinging from
the inner part of the metal onto the metal-vacuum interface.
In the numerical calculations, it will be taken as the negative
of the work function, i.e., 2A, which means that we assume
that the test electron starts from the Fermi level. For later con-
venience, we have separated in Eq. (5a) the trivial elastic back-
scattered part x0

(2) from the total back-scattered wave function.
The unknown multiphoton reflection and transmission coeffi-
cients Rn and Tk, respectively, can be determined from the
matching equations, i.e., from the continuity of the wave func-
tion, CI (0, t) ¼CII (0, t) and of its spatial derivative,
@zCIð0; tÞ ¼ @zCIIð0; tÞ, which relation must hold for arbitrary
instants of time. By using the generating functions of the ordin-
ary Bessel functions of first kind Jn(z) of order n (Gradshteyn &
Ryzhik, 2000) to Fourier decompose the time-dependent
exponentials in Eqs. (5a) and (5b), the matching equations
yield the following infinite set of algebraic equations,

Rn ¼
Xþ1

k¼�1

Jn�k(a)in�kTk, (6a)

dn,0 ¼
Xþ1

k¼�1

Jn�k(a)in�k qn þ pkð Þ=2q0½ �Tk , (6b)

where we have introduced the dimensionless parameter a,
with the definition

a ; 2UD=h�v, UD ; (vp=2v)2(d=l)m(2mc2)

� (vp=4v)m(2mc2), (7)

and UD has already been defined in Eq. (3). Thus the dimen-
sionless parameter a given by Eq. (7) is the ratio of the total
maximum jump of the oscillating double layer potential
(energy) to the photon energy. The last approximate equation
is valid if the plasma frequency of the metallic electrons is
much larger than the laser frequency, since in this case the
skin depth can be approximated as d ¼ c=ðv2

p � v2Þ1=2 �
c=v p. The magnitude of the parameter a governs the exten-
sion of the kernel matrix in the sets of algebraic equations
(Eqs. (6a) and (6b)), hence it determines the degree of non-
linearity of the multiphoton excitation.

The time-averaged outgoing electron current components
(for which pn is real), corresponding to n-photon absorption,
can be obtained from CII. We normalize these current com-
ponents with respect to the incoming current, and get the
dimensionless quantities

jt(n) ¼ pn=q0ð Þ � Tnj j2 n � n0ð Þ, (8a)

where n0 is the minimum number of photons to be absorbed
in order to yield true free running outgoing waves,

i.e., ionization. The corresponding normalized reflected
currents are

jr(n) ¼ qn=q0ð Þ � Rn � dn,0j j2 n � n1ð Þ, (8b)

with a similar meaning for n1 as for n0. The conservation of
probability requires

P
n jt(n)þ jr(n)½ � ¼ 1, which condition

has been used to check the accuracy of the numerical sol-
utions of the matching equations (Eqs. (6a) and (6b)).

At the end of the present section, we would like to note that
for large values of the parameter a given by Eq. (7), an
approximate analytic expression has been derived in Varró
and Ehlotzky (1998) for the transmission coefficients Tn,
which are particularly accurate for large values of the multi-
photon order n. According to this approximation

Tn � Jn(a)(�i)n, jt(n)� pn=q0ð Þ � J2
n (a), a .. 1ð Þ n .. 1ð Þ:

(9)

3. THE TIME AVERAGE OF THE
ABOVE-THRESHOLD CURRENT COMPONENTS
AND THE PHASES OF THE TRANSMISSION
COEFFICIENTS. NUMERICAL RESULTS

In this paper, we shall use in the numerical calculations the
following input parameters for the incoming laser field and
for the gold target. We assume a Ti:Sa laser beam which
excites the metal surface at grazing incidence of central
wavelength l ¼ 800 nm, frequency v ¼ 2.36 � 1015 Hz,
photon energy hn ¼ 1.55 eV, and of intensity 109 W/cm2,
with its polarization being essentially perpendicular to the
metal surface. Moreover, we assume that the pulse duration
is much larger than the optical period T ¼ 2.6 fs, so the
carrier-envelope phase effects can be neglected in the
present case. Concerning the carrier-envelope phase effects
(“absolute phase effects”), in case of interactions with ultra-
short laser pulses (see the paper by Varró, 2007, and the
references therein). The depth of the Sommerfeld step poten-
tial and the work function of gold are taken to be V0 ¼ 10.19
eV and A ¼ 4.68 eV, respectively, hence, the Fermi energy
equals EF ¼ 5.51 eV. According to Radzig and Smirnov
(1985), the electron density of gold is ne ¼ 5.9 � 1022/
cm3, thus the plasma frequency in the bulk equals vp ¼

1.37 � 1016 Hz » v ¼ 2.36 � 1015 Hz. By the definition
in Eq. (7), the nonlinearity parameter a equals 60 in the
present case. The numerical solution of the infinite set of
algebraic equations (Eqs. (6a) and (6b)) is accurate up to a
fraction of a percent if we use the truncated kernel in
the range of indices f2120 	 n 	 þ120, 2120 	
k 	 þ120g. This can be checked by the conservation of
probability displayed after Eq. (8b). We note that the above-
mentioned averaging of the multiphoton current means the
time-averaging operation kf l ¼ lim

ÐþT0

�T0
dtf (t)=2T0, as T0 ! 1,

thus, of course, the distribution of jt(n) and jr(n) of Eqs. (8a)
and (8b) do not reflect back the detailed time behavior of the
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total current (h� =m)Re[C
(�ir)C], which will be discussed in
the next Section.

At the end of the present Section, the time-averaged above-
threshold spectrum and the relative phases of the trans-
mission amplitudes is shown on the basis of our numerical
calculations. In Figure 1, it is seen that, owing to the large

value (~60) of the parameter a, introduced in Eq. (7), quite
high nonlinearities appear even at the relatively moderate
laser intensity (~109 W/cm2) we are considering.

Figure 2 shows the numerical results for the phase differ-
ences fn 2 fn+1(mod 2p) of the transmission amplitudes Tn.
The detailed structure of the spectrum and the associated
phases around the maximum will be summarized in Figure 3.

4. DETAILED TEMPORAL BEHAVIOR OF THE
ABOVE-THRESHOLD CURRENT DENSITY:
ATTOSECOND ELECTRON PULSE TRAINS

The superposition of the fundamental solutions describing
the outgoing above-threshold de Broglie waves, presented
after Eq. (5b), can be brought to the form

CII ¼ exp þi
UD

h� v cosvt

� �X
n

Tn exp

� �2pi � E0

h� vþ n

� �
t

T
þ 2pi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mc2

h� v
E0

h� vþ n

� �s
z

l

" #
,

(10)

where we see that a natural unit of time is the opticzal period
T (namely 2.6 fs for a Ti:Sa laser), and the unit of length
measuring the distance perpendicular from the metal
surface is given as l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h� v=2mc2

p
, which with good accuracy,

is about 1 nm in the present case. In Figure 4, we shall

Fig. 3. This figure shows the large energy wing of the above-threshold spec-
trum represented by vertical bars (normalized to their maximum value~0.02.
This is a magnification of the end of the spectrum shown already in Figure 1,
and shows also at the large-energy part of Figure 2, the dependence of phase
differences fn 2 fn+1 in radians on the number of absorbed photons n, at the
end of the multiphoton spectrum. These phase differences are represented by
points. According to the approximate formula given by Eq. (9) these differ-
ences arg [Tn+1


 ] – arg [Tn] are quiet uniformly equal about to p/2 � 1.57,
as is also seen on the figure.

Fig. 2. This figure shows the dependence of phase differences arg [Tnþ1

 Tn]

in radians on the number of absorbed photons n, corresponding to the spec-
trum shown in Figure 1. The discrete points are connected with thin lines in
order to guide the eye. For relatively low-order processes the phase differ-
ence varies quite irregularly, but for the large energy wing, for 54 , n, it
is stationary, which means that these components are strictly locked,
which is in complete accord with the first approximate formula in Eq. (9).
Based on this figure, we expect that the large-energy Floquet components
interfere constructively, because of the regular behavior of their phases.

Fig. 1. This figure shows the time-averaged spectrum of the above-threshold
electron current density for the parameters introduced in the text above. The
relative current density components jt(n) ¼ ( pn/q0) . jTnj2 of Eq. (8a) are
normalized to their maximum value ~0.02. The discrete points are connected
by thick lines in order to guide the eye.
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present the spatial development of the time-behavior of the
outgoing current density. The Figure 5 summarizes the
spatio-temporal behavior of the outgoing current density.

From the numerical study of contour plots of similar sort in
Figure 5, we have realized that revivals of the attosecond struc-
ture of the electron current density at very large (even at macro-
scopic) distances from the metal surface (e.g., we have checked
in the spatial range 2 013.985 nm , z , 2 014.015 nm) can
take place. The thickness of this “revival layer” is on the
order of 10 nm in this case. We have numerically checked
for several ranges of the distances z from the metal-vacuum
interface, that the “revival layers” are separated usually by
wider “collapse bands” where the electron signal has practi-
cally an irregular noise-like temporal behavior. The next
graphics array shows the temporal behavior of the current in
the “collapse bands” and in the “revival layers” in a 555 nm
range far from the metal-vacuum interface.

Since we have been discussing the relative current densities
so far, at the end of the present Section we would like to make
an estimate on the absolute size of the transmission current.
According to the Fermi distribution of electrons in the
metal, the total incoming current density impinging from
inside to the metal-vacuum interface can be written as

Jinco min g ¼ (e � ne � yF) � 2

(2p)3 �
k3

F

ne

� �
�
ð1
0

dz � z �
ðþ1

�1

dj

�
ðþ1

�1

dh
1

exp[(EF=kT) � (z2 þ j2 þ h2 � 1)]þ 1
, (11a)

where we have introduced the dimensionless variables

j ; qx=myF , h ; qy=myF and z ; qz=myF , (11b)

and the Fermi wave number kF ; myF=h� ¼ 1:21� 108 cm�1,
with h denoting the Planck’s constants h ; h/2p divided by
2p, as usual. The Fermi velocity yF¼ 1.40 � 108 cm/s is
related to the Fermi energy by the relation EF¼ myF

2/2¼
5.51eV. For a gold target, the first prefactor yields

(e � ne � yF)¼ (1:6� 10�19As) � (5:9� 1022cm�3) � (1:4� 108 cm=s)

¼ 1:3216� 1012A=cm2,

because the electron density equals ne ¼ 5.9 � 1022 cm23,
according to Radzig and Smirnov (1985). The double inte-
gral with respect to j and h can be analytically performed,
as is shown e.g., by Sokolov (1967),

ðþ1

�1

dj �
ðþ1

�1

dh
1

exp [(EF=kT) � (z2 þ j2 þ h2 � 1)]þ 1

¼ p

(EF=kT)
� log 1þ exp[�(EF=kT) � (z2 � 1)]

� �
(11c)

Fig. 5. This figure shows the spatio-temporal behavior of the outgoing
current in the range f0 nm , z , 300 nm, 0 T , t , 5.5 T,g. The white
lines represent large values of the current density; on the other hand, the
dark (grey or even black) regions indicate low values of the current
density. By intersecting the figure vertically at some position z, and project-
ing the intersection to the time-axis (to the ordinate), we receive a represen-
tation of the time behavior at that particular position. It is seen that the ideal
attosecond pulse train at the immediate vicinity of the metal surface z ¼ 0,
represented by the light lines, is gradually washed out by the propagation
from the surface. At z ¼ 300 nm the temporal variation of the electron
current density becomes already a noise-like background (represented by
the dark band), as is also shown on the last figure in the graphics array of
Figure 4.

Fig. 4. This figure shows the detailed time-behavior of the outgoing current
density at different distances from the metal surface. Here we have plotted the
dimensionless quantity (h=4q0)Re[C
II (�i@zCII )] by superimposing the
large-energy components (54 , n , 66), whose phase are locked, according
to Figure 3. At z ¼ 0 we received an ideal T10~250 attosecond pulse train,
which is gradually spoiled by the inherent dispersion of de Broglie waves
propagating in vacuum (due to the non-trivial z-dependence of the
phases), yielding a noise-like electron current density already at the distance
of 300 nm from the metal.
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Thus, the incoming current density coming from one cubic
centimeter can be expressed as

Jinco min g ¼ (e � ne � yF) � 2

(2p)3 �
k3

F

ne

� �
� p

(EF=kT)

�
ð1
0

dz � z � log 1þ exp [�(EF=kT) � (z2 � 1)]
� �

(11d)

Since EF/kT ¼ 5.51/0.0236 � 233.5 (where we have taken
into account that kT ¼ 0.0236 for T ¼ 273 K ), [2/(2p)3] .

(kF
3/ne) ¼ 0.2421 and [p/(EF/kT)] ¼ 0.01346 we have for

the incoming current density from one cubic centimeter,

Jinco min g ¼ [4:287� 109A=cm2] �
ð1
0

dz � z � log

� 1þ exp [�233:5 � (z2 � 1)]
� �

, (12)

where z ; qz0/myF is the initial scaled momentum of the test
electron. Of course, the interaction volume is not one cubic
centimeter, but much smaller, on the order of
dskinl

2 � (v=vp)l3 ¼ 8:82� 10�14 cm3, so the numerical prefac-
tor should be reduced accordingly; (8.82 � 10214) . [4.287 �
109 A/cm2]¼ 3.78 � 1024 A/cm2. Since the numerical
value of the dimensionless integral in Eq. (12) is 58.3785,
the total current density impinging perpendicularly on the
metal-vacuum interface from the interior of the metal is about
2.265 � 1022 A/cm2. As we have seen above, the maximum
value of the relative current density is on the order of 2%,
hence, the value of the outgoing current density is expected
at maximum a few tenth of mA/cm2, which is, on the other
hand, is still a relatively large value for an electron source.

CONCLUSION

In the Introduction of this paper, we have given an over-
view of the theoretical and experimental research carried

Fig. 6. This figure Illustrates the formation of the “revival layers” from the “collapse bands” in a 555 nm size range far from the metal
surface at macroscopic distances (2 013.700 nm , z , 2 014.255 nm). Here we have again plotted the dimensionless quantity
(h� =4q0)Re[C
II (�i@zCII )] by superimposing the large-energy components (54 , n , 66), whose phases are locked, according to
Figure 3.
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out recently on the ultrashort laser pulses with matter. We
have also discussed the similarities and differences of the
propagation properties of short light pulses and electron
pulses. We would like to emphasize that in the scheme dis-
cussed in this paper, the production of attosecond electron
pulses is a result of interference of de Broglie waves of
above-threshold Fourier components of the total electronic
wave with the frequency spacing v, the frequency of the
incoming laser field. Thus, the electron pulse train stems
from the interference of the “frequency comb” of the
above-threshold components. Of course, if an ultrashort
(e.g., few-cycle) laser pulse interact with a target (e.g.,
an atom or a metal surface), then the electron response
(ionization or photo effect) is expected to be very short,
too. However, this is not the case in our discussion,
since we assume relatively long (many-cycle) laser
pulses of moderate intensity. Just this assumption allows
us to use the Floquet analysis of the Schrödinger equation.
In Section 2, we briefly described the construction of the
laser-induced oscillating double-layer potential (energy)
for a test electron scattered by the metal surface, and
derived the basic wave function matching equation of the
scattered electron. Moreover, we have given an approxi-
mate analytic expression for the multiphoton scattering
amplitudes valid for large final electron energies. This
model serves as our basis for studying the high-order mul-
tiphoton photoelectric effect. In Section 3, we presented
the results of the numerical solutions of the matching
equations for the scattering amplitudes corresponding to
the elementary n-photon absorption of the test electron.
The time-averaged above-threshold current components
and the phase differences of the multiphoton transmission
amplitudes have been discussed (see Fig. 1). The
maximum of the relative current density is about 2%.
Though the phase differences are erratic for low orders
(see Fig. 2), it turned out that in the large-energy wing
of the spectrum essentially perfect phase locking is
present (see Fig. 3). In Section 4, we studied the detailed
temporal behavior of the total transmitted current which
results from the superposition (interference) of the above-
threshold de Broglie waves. It turned out that the ideal atto-
second electron pulse train appearing at the immediate
vicinity of the metal surface collapses to an almost noise-
like signal by the inherent kinematic dispersion of the elec-
tron waves as they perpendicularly propagate from the
surface (see Figs. 4 and 5). On the other hand, there are
regions quite far from the surface (even at macroscopic dis-
tances, see Fig. 6) where the clean attosecond structure of
the electron current revives within a spatial range on the
order of 555 nm. The attosecond light signals stemming
from a single atom propagate in vacuum without changing
shape with an intensity distribution of the form f (t 2 j/c),
where j is the propagation direction. On the other hand,
the Fourier components of the electron pulses have a non-
trivial spatially dependent phase 2pi(2mc2/hv)

1
2 [(E0/hv)

þn]
1
2 (z/l), which can drastically vary as a function of

the distance z from the metal-vacuum interface, resulting
in the degradation of the originally clean attosecond
pulse train. This is even so, if the phases of the trans-
mission coefficients Tn are stricky locked (as has been
shown in Fig. 3, for the large-energy wing of the spec-
trum). At certain spatial region of z, the interference
can be constructive, and in other ranges destructive.
Accordingly, during the propagation of the electron
signal from the metal surface there appear consecutively
“collapse bands” (with destructive interference) and
“revival layers” (with constructive interference) of a few
or more nanometer thickness. By now, no approximate
analytic formula has been found by us, which would
locate the position and size of the revival layers and the
collapse bands. To find such a formula is a subject of
our ongoing research. Anyway, we have found by trial
(or by chance) the position of a couple of these regions
by using spatio-temporal contour plots (similar to Fig. 5)
in several domains. At the end of Section 4, it has also
been shown that, the value of the outgoing current
density can be estimated at maximum a few tenth of
mA/cm2, which is still a relatively large value. This is
why we think that the mechanism discussed in this paper
may serve as a basis for constructing good quality electron
injectors for e.g., particle acceleration. The attosecond
structure of the electron current can perhaps is used for
monitoring of ultrafast relaxation processes in single
atoms or in condensed matter.
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KYLSTRA, N., JOACHAIN, C.J. & DÖRR, M. (2001). Theory of multi-
photon ionization of atoms. In Atoms, Solids and Plasmas in
Super-intense Laser Fields (Batani D., Joachain C.J.,
Martellucci S. and Chester A.N., Eds), pp 15–36. New York:
Kluwer Academic/Plenum Publishers.

L’HUILLIER, A., BALCOU, PH., CANDEL, S., SCHAFER, K.J. &
KULANDER, K.C. (1992). Calculation of high-order harmonic-
generation processes in xenon at 1064 nm. Phys Rev. A 46,
2778–2790.

LEWENSTEIN, M., BALCOU, PH., IVANOV, M.YU., L’HUILLIER, A. &
CORKUM, P.B. (1994). Theory of high-harmonic generation by
low-frequency laser fields. Phys. Rev. A 49, 2117–2132.

LIFSCHITZ, A.F., FAURE, J., GLINEC, Y., MALKA, V. & MORA, P.
(2006). Proposed scheme for compact GeV laser plasma accel-
erator. Laser Part. Beams 24, 255–259.

LINDNER, F., SCHAETZEL, M.G., WALTHER, H., GOULIELMAKIS, E.,
KRAUSZ, F., MILOSEVIC, D.B., BAUER, D., BECKER, W. &
PAULUS, G.G. (2005). Attosecond double-slit experiment. Phys.
Rev. Lett. 95, 040401.
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