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Reynolds and dispersive shear stress
contributions above highly skewed roughness
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The roughness functions induced by irregular peak- and/or pit-dominated surfaces in
a fully developed turbulent channel flow are studied by direct numerical simulation.
A surface generation algorithm is used to synthesise an irregular Gaussian height map
with periodic boundaries. The Gaussian height map is decomposed into ‘pits-only’
and ‘peaks-only’ components, which produces two additional surfaces with similar
statistical properties, with the exception of skewness, which are equal and opposite
(S =±1.6). While the peaks-only surface yields a roughness function comparable to
that of the Gaussian surface, the pits-only surface exhibits a far weaker roughness
effect. Analysis of results is aided by deriving an equation for the roughness function
that quantitatively identifies the mechanisms of momentum loss and/or gain. The
statistical contributions of ‘form-induced’ and stochastic fluid motions to the roughness
function are examined in further detail using quadrant analyses. Above the Gaussian
and peaks-only surfaces, the contributions of dispersive and Reynolds shear stresses
show a compensating effect, whereas above the pits-only surface, an additive effect
is observed. Overall, the results emphasise the sensitivity of the near-wall flow with
respect to higher-order topographical parameters, which can, in turn, induce significant
differences in the roughness function above a peak- and/or pit-dominated surface.

Key words: turbulent boundary layers, turbulent flows

1. Introduction

The mean dynamics of turbulent flow past irregular rough surfaces are of significant
fundamental and practical interest. Roughness effects upon turbulent flow have been
reviewed by Jiménez (2004) and Flack & Schultz (2014). The principal effect of
surface roughness is to increase the mean momentum deficit in the outer flow,
relative to a smooth wall. The downward shift of the logarithmic layer is referred
to as the roughness function, 1U+ (Hama 1954). Surface roughness effects are
incorporated into Reynolds-averaged Navier–Stokes (RANS) simulations by modifying
the log law with an additive roughness function (Durbin et al. 2001). Accurate
predictions of practical rough-wall flows therefore require a detailed understanding
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FIGURE 1. Roughness topographies including: (a) Gaussian, (b) peaks-only and (c) pits-
only surfaces. Each surface is generated on an (8× 4)/δ tile, where δ is the mean channel
half-height.

of how 1U+ varies with both flow conditions and surface topography. Recent
experimental campaigns (Flack et al. 2016) and numerical simulations (Thakkar,
Busse & Sandham 2016; Forooghi et al. 2017) have identified skewness, S , as a key
topographical parameter that influences 1U+.

Skewness quantifies the asymmetry of a roughness distribution about its mean
plane. Positively skewed surfaces are peak-dominated, whereas negatively skewed
surfaces are pit-dominated. In the early stages of erosion and fouling, an initially
smooth surface can become blemished by a random distribution of roughness pits
and/or peaks. Examples include the ablation of freshly cast turbine blades (Bons
et al. 2001) and the onset of bio-fouling on submerged bodies (Monty et al. 2016).
Many fluid dynamic properties of irregular pit- and peak-dominated surfaces remain
unclear. For example, the relative importance of ‘form-induced’ dispersive stresses
and Reynolds stresses, and their respective contributions to 1U+, have yet to be
considered in detail.

The present study details results from a numerical experiment specifically designed
to examine the roughness functions of three irregular surfaces: (i) a Gaussian surface;
(ii) a ‘peaks-only’ surface and (iii) a ‘pits-only’ surface. Surface (i) is synthesised
using a surface generation algorithm, whereas (ii) and (iii) are obtained from a
decomposition of (i). Each roughness topography is shown in figure 1. Analysis
of results is aided by deriving an equation for 1U+ that quantitatively identifies
the mechanisms of mean momentum loss and/or gain for each surface. This paper
is organised into four sections: § 2 outlines the numerical methodology; results are
presented in § 3; finally, in § 4, the conclusions of this work are given.

2. Numerical methodology
Direct numerical simulations (DNS) of rough-wall fully developed turbulent channel

flows are conducted using a variant of the methodology devised by Busse, Lützner &
Sandham (2015).
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2.1. Surface generation algorithm
Surface height maps were generated by correlating the elements of Gaussian
random-number matrices using a moving-average (MA) process. This method of
surface generation was devised by Patir (1978) and has been extended here with
periodic boundary conditions. A periodic Gaussian height map, hij, of size N1 × N2,
was generated by evaluating the linear transformation

hij =

n1∑
k=1

n2∑
l=1

αklηrs,

i= 1, 2, . . . ,N1,

j= 1, 2, . . . ,N2,

r= [i+ k− 1 (modN1)] + 1,
s= [ j+ l− 1 (modN2)] + 1,

 (2.1)

where ηij is a matrix of uncorrelated Gaussian random numbers, αkl are a set of coeffi-
cients that give a specified autocorrelation coefficient function (ACF), mod denotes
the modulo operator and n1 × n2 is the dimension of the MA window.

The MA coefficients αkl are determined by solving the system of nonlinear
equations

Rpq =

n1−p∑
k=1

n2−q∑
l=1

αklαk+p,l+q,
p= 0, 1, . . . , n1 − 1,
q= 0, 1, . . . , n2 − 1,

}
(2.2)

using the Newton-based method outlined by Patir (1978), where Rpq is the discrete
ACF. The Gaussian height map is generated with an isotropic exponential ACF

R(1x1, 1x2)= exp

−2.3

√(
1x1

1x∗1

)2

+

(
1x2

1x∗2

)2
 , (2.3)

where (1x1, 1x2) denote the spatial separations in the streamwise and spanwise
directions, respectively, and where (1x∗1, 1x∗2) denote the spatial separations at which
the streamwise and spanwise ACF profiles reduce to 10 % of their values at the
origin. Further details can be found in the work of Patir (1978).

2.2. Surface filtering and the pit–peak decomposition
To obtain a smoothly varying surface from the point cloud, the discrete Gaussian
height map, hij, was low-pass Fourier-filtered using the method of Busse et al. (2015).
After filtering, a ‘pit–peak’ decomposition was applied to the Gaussian height map

hpit(x1, x2)=
1
2 h(x1, x2)[1− sgn(h(x1, x2))], (2.4)

hpeak(x1, x2)=
1
2 h(x1, x2)[1+ sgn(h(x1, x2))], (2.5)

where hpit, hpeak and h denote the pits-only, peaks-only and Gaussian height maps,
respectively, and where sgn denotes the signum function.

The pit–peak decomposition of the Gaussian height map is shown in figure 1.
Statistical properties of each roughness topography are given in table 1. One
advantage of the pit–peak decomposition is that hpit and hpeak share very similar
statistical properties up to fourth order, with the exception of skewness, which are
approximately equal and opposite (S ≈ ±1.6). Compared to a number of recent
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Surface Sa/δ Sq/δ S K L1,corr/δ L2,corr/δ ESx ESy Sz,5×5/δ hmax/δ 〈h〉/δ

Gaussian 0.022 0.027 0.03 3.00 0.08 0.08 0.35 0.35 0.167 0.12 0.00
Peaks-only 0.011 0.016 1.62 5.44 0.04 0.04 0.17 0.17 0.085 0.12 0.01
Pits-only 0.011 0.016 −1.64 5.37 0.04 0.04 0.17 0.17 0.085 0.00 −0.01

TABLE 1. Surface statistics including: mean absolute height (Sa); root-mean-square
(r.m.s.) height (Sq); skewness (S); kurtosis (K); streamwise/spanwise correlation lengths
(L1,corr, L2,corr); streamwise/spanwise effective slopes (ESx, ESy); and mean peak-to-valley
height (Sz,5×5). The highest roughness crest (hmax) and mean height (〈h〉) are also included.
Further details of these parameters can be found in work done by Thakkar et al. (2016).
Note that δ is the mean channel half-height.

studies (Flack et al. 2016; Thakkar et al. 2016; Forooghi et al. 2017), the maximum
skewness considered in the present study is at least a factor of two higher.

In addition to influencing the level of skewness, the pit–peak decomposition also
affects other topographical parameters. For example, the effective slope (ESx) of
the pits- and peaks-only surfaces is a factor of two lower than that of the original
Gaussian surface (see table 1). The effective slope ESx is defined as the mean
absolute streamwise gradient of the height map and is known to scale 1U+ for a
wide range of irregular roughness topographies with symmetric height distributions
(Napoli, Armenio & De Marchis 2008; De Marchis, Napoli & Armenio 2010; De
Marchis & Napoli 2012) as well as positively skewed pyramid roughness (Schultz
& Flack 2009). Considering that the pits- and peaks-only surfaces share an ESx
of ESx < 0.35, then these surfaces fall into the ‘waviness flow regime’ where ESx
remains an important parameter in scaling the roughness function (Flack & Schultz
2010, 2014). However, in the context of the pits-only surface (S ≈ −1.6) and the
peaks-only surface (S ≈ 1.6), skewness is the key topographical parameter and, as
will be shown later, ESx cannot be relied upon to scale 1U+. Irregular surfaces with
moderate effective slope are of considerable practical importance. For example, a
recent surrogate for Nikuradse-type roughness (Thakkar, Busse & Sandham 2018)
showed a moderate effective slope, which indicates that Nikuradse’s sand grain
roughness may have been ‘wavy’ based on the effective slope criterion.

2.3. Direct numerical simulation of turbulent channel flow past irregular rough walls
DNS of incompressible fully developed turbulent channel flow past rough walls were
performed at a constant mean streamwise pressure gradient using the embedded-
boundary algorithm of Busse et al. (2015). Three rough-wall simulations were
performed with roughness on both the top and bottom walls. A reference smooth-wall
simulation was also conducted. The velocity components in the streamwise (x1),
spanwise (x2) and wall-normal (x3) directions are u1, u2 and u3, respectively, and p is
the fluctuating pressure. The friction Reynolds number is defined here as Reτ ≡ uτδ/ν,
where ν is the kinematic viscosity, uτ is the friction velocity and δ is the mean
channel half-height of the Gaussian rough-wall configuration. All simulations were
conducted at a friction Reynolds number of Reτ = 395. Viscous-scaled quantities are
marked by superscript +, e.g. x+3 = x3uτ/ν. The simulation parameters are listed in
table 2 and are commensurate with those in recent work related to the current study
(Busse et al. 2015; Thakkar et al. 2016; Busse, Thakkar & Sandham 2017; Thakkar
et al. 2018).
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714 T. O. Jelly and A. Busse

Surface Reτ L1/δ L2/δ 1x+1 1x+2 1x+3,min 1x+3,max T+ = Tu2
τ/ν S+a S+q h+max

Gaussian 395 8 4 4.94 4.94 0.67 4.5 40 000 8.69 10.66 47.78
Peaks-only — — — — — — — — 4.35 5.33 47.78
Pits-only — — — — — — — — 4.35 5.33 0.00

TABLE 2. Rough-wall simulation parameters including: friction Reynolds number (Reτ );
domain size in the streamwise (L1) and spanwise (L2) directions; viscous-scaled grid
spacings including streamwise (1x+1 ), spanwise (1x+2 ), minimum wall-normal (1x+3,min)

and maximum wall-normal (1x+3,max) values; viscous-scaled sampling period (T+);
viscous-scaled mean absolute roughness height (S+a ); viscous-scaled r.m.s. roughness height
(S+q ); and viscous-scaled highest roughness crest (h+max).

Statistical quantities are computed using a double-averaged (DA) methodology
(Raupach & Shaw 1982). An instantaneous field variable, say a, is decomposed into
three parts: (i) a DA component, 〈a〉, where overbar and angled brackets denote
successive temporal and planar (x1, x2) averages, respectively; (ii) a dispersive
component, ã; and (iii) a stochastic component, a′. The triple decomposition of
a is therefore

a(x, t)= 〈a〉(x3)+ ã(x)+ a′(x, t). (2.6)

The DA operator is defined as

〈a〉(x3)≡
1

ψ(x3)

1
A

∫∫
A

a(x) dx1 dx2, (2.7)

where the total area of the wall-parallel plane is A= L1L2 and the ratio of the fluid-
occupied area, Af , to the total area is ψ=Af (x3)/A. In solid-occupied regions, a(x, t)=
0. Note that the DA methodology adopted throughout the present study corresponds
to the ‘intrinsic’ averaging procedure discussed in detail by, for example, Nikora et al.
(2007).

In the double-averaged Navier–Stokes (DANS) equations, the DA dispersive stresses
are

〈ũiũj〉 = 〈(ui − 〈ui〉)(uj − 〈uj〉)〉 (2.8)

and the DA Reynolds stresses are

〈u′iu′j〉 = 〈(ui − ui)(uj − uj)〉. (2.9)

3. Results

In this section, the roughness functions induced by the Gaussian, peaks-only
and pits-only surfaces are examined. Analysis of results is aided by deriving an
equation for 1U+ that quantifies the contributions of dispersive shear stress (DSS)
and Reynolds shear stress (RSS) above each roughness topography.
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Reynolds and dispersive shear stress above highly skewed roughness 715

3.1. Derivation of the roughness function equation
The potential sources of momentum loss above a rough surface can be revealed by
subtracting the streamwise component of the DANS equation from its smooth-wall
counterpart. If the friction Reynolds number is matched between the smooth- and the
rough-wall cases, then the difference in total shear stress above the highest roughness
crest (x+3 > h+max) can be written as

0=1
d〈u+1 〉
dx+3

+ 〈ũ+1 ũ+3 〉r −1〈u
′

1u′3
+

〉, (3.1)

where 1〈a+〉 ≡ 〈a+〉s− 〈a+〉r denotes the difference between a smooth-wall (subscript
‘s’) and a rough-wall (subscript ‘r’) quantity. For the current cases, the friction
Reynolds numbers between the smooth-wall case and the Gaussian case are matched,
but there is a small mismatch in the Reynolds numbers of the pits and the peaks
cases due to a non-zero mean roughness height 〈h〉 (see table 1). This leads to an
additional error term on the left-hand side of (3.1) that is of the order of |〈h〉|/δ (see
derivation in appendix A). As for the current cases, |〈h〉|/δ� 1 and the corresponding
mismatch in Reτ is less than 2 %. As a result, the error term can be neglected.

An equation for 1U+ can be derived by integrating the total shear stress difference
(3.1) from the height of the highest roughness crest h+max to an arbitrary wall-normal
position x+3 to obtain

1U+(x+3 )=1〈u
+

1 〉(h
+

max)︸ ︷︷ ︸
1U+s

+

∫ x+3

h+max

−〈ũ+1 ũ+3 〉 dx+3︸ ︷︷ ︸
1U+d

+

∫ x+3

h+max

1〈u′1u′3
+

〉 dx+3︸ ︷︷ ︸
1U+t

. (3.2)

Note that the subscript ‘r’ has been omitted for brevity. The three terms on the right-
hand side of the roughness function equation (3.2) have the following interpretation.
The first term, 1U+s , represents the difference in streamwise velocity at the highest
roughness crest. The second term, 1U+d , represents the integrated effect of the vertical
flux of streamwise dispersive momentum. The third and final term, 1U+t , represents
the integrated effect of the difference in the vertical flux of streamwise stochastic
momentum. MacDonald et al. (2016) derived a similar expression for 1U+, although
their expression does not separate the DSS and RSS difference contributions.

Below the highest roughness crest (x+3 < h+max), additional pressure gradient and
viscous diffusion terms appear on the right-hand side of the DANS equations and
arise because the DA operator (2.7) does not commute with wall-normal spatial
differentiation if ψ(x3) 6= 1. In (3.2), the integrated effect of these additional terms
are represented implicitly by the term 1U+s . Similar approaches have been adopted
by García-Mayoral & Jiménez (2011) and MacDonald et al. (2016) in order to
decompose 1U+ above riblets and sinusoidal roughness, respectively.

The accuracy of the roughness function equation was verified by comparing the
wall-normal variation of 1U+ from (3.2) against the direct evaluation 1U+ =
〈u+1 〉s − 〈u

+

1 〉r for each surface. As shown in figure 2, close levels of agreement
are observed at all wall-normal positions. In addition, figure 2 shows that the
momentum deficit remains approximately constant from the highest crest to the
channel half-height in the presence of peaks. As a result, the roughness function
equation (3.2) reduces to 1U+(δ+) ≈ 1U+s (h

+

max) for the Gaussian and peaks-only
surfaces. Such an approximation does not, however, hold above the pits-only surface.
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FIGURE 2. Comparison of the roughness function based on the direct evaluation 1U+ =
〈u+1 〉s − 〈u

+

1 〉r (plotted as lines) against 1U+ obtained using the roughness function
equation (3.2) (plotted as symbols) for the Gaussian (—, A), peaks-only (- - -, ×) and
pits-only (· · · ·, @) surfaces. The comparison of 1U+ is shown in both (a) inner and
(b) outer scalings. The highest roughness crest of the Gaussian and peaks-only surface
is also shown (- · -).

Therefore, whilst the drag force due to the roughness peaks directly generates the
momentum deficit in the outer layer, the roughness function induced by the pits-only
surface arises due to modifications of the near-wall flow. In order to better understand
these differing effects, each term on the right-hand side of the roughness function
equation (3.2) can be examined. Herein, all references to 1U+ correspond to the
centreline value, 1U+(δ+), which agrees well with the downward shift in the log law
(see figure 2a).

3.2. Analysis of the roughness function equation
The decomposition of 1U+ based on (3.2) is shown in figure 3. Positive terms
represent a mean momentum loss, whereas negative terms represent a mean
momentum gain. Preliminary observations based on figure 3 include the following.
(i) The roughness functions of the Gaussian surface (1U+ = 6.8) and the peaks-only
surface (1U+ = 5.9) are comparable, whereas the pits-only surface yields a far
lower value (1U+ = 1.7). (ii) The term 1U+d is positive for all three surfaces,
implying that the integrated effect of DSS always increases the mean momentum
deficit. (iii) The sign of the terms 1U+s and 1U+t is dependent on the roughness
topography, implying fundamental differences in the flow structure above the peak-
and pit-dominated surfaces. Overall, figure 3 shows that peaks dominate the roughness
effect, whereas pits have relatively little influence.

The sharp reduction of 1U+ above the pits-only surface is a consequence of its
negative skewness (table 1), which, compared to positively skewed surfaces, gives a
lower 1U+ across a range of friction Reynolds numbers (Flack et al. 2016; Busse
et al. 2017). Other topographical parameters, such as effective slope (ESx) are known
to scale well with 1U+. However, despite sharing a common value of ESx (table 1),
the roughness functions of the pits- and peaks-only surfaces differ by 72 %. Since ESx

is, by definition, an absolute quantity, it cannot distinguish the sign of an asymmetric
roughness distribution and, as a result, cannot explain the difference in 1U+ above
the peaks- and pits-only surfaces. In this work, differences of 1U+ will be clarified by
examining each term on the right-hand side of the roughness function equation (3.2).
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FIGURE 3. Contributions of terms in the roughness function equation (3.2). Data for
Gaussian (p), peaks-only (@) and pits-only ( ) surfaces are included for comparison.
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FIGURE 4. Contours of time-averaged pressure, p, referenced to the mean pressure on the
surface, p0. Spanwise slices intersecting (a) the highest crest of the peaks-only surface and
(b) the deepest trough of the pits-only surface are shown. Vectors of the in-plane velocities,
(u1,u3)

+, and the highest roughness crest of the peaks-only surface (- · -) are also included.

The first term on the right-hand side of the roughness function equation (3.2) is
1U+s and represents the streamwise velocity offset at the highest roughness crest. For
both the Gaussian and peaks-only surfaces, terms 1U+s and 1U+ match to within
1 %, whereas above the pits-only surface, they differ both in sign and in magnitude
(figure 3). To explain the opposing contributions of 1U+s , spanwise slices of the time-
averaged pressure field around the highest roughness crest of the peaks-only surface
and the deepest roughness trough of the pits-only surfaces can be examined. As shown
in figure 4, high-pressure regions occur on the windward slopes of surface peaks
and the windward lips of surface pits. Low-pressure regions occur downstream of
roughness peaks where the flow separates, then reverses, before reattaching upstream.
On the other hand, the flow ‘skims’ past the pits, inducing a reverse flow in the lower
part of the cavity.

The mean flow patterns shown in figure 4 are reminiscent of those induced
by k- and d-type transverse square bar roughness. For example, the flow separation
downstream of the highest roughness peak (see figure 4a) resembles a k-type scenario
(Perry, Schofield & Joubert 1969; Ikeda & Durbin 2007) whereas the flow reversal
within the deepest roughness pit (see figure 4b) is similar to a d-type scenario
(Leonardi, Orlandi & Antonia 2007). However, considering that the mean flow around
transverse square bars is spanwise homogeneous and streamwise phase-dependent,
drawing a direct comparison against the time-averaged flow properties of irregular,
three-dimensional roughness topographies is not straightforward. Therefore, whilst
some qualitative understanding can be drawn from figure 4, a quantitative description
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FIGURE 5. DA profiles of (a) streamwise velocity, (b) DSS and (c) RSS difference above
the smooth (E), Gaussian (—), peaks-only (- - -) and pits-only (· · · ·) surfaces. The highest
roughness crest of the Gaussian and peaks-only surface is also shown (- · -).

of the roughness effect induced by the pits- and peaks-only surfaces will focus on
DA quantities that make up the roughness function equation (3.2).

The wall-normal variation of DA streamwise velocity above each irregular surface
is shown in figure 5(a). A DA reverse flow occurs for the Gaussian and pits-only
surfaces at a wall-normal position corresponding to the lower part of the roughness
canopy, but is not evident for the peaks-only surface. The magnitude of the reverse
flow is of the order of 2 % of the centreline velocity for each surface, which is
comparable to past results (Busse et al. 2017). At the highest roughness crest of the
Gaussian and peaks-only surfaces, 1U+s makes a positive contribution to 1U+ due
to the integrated effect of losses within the roughness canopy (figure 4a). In contrast,
for the pits-only surface, the negative contribution of 1U+s arises due to the DA
effect of ‘skimming’ (figure 4b), which is manifest as a ‘slip velocity’ in the mean
velocity profile. A similar slip effect occurs for regular d-type roughness geometries
whereby the DA effect of stable cavity vortices would result in a streamwise velocity
offset (i.e. 1U+s < 0) at the highest crest (Jiménez 2004).

The second term on the right-hand side of the roughness function equation (3.2)
is 1U+d and represents the integrated effect of ‘form-induced’ momentum transport
above the roughness canopy. This term makes a positive contribution to 1U+ for each
surface (figure 3). Relative to the Gaussian surface, the removal of pits and peaks
reduce term 1U+d by 20 % and 80 %, respectively, implying that roughness pits are an
ineffective source of DSS. The wall-normal variation of DSS is plotted in figure 5(b)
and confirms weakened ‘form-induced’ shear stress above the pits-only surface. On the
other hand, appreciable levels of DSS are induced within the roughness canopy of the
Gaussian and peaks-only surfaces, reflecting the high degree of spatial heterogeneity
in the time-averaged flow. Above the highest roughness crest, DSS profiles continue
to extend deep into the outer flow before decaying to zero at x3/δ ≈ 0.75. The
wall-normal persistence of dispersive stresses has also been noted by Chan et al.
(2017). In order to associate particular flow events to 1U+d , a quadrant analysis of
DSS is performed. Although quadrant analysis is traditionally employed to classify
the contributions of flow events to RSS (Wallace, Eckelmann & Brodkey 1972), it
has also been applied to DSS (Pokrajac et al. 2007). Considering that 1U+d > 0
for each surface (figure 3), then the integrated effect of Q̃2 (ũ1 < 0, ũ3 > 0) and
Q̃4 (ũ1 > 0, ũ3 < 0) events is expected to outweigh the combined effect of Q̃1

(ũ1 > 0, ũ3 > 0) and Q̃3 (ũ1 < 0, ũ3 < 0).
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FIGURE 6. Quadrant analysis of DSS showing Q̃1 (· · · ·), Q̃2 (- - -), Q̃3 ( ) and Q̃4
(- - -) for the (a) Gaussian, (b) peaks-only and (c) pits-only surfaces. The sum over all
quadrants (—) and the highest roughness crest of the Gaussian and peaks-only surface
are also shown (- · -).

The quadrant decomposition of DSS can be written as

〈ũ+1 ũ+3 〉 =
4∑

i=1

Q̃i (3.3)

and is plotted in figure 6. As anticipated, Q̃2 and Q̃4 events dominate Q̃1 and Q̃3

for the Gaussian and peaks-only surfaces. At the highest roughness crest, Q̃2 and Q̃4

events are approximately twice that of Q̃1 and Q̃3 and, beyond x3/δ > 0.25, activity
in odd-numbered quadrants becomes negligible. In contrast, Q̃2 and Q̃4 events persist
into the outer flow and their respective stress fractions make equal contributions to
the local level of DSS. Above the pits-only surface, negligible quadrant activity is
observed above x3/δ > 0.1 and, within closer proximity of the pits, increased Q̃1

events are countered by a combined rise of Q̃2 and Q̃4. However, in a narrow region
above the pits (0.002 < x3/δ < 0.018), odd-numbered activity dominates and, as a
result, DSS becomes negative (see inset in figure 6c). From a modelling perspective,
negative DSS may complicate the application of eddy diffusivity techniques to DANS-
type simulations (Manes et al. 2008). Overall, however, the integral contribution of
negative DSS to 1U+ is small and, as a result, the term 1U+d remains positive.

The third and final term on the right-hand side of the roughness function
equation (3.2) is 1U+t and represents the integrated effect of the RSS difference
above the roughness canopy. As shown in figure 3, the negative contribution of 1U+t
above the Gaussian and peaks-only surfaces indicates that the integrated effect of
RSS is weakened, relative to the smooth-wall value, whereas the positive contribution
above the pits-only surface indicates the opposite. The wall-normal variation of RSS
difference is plotted in figure 5(c). Negligible differences of RSS are observed in
the outer flow (x3/δ > 0.75), which is in line with Townsend’s outer-layer similarity
hypothesis (Townsend 1976). However, as the highest roughness crest of the Gaussian
and peaks-only surface is approached, the RSS difference becomes negative. In
constrast, above the pits-only surface, the RSS difference is positive below x3/δ < 0.1.
In order to associate particular flow events to 1U+t , the RSS difference is also
examined using quadrant analysis.
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FIGURE 7. Quadrant analysis of RSS difference including 1Q′1 (· · · ·), 1Q′2 (- - -), 1Q′3
( ) and 1Q′4 (- - -) for the (a) Gaussian, (b) peaks-only and (c) pits-only surfaces. The
sum over all quadrants (—) and the highest roughness crest of the Gaussian and peaks-
only surface are also shown (- · -).

The quadrant decomposition of RSS difference can be written as

1〈u′1u′3
+

〉 =1

4∑
i=1

Q′i (3.4)

and is plotted in figure 7. Negative values of 1Q′i indicate suppressed quadrant
activity, relative to smooth-wall levels, and positive values indicate the opposite. For
each surface, the magnitudes of 1Q′1 and 1Q′3 are small, compared to those of 1Q′2
and 1Q′4, indicating the relative sensitivity of sweep and ejection events. However,
the peaks and pits influence sweep and ejection events in differing manners. For
example, at the highest roughness crest of the Gaussian and peaks-only surface,
ejection events are suppressed, which leads to weakened RSS (figure 5c), which, in
turn, makes a negative contribution to 1U+ through term 1U+t (figure 3). Above the
pits-only surface, both ejections and sweeps are strengthened, which enhances RSS
in the near-wall region (figure 5c) and, as result, the term 1U+d makes a positive
contribution to 1U+.

4. Discussion
DNS of turbulent channel flow with irregular rough walls were performed at

Reτ = 395. Three roughness topographies were considered: (i) a Gaussian surface,
(ii) a peaks-only surface and (iii) a pits-only surface (figure 1). Surfaces (i), (ii)
and (iii) gave a 1U+ of 6.8, 5.9 and 1.7, respectively, showing that the main
roughness effect of a non-skewed surface is caused by its peaks. Further analysis of
results was aided by evaluating an equation for 1U+, which quantitatively identified
the mechanisms of momentum loss and/or gain.

The roughness function equation (3.2) indicates that 1U+ can be split into three
parts: (i) a velocity offset at the highest roughness crest, 1U+s ; (ii) the integral
effect of form-induced momentum transport, 1U+d ; and (iii) the integral effect of
the difference in turbulence-induced momentum transport, 1U+t . In the presence of
peaks, the approximation 1U+ ≈ 1U+s is valid and terms 1U+d and 1U+t have a
compensating effect (figure 3). On the other hand, in the absence of peaks, term
1U+s becomes negative and this ‘slip-velocity’ effect (figure 5a) is offset by positive
contributions from both 1U+d and 1U+t . The reduction of 1U+ above the pits-only
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surface can be attributed to two main factors: (i) suppression of losses due to a
slip-type effect (figure 4) and (ii) weakened ‘form-induced’ shear stress due to the
absence of peaks (figures 5b and 6). However, the reduction of 1U+ is limited by
enhanced Reynolds shear stress, which exceeds smooth-wall levels in the near-wall
region (figures 5c and 7).

Overall, the present study underlines the dependence of the near-wall flow on
higher-order topographical parameters, namely skewness. The sensitivity of 1U+
with respect to skewness has been confirmed in recent experimental campaigns (Flack
et al. 2016) and numerical simulations (Forooghi et al. 2017). The current study
provides a detailed account of the mean-flow mechanisms that determine 1U+ above a
peak-dominated (S= 1.6) and pit-dominated (S=−1.6) roughness topography. Future
work should quantify the Reynolds-number dependence of irregular non-Gaussian
roughness with the ultimate goal of incorporating topography effects into RANS-type
wall models. To this end, minimal-span rough-wall DNS (MacDonald et al. 2017)
could be used to achieve fully rough conditions for pit-dominated surfaces, which,
relative to their peak-dominated counterpart, exhibit a significantly smaller 1U+ at
the same friction Reynolds number.
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Appendix A. Effect of mean channel half-height mismatch upon DA momentum
difference equations

The friction velocity, viscous length scale and friction Reynolds number for a fully
developed smooth-wall turbulent channel flow can be defined as

uτ ,s ≡
(
−
δs

ρ
Π

)1/2

, `s ≡
ν

uτ ,s
, Reτ ,s ≡

δsuτ ,s
ν

, (A 1a−c)

where subscript ‘s’ denotes a smooth-wall quantity and where Π is the constant
(negative) mean streamwise pressure gradient. Similar quantities can be defined for a
rough-wall turbulent channel flow,

uτ ,r ≡
(
−
δr

ρ
Π

)1/2

, `r ≡
ν

uτ ,r
, Reτ ,r ≡

δruτ ,r
ν

, (A 2a−c)

where subscript ‘r’ denotes a rough-wall quantity.
After defining the ratio of the mean roughness height, 〈h〉, and the smooth-wall

channel half-height, δs, as ε ≡ −〈h〉/δs, equations (A 1) and (A 2) can be combined
to obtain

δr = (1+ ε)δs, uτ ,r = (
√

1+ ε)uτ ,s, Reτ ,r = (
√

1+ ε)3Reτ ,s, `r =
1

√
1+ ε

`s.

(A 3a−d)
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In what follows below, superscript ‘+’ denotes quantities scaled with smooth-wall plus
units, i.e. those scaled with `s and uτ ,s (A 1), and superscript ‘◦’ denotes quantities
scaled with rough-wall plus units, i.e. those scaled with `r and uτ ,r (A 2). A similar
approach has been adopted by MacDonald et al. (2016), although their analysis does
not separate the DSS and RSS difference contributions.

The DA streamwise momentum balance equations for a smooth-wall turbulent
channel flow and a rough-wall turbulent channel flow evaluated above the highest
roughness crest can be written as

0=
1
δ+s
+

d
dx+3,s

(
d〈u+1 〉s
dx+3,s

− 〈u′1u′3
+

〉s

)
, (A 4)

0=
1
δ◦r
+

d
dx◦3,r

(
d〈u◦1〉r
dx◦3,r

− 〈u′1u′3
◦

〉r − 〈ũ◦1ũ◦3〉r

)
, (A 5)

where the following relationships have been used:

1
δ+s
=
`s

δs
=

1
Reτ ,s

,
1
δ◦r
=
`r

δr
=

1
Reτ ,r

. (A 6a,b)

The momentum balance equations (A 4) and (A 5) can be integrated from an
arbitrary wall-normal position to their respective mean channel half-heights to obtain

1−
x+3,s
δ+s
=

d〈u+1 〉s
dx+3,s

− 〈u′1u′3
+

〉s, (A 7)

1−
x◦3,r
δ◦r
=

d〈u◦1〉r
dx◦3,r

− 〈u′1u′3
◦

〉r − 〈ũ◦1ũ◦3〉r. (A 8)

After some manipulation, equations (A 1) and (A 2) can be used to recast (A 8) into
‘+’ units

1−
x+3,r
δ+s

(
δs

δr

)
=

d〈u+1 〉r
dx+3,r

(
uτ ,s
uτ ,r

)(
`r

`s

)
− 〈u′1u′3

+

〉r

(
uτ ,s
uτ ,r

)2

− 〈ũ+1 ũ+3 〉r

(
uτ ,s
uτ ,r

)2

,

(A 9)

which can be simplified using (A 3) to obtain

(1− ε)−
x+3,r
δ+s
=

d〈u+1 〉r
dx+3,r

− 〈u′1u′3
+

〉r − 〈ũ+1 ũ+3 〉r. (A 10)

We evaluate the difference between the viscous-scaled smooth- and rough-wall cases
at equal wall-normal positions, i.e. x+3,s = x+3,r = x+3 , by subtracting (A 10) from (A 7)
in order to obtain the momentum balance difference equation

ε =1
d〈u+1 〉
dx+3

+ 〈ũ+1 ũ+3 〉 −1〈u
′

1u′3
+

〉, (A 11)

where the left-hand side term shows the effect of a mean channel half-height
mismatch. If 〈h〉 6= 0, then there is an imbalance. However, if |〈h〉| � δs, then
the imbalance can be considered negligible. With reference to table 1, the Gaussian
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surface has a mean roughness height equal to zero (〈h〉/δ = 0) and, as a result,
ε = 0. On the other hand, the mean roughness heights of the peaks-only surface
(〈h〉/δ = 0.01) and the pits-only surfaces (〈h〉/δ =−0.01) are non-zero and therefore
ε 6= 0. However, since |〈h〉|/δ ≈ 0.01 for both the pits- and peaks-only surfaces,
the friction Reynolds numbers for these cases agree to within less than 2 % of the
Gaussian and smooth-wall cases. Therefore, the friction Reynolds numbers of all
cases in this study are so close that the effects of mean channel half-height mismatch
and the error term ε in (A 11) can be neglected.
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