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SUMMARY

In complex organisms, apoptosis is a constitutive cell death process that is involved in physiological regulation of cell

numbers and that can also be induced in the course of inflammatory and immune responses. Neutrophils are among the first

cells recruited during inflammation. Neutrophils constitutively die by apoptosis at inflamed sites, and are ingested by

macrophages. Recent studies investigated how phagocytic clearance of senescent neutrophils influences the survival of

intracellular protozoan parasites that have been phagocytosed by, or have invaded phagocytes. The results indicate that

neutrophil clearance plays an unexpected role in regulation of intramacrophagic protozoan parasite infection.
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INTRODUCTION

The cell biology of phagocytic recognition and re-

moval of dead cells has become a growing area of

interest (Savill et al. 2002; Gregory and Devitt,

2004). Recently, a number of investigations have

characterized phagocyte receptors and immune

regulatory responses triggered by phagocytic dis-

posal of apoptotic cells (Savill et al. 2002; Gregory

and Devitt, 2004). In addition, it is now recognized

that ingestion of dying cells, followed by processing

and presentation of their antigens by dendritic cells

(DCs), is an important source of antigenic experience

for lymphocytes (Larsson, Fonteneau and Bhardwaj,

2001; Plotz, 2003).

In complex organisms, apoptosis is a constitutive

cell death process that is involved in physiological

regulation of cell numbers, and that can also be in-

duced in the course of inflammatory and immune

responses. Neutrophils are among the first cells

recruited during inflammation. Apoptosis is central

to regulation of neutrophil turnover. Senescent

neutrophils constitutively die by apoptosis at

inflamed sites, and are eliminated following inges-

tionbymacrophages (Savill et al. 1989;Haslett, 1999)

Recent studies investigated how phagocytic clear-

ance of dying cells, including senescent apoptotic

neutrophils, influences the survival of protozoan

pathogens that have been phagocytosed by, or have

invaded macrophages (Freire-de-Lima et al. 2000;

Ribeiro-Gomes et al. 2004, 2005). Phagocytic clear-

ance of senescent neutrophils either exacerbates the

growth or induces the killing of Leishmania major

inside macrophages, depending on the host genetic

background (Ribeiro-Gomes et al. 2004, 2005).

Fig. 1 summarizes the conclusions from these studies

(discussed in detail below). Together, the results

indicate that dead cell clearance plays an unexpected

role in regulation of intramacrophagic protozoan

infections.

PHAGOCYTE RESPONSES TO APOPTOTIC

CELL INGESTION

Cells undergoing apoptosis expose ligands for a set

of conserved receptors expressed by macrophages

and non-professional phagocytes, allowing adher-

ence and engulfment (Savill et al. 2002; Gregory

and Devitt, 2004). A central finding was that

macrophages ingesting apoptotic leukocytes become

deactivated, as their ability to secrete the proin-

flammatory cytokine TNFa is suppressed (Voll et al.

1997; Fadok et al. 1998). Suppression is mediated by

autocrine and paracrine secretion of PGE2 and

TGFb (Fadok et al. 1998). Macrophage activa-

tion induced by endogenous or exogenous stimuli

results in distinctive phenotypes (Gordon, 2003;

Mosser, 2003). Classically activatedmacrophages are

induced by T-helper type 1 (Th1) T lymphocytes.

These macrophages secrete proinflammatory cyto-

kines and are microbicidal. On the other hand,

alternatively activated macrophages are induced by

Th2 T lymphocytes and by TGFb. These macro-

phages secrete anti-inflammatory cytokines and are

involved in tissue repair (Gordon, 2003). The anti-

inflammatory effect of cells undergoing apoptosis is

coupled to induction of a programme of alternative
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macrophage differentiation. Ingestion of apoptotic

cells induces protracted ornithine decarboxylase

(ODC) activity and polyamine production, while

inhibiting nitric oxide (NO) production (Freire-

de-Lima et al. 2000). Apoptotic cell removal could

trigger an ancient biochemical pathway involved in

tissue repair. Recent studies using DNA microarray

analysis support this notion. Both hepatocyte growth

factor (HGF) and vascular endothelial growth factor

(VEGF), key cytokines for tissue repair, were

identified as two of the most strongly induced gene

products following phagocytosis of apoptotic cells

(Golpon et al. 2004). In agreement with this notion,

phagocytosis of apoptotic cells triggers angiogenesis

(Golpon et al. 2004).

Macrophages recognize cells undergoing apoptosis

through a number of conserved receptors, including

integrins aVb3 and aVb5, scavenger receptor CD36,

CD91/calreticulin, and CD14 (Savill et al. 2002;

Gregory and Devitt, 2004). Due to loss of asym-

metrical organization of the cell membrane and to

proteolytic and oxidative attack, new molecular pat-

terns are exposed by dying cells and are recognized

by receptors or by opsonins that bridge apoptotic

cells to phagocyte receptors. Opsonins include

thrombospondin-1, that binds to aVb3 and CD36;

MFG-E8 (lactadherin), that bridges aVb3 to exposed

phosphatidylserine (PS) sites ; C-reactive protein,

C1q/Mannose binding lectin (MBL), that bind to

CD91-calreticulin; iC3b, among others (Savill et al.

2002; Gregory and Devitt, 2004). Few ligands

expressed by the dying cell have been characterized

so far. These include exposed PS (Savill et al. 2002;

Gregory and Devitt, 2004), and capped CD43 on

early apoptotic lymphocytes (Eda, Yamanaka and

Beppu, 2004). Recognition of exposed PS is im-

portant for adhesion and engulfment of apoptotic

cells (Krieser and White, 2002), but is not sufficient

for optimal removal of cell corpses. In addition, PS

can be recognized by distinct cell surface receptors,

either directly or through opsonins, such as MFG-

E8 (Savill et al. 2002; Gregory and Devitt, 2004).

The large number of receptors involved could

represent multiple and co-operative interactions

required for engulfment. Alternatively, each of these

receptors could play a dominant role depending on

anatomical site, phagocyte differentiation and stage

of the apoptotic sequence expressed by the dying cell.

Recent evidence favours the latter hypothesis

(Gregory and Devitt, 2004). An important issue is

whether engagement of these receptors mimics the

anti-inflammatory effects of apoptotic cells. So far,

secretion of anti-inflammatory cytokines by macro-

phages has been demonstrated following engagement

of CD36 (Voll et al. 1997) and aVb3 (Freire-de-Lima

et al. 2000) by antibodies, in the absence of dead cells.

In agreement, anti-CD36 and anti-CD51 (aV) anti-

bodies inhibited secretion of IL-12, and induced

secretion of the anti-inflammatory cytokine IL-10 by

DCs stimulated with LPS (Urban, Willcox and

Roberts, 2001).

Signal transduction resulting from recognition of

apoptotic cells is incompletely understood. It has

been suggested that binding of apoptotic cells is

sufficient to transmit early signals that disable

pro-inflammatory cytokine transcription in the ab-

sence of soluble mediators (Cvetanovic and Ucker,

2004). However, TGFb plays an important role at

later steps of macrophage inactivation (Fadok et al.

1998; Freire-de-Lima et al. 2000). The tyrosine

kinase receptor MerTK is required for engulfment

of the dying cell, presumably through activation of

PLCc-2 and PKC (Todt, Hu and Curtis, 2004).

Phagocytes ingesting apoptotic cells activate Akt/

PKB, resulting in increased cytokine-independent

survival and inhibition of proliferation (Reddy et al.

2002). It has been suggested that ingestion of apop-

totic cells inhibit, while necrotic cells stimulate, the

activity ofMAP kinases ERK1/2 (Reddy et al. 2002).

However, another study found limited macrophage

activation of ERK1/2 activity induced by apoptotic

cells (Hu et al. 2002).

Some macrophage receptors are involved both in

apoptotic cell clearance and in inflammatory phago-

cytosis of microrganisms, e.g. CD14 (Gregory and

Devitt, 2004). It is not clear how phagocytes dis-

criminate the target and initiate antinflammatory or

Fig. 1. Opposite effects of neutrophil clearance on

L. major infection in susceptible and resistant hosts.

Upper: susceptible BALB/c mice. Inflammatory

neutrophils (PMN) undergo apoptosis before infected

macrophages become activated. Engagement of clearance

receptors by apoptotic PMN inactivates macrophages and

increases parasite replication through TGFb secretion.

Lower: resistant B6 mice. PMN secrete large amounts of

Neutrophil Elastase (NE) before apoptotic PMN engage

clearance receptors. NE interacts with the cell surface or

the extracellular matrix, generating a cleavage product.

The product is an endogenous ligand for a Toll-like

Receptor (TLR). TLR signaling induces TNFa
secretion and reactive oxygen species (ROS). TNFa or a

downstream product disables antiinflammatory signalling

originating from clearance receptors. Intracellular

parasite killing is effected by ROS and TNFa.
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proinflammatory responses. However, it has been

suggested that differential engagement of Toll-like

receptors (TLRs) is required to initiate a proin-

flammatory response (Gregory and Devitt, 2004).

A similar problem may exist for discriminating

between apoptotic and necrotic cells. In the worm

Caenorhabditis elegans, a common set of engulfment

genes mediates removal of both apoptotic and

necrotic cells (Chung et al. 2000). It is generally

believed that, while apoptotic cell clearance is anti-

inflammatory, ingestion of necrotic cells induces

a pro-inflammatory response. However, several

studies suggest a more complex scenario. Both

apoptotic and necrotic Jurkat lymphocytes induce a

similar anti-inflammatory response in macrophages

(Hirt and Leist, 2003). On the other hand, ingestion

of early apoptotic cytolytic lymphocytes of the

CTLL cell line is pro-inflammatory (Odaka et al.

2003). Engagement of TLRs by products from

necrotic cells could be required for induction of

a pro-inflammatory response (Li et al. 2001). In

agreement with this study, apoptotic cells co-

operate with the TLR ligand bacterial LPS to gen-

erate a pro-inflammatory response in macrophages

(Lucas et al. 2003). These results suggest that, more

important than being necrotic or apoptotic, dying

cells would activate macrophages if they express

or release a ligand for TLRs. In the absence of such

a ligand, dead cell removal would trigger an anti-

inflammatory response in the phagocyte.

PHAGOCYTIC REMOVAL OF APOPTOTIC

LYMPHOCYTES INACTIVATES MACROPHAGES

AND DRIVES GROWTH OF INTRACELLULAR

PATHOGENS

Parasitic infection of mammalian hosts leads to both

parasite and host cell apoptosis, which could have

pathogenic implications (DosReis and Barcinski,

2001). Infection of mice with Trypanosoma cruzi

leads to induction of both T- (Lopes et al. 1995) and

B-cell apoptosis (Zuniga et al. 2002). Induction of

T cell apoptosis through T cell receptor or Fas death

receptor exacerbates replication of T. cruzi in co-

cultured macrophages (Nunes et al. 1998). Further

studies confirmed that the uptake of apoptotic

T lymphocytes by macrophages increased the intra-

cellular growth of T. cruzi (Freire-de-Lima et al.

2000). Macrophages attach and ingest apoptotic

T cells through a mechanism that requires the aVb3

integrin. Moreover, engagement of aVb3 is sufficient

to promote exacerbated replication of T. cruzi, since

anti-aVb3 antibodies mimic the effect of apoptotic

cells on intra-macrophagic parasite growth (Freire-

de-Lima et al. 2000). Blockade of aVb3 by anti-aV

Fab fragment decreased the adhesion of apoptotic

cells and inhibited the exacerbating effect of apop-

totic cells on parasite growth. The biochemical

pathway initiated by apoptotic cell ingestion was

identified. It consisted of PGE2 and TGFb pro-

duction, followed by increased ODC activity, and

increased production of the polyamine putrescine

(Freire-de-Lima et al. 2000). Putrescine production

was required for increased parasite replication. On

the other hand, ingestion of apoptotic cells inhibited

NO production by macrophages. A pathogenic role

for this pathway was suggested by the findings that :

(1) injection of apoptotic cells exacerbated and

accelerated parasitaemia in vivo ; and (2) parasitaemia

was reduced by treatment with cyclooxygenase

inhibitors aspirin and indomethacin, which block

PGE2 production (Freire-de-Lima et al. 2000).

Polyamine synthesis is required for the replication of

several pathogenic parasites (Müller, Coombs and

Walter, 2001), including intra-macrophagic growth

ofT. cruzi (Majumder andKierszenbaum, 1993) and

L. major (Iniesta, Gomez-Nieto and Corraliza,

2001). Since ingestion of apoptotic cells influences

production of TGFb and polyamines by macro-

phages, it could play a deleterious role in infection by

other intracellular pathogens.

Subsequent studies demonstrated that ingestion of

apoptotic lymphocytes exacerbates replication of

HIV in human macrophages (Lima et al. 2002) and

facilitates infection of Coxiella burnetti in mouse

macrophages (Zamboni and Rabinovitch, 2004).

Furthermore, amastigote forms of L. amazonensis

expose PS sites on their surface, and PS exposure is

involved in macrophage deactivation following in-

fection (de Freitas Balanco et al. 2001). This mech-

anism of evasion was called ‘apoptotic mimicry’,

to suggest that certain parasites mimic apoptotic

cells – in this case, by exposing PS – in order to infect

phagocytes silently (de Freitas Balanco et al. 2001).

Expression of PS by amastigotes recalls an early

study, where treatment of Leishmania-infected

macrophages with liposomes containing PS deacti-

vatedmacrophages and increased parasite replication

(Gilbreath et al. 1985). Furthermore, erythrocytes

infected by Plasmodium falciparum express the

protozoal protein PfEMP-1, which binds to CD36

and to thrombospondin-1. Erythrocytes infected by

P. falciparum mimic apoptotic cells by modulating

DC maturation in response to an inflammatory

stimulus (Urban et al. 2001).

NEUTROPHILS AS INNATE REGULATORS

OF IMMUNITY AGAINST INFECTION

Neutrophils could represent an important example

of immune regulation through phagocytic removal

of apoptotic cells. Neutrophils are among the first

cells to reach an inflammatory site. Inflammatory

neutrophils secrete proteases, chemokines and

soluble mediators that regulate inflammation.

However, activated neutrophils have a short lifespan

and undergo constitutive apoptosis, leading to their

phagocytic removal by macrophages (Savill et al.
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1989; Haslett, 1999). This removal prevents lysis

of dying neutrophils and leakage of destructive

cytotoxic molecules in which neutrophils are rich

(Henson and Johnston, 1987). Phagocytic removal

of apoptotic neutrophils functionally deactivates

macrophages through secretion of PGE2 and

TGFb (Fadok et al. 1998). Therefore, clearance of

neutrophils has been associated with resolution

of inflammation (Savill et al. 2002; Haslett, 1999).

Furthermore, phagocytosis of apoptotic neutrophils

by immature DCs inhibits their maturation by

decreasing IL-12 secretion, expression of co-

stimulatory molecules, and by reducing their ability

to stimulate naive T cells (Urban et al. 2001;

Stuart et al. 2002). Therefore, clearance of neutro-

phils could have additional immune regulatory

consequences.

The role of neutrophils in the host defence against

intracellular infections was long neglected. One

reason for this was the belief that intracellular

pathogens, by growing inside macrophages, were

sheltered from the phagocytic activity of neutrophils.

The classical view of the host defence mechanisms

against intra-macrophagic infections was that the

macrophage is both the host and the effector cell –

with T lymphocytes playing a crucial role in acti-

vation of the macrophage antimicrobial mechanisms

(Adams and Hamilton, 1984). However, advances in

the knowledge of host defence mechanisms against

intracellular pathogens have demonstrated that

neutrophils are important partners of macrophages

in those mechanisms.

Studies with experimental murine mycobacter-

iosis showed for the first time a chronic recruitment

of neutrophils to mycobacterium-infected foci

(Silva, Silva and Appelberg, 1989). Furthermore,

these same studies demonstrated that: (1) in myco-

bacterium-infected inflammatory exudates neutro-

phils were phagocytosed by macrophages and the

neutrophilic molecule lactoferrin was extensively

transferred to macrophages; (2) such a transfer

preferentially occurred to infected macrophages;

and (3) the in vitro anti-mycobacterial activity

of peritoneal macrophages was increased when

macrophage cultures were supplemented with

neutrophil material. These observations led to the

concept that neutrophils participate in the control

of intra-macrophagic infections by a mechanism

of neutrophil-macrophage co-operation whereby

macrophage anti-microbial ability is increased by the

ingestion of neutrophils or neutrophilic molecules

(Silva et al. 1989). At that time, the ingestion of

senescent neutrophils by macrophages was con-

sidered a possible mechanism for the interaction

between the two phagocytes, but association of

neutrophil senescence to apoptosis was still un-

known. The observation that selective neutrophil

depletion by a monoclonal antibody rendered mice

more susceptible to experimental mycobacteriosis

(Appelberg et al. 1995), supported the interpretation

that neutrophils were involved in the defence

mechanisms against intra-macrophagic myco-

bacterial infections. Following the initial observa-

tions with mycobacterial murine infections (Silva

et al. 1989), several reports described neutrophil

participation in the control of intra-macrophagic

infections by other intracellular pathogens includ-

ing Listeria, Salmonella, Yersinia, Francisella,

Chlamydia and Toxoplasma (reviewed in Pedrosa

et al. 2000).

Besides the neutrophil-macrophage co-operation

with transfer of neutrophilic anti-microbial materials

to the macrophage, other modalities of neutrophil

participation in the control of intra-macrophagic

infections must be considered. These include: (1)

transfer to macrophages of pathogens ingested by

neutrophils, through the phagocytosis of infected

neutrophils (Silva et al. 1989; Afonso et al. 1998;

Gregory and Wing, 2002; van Zandbergen et al.

2004). This transfer would pass on to the macro-

phages the task of eliminating pathogens that the

neutrophil ingests but cannot eliminate. The simul-

taneous transfer of neutrophil molecules would

potentiate the macrophage capacity to destroy the

pathogen; (2) secretion of neutrophilic granule

components that can activate infected macrophages

(Lima and Kierszenbaum, 1985; Lincoln et al.

1995) ; and (3) immunomodulation through pro-

duction of cytokines and chemotactic factors (re-

viewed in Pedrosa et al. 2000).

The role neutrophils play can also be deleterious

for the host. Studies that compared genetically sus-

ceptible and resistant mice found that neutrophils

play either protective or deleterious roles in re-

sponses to infection, depending on host genetic

background. In T. cruzi infection, neutrophils pro-

tected BALB/c mice by increasing Th1 T cell re-

sponses, but aggravated infection of B6 mice by

reducing Th1 responses (Chen et al. 2001). On the

other hand, early neutrophil recruitment induced

susceptibility of BALB/c mice to L. major infection

by instructing a Th2 T cell response (Tachini-

Cottier et al. 2000).

FAS LIGAND REGULATES LEISHMANIA

INFECTION BY PROMOTING NEUTROPHIL

RECRUITMENT AND RAPID NEUTROPHIL

CLEARANCE

Recent studies demonstrated that engagement of Fas

death receptor in resident macrophages promotes

neutrophil recruitment (Hohlbaum et al. 2001).

Since Fas ligand (FasL) regulates host responses to

infectious diseases (Dockrell, 2003), the role of FasL

on neutrophil clearance was investigated in L. major

infection of susceptible BALB/c mice Ribeiro-

Gomes et al. (2005). Expression of FasL was del-

eterious for the host, since FasL-deficient gldmutant
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mice were more resistant to infection. Injection of

promastigotes into the peritoneal cavity attracted

neutrophils inwild-type, but not in gldmice (Ribeiro-

Gomes et al. 2005). Neutrophil recruitment was

concomitant with resident macrophage apoptosis

and chemokine secretion. Apoptosis wasmediated by

Fas receptor and was absent in gld macrophages.

These results agree with an important role of FasL in

macrophage apoptosis and neutrophil recruitment

(Hohlbaum et al. 2001). Recently, conditional ab-

lation of macrophages also demonstrated that per-

itoneal macrophages are required for neutrophil

recruitment to the inflamed peritoneal cavity

(Cailhier et al. 2005). Since gld mice expressed in-

creased levels of tissue resident neutrophils, inter-

actions of neutrophils with infected macrophages

were investigated. Both live and dead wild-type

neutrophils exacerbated Leishmania replication in

macrophages through a mechanism dependent on

TGFb production. Dead gld neutrophils also ex-

acerbated parasite growth, but live gld neutrophils

induced NO-dependent killing of Leishmania

(Ribeiro-Gomes et al. 2005). Kinetic experiments

demonstrated that gld neutrophils remained alive for

longer periods, and that clearance by macrophages

was delayed. In agreement, delaying the death and

clearance of wild-type neutrophils with an anti-FasL

antibody abolished exacerbation of parasite growth

and allowed macrophages to control infection.

Therefore, the leishmanicidal activity of gld neutro-

phils derived from their increased lifespan and

co-operation with macrophages. These results were

confirmed in vivo, showing that neutrophil depletion

abolished increased susceptibility of wild-type over

gld mice (Ribeiro-Gomes et al. 2005). These results

suggest that FasL exacerbates Leishmania infection

in susceptible hosts at two steps. First, Leishmania

induces resident macrophage apoptosis through

FasL, which attracts neutrophils. Second, FasL

accelerates the rates of neutrophil death and clear-

ance. Ingestion of senescent neutrophils functionally

deactivates macrophages, allowing increased

Leishmania replication. On the other hand, delaying

neutrophil apoptosis plays a protective role, pre-

sumably through macrophage activation by products

from live neutrophils.

OPPOSITE OUTCOMES OF NEUTROPHIL

CLEARANCE IN GENETICALLY DISTINCT HOSTS

Most studies on neutrophil clearance have employed

resting blood neutrophils in which apoptosis was

induced by irradiation or aging. However, the

physiological setting of parasitic infection involves

interactions with neutrophils that have undergone

trans-endothelial migration and activation. In this

regard, inflammatory neutrophils differ from rest-

ing neutrophils, since they actively degranulate,

releasing proteases in the extracellular medium

(Rainger, Rowley and Nash, 1998). Interactions of

inflammatory neutrophils with Leishmania-infected

macrophages were investigated in susceptible and

resistant hosts (Ribeiro-Gomes et al. 2004). Live

and dead neutrophils from susceptible BALB/c mice

exacerbated Leishmania growth in macrophages by a

mechanism dependent on cell contact and TGFb,
similar to that described for T. cruzi growth driven

by apoptotic lymphocytes (Freire-de-Lima et al.

2000). In agreement, neutrophil depletion in vivo

reduced parasite loads in infected BALB/c mice.

Surprisingly, neutrophil depletion exacerbated in-

fection in resistant B6 mice, suggesting that neutro-

phils protect against infection in B6 mice. In fact,

live or dead B6 neutrophils induced Leishmania

killing in macrophages by a mechanism dependent

on TNFa that did not require cell contact (Ribeiro-

Gomes et al. 2004). The neutrophil serine protease

Neutrophil Elastase (NE) activates human macro-

phages and induces TNFa secretion (Fadok et al.

2001). Since inflammatory neutrophils secrete NE,

we investigated the role of NE in defence against

Leishmania. The NE inhibitor peptide MeOSuc-

AAPV-cmk prevented macrophage leishmanicidal

activity in the presence of neutrophils. Furthermore,

injection of MeOSuc-AAPV-cmk in vivo ex-

acerbated L. major infection in resistant B6 mice

(Ribeiro-Gomes et al. 2004). These results suggest a

role for NE in the pro-inflammatory and micro-

bicidal function of B6 neutrophils. Although

functional differences between BALB/c and B6

neutrophils are not completely understood, inflam-

matory B6 neutrophils release more NE into super-

natants than BALB/c neutrophils (Ribeiro-Gomes

and DosReis, unpublished results). Following neu-

tralization of NE or TNFa activity, clearance of

B6 neutrophils becomes anti-inflammatory, like

BALB/c neutrophils (Ribeiro-Gomes et al. 2004).

This result suggests that previous contact with sol-

uble NE disables the anti-inflammatory signalling

pathway induced by contact with the neutrophil

corpse.

Another study found that phagocytosis of stressed

apoptotic neutrophils – generated by contact with

bacteria – also activates macrophages and induces

TNFa secretion. Macrophage activation required

expression of heat shock proteins HSP60 andHSP70

by neutrophils (Zheng et al. 2004). It has been sug-

gested that HSPs are endogenous ligands for TLRs

(Binder, Vatner and Srivastava, 2004), and that

NE activates TLR4 on bronchial epithelial cells

(Devaney et al. 2003). Therefore, it is possible that

under certain conditions, senescent neutrophils ex-

press TLR ligands and activate macrophages during

the process of phagocytic clearance. The proposed

differences in the outcome of phagocytic clearance

of BALB/c and B6 neutrophils are summarized in

Fig. 1. However, it should be noted that, in order

to prevent inflammation, additional mechanisms
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counteracting the proinflammatory clearance of B6

neutrophils must exist.

CONCLUDING REMARKS AND PROSPECTS

FOR THE FUTURE

Host immune responses to Leishmania infection are

under the control of several independent genes

(Lipoldova et al. 2000). Our results suggest that a

genetic polymorphism exists in innate macrophage

activation by clearance of neutrophils. Mapping of

the genes involved will be important for under-

standing genetic differences in innate resistance to

Leishmania infection among human subjects. In ad-

dition, clearance of dead neutrophils affects DC

maturation and costimulatory activity for T cells

(Stuart et al. 2002). It will be important to investigate

the roles of neutrophil clearance in DC interactions

with T cells in the course of Leishmania infection.
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