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Under some circumstances, dependent on a ship’s velocity, the wave period and wave
direction, certain courses induce heavy rolling and must be avoided. This paper proposes
a computational method for the solution of optimal control problems in ship routing for
ships with such limited manoeuvrability. Known results for the control problem of Bolza
with additional constraints are interpreted in terms of this new problem. This approach is
equivalent to the application of Pontryagin’s maximum principle. The method is an
extension of an earlier method dealing with the meteorological navigation of ships with
unrestricted manoeuvrability and gives a more realistic picture of what really could happen
in practice.
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1. INTRODUCTION. Ship routing involves the solution of optimal control
problems resulting from the meteorological effects on the navigation of ships. For
instance in ship routing, the course of a ship between two given points may be
determined so that the sailing time is minimized, given the maximum speed that
the ship can maintain during 6 or 12 hours in different directions and subject to the
disturbing forces of the ocean surface. Alternatively, other cost functions such
as fuel consumption could be minimized leading to a more complex optimization
problem considering the course and the speed of the ship as control variables. To
compute an optimal path all the disturbing forces that could influence the ship on
its way must be known. Since one of the most important forces is formed by the
disturbed ocean surface it is assumed here that the state of the ocean surface is fully
known beforehand for the complete passage.

After the appearance of the innovative paper by Hanssen and James (1960), several
methods were proposed to solve the relatively simple problem of minimizing sailing
time. In a series of papers we showed how these methods could be generalized to
include minimization of the fuel consumption. For instance in Bijlsma (2001) appli-
cation of the calculus of variations was extended to the minimization of fuel con-
sumption, in Bijlsma (2002) the relation between optimal control theory and dynamic
programming was elucidated for the case of minimal fuel routing, and in Bijlsma
(2004) this was done for the relation between time front and energy front methods. In
all these methods unrestricted manoecuvrability was assumed, ignoring the fact that
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some courses could be forbidden due to heavy rolling which occurs if the course of the
ship is at a certain angle, depending on the ship’s speed and wave period, with respect
to the wave direction. As a more realistic approach, in this paper a computational
method will be discussed which takes into account this conditionally restricted
manoeuvrability. For the sake of simplicity it is assumed that the occurrence of
forbidden courses merely depends on the significant wave height (which in fact de-
termines the optimal ship’s speed with respect to the minimization of sailing time
or fuel consumption, and in a sense the presence of critical wave periods) and wave
direction. We will return to this subject below. Relevant here is a paper by France
et al (2002) on the largest container casualty in history. It concerns, we quote, a
laden, post-Panamax, C11 class containership, eastbound from Kaohsiung to Seattle
that was overtaken by a violent storm in the North Pacific Ocean in late October
1998. The encounter with the storm continued for some 12 hours, mostly at night,
during which the master reduced speed and attempted to steer into increasingly
higher seas off the vessel’s starboard bow. Ultimately, the seas became completely
confused and violent. The master later described the ship as absolutely out of control
during the worst storm conditions. Investigation of the motion of the vessel during
this storm event through a series of model tests and numerical analyses confirmed
the vessel’s parametric rolling response in the head seas prevailing at the time of the
casualty. The responses can occur in extreme head, or near head, seas when un-
favorable tuning is combined with low roll damping (reduced speed) and large stab-
ility variations (governed by wave length, wave height, general hull form, bow flare
and stern shapes). One of the recommendations made by the authors is that safe
and unsafe combinations of heading and speed for various sea state/loading com-
binations (in this case focused on head-sea parametric rolling) should be identified
and presented to the master in the form of polar plots or other diagrams, or included
in the ship’s routing computer software. For more information on the response of
a ship to waves the reader is referred for instance to publications of the Maritime
Research Institute Netherlands (MARIN) at Wageningen, The Netherlands.

In this paper a simple model is used for the ship’s performance characteristics. This
is obviously in accordance with the wishes of those who make use of an on board
routing system (see Spaans and Stoter (2000)). In the case of minimal-time routing
the ship’s performance is represented by a polar velocity diagram of elliptic form
giving the ship’s velocity as a function of the angle between the ship’s heading and the
wave direction for specific values of the significant wave height. It is constructed with
the aid of the actual maximum values of the ship’s speed in the case of following,
beam and head waves obtained from empirical data. In the case of minimum fuel
routing, it is not the maximum speed but the speed that maximizes the quotient of
speed and fuel consumption per unit of time that plays an important role, as we shall
see below. Sectors of forbidden courses are included in these polar velocity diagrams.

In Bijlsma (2001) a method was presented for the computation of a minimum-fuel
route for ships with unrestricted manoeuvrability based on known results for the
control problem of Bolza (1909) from the classical calculus of variations. The method
presented here is an extension of that method by imposing additional constraints
on the course of the ship, so allowing for restricted manoeuvrability. This approach
is equivalent to application of the maximum principle from optimal control theory
(Pontryagin et al (1964), see also Hestenes (1966)). No conditions are imposed on the
spatial variables. For instance, it is not assumed here that a ship will follow a route
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partly or wholly belonging to the fixed boundary that may be formed by land or
ice (see Bijlsma (1975)).

In this paper we give the mathematical tools that are needed to introduce forbidden
courses in the form of modified polar velocity diagrams and to solve the corre-
sponding optimal control problem in ship routing. Those familiar with shipping
should be consulted for providing practical information on the behaviour of a ship in
a seaway. The paper is organized as follows. In the next section the problem of Bolza
is discussed for ships with unlimited manoeuvrability. Section 3 then pays attention
to modifications that should be introduced in the case of forbidden courses; the
practical aspects of this approach are in section 4. Our conclusions are presented
in section 5.

2. THE PROBLEM OF BOLZA FOR UNLIMITED MANOEUVR-
ABILITY. Let us consider the minimization of the costs of a ship during its
transit over the ocean between two given points. It is assumed here that the costs of
a ship during an ocean crossing are due mainly to fuel consumption. For the sake
of completeness it is noted that the resulting equations also apply in the case of
other penalty or cost functions such as damage to cargo or passenger discomfort.
We assume that the state of the ocean surface for the time of the complete passage
is fully known beforehand. The navigation area is mapped conformally onto a
plane, for instance by means of stereographic projection (see Bijlsma, 1975, p. 14).
Introducing a Cartesian coordinate system with coordinates x; and x,, it is assumed
that the rate of decrease of fuel can be described by the equation

-).CO =ﬁ)(ta X1, Xg, Vs p)

where the variable x, denotes the fuel consumption and where the dot denotes
differentiation to the time ¢. The speed V" and the course p are control variables. It
is assumed that these control variables belong to open sets. We now seek to find
continuous control functions V(¢) and p(¢f) and a corresponding trajectory x(¢)=
(x1(2), x5 (1)) (0<t<1,) satisfying the equations:

X1=Vcosp+S8i(t, x1, X2) (1

)'ng VSinp+S2(l, X1, X2) (2)
with

xi(0)=xj0, xi(t1)=x5 (=1, 2) (3)

which minimize

h

Jo(t, x1(0), x2(2), V(2), p(1))dt 4)

0

This problem is called the control problem of Bolza (1909). The functions S;(z, x;, x5)
and Sy(¢, x;, x,) are the components of the ocean current and will be omitted for
notational simplicity. Inclusion is possible and will result in additional terms in
equations (6), (7) and (10) or (13) (see also Bijlsma (2001), p. 147). The problem of
Bolza has been studied extensively in the literature. A comprehensive treatment can
be found in Hestenes (1966). The functions V(¢) and p(r) satisfying the control
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problem of Bolza are optimal control functions and the arc x(r) is an optimal
trajectory. It is supposed here that the arc x(¢) is normal which implies the existence of
a one-parameter family of arcs satisfying equations (1) and (2), with initial and end
conditions given by equation (3), and containing x(¢) for a specific parameter value.
The necessary condition for the control functions V(z) and p(¢) and the trajectory
x(#) to be optimal is that there exist continuously differentiable multipliers A(¢)=
(Ao(2), A1(1), A9(1)), Ao(f) =constant <0 and a function

H(t, x, V, p, A)=Afo+ AV cosp+A,Vsinp
so that the following conditions hold on x(7):

(a) The first necessary condition. On x(¢) the Euler-Lagrange equations
Xi=H,, Q= —H,, Hy=0, H,=0 (i=1,2)

hold. Variables as subscripts denote partial differentiation.
(b) The necessary condition of Weierstrass. Along x(7) the inequality

H(t, x(1), V, p, M) <H(t, x(1), V(0), p(1), A(1))
must hold for any 7, 0 <t <. In addition
H(y, x(tr), V(11), p(tr), A(11))=0.

As a consequence of normality the equality sign for the multiplier 4, is excluded. The
generalization of the conditions (a) and (b) in the case that V(¢) or p(¢) will assume
boundary values is an extension of the classical calculus of variations and is known as
Pontryagin’s maximum principle. This situation may occur for instance if the course
p 1is restricted to a closed set so that certain courses are forbidden. This case is dealt
with in the next section. The speed V'is restricted to the open range of values given by:

Vmin(la X1, Xg, P) <F< Vmax(ly X1, Xg, p)

where Viin(t, X1, X2, p) denotes an acceptable minimum speed depending on wave
height and wave direction, and V,.x(¢, X1, Xo, p) denotes a maximum speed.

In the case of a movable end point the differentials of x; (i=1, 2) are connected by
the transversality condition:

2
Z Ai(t)dx;; =0
i=1

which is an additional necessary condition for x() to yield the solution of the optimal
problem with movable ends. It should be noted that the navigation area is assumed
to be an open region, which means that no constraints are imposed on the spatial
variables so that ships are not assumed to follow a route partly, or wholly belonging
to the boundary of the navigation area. Solutions of the Euler-Lagrange equations
with continuous control functions are called extremals. An optimal trajectory is
obviously an extremal. We observe that every part of an optimal trajectory is an
optimal trajectory itself, which is a direct consequence of the principle of optimality
(Bellman, 1957). A proof by contradiction is immediate. This means that every
point of an extremal can be considered as an end point. Therefore equation H=0
is supposed to be satisfied for all values of the time ¢ with 0 <7< ¢;. Combination of
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the equations H=0 and H}; =0 shows that the speed 7 along an extremal must be
chosen so that it maximizes the quotient:

_r
ﬁ)(la X1, X2, V) p)

As a result we could describe in every point of the (x;, x,) plane an optimal speed
V(t, x;, xo, p) maximizing relation (5) leading to a more direct approach to the
problem analogous to the time-optimal case. This approach has been treated exten-
sively in Bijlsma (2001) and will be summarized here. Note that it is assumed that
wave height and direction are known for the complete passage in every point of the
(x1, x2) plane. The new problem under consideration is to determine the course p(f)
and corresponding trajectory x(¢), 0 <t <1, satisfying the equations:

)

).Cl: V(la X1, X2, p) COSP (6)
X2 =WV(t, X1, X3, p)Sinp (7)

with initial and end conditions given by equation (3) that minimize the integral:
h
So(t, x1(0), x2(2), p(t))dt (8)
0

The fuel consumption (8) is obtained by substituting V= V(t, x;, X, p) in integral (4).
However the same notation is used for the resulting fuel consumption per unit of
time f,. Again we can apply the necessary conditions (a) and (b) for the problem
of Bolza observing that the speed is now a known function of 7, x;, x, and p so that

H(t, x, p, )=ofo(t, x, p)+ 1V (¢, x, p)cosp+ AV (¢, x, p)sinp
The Euler-Lagrange equations now read
%i=Hj, Ai=—H,, H=0 (i=1,2)
and the Weierstrass condition
H(t, x(1), p, M) <H(1, x(1), p(1), A(1))
with
H(ty, x(t1), p(t1), A(12))=0

Combination of the equations H=0 and H,=0 gives

2
> AiVip=0 ©)
i=1
where
V V.
Vi=-—cosp, Vo= —sin
VTR IR

Equation (9) has a simple geometrical meaning. This point is illustrated in Figure 1,
where we introduced a polar ‘velocity’ diagram giving the ship’s ‘velocity’ (V;, V)
as a function of the angle between the ship’s heading and the wave direction for fixed
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Figure 1. In view of the Weierstrass or Legendre condition there is a unique choice for p.
The course p is measured as indicated.

values of ¢, x; and x,. We note that the solution of the Euler-Lagrange equations
iz‘: _iof()x,’_/ll Vx, COSP_}% VXI Sinp (i:l, 2) (10)

does not change if the Lagrange multipliers A, and A, are multiplied by an arbitrary
constant. This is the case because the multiplier 4, can be chosen arbitrarily and the
multipliers 4y, 4; and A, are defined up to a common factor of proportionality.
Therefore we may write initial conditions as 1,(0) =cos a and A5(0)=sina for every
choice of Ay. For instance we can choose ;= — 1. All extremals emanating from the
starting point are found by varying the parameter «. In the following we are interested
in solutions of equations (6), (7) and (10), which are continuous in their dependence
on the parameter a. Therefore we make use of the two following theorems.

® From a theorem on the initial value problem for systems of differential equations
(Walter (1972), p. 93) we learn that the right-hand sides of equations (6), (7) and
(10), where p is implicitly defined by relation (9), must be continuous and must
satisfy a Lipschitz condition with respect to x;, x,, A; and A, so that the solutions
depend continuously on the parameter a.

® Application of a theorem on implicit functions (Hestenes (1966), p.22) to re-
lation (9) shows that V;, and V;,, (i=1, 2) must be continuous functions with
respect to 7, x;, X, and p and that the Legendre condition

2
> AiVipp <0 (11)
i=1

must hold so that p is a continuous function of x;, x,, 4;, 4, and .

The Legendre condition, which is a direct consequence of the Weierstrass condition,
implies that the polar ‘velocity’ diagram must be convex. Summarizing we have the
following result: Let the functions V, Vi, Vi, fox, fox,, Vip and Vi,,(i=1,2) be
continuous with respect to their arguments and let relation (11) be valid for 0 <7<1,.
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Figure 2. Computer produced by means of an incremental plotter using wave information over
the period 17 January—23 January 1970, fictitious ship’s data and a 12 hour time step. The least-
time track is indicated by the dashed line.

Further let the right-hand sides of equations (6), (7) and (10), where p is given by
equation (9), satisfy a Lipschitz condition with respect to x;, x,, 4; and A,. Then
xi(t, @) and A(t, a) (i=1,2; 0<t<t) as solutions of equations (6), (7) and (10) with
xi(0)=xj (i=1,2), where p is given by (9), are continuously differentiable with
respect to ¢ and continuous in their dependence on the parameter a defined by
41(0)= cosa and 4,(0) = sina.

This result enables us to introduce a numerical method for the solution of optimal
control problems in ship routing. An optimal route is obtained by integrating the
system of equations, varying the parameter a and selecting that extremal which ends
closest to the destination. The method appears to be very suitable in practical cases
because the above requirements can be satisfied rather simply. The essence of the
method is demonstrated in Figure 2, which has been taken from Bijlsma (1975). As a
consequence of the transversality condition (cf. Bijlsma (2001), p. 149) the vector
(A1(2, @), Aq(t, a)) is orthogonal to the manifold consisting of points that can be
reached along extremals in a given time ¢, in parametric representation given by

X1 =x1(t, @), x3=x5(t, a)

so that

2
Z Ait, a)xi(t, a)=0

i=1

where (x14(¢, @), x2,(t, @)) is the tangent vector to the manifold.

3. MODIFICATIONS IN THE CASE OF LIMITED MANOEUVR-
ABILITY. So far we ignored the fact that some courses could be forbidden.
This point is considered here. We have already noted that the prohibition of
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WAVE MOTION
-

Figure 3. Polar velocity diagram of elliptic form showing the sectors of forbidden courses,
indicated by the dashed lines. The non-coinciding boundary courses M,(t, x1, x»), (/=1, 2, 3, 4)
are measured in the same way as the course p.

a course is due to heavy rolling that occurs if the course is at a certain angle,
depending on the ship’s speed and wave period, with respect to the wave direction.
To be more specific, consider a ship with zero velocity in a wave field composed of
waves of a single period. If the direction of the waves lies in a suitable sector and
if their period corresponds to the resonance period of the ship, then the ship will
undergo violent movements. As a consequence, one has to change the position of
the ship with respect to the wave direction in order to avoid heavy rolling. If we
now consider the more realistic situation of a moving ship in a seaway, some modi-
fications will appear due to the fact that the wave period that causes resonance and
the corresponding sector of relative wave direction are dependent on the velocity of
the ship and that instead of waves of a single period, a spectrum of wave periods
is present. As a representative period, one could take in this case the period that is
related to the maximum energy in the spectrum. The corresponding polar velocity
diagram, which for simplicity is assumed to be of elliptic form, is then changed as
indicated in Figure 3. The course p is here restricted to sector I or II determined by
the angles M (¢, x1, x3) (I=1, 2, 3, 4).

We are now in a position to extend the results of the previous section for the case
in which the variables x; and x,, and course p not only satisfy equations (6) and (7)
with initial and end conditions given by (3) but also a set of additional constraints
of the form:

¢[(t3x1’x2’p)<0 (121929 394) (12)
which involve the control variable p explicitly. The functions ¢,(¢, x;, x2, p) are

assumed to be continuously differentiable with respect to x;, x, and p. These con-
straints can be constructed, for instance, by writing

@1, X1, X2, p) =p—M(1, x1,X5) for j=1,3
(bj([yxl,xz,P)=M,'(l,x1,x2)—p fOI' ]:2’4

Let p(r) be an optimal course and x(#) the corresponding optimal trajectory,
which minimize (8) subject to the equations (6) and (7) with (3), and condition (12).
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Then there exist multipliers A(2) =(1¢(¢), A1(¢), A2(?)), Ao(f) =constant <0 and u(¢)=
(uq(0), us(1), us(), 1y (1)), respectively continuously differentiable and continuous, and
a function:

4
H(t,x,p, A, u)=Ao fo+ AV cosp+AsVsinp— Zﬂ,gb,(t, X, p)

=1
so that conditions (a) and (b) described below hold along x(z).

(a) The first necessary condition. On x(¢) the equations
Xi=Hy, di=—Hy, Hy=0, ;<0 (i=1,2;1=1,2,3,4)

hold. Moreover u;(1)=0 (/=1, 2, 3, 4) where u;(f)=0 at each point of x(z) at
which ¢,<0.
(b) The second necessary condition. Along x(¢) the inequality

H(1, x(1), p, A1), 0)<H(t, x(2), p(1), A1), 0)

must hold for any ¢, 0 <7<, and every admissible p for which ¢,(z, x(), p) <0.
In addition:

H(tla x(tl)’ p(t1)> l(tl)a 0)20

The necessary condition for optimality, contained in conditions (a) and (b), is
an appropriate formulation of Pontryagin’s maximum principle for the present
problem. For courses p that are interior courses of sectors I or II, the results from
the foregoing section remain valid. If p would exceed one of the boundary courses,
say M, it is equalized to this value. In the following we choose j=1 or j=3 so that
the formulae given below apply. The cases j=2 or j=4 can be treated accordingly.
Application of the maximum principle gives the modified equations (cf. equation
(10))

Ai=—Aofox,—MVy, cosp—AeVy sinp—uM;y,  (i=1, 2; j=1, 3) (13)

Let us consider the variables p and u; in their dependence on Xy, xs, 1, 45, and .
If the course p is an interior course of sector I or Il denoted by p=p(t, x;, x,,
A1, Ag) it depends continuously on @ =arctan(4,/4,) (in the first instance x;, x,, and
t are assumed to be fixed) according to equation (9) of the previous section. As
soon as this angle equals or exceeds a boundary value, say 0(M;) =arctan(d,(M)/
A1(M))), p obtains the value M; (¢, X1, X,). So at the boundary the following relation
holds:

[(Mftxx)  626(M) "
p(t’ X1, X2, lla j'2) 0< O(Adj)‘

Of course the inequality sign is changed in the opposite sense if j=2 or j=4. If

the functions M;(t, x1, x5)(I=1, 2, 3,4) are required to be continuous with re-

spect to Xy, X, and ¢ and if p is restricted to liec in one of the sectors I or II,
then p is continuous in its dependence on x;, x,, 4;, 4, and . With respect to the
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parameter u; we have the following relations, which follow directly from application
of equation H,=0.

{iofop+11(Vcosp)p+12(Vsinp)p with p=M; 60=60(M)) .
u;=

0 0<0(M))

If j=2 or j=4 the result for u; in the first equation of (15) must be provided with a
minus sign. Analogous to the previous section we have the following result: Let
M(t, x1, x5) and M, (j=1,2,3,4;i=1, 2) be continuous with respect to x;, x, and z.
Further let the conditions of the main result of the previous section be fulfilled for
courses in sectors I and II including the boundary courses for 0 <z<t#. Then x,(¢, a)
and 4,(t,a)(i=1,2; 0<t<t) as solutions of equations (6), (7) and (13) with
x;(0)=x,(i=1, 2), where p and u;(j=1, 2, 3, 4) are given by equations (14) and (15),
are continuously differentiable with respect to ¢ and continuous in their dependence
on the parameter « defined by 4,(0)=cos a and A5(0) =sin a.

Regions of limited and unlimited manoeuvrability are separated from each other
by closed curves in the (x;, x;) plane changing continuously with time and containing
the limiting points where M; and M, as well as M and M, coincide. So far it has been
shown that x; (¢, a) and A4, a) (i=1, 2) are continuous in their dependence on the
parameter a for ships with unrestricted manoeuvrability and for ships with restricted
manoeuvrability provided that the courses along the neighbouring extremals fall
within the same sector I or II at a specific time. If not, a discontinuity in the depen-
dence on the parameter a arises since the ship cannot bridge the gap between two
boundary courses if it has to change from sector I to sector II or vice versa, owing to
the danger of heavy rolling and the possible damage attendant upon it. This may be
the case if the courses on two neighbouring extremals fall within different sectors.
In that case we may distinguish between separate groups of extremals, each group
depending continuously on the parameter a. For each of these separate groups the
main result of this section applies.

4. PRACTICAL ASPECTS. In order to simplify the discussion the dis-
cretized equations are considered on an orthogonal grid with coordinates x; and x,
and a given mesh distance. The maximum time step in the numerical solution of
equations (6), (7) and (10) for unlimited manoeuvrability, or equations (6), (7) and
(13) for limited manoeuvrability, is determined by the fact that wave charts are
usually available every 12 hours. Depending on the ship’s speed one can introduce
6-hour or 12-hour time steps interpolating between two successive wave charts so
that the distance which can be covered by the ship is of the order of magnitude of
the mesh distance. Significant wave height and wave direction are assumed to be
known at grid points for the complete passage. It is assumed that wave height and
wave direction between grid points can be obtained by bilinear interpolation. The
same interpolation procedure could be applied to the approximation of the spatial
derivatives in the equations that are computed at grid points by means of central
differences. For instance, for computational simplicity we could write equation (13)
at the boundary p=M,(, x) as

j~i: _HX,'(IB X, ‘Alj(t’ X), l’ 0)
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WAVE MOTION
-

Figure 4. Polar velocity diagrams of elliptic form are shown for two different values of the
significant wave height. Note that the sectors of forbidden courses, indicated by the dashed lines,
are increasing with increasing wave height.

and apply foregoing interpolation procedures. The validity of this simple inter-
polation rule has been demonstrated for instance in the experiments shown in Bijlsma
(2002). For more details concerning practical problems the flow diagram and corre-
sponding computer program in Bijlsma (1975) might be helpful, minor programming
errors reserved.

Just like the polar velocity diagram for the optimal ship’s velocity with respect
to the minimization of sailing time or fuel consumption also the polar ‘velocity’
diagram used in equation (9), showing the relation between the ship’s ‘velocity” and
wave direction (and wave height), is assumed to be of elliptic form. It is constructed
with the aid of the values of the ship’s ‘speed’ (which is equal to the value of the
quotient of the optimal ship’s speed and the corresponding fuel consumption per unit
of time) in the case of following, beam and head waves. These values are assumed to
be known for a range of values of significant wave height, just like the boundary
courses which define the forbidden sectors as shown in Figure 4. Intervening values
can be obtained by linear interpolation. In fact the ship’s ‘speed’ corresponds with
the distance that can be covered ultimately per unit of fuel consumption. If one of the
directions defining following, beam or head waves falls into a forbidden sector its
contribution might be obtained by extrapolation.

Let us now consider the continuous dependence of the solutions of the system of
equations on the initial values of the Lagrange multipliers, discussed in the preceding
sections, from a practical point of view. Therefore we regard a one-parameter family
of extremals emanating from the point of departure. We may start a new extremal
between two neighbouring extremals at a specific time if the distance between these
neighbours becomes too large at that time. If this distance is chosen sufficiently
small the starting values of the new extremal can be obtained by linear interpolation
between the corresponding values of its neighbours (see Figure 2). An optimal route
is obtained by selecting that extremal which ends closest to the destination. This
procedure can also be applied in the case of limited manoeuvrability if the courses
associated with the two neighbouring extremals at a certain time belong to sector I
or II (see Figure 3). The computation of an extremal is stopped if it intersects the
boundary of the navigation area (see again Figure 2).

A final remark concerns the introduction of forbidden courses. Owing to the
danger of heavy rolling, a ship will in general not follow a strategy as mentioned by
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de Wit (1968), where points in the forbidden sectors can be reached by steering a
combination of boundary courses. Therefore it may occur that it is even impossible to
reach the destination because the ship cannot bridge the gap formed by the boundary
courses. In that case it is up to the master to take measures to change course. For that
reason the master should have the possibility of an interactive communication with
the ship’s routing computer program in order to anticipate and avoid undesirable
situations.

5. CONCLUSIONS. In this paper a ship routing method is presented for
ships with limited manoeuvrability, which means that certain courses of the ship are
forbidden due to the heavy rolling that occurs if the course of the ship is at a cer-
tain angle depending on the ship’s speed and wave period with respect to the wave
direction. It is assumed that sectors of forbidden courses merely depend on the sig-
nificant wave height, which in fact determines the optimal ship’s speed with respect
to minimization of sailing time or fuel consumption and in a sense the presence of
critical wave periods, and the wave direction. Then inclusion of these sectors in the
polar velocity diagram, giving the ship’s speed as a function of the angle between
the ship’s heading and the wave direction for a specific value of the significant wave
height, is very simple. These modified polar velocity diagrams can easily be im-
plemented in the ship’s routing computer software for a range of values of significant
wave height. It should be noted that there are ships, which are extremely sensitive
to rolling within certain sectors of incoming waves and which are liable to heavy
rolling even in wave fields of moderate significant wave heights, demonstrating that
inclusion of the modified velocity diagrams in the ship’s routing software is not
merely a matter of theoretical interest. Because of its practical importance the
master should have the opportunity to control these developments for instance by
interactive communication with the ship’s computer routing program to avoid
undesirable situations such as missing the destination because it is located within a
sector of forbidden courses.

To sum up, it may be said given the paper of France et al. (2002) that the above
discussion is obviously in accordance with what really could happen to a ship in
certain circumstances. Of course the implementation of sectors of forbidden courses
will create additional complications in programming. Unfortunately we were not
in a position to do experiments. Nevertheless we are of the opinion that the inclusion
of limited manoeuvrability in the ship’s routing computer software deserves further
consideration in view of the realistic approach of the meteorological navigation of
ships.
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