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We give a new characterization, in the equicharacteristic case, of Teter rings by using
Macaulay inverse systems. We extend the previous characterizations due to Teter, to
Huneke and Vraciu and to Ananthnarayan et al ., to any characteristic of the ground
field and remove the hypothesis on the socle ideal. We construct and describe the
variety parametrizing Teter covers and we show how to check if an Artin ring is
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1. Introduction

Let k be an arbitrary field. Let R = k[[x1, . . . , xn]] be the ring of the formal series
with maximal ideal m = (x1, . . . , xn) and let S = k[y1, . . . , yn] be a polynomial ring.
We denote by m = (x1, . . . , xn) the homogeneous maximal ideal of S. We assume
that n � 1. Given a local ring A = R/I with maximal ideal n, we denote by EA(k)
the injective hull of the residue field k.

In [22, lemma 1.1 and theorem 2.3] Teter characterized the Artin local rings
A = R/I that are of the form G/soc(G), where G is a Gorenstein ring and soc(G)
is its socle. From now on we will call such rings Teter rings [21]. Note that from
the proof of [22, theorem 2.3] we may assume that G is a quotient of R. Teter
characterized such rings as those for which there is an isomorphism of A-modules
φ : n → HomA(n, EA(k)) such that φ(x)(y) = φ(y)(x). Huneke and Vraciu improved
this result by proving that A is Teter if and only if there is an epimorphism ϕ : ωA →
n, provided char(k) �= 2 and soc(A) ⊂ n2 [15, theorem 2.4]. Ananthnarayan et al .
improved the Huneke–Vraciu characterization by removing the hypothesis soc(A) ⊂
n2 [3, theorem 4.7]. For more results on Teter rings and related problems, see, for
example, [1, 2, 21].

The main aim of this paper is to give a characterization of Teter rings A = R/I
in terms of their Macaulay inverse system I⊥ (see theorem 3.4). See § 2 for the
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basic facts on Macaulay inverse systems. Using a Macaulay inverse system device
we generalize the characterization of Ananthnarayan et al . to any characteristic
of the ground field, and we give an explicit description of the above isomorphism,
φ. As a corollary of theorem 3.4, in proposition 3.6 we characterize the quotients
A = R/mr that are Teter, simplifying and improving [22, corollary 2.2] and [3,
corollary 4.4]. We show that a Gorenstein ring A is Teter if and only if its embedding
dimension is 1 (proposition 3.7). In proposition 3.12 we prove that Teter rings with
a compressed Teter cover are the level Artin rings of maximal Cohen–Macaulay
type. In corollary 3.13 we study compressed Teter rings with a compressed Teter
cover.

Section 4 is devoted to the construction of the Teter variety TC(A), defined as
the variety parametrizing the set of Teter covers of a given Teter ring A. We prove
that TC(A) is a non-empty open Zariski subset of a linear variety of a projective
space over the ground field k (proposition 4.2). In proposition 4.5 we give a method
for checking if an Artin ring is Teter and, if this is the case, to compute a Teter
cover. This method is fully effective. In fact, in [8] we implemented such a method
in a Singular library [6].

We conclude in § 5 by considering some special classes of Artin rings for which
we know a full classification: we study stretched Teter rings, and consider almost
stretched and short Teter rings.

2. Preliminaries

Let A = R/I be an Artin ring with maximal ideal n. The Hilbert function of A is
the numerical function HFA : N → N defined by HFA(i) = dimk(ni/ni+1), i � 0.
The socle degree of A is the last integer s such that HFA(s) �= 0. The socle of A is
the k-vector subspace of A soc(A) = (0 :A n), and the Cohen–Macaulay type of A
is τ(A) = dimk(soc(A)). Recall that A is Gorenstein if and only if τ(A) = 1.

The polynomial ring S can be considered as an R-module with two linear struc-
tures by derivation and by contraction. If char(k) = 0, the R-module structure of
S by derivation is defined by

R × S → S, (xα, yβ) �→ xα ◦ yβ =

⎧⎪⎨
⎪⎩

β!
(β − α)!

yβ−α, β � α,

0, otherwise,

where, for all α, β ∈ Nn, α! =
∏n

i=1 αi!. If char(k) � 0, the R-module structure of
S by contraction is defined by

R × S → S, (xα, yβ) �→ xα ◦ yβ =

{
yβ−α, β � α,

0, otherwise.

From now on we write

xi ◦ F =
∂F

∂yi
= ∂yi

F, i = 1, . . . , n.

For all α = (α1, . . . , αn) ∈ Nn we denote by |α| the total degree of α, i.e. |α| =
α1 + · · · + αn.
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It is easy to prove that for any field k there is an R-module homomorphism

σ : (S, der) → (S, cont)
yα �→ α!yα.

If char(k) = 0, then σ is an isomorphism of R-modules.
The R-module S is the injective hull ER(k) of the R-module k.

Theorem 2.1 (Gabriel [14]). If k is of characteristic 0, then ER(k) ∼= (S, der) ∼=
(S, cont). If k is of positive characteristic, then ER(k) ∼= (S, cont).

Since the characteristic of the ground field k is arbitrary, from now on we will
use the structure of S as an R-module defined by the contraction.

Given a commutative ring R, we denote by R mod (respectively, R mod.noeth,
R mod.Artin) the category of R-modules (respectively, the category of noetherian
R-modules, the category of Artin R-modules).

Definition 2.2. Given an R-module M , the Matlis dual of M is

M∨ = HomR(M, ER(k)).

We write (·)∨ = HomR(·, ER(k)).

Theorem 2.3 (Matlis duality). The functor (·)∨ is a contravariant, additive and
exact and defines anti-equivalence between R mod.noeth and R mod.Artin (respec-
tively, between R mod.Artin and R mod.noeth). It holds that (·)∨ ◦ (·)∨ is the iden-
tity functor of R mod.noeth (respectively, R mod.Artin). Furthermore, if M is an
R-module of finite length, then LengthR(M∨) = LengthR(M).

From the previous result we can recover the classical result of Macaulay [18]
for the power series ring (see [13, 17]). If I ⊂ R is an ideal, then (R/I)∨ is the
sub-R-module of S:

I⊥ = {g ∈ S | I ◦ g = 0}.

This is the Macaulay inverse system of I. Given a sub-R-module M of S, the module
M∨ is an ideal of R:

M⊥ = {f ∈ R | f ◦ g = 0 for all g ∈ M}.

Proposition 2.4 (Macaulay’s duality). There is an order-reversing bijection ⊥
between the set of finitely generated sub-R-submodules of S and the set of m-
primary ideals of R given by the condition that if M is a submodule of S, then
M⊥ = (0 :R M), and I⊥ = (0 :S I) for an ideal I ⊂ R. Moreover, A = R/I is
Gorenstein of socle degree s if and only if I⊥ is a cyclic R-module generated by a
polynomial of degree s.

We denote by S�i (respectively, S<i, Si), i ∈ N, the k-vector space of polynomials
of S of degree less than or equal to (respectively, less than, equal to) i, and we
consider the following k-vector space:

(I⊥)i :=
I⊥ ∩ S�i + S<i

S<i
.
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Our next result is well known by the specialists. Here we present a new proof using
Matlis duality.

Proposition 2.5 (Elias [7]). Let A = R/I be a local ring with maximal ideal n.
For all i � 0, it holds that

HFA(i) = dimk(I⊥)i.

Proof. Let us consider the following natural exact sequence of R-modules:

0 → ni

ni+1 → A

ni+1 → A

ni
→ 0.

Dualizing this sequence, we get

0 → (I + m
i)⊥ → (I + m

i+1)⊥ →
(

ni

ni+1

)∨
→ 0

so we get the following sequence of k-vector spaces:(
ni

ni+1

)∨
∼=

(I + mi+1)⊥

(I + mi)⊥ =
I⊥ ∩ S�i

I⊥ ∩ S�i−1

∼=
I⊥ ∩ S�i + S<i

S<i
.

From theorem 2.3 we get the claim.

Given an R-module M , we denote by µR(M) the minimal number of generators
of M .

Proposition 2.6 (Elias [7]). Let A = R/I be an Artin local ring. Then

soc(A)∨ =
I⊥

m ◦ I⊥ .

In particular,the Cohen–Macaulay type of A is

τ(A) = dimk(I⊥/m ◦ I⊥) = µR(I⊥).

Proof. Let us consider the exact sequence of R-modules

0 → soc(A) = (0 :A n) → A
(x1,...,xn)−−−−−−→ An.

Dualizing this sequence, we get

(I⊥)n σ−→ I⊥ → soc(A)∨ → 0,

where

σ(f1, . . . , fn) =
n∑

i=1

xi ◦ fi.

Hence,

soc(A)∨ =
I⊥

(x1, . . . , xn) ◦ I⊥ =
I⊥

m ◦ I⊥ .

From this fact and theorem 2.3 we get τ(A) = dimk(soc(A)) = dimk(soc(A)∨) =
µ(I⊥).
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3. Teter rings

We know that any Artin ring A is quotient of an Artin Gorenstein ring G (see,
for example, [1, proposition 2.1]). In fact, G can be taken as Nagata’s idealization
G = A � ωA [4, theorem 3.3.6]. Note that if the embedding dimension of A is n,
then the embedding dimension of G is n + τ(A). In the next result we prove that
if A is the quotient of a Gorenstein ring by its socle, then we may assume that the
embedding dimension of G equals the embedding dimension of A.

Proposition 3.1. Let A = R/I be an Artin ring. Then

(i) there exists an Artin Gorenstein ring G = R/J of embedding dimension n
such that A is a quotient of G.

Let G be an Artin Gorenstein ring such that A ∼= G/soc(G). Then

(ii) if I ⊂ m2, then the embedding dimension of A and G is n.

Moreover, if G = R/J is an Artin Gorenstein ring such that A ∼= G/soc(G), then

(iii) I = (J :R m) and I⊥ = m ◦ J⊥.

Proof.
(i) If s is the socle degree of A, then I⊥ is generated by polynomials of degree
at most s (proposition 2.4). Hence, I⊥ ⊂ S�s. Since S�s ⊂ 〈ys

1 · · · ys
n〉, the ideal

J = AnnR〈ys
1 · · · ys

n〉 satisfies the claim.

(ii) If I ⊂ m2, then the embedding dimension of A is n. Hence, we only have to prove
that soc(G) ⊂ m2

G. Here mG is the maximal ideal G. Assume that soc(G) � m2
G.

Since G is Gorenstein, we deduce that its socle degree is 1. Then the Hilbert function
of G is HFG = {1, 1} and the Hilbert function of A is HFA = {1}. Therefore, I = m.
This is not possible, since we assumed that I ⊂ m2.

(iii) The first identity follows from a direct computation, so I⊥ = (J :R m)⊥ =
m ◦ J⊥.

In [21] Teter rings are defined without any restriction on the embedding dimen-
sion. From proposition 3.1 we may define Teter rings by assuming that the rings A
and G have the same embedding dimension.

Definition 3.2. An Artin ring A = R/I is Teter if I ⊂ m2 and there exists an
Artin Gorenstein ring G = R/J such that A ∼= G/soc(G). We say that G is a Teter
cover of A.

If A is a Teter ring and G is a Teter cover, from the definition of the Hilbert
function we have that

HFA(i) =

{
HFG(i), i = 0, . . . , s − 1,

0, i � s.

Note that if G = R/J is an Artin Gorenstein ring, then A = G/soc(G) is trivially
a Teter ring; here A = R/I with I = (J :R m) and soc(G) = I/J . See example 4.6
and proposition 3.6 for examples of non-Teter rings.
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Example 3.3 (example of a Teter ring). The ring A = R/m2 is Teter because it is
a quotient of the Gorenstein ring G = R/J by its socle, where J = AnnR〈y2

1 + · · ·+
y2

n〉. In fact, G is a Gorenstein ring of socle degree 2 because J⊥ = 〈y2
1 + · · · + y2

n〉
is cyclic and generated by a polynomial of degree 2. Moreover, J is generated by
xixj , 1 � i < j � n, and λ1x

2
1 + · · · + λnx2

n such that λi ∈ k and λ1 + · · · + λn = 0.
Hence, the coset of x2

1 in G generates the socle of G, and we get that J +(x2
1) = m2.

Note that we can pick as the generator of soc(G) any square x2
i , i = 1, . . . , n. See

proposition 3.6 for a complete characterization of Teter rings R/mr.

In the next result we present a characterization of Teter rings in terms of their
inverse systems and we generalize the characterization due to Ananthnarayan et al .
to any characteristic of the ground field.

Recall that if A = R/I is an Artin ring, then A admits a canonical module ωA

that can be identified to EA(k) = (0 :ER(k) I) = I⊥ [4, theorem 3.3.4 (a)].

Theorem 3.4. Let A = R/I be an Artin ring with maximal ideal n and socle degree
s − 1 � 1. Then the following conditions are equivalent:

(i) A is a Teter ring;

(ii) there exists a degree-s polynomial F ∈ S such that I⊥ = 〈∂y1F, . . . , ∂ynF 〉;

(iii) there exists an epimorphism of A-modules ωA → n.

In particular, if A is a Teter ring, then the Cohen–Macaulay type of A is n.

Proof. Suppose that A is a Teter ring of socle degree s − 1. Then A = G/soc(G),
where G = R/J is an Artin Gorenstein ring of socle degree s. From Macaulay
correspondence, J⊥ is a cyclic R-module generated by a polynomial F of degree s:
J⊥ = 〈F 〉. From proposition 3.1(iii) we get (ii):

I⊥ = m ◦ J⊥ = m ◦ 〈F 〉 = 〈∂y1F, . . . , ∂ynF 〉.

Assume now that (ii) holds. Let A = R/I be an Artin ring with

I⊥ = 〈∂y1F, . . . , ∂ynF 〉,

where F ∈ S is a degree-s polynomial. Let G = R/J be the Gorenstein ring defined
by J = AnnR〈F 〉. Hence, we have the following exact sequence of R-modules:

0 → I⊥ → J⊥ = 〈F 〉 → k → 0.

From this we get that A = G/soc(G), i.e. A is a Teter ring.
Let A be a Teter ring with Teter cover G. Then we have an exact sequence of

R-modules,
0 → k → G → A → 0.

If we denote by 
 the functor HomG(·, EG(k)), we get the exact sequence of R-
modules

0 → A� = EA(k) → G� ∼= G → k → 0.

From this we get that ωA = EA(k) ∼= mG, where mG is the maximal ideal of G.
Composing this isomorphism with the natural projection mG → n yields (iii).
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Let us assume that there exists an epimorphism of A-modules φ : ωA
∼= EA(k) →

n. Since LengthA(EA(k)) = LengthA(A) and LengthA(n) = LengthA(A) − 1, we
deduce that ker(φ) ∼= k. Hence, we have an exact sequence of A-modules

0 → k → EA(k)
φ−→ n → 0.

Dualizing this sequence, we get the exact sequence of A-modules

0 → n
∨ φ∨

−−→ EA(k)∨ = A → k → 0.

In particular, we have an isomorphism of A-modules:

ϕ = (φ∨)−1 : n
∼=−→ n

∨.

On the other hand, dualizing the natural exact sequence

0 → n → A → k → 0,

we get the isomorphism of A-modules

β :
I⊥

k
→ n

∨

z̄ �→ β(z̄) : n → S

x �→ x ◦ z.

Then ϕ can be factorized throughout β, i.e. ϕ = β ◦ α with the isomorphism of
A-modules

α = β−1ϕ : n → I⊥

k
.

Furthermore, if x ∈ n and y ∈ n, then

ϕ(x)(y) = y ◦ α(x) = α(xy) = x ◦ α(y) = ϕ(y)(x).

From the main result of [22] we get that A is Teter.
If A is a Teter ring, then from (ii) and proposition 2.6 we get that the Cohen–

Macaulay type of A is at most n. By (iii) we get that the Cohen–Macaulay type is
at least n, so the Cohen–Macaulay type of A is n.

Remark 3.5. Teter [22] proves that a ring A is Teter if and only if there is an
isomorphism of R-modules φ : n → n∨ such that φ(x)(y) = φ(y)(x) for all x, y ∈ n.
We can explicitly describe an isomorphism of A-modules φ : n → n∨. In fact, let
G be a Teter cover of A and let F be a generator of the inverse system of G. The
morphism

φ : n → n
∨ ∼=

I⊥

k

a �→ a ◦ F

is an isomorphism such that φ(x)(y) = φ(y)(x).
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In example 3.3 we prove that R/m2 is Teter. In the next result we characterize
the powers of the maximal ideal defining Teter rings, simplifying and improving [22,
corollary 2.2] and [3, corollary 4.4].

Proposition 3.6. Let r be a positive integer. Then R/mr is Teter if and only if
n = 1 or r � 2.

Proof. Let R/mr be a Teter ring with r � 1. Then (mr)⊥ = 〈∂y1F, . . . , ∂yn
F 〉

for some degree-r polynomial F (theorem 3.4). On the other hand, we know that
(mr)⊥ = S�r−1, so(

r − 1 + n − 1
n − 1

)
= µR(Sr−1) = µR((mr)⊥) � n.

From this inequality we get that n = 1 or r � 2.
If n = 1, then R = k[[x1]], mr = (xr

1) and, trivially, A = R/mr is Teter. The case
r � 2 is shown in example 3.3.

A natural class of Teter rings could be the class of Gorenstein and level rings. In
the next result we prove that Teter Gorenstein rings are of embedding dimension 1.

Proposition 3.7. Let A be an Artin Gorenstein ring. Then A is a Teter ring if
and only if n = 1.

Proof. Assume that A is of socle degree t. If n = 1, then A = k[[x1]]/(xt+1
1 ). Hence,

G = k[[x1]]/(xt+2
1 ) is a Gorenstein ring with socle generated by the coset of xt+1

1 .
Since A = G/(xt+1

1 ), we get that A is a Teter ring.
If A is a Teter ring, then its Cohen–Macaulay type is n (theorem 3.4). On the

other hand, we assumed that A is Gorenstein, so its Cohen–Macaulay type is 1.
Hence, we get that n = 1.

Remark 3.8. Let A be a Teter ring such that its associated graded ring grn(A) is
Gorenstein. In particular, if A is an Artin Gorenstein ring, then n = 1 (proposi-
tion 3.7). Hence, grn(A) is Gorenstein if and only if n = 1.

Next we will define level rings as a natural generalization of Gorenstein rings.

Definition 3.9. An Artin ring A with socle degree s is level if soc(A) = ns.

Given a polynomial H ∈ S of degree l we denote by top(H) the degree-l form
of H.

Proposition 3.10 (De Stefani [5, proposition 2.2]). Let A = R/I be an Artin ring
of socle degree s and Cohen–Macaulay type t. Then A is level if and only if I⊥ is
generated by t polynomials H1, . . . , Ht ∈ S such that deg(Hi) = s for i = 1, . . . , t,
and the homogeneous forms top(H1), . . . , top(Ht) are k-linear independent.

Compressed Artin rings are those Artin rings with the maximal Hilbert function
among the Artin quotients of R with a given socle degree and socle type. We avoid
defining the socle type here because we will use the following equivalent definition
of a compressed ring for level Artin rings [16, definition 2.4.B].
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Definition 3.11. A local level Artin ring A of socle degree s and Cohen–Macaulay
type τ is compressed if

HFA(i) = min{dimk(Si), τ dimk(Ss−i)}

for all i = 0, . . . , s.

Theorem 3.12. Let A = R/I be a Teter ring of socle degree s − 1 and let G =
R/J be a Teter cover of A = R/I. Then A is a level Artin ring if and only if
HFA(s − 1) = n. In particular, if G is compressed, then A is a level Artin ring of
Cohen–Macaulay type n.

Proof. If A is a level Artin ring, then its Cohen–Macaulay type is n (theorem 3.4).
Hence, HFA(s − 1) = n.

Assume now that HFA(s − 1) = n. Since G is of socle degree s, the inverse
system J⊥ is generated by a degree-s polynomial F and I⊥ = 〈∂y1F, . . . , ∂ynF 〉
(theorem 3.4). In particular, deg(∂xiF ) � s− 1, i = 1, . . . , n. Since HFA(s− 1) = n
we have that

n = HFA(s − 1) = dimk((I⊥)s−1)

= dimk

(
I⊥ ∩ S�s−1 + S<s−1

S<s−1

)

= dimk

(
I⊥ + S<s−1

S<s−1

)
.

Observe that {∂y1F, . . . , ∂ynF} generates I⊥ as an R-module. Then I⊥ is generated
as k-vector space by {xL ◦ ∂y1F, . . . , xL ◦ ∂ynF, L ∈ Nn}. If |L| � 1, then xL ◦
∂xiF ∈ S<s−1 for i = 1, . . . , n. Then the cosets of {∂y1F, . . . , ∂yn

F} are a system
of generators of I⊥ + S<s−1/S<s−1 as a k-vector space. Since this vector space
is of dimension n, we get that the cosets of {∂y1F, . . . , ∂ynF} form a k-basis of
I⊥ + S<s−1/S<s−1, so top(∂y1F ), . . . , top(∂yn

F ) are linear independent forms of
degree s − 1. Then A is level of socle degree s − 1 and maximal Cohen–Macaulay
type n (proposition 3.10).

If G is compressed, then n = HFG(s − 1) = HFA(s − 1). From the first part of
the statement we get the claim.

Corollary 3.13. Let A be a Teter ring of socle degree s − 1, and let G be a Teter
cover of A. Assume that G is compressed. Then A is a level ring with Cohen–
Macaulay type n and

(i) if 2 � s � 4, then A is compressed,

(ii) if s � 5, then A is compressed if and only if n = 1.

Proof. If G is compressed, then A is a level ring of maximal Cohen–Macaulay type
n by theorem 3.12.

Assume that 2 � s � 4. Then the Hilbert function of G is {1, n, 1}, {1, n, n, 1}
or {1, n,

(
n+1

2

)
, n, 1}. From this we can compute the Hilbert function of A and use

it to prove that A is compressed.
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Assume now that A and G are compressed and s � 5. From the fact that G is
compressed, s � 5 and that G is a Teter cover of A we get(

n + 1
2

)
= HFG(s − 2) = HFA(s − 2).

Since A is compressed of Cohen–Macaulay type n and s � 5 we deduce

HFA(s − 2) = min{dimk(Ss−2), n dimk(S1)} = n2.

From the above identities we have
(
n+1

2

)
= n2, so n = 1. If n = 1, the claim is

trivial.

Note that example 3.3 provides an example of a level Teter ring A = R/m2 with
a compressed Gorenstein Teter cover.

4. Teter variety

The aim of this section is to study the family of all Teter cover rings of a given
Teter ring A. We also present a procedure for testing if an Artin ring is Teter and,
if this is the case, to compute a Teter cover.

Let A = R/I be a Teter ring of length e and socle degree s − 1. Let G = R/J
be a Teter cover of A. Then J⊥ = 〈F 〉 with F a degree-s polynomial and I⊥ =
〈∂y1F, . . . , ∂ynFn〉 (theorem 3.4). Since LengthR(G) = e+1 we have that 〈F 〉/I⊥ is
a one-dimensional subspace of WI := S�s/I⊥. Therefore, G defines a closed point
pG = [〈F 〉/I⊥] of the projective space PN

k = Pk(WI) with N =
(
n+s

s

)
− e − 1.

Definition 4.1. We denote by TC(A) ⊂ PN
k the set of all closed points pG, where

G is a Teter cover of A; TC(A) is the Teter variety of A.

Proposition 4.2. The Teter variety TC(A) of a Teter ring A is a non-empty
Zariski open subset of a linear subvariety of PN

k . In particular, TC(A) is an irre-
ducible and non-singular variety of PN

k .

Proof. Assume that the socle degree of A is s− 1. Let p = [V/I⊥] be a closed point
of PN

k with V a k-vector space of dimension e+1. Then V = 〈H〉k +I⊥, where H is
a degree at most s polynomial of S. From theorem 3.4 we deduce that the following
conditions are equivalent to having p = pG ∈ TC(A), with G = R/ AnnR(H),

(i) deg(H) = s, and

(ii) m ◦ H = I⊥.

Note that the above conditions are independent of the representative we choose for
the base of the quotient V/I⊥. In fact, let H ′ be a polynomial of S such that its
coset in V/I⊥ defines a k-basis. Then H ′ = λH +α, where λ ∈ k \{0} and α ∈ I⊥.
Since I⊥ ⊂ S�s−1 we get that deg(H ′) = deg(H) = s. From the identities

m ◦ H ′ + m ◦ I⊥ = m ◦ H + m ◦ I⊥ = I⊥

and Nakayama’s lemma, we deduce m ◦ H ′ = I⊥.
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Let U be the Zariski open set of points p = [V/I⊥] of PN
k such that H is of degree

s, where V = 〈H〉k + I⊥.
Let a1, . . . , ae be a k-basis of I⊥. Then m ◦ H ⊂ I⊥ if and only if

dimk〈∂xi
H, a1, . . . , ae〉k = e

for i = 1, . . . , n. Since the above conditions can be expressed as the vanishing of all
maximal minors of the matrix defined by the coordinates of ∂xi

H, a1, . . . , ae, the
above conditions define a linear subvariety L of PN

k .
On the other hand, by the lower semi-continuity of the dimension of k-vector

spaces there is a Zariski open set W ⊂ U ∩L such that for all points p ∈ W it holds
that dimk(m ◦ 〈H〉) � e, and then m ◦ 〈H〉 = I⊥. Therefore, since for all p ∈ W we
have that deg(H) = s and m ◦ H = I⊥, we get TC(A) = W .

Note that the proof of the last result shows how to compute Teter variety. In the
next example we show how to compute TC(R/m2).

Example 4.3 (example of a TC(A)). Let us consider the Teter ring A = R/m2

with R = k[[x1, x2]] (example 3.3). Its inverse system is (m2)⊥ = 〈1, y1, y2〉k. Let

H =
∑

0�i+j�2

ai,jy
i
1y

j
2

be a general polynomial of degree at most 2, and consider the k-vector space (see
the proof of proposition 4.2)

〈H〉k + I⊥

I⊥ ⊂ WI =
S�2

I⊥ .

The closed point p ∈ P2
k = P(WI) belongs to TC(A) if and only if H satisfies

conditions (i) and (ii) of the proof of proposition 4.2. If this is the case, then

〈H〉k + I⊥ = 〈H2〉k + I⊥,

where H2 is the degree-2 homogeneous form of H. If we take as coordinates of
p ∈ P2

k the 3-uple {a2,0:a1,1:a0,2}, a simple computation shows that TC(A) is the
open Zariski subset of the projective plane:

TC(A) = P2
k \ {∆ ≡ 0},

where ∆ = a2,0a0,2 − a2
1,1.

Our next step is to present some effective criterion for testing if an Artin ring is
Teter and, if this is the case, to compute a Teter cover.

In the following remark we explore a possible issue when we consider a given sys-
tem of generators of I⊥ in order to check if A = R/I is Teter by using theorem 3.4.

Remark 4.4. Assume that A = R/I is a Teter ring of socle degree s − 1. From
theorem 3.4 we know that there exists a degree-s polynomial F ∈ S such that
I⊥ = 〈∂y1F, . . . , ∂yn

F 〉. Not all systems of generators of I⊥ are formed by the
first derivatives of a polynomial. Let us consider F = y2

1 + y2
2 ∈ S = k[y1, y2]; let

G = R/ AnnR〈F 〉 be the Gorenstein ring associated to F and let A = G/soc(G) =
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R/m2 be the attached Teter ring (see example 3.3). Then I⊥ = 〈y1, y2〉. The pair
3y1+2y2, y1 is a system of generators of the R-module I⊥ but there is no polynomial
G such that ∂y1G = 3y1 + 2y2, ∂y2G = y1 or ∂y1G = y1, ∂y2G = 3y1 + 2y2.

In the following result we give a method for checking whether an Artin ring is
Teter and how to compute a Teter cover of it. This method has been implemented
in the Singular library inverse-syst.lib [8].

Proposition 4.5. Let A = R/I be an Artin ring of socle degree s − 1 and let
F1, . . . , Fr be a minimal system of generators of I⊥. The Artin ring A is Teter if
and only if n � r and there is an n × r matrix C of maximal rank r modulo the
maximal ideal m with entries polynomials of R of degree at most s − 1 such that
the elements H1, . . . , Hn ∈ S defined by⎛

⎜⎝
H1
...

Hn

⎞
⎟⎠ = C ◦

⎛
⎜⎝

F1
...

Fr

⎞
⎟⎠

satisfy the Schwartz conditions ∂yiHj = ∂yj Hi, 1 � i < j � n.
Under these conditions there exists H ∈ S such that ∂yi

H = Hi, i = 1, . . . , n,
and G = R/ AnnR〈H〉 is a Teter cover of A.

Proof. If A is a Teter ring with a Teter cover G = R/J with J⊥ = 〈H〉, then
I⊥ = 〈∂y1H, . . . , ∂ynH〉. Hence, n � r and there is an n × r matrix C with entries
in R such that ⎛

⎜⎝
∂y1H

...
∂yn

H

⎞
⎟⎠ = C ◦

⎛
⎜⎝

F1
...

Fr

⎞
⎟⎠ .

Since the degree of Fi is at most s−1, i = 1, . . . , n, we may assume that the entries
of C are polynomials of R of degree at most s − 1. We may assume that ∂yij

H,
j = 1, . . . , r, a minimal system of generators of I⊥. The r×r submatrix of C defined
by the rows ij , j = 1, . . . , r, is of maximal rank modulo the maximal ideal m.

Assume now that n � r and that there is an n × r matrix C of maximal rank
modulo the maximal ideal m with entries polynomials of R of degree at most s − 1
such that the elements H1, . . . , Hn ∈ S defined by⎛

⎜⎝
H1
...

Hn

⎞
⎟⎠ = C ◦

⎛
⎜⎝

F1
...

Fr

⎞
⎟⎠

satisfy the Schwartz conditions ∂yiHj = ∂yj Hi, 1 � i < j � n.
Then the R-module L = 〈H1, . . . , Hn〉 is a submodule of I⊥, and since C is of

maximal rank modulo the maximal ideal m we get that L = I⊥. On the other hand,
since the family H1, . . . , Hn satisfies the Schwartz conditions there is a polynomial
H such that Hi = ∂yi

H, i = 1, . . . , n. Therefore, I⊥ = 〈∂y1H, . . . , ∂yn
H〉. By

theorem 3.4 we get that G = R/ AnnR〈H〉 is a Teter cover of A.
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Example 4.6. Let L ⊂ S be the sub-R-module of S generated by y2
1 , y2y3, y1y3.

Note that this system of generators is minimal. The Artin ring A = R/I, with
I = AnnR(L), is not a Teter ring. Assume that A is Teter. Then there is a degree 3
homogeneous form F ∈ S such that L = 〈∂y1F, ∂y2F, ∂y3F 〉. Hence, there is a
non-singular matrix C with entries in k such that⎛

⎝ y2
1

y2y3

y1y3

⎞
⎠ = C

⎛
⎝∂y1F

∂y2F

∂y3F

⎞
⎠

so ⎛
⎝∂y1F

∂y2F

∂y3F

⎞
⎠ = C−1

⎛
⎝ y2

1
y2y3

y1y3

⎞
⎠ .

Considering Schwartz’s conditions ∂yiyj F = ∂yjyiF , 1 � i < j � 3, we get that
C−1 is singular. Hence, A is a non-Teter ring.

5. Case studies: stretched, almost stretched and low socle degree rings

The aim of this section is to study stretched, almost stretched and short Teter rings.
Our strategy is to use the known results on the minimal system of generators of
such rings.

Following Sally (see [19]), we say that an Artin local ring A = R/I of socle
degree s is stretched if HFA(2) = 1. We call an Artin local ring A almost stretched
if HFA(2) = 2. By Macaulay’s characterization of Hilbert functions, the Hilbert
function of A is given by

i 0 1 2 · · · s s + 1
HFA(i) 1 h 1 · · · 1 0

with (s � 2) if A is stretched, or by

i 0 1 2 · · · t t + 1 · · · s s + 1
HFA(i) 1 h 2 · · · 2 1 · · · 1 0

with s � t � 2 if A is almost stretched. If t = s, then we assume that HFA(t) =
HFA(s) = 2. We say that A is almost stretched of type (s, t).

The case of the stretched Artin Gorenstein local ring was studied in [19] by Sally,
who found a structure theorem for the corresponding ideals. Elias and Valla [11]
extended this result to the case of stretched Artin local rings of any Cohen–
Macaulay type. Moreover, a structure theorem for the minimal systems of gen-
erators of the ideals defining almost stretched Gorenstein ideals is given in [11].
In [12] Elias and Valla presented an analytic classification of almost stretched alge-
bras under the assumption s � 2t, and Elias and Homs presented a classification
for all pairs (s, t) in [9].

From the definition of stretched and almost stretched rings it is easy to prove the
following.
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Proposition 5.1. Let A be a Teter Artin ring and let G be a Teter cover of A.
If A is stretched (respectively, almost stretched) of socle degree s − 1, then G is an
Artin Gorenstein stretched ring (respectively, an Artin Gorenstein almost stretched
ring) of socle degree s.

In the next proposition we collect some results of [11].

Proposition 5.2 (Elias and Valla [11]). Let A = R/I be an Artin ring of socle
degree s and Cohen–Macaulay type t.

(i) If A is stretched, then 1 � t � n.

(ii) If A is stretched and t < n, then, after a k-algebra isomorphism of R, I
is minimally generated by the elements {xixj}1�i<j�n, {x2

j}2�j�t, {x2
i −

uix
s
1}t+1�i�n, where the ui are units in R.

(iii) If A is stretched and t = n, then, after a k-algebra isomorphism of R, I is
minimally generated by the elements {x1xj}2�j�n, {xixj}2�i�j�n and xs+1

1 .

If A is Gorenstein, i.e. t = 1, the coset of xs
1 in A is a generator of soc(A).

From this structure theorem we deduce a characterization of stretched Teter
rings, which we prove are unique up to isomorphisms.

Proposition 5.3. Let A = R/I be an Artin stretched Teter ring of socle degree
s − 1. Then, after a k-algebra isomorphism of R, I is minimally generated by the
elements {x1xj}2�j�n, {xixj}2�i�j�n and xs

1. In particular, I is unique up to a
k-algebra isomorphism of R.

Proof. Let G be a Teter cover of A. Since G = R/J is stretched and Gorenstein
of socle degree s, we may assume that J is minimally generated by {xixj}1�i<j�n,
{x2

i − uix
s
1}2�i�n, where the ui are units in R. Then I = J + (xs

1) is generated by
{xixj}1�i<j�n, {x2

i }2�i�n, xs
1 (proposition 5.2(iii)).

Remark 5.4. For the class of almost stretched Teter rings, we can prove a similar
result by using the main result of [9]. We do not present it here due to the many
cases that should be considered.

Proposition 5.5. Let A = R/I be an Artin ring.

(i) If the Hilbert function of A is {1, n, m} and A is Teter then m � n.

(ii) For all m � n there is a Teter ring A with Hilbert function {1, n, m}.
Proof.
(i) Let G be a Teter cover of A. Then G is a short Gorenstein ring, i.e. a ring with
Hilbert function {1, n, m, 1}. From Iarrobino’s shell formula we get that m � n
(see [10,17]).

(ii) Given an integer m � n, consider the polynomial

F = y3
1 + · · · + y3

m + y2
m+1 + · · · + y2

n

and the Gorenstein ring G with Macaulay inverse system F . A simple computation
shows that HFG = {1, n, m, 1}. Hence, A = G/soc(G) is a Teter ring with {1, n, m}
as its Hilbert function.
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Remark 5.6. Note that from Macaulay’s characterization of Hilbert functions we
get that {1, n, m} is the Hilbert function of an Artin algebra if and only if 0 � m �(
n+1

2

)
[4, 20]. For Teter rings we have a stronger condition: m � n.
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