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Abstract

We prove hyperstability results for the Drygas functional equation on a restricted domain (a certain
subset of a normed space). Our results are more general than the ones proposed by Aiemsomboon and
Sintunavarat [‘Two new generalised hyperstability results for the Drygas functional equation’, Bull. Aust.
Math. Soc. 95 (2017), 269–280] and our proof does not rely on the fixed point theorem of Brzdęk as was
the case there. A characterisation of the Drygas functional equation in terms of its asymptotic behaviour
is given. Several examples are given to illustrate our generalisations. Finally, we point out a misleading
statement in the proof of the second result in the paper by Aiemsomboon and Sintunavarat and propose
its correction.
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1. Introduction

The stability of functional equations seems to originate from the following question of
Ulam [14] concerning homomorphisms between two groups.

Let (H,+) be a group and let (G,+,d) be a metric group. Given ε > 0, does
there exist δ > 0 such that if a function f : H → G satisfies the inequality

d( f (x + y), f (x) + f (y)) < δ for all x, y ∈ H,

then there exists a homomorphism F : H → G such that

d(F(x), f (x)) < ε for all x ∈ H?

The functional equation

f (x + y) = f (x) + f (y)
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is known as the Cauchy functional equation and many stability results for it (in the
sense of Hyers–Ulam–Rassias) have been studied in various ways (see [4, 7] and
the references therein). The hyperstability result seems to have been first published
in [3] concerning ring homomorphisms. We refer to [5, 6] for the hyperstability of
the Cauchy functional equation. The stability and hyperstability of other functional
equations have also been considered (see [4]).

To obtain a characterisation of a quasi-inner product space, Drygas [8] considered
the functional equation

f (x) + f (y) − f (x − y) − 2
(

f
( x + y

2

)
− f

( x − y
2

))
= 0, (1.1)

where f : X → R (the set of real numbers) and X is a real or complex vector space.
By replacing y by −y in (1.1), we obtain

2
(

f
( x + y

2

)
− f

( x − y
2

))
− f (x + y) + f (x) + f (−y) = 0. (1.2)

From (1.1) and (1.2),

f (x + y) + f (x − y) − 2 f (x) − f (y) − f (−y) = 0. (1.3)

The functional equation (1.3) is known as the Drygas functional equation. Ebanks
et al. [9] gave a general solution of the Drygas functional equation as follows.

Theorem E [9]. Let G be a commutative group and let K be a commutative field
(of characteristic different from two). Suppose that f : G → K satisfies the Drygas
functional equation

f (x + y) + f (x − y) − 2 f (x) − f (y) − f (−y) = 0 for all x, y ∈ G.

Then f is of the form

f (x) = A(x) + H(x, x) for all x ∈ G,

where A : G → K is a homomorphism and H : G × G → K is a symmetric
bihomomorphism (that is, H is additive in each variable and H(x, y) = H(y, x) for
all x, y ∈ G).

Before discussing the hyperstability of the Drygas functional equation on a
restricted subset of a normed space, we first recall the precise definition of the
functional equation as follows.

Definition 1.1. Let X and Y be two normed spaces and let ∅ , D ⊂ X. We say that a
function f : D→ Y is Drygas on D if

f (x + y) + f (x − y) − 2 f (x) − f (y) − f (−y) = 0 for all x, y ∈ D with −y, x ± y ∈ D.

In particular, if D = X, then we simply say that f is Drygas.
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Inspired by the works of Hyers [10], Aoki [2], Rassias [12] and Brzdęk [5, 6],
Piszczek and Szczawińska [11] applied Brzdęk’s fixed point theorem to prove a
hyperstability result for the Drygas functional equation on a restricted subset of a
normed space. From now on, we use the following notation: for a given f , we define

∆ f (x, y) := f (x + y) + f (x − y) − 2 f (x) − f (y) − f (−y).

We also let N and Z denote the sets of all positive integers and of all integers,
respectively.

Theorem PS [11]. Let X and Y be a normed space and a Banach space, respectively.
Suppose that D is a nonempty subset of X\{0} such that:

(D1) D is symmetric with respect to zero, that is, x ∈ D if and only if −x ∈ D; and
(D2) there exists M ∈ N such that mx ∈ D for all x ∈ D and for all integers m ≥ M.

Let c ≥ 0 and p < 0 be given. Suppose that f : D→ Y satisfies the inequality

‖∆ f (x, y)‖ ≤ c(‖x‖p + ‖y‖p) for all x, y ∈ D with x ± y ∈ D. (1.4)

Then f is Drygas on D.

As mentioned in [11, Example 4], Condition (D2) cannot be removed.
Aiemsomboon and Sintunavarat [1] obtained some hyperstability results by replacing
the expression c(‖x‖p + ‖y‖p) in (1.4) by h(x) + h(y) (see [1, Theorem 2.1]) and
h1(x)h2(y) (see [1, Theorem 2.2]) together with some additional assumptions. To state
their result, we first define the following notation. Suppose that X is a normed space
and that D is a nonempty subset of X\{0} satisfying (D1) and (D2). For a function
h : D→ [0,∞) and for each integer m with |m| ≥ M, let

bhe(m) := inf{t ≥ 0 : h(mx) ≤ th(x) for all x ∈ D}.

In particular, h(mx) ≤ bhe(m)h(x) for all x ∈ D.

Theorem AS. Let X, Y, and D be defined as in Theorem PS. Suppose that f : D→ Y
and ϕ : D × D→ [0,∞) are two functions satisfying the inequality

‖∆ f (x, y)‖ ≤ ϕ(x, y) for all x, y ∈ D with x ± y ∈ D.

Suppose that one of the following assumptions is true.

(1) ϕ(x, y) := h(x) + h(y) for all x, y ∈ D, where h : D→ [0,∞) is a function such
that:

(W1) M1 := {m ≥ M : 2bhe(m + 1) + bhe(m) + bhe(−m) + bhe(2m + 1) < 1} is an
infinite set; and

(W2) limm→∞bhe(m) = 0 and limm→∞bhe(−m) = 0 (see [1, Theorem 2.1]).

(2) ϕ(x, y) := h1(x)h2(y) for all x, y ∈ D, where h1, h2 : X→ [0,∞) are functions such
that:
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(W′
1) M2 := {m ≥ M : 2bh1e(m + 1)bh2e(m + 1) + bh1e(m)bh2e(m)

+ bh1e(−m)bh2e(−m) + bh1e(2m + 1)bh2e(2m + 1) < 1}
is an infinite set;

(W′
2) limm→∞bh1e(±m)bh2e(±m) = 0; and

(W′
3) limm→∞bh1e(m) or limm→∞bh2e(m) = 0 (see [1, Theorem 2.2]).

Then f is Drygas on D.

In this paper, we prove, without using the fixed point theorem of Brzdęk [7], some
hyperstability results for the Drygas functional equation on a restricted domain. The
condition on our domain is more general than the one proposed by Piszczek and
Szczawińska [11]. The main results of Aiemsomboon and Sintunavarat [1] can be
derived from our main results. Moreover, the hyperstability of the inhomogeneous
Drygas functional equation is also considered. Finally, we point out that the proof of
[1, Theorem 2.2] is not correct.

2. Main results

Throughout this paper, we make the following assumptions.

• X and Y are normed spaces.
• ∅ , D ⊂ X\{0} satisfies Conditions (D1) of Theorem PS and

(D2*) For each x ∈ D there exists mx ∈ N such that mx ∈ D for all integers
m ≥ mx.

• D := {(x, y) ∈ D × D : x ± y ∈ D}.

Remark 2.1. From Condition (D1), it is easy to see that a function f : D→ Y is Drygas
on D if and only if ∆ f (x, y) = 0 for all (x, y) ∈ D if and only if ∆ f (−x,−y) = 0 for all
(x, y) ∈ D.

The following example shows that the class of nonempty subsets of X satisfying
Conditions (D1) and (D2) is a proper subclass of that satisfying Conditions (D1) and
(D2*).

Example 2.2. We consider the Banach space l∞ of bounded real sequences (xn)∞n=1
equipped with the supremum norm ‖(xn)∞n=1‖ := supn |xn| < ∞. For each n ∈ N, we
define

Dn := {±en} ∪ {±men : m ≥ n},

where ek := (δ(k)
n )∞n=1 and

δ(k)
n :=

1 if n = k,
0 if n , k.

It is easy to see that D :=
⋃∞

n=1 Dn satisfies (D1) and (D2*). To see that D fails
Condition (D2), we note that, for each M ∈ N, we have eM+1 ∈ D and MeM+1 < D.
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2.1. Hyperstability of the Drygas functional equation on a restricted domain.

Theorem 2.3. Suppose that f : D→ Y is a function such that

lim
m→∞

∆ f (mx,my) = 0 for all (x, y) ∈ D.

Suppose that one of the following conditions is satisfied.

(a) limm→∞ ∆ f ((m + 1)x,mx) = 0 for all x ∈ D.
(b) limm→∞ ∆ f (mx, (m + 1)x) = 0 for all x ∈ D.
(c) limm→∞ ∆ f (x,mx) = 0 for all x ∈ D.

Then f is Drygas on D.

Proof. Let (x, y) ∈ D be given. It follows from Conditions (D1) and (D2*) that there
exists M ∈ N such that

{±(m − 1)x,±(m − 1)y,±mx,±my,±m(x + y),±m(x − y)} ⊂ D

for all integers m ≥ M. Let m ≥ M be an integer. Then

‖∆ f (x, y)‖ ≤ 2‖∆ f ((m + 1)x,mx)‖ + ‖∆ f ((m + 1)y,my)‖ + ‖∆ f (−(m + 1)y,−my)‖
+ ‖∆ f ((m + 1)(x + y),m(x + y))‖ + ‖∆ f ((m + 1)(x − y),m(x − y))‖
+ ‖∆ f ((2m + 1)x, (2m + 1)y)‖ + 2‖∆ f ((m + 1)x, (m + 1)y)‖
+ ‖∆ f (mx,my)‖ + ‖∆ f (−mx,−my)‖; (a*)

‖∆ f (−x,−y)‖ ≤ 2‖∆ f (mx, (m + 1)x)‖ + ‖∆ f (my, (m + 1)y)‖ + ‖∆ f (−my,−(m + 1)y)‖
+ ‖∆ f (m(x + y), (m + 1)(x + y))‖ + ‖∆ f (m(x − y), (m + 1)(x − y))‖
+ ‖∆ f ((2m + 1)x, (2m + 1)y)‖ + 2‖∆ f ((m + 1)x, (m + 1)y)‖
+ ‖∆ f (mx,my)‖ + ‖∆ f (−mx,−my)‖; (b*)

2‖∆ f (x, y)‖ ≤ 2‖∆ f (x,mx)‖ + ‖∆ f (y,my)‖ + ‖∆ f (−y,−my)‖
+ ‖∆ f (x + y,m(x + y))‖ + ‖∆ f (x − y,−m(x − y))‖
+ ‖∆ f (−(m − 1)x,−(m − 1)y)‖ + ‖∆ f (−(m − 1)x,−(m − 1)y)‖
+ ‖∆ f (−mx,−my)‖ + ‖∆ f (mx,my)‖. (c*)

If (�) holds, where � = a, b, c, then letting m→∞ in the corresponding inequality (�*)
together with Remark 2.1 implies that f is Drygas on D. This completes the proof. �

The following example shows that Conditions (a), (b) or (c) in Theorem 2.3 cannot
be omitted.

Example 2.4. Let X = Y := R and D := R\{0}. Note that D satisfies Conditions (D1)
and (D2*). Let f : D→ Y be defined by

f (x) :=
1
x

for all x ∈ D.

https://doi.org/10.1017/S0004972719001096 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719001096


[6] Hyperstability of the Drygas functional equation 131

We note that, for each (x, y) ∈ D, each z ∈ D and each m ∈ N,

|∆ f (mx,my)| =
1
m

∣∣∣∣∣ 1
x + y

+
1

x − y
−

2
x

∣∣∣∣∣,
|∆ f ((m + 1)z,mz)| =

∣∣∣∣∣ 1
(2m + 1)z

+
1
z
−

2
(m + 1)z

∣∣∣∣∣,
|∆ f (mz, (m + 1)z)| =

∣∣∣∣∣ 1
(2m + 1)z

−
1
z
−

2
mz

∣∣∣∣∣,
|∆ f (z,mz)| =

∣∣∣∣∣ 1
(m + 1)z

−
1

(m − 1)z
−

2
z

∣∣∣∣∣.
It follows that:

• limm→∞ |∆ f (mx,my)| = 0;
• limm→∞ |∆ f ((m + 1)z,mz)| = limm→∞ |∆ f (mz, (m + 1)z)| = 1/|z|; and
• limm→∞ |∆ f (z,mz)| = 2/|z|.

It is easy to see that f is not Drygas on D.

Corollary 2.5. Let ϕ : D × D→ [0,∞) be a function such that

ϕ(x, y) = ϕ(x,−y) and lim
m→∞

ϕ(mx,my) = 0 for all (x, y) ∈ D. (2.1)

Suppose that f : D→ Y satisfies the inequality

‖∆ f (x, y)‖ ≤ ϕ(x, y) for all (x, y) ∈ D.

Suppose that one of the following conditions is satisfied.

(a) limm→∞ ϕ((m + 1)x,mx) = 0 for all x ∈ D.
(b) limm→∞ ϕ(mx, (m + 1)x) = 0 for all x ∈ D.
(c) limm→∞ ϕ(x,mx) = 0 for all x ∈ D.

Then f is Drygas on D.

Based on the notion of the asymptotic behaviour of the Cauchy functional equation
given by Skof [13, Teorema 3], we obtain the following characterisation of the Drygas
functional equation on a restricted domain.

Corollary 2.6. Suppose that f : D→ Y is a function. Then the following statements
are equivalent.

(1) lim(x,y)∈D,‖x‖+‖y‖→∞ ‖∆ f (x, y)‖ = 0.
(2) f is Drygas on D.

Proof. The implication (2)⇒ (1) is trivial. We now suppose that (1) holds. To prove
(2), let (x, y) ∈ D and z ∈ D be given. For a sufficiently large m ∈ N, we note that
(mx,my), (mx, (m + 1)x) ∈ D. Moreover,

lim
m→∞

(‖mx‖ + ‖my‖) = lim
m→∞

(‖mz‖ + ‖(m + 1)z‖) =∞.
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The statement (1) implies that

lim
m→∞

‖∆ f (mx,my)‖ = lim
m→∞

‖∆ f (mz, (m + 1)z)‖ = 0.

It follows from Theorem 2.3 that f is Drygas on D. This completes the proof. �

2.2. Theorem AS(1) as a consequence of Corollary 2.5. We state the following
hyperstability result for inhomogeneous Drygas function equations on a restricted
domain satisfying Conditions (D1) and (D2).

Corollary 2.7. Suppose that ∅ , E ⊂ X \ {0} satisfies Conditions (D1) and (D2).
Let h1, h2 : E → [0,∞) be functions such that limm→∞bh1e(m) = limm→∞bh2e(m) = 0.
Suppose that f : E → Y and c : E × E → Y are functions satisfying the inequality

‖∆ f (x, y) − c(x, y)‖ ≤ h1(x) + h2(y) for all x, y ∈ E with x ± y ∈ E.

Suppose that there is a function g : E → Y satisfying the equation

∆g(x, y) = c(x, y) for all x, y ∈ E with x ± y ∈ E.

Then ∆ f (x, y) = c(x, y) for all x, y ∈ E with x ± y ∈ E.

Proof. Define a function ϕ : E × E → [0,∞) by

ϕ(x, y) := h1(x) + h2(y) + h2(−y) for all x, y ∈ E.

We see that ϕ(x, y) = ϕ(x,−y) ≥ h1(x) + h2(y) and

‖∆ f̃ (x, y)‖ ≤ ϕ(x, y) for all x, y ∈ E with x ± y ∈ E,

where f̃ : E → Y is defined by

f̃ (x) := f (x) − g(x) for all x ∈ E.

In fact,

∆ f̃ (x, y) := f̃ (x + y) + f̃ (x − y) − 2 f̃ (x) − f̃ (y) − f̃ (−y)
= ∆ f (x, y) − ∆g(x, y)
= ∆ f (x, y) − c(x, y).

For a sufficiently large m ∈ N:

• ϕ(mx,my) ≤ bh1e(m)h1(x) + bh2e(m)(h2(y) + h2(−y)) for all x, y ∈ E with x ± y ∈ E;
and

• ϕ(mz, (m + 1)z) ≤ bh1e(m)h1(z) + bh2e(m + 1)(h2(z) + h2(−z)) for all z ∈ E.

This implies that ϕ satisfies (2.1) and Condition (b) of Corollary 2.5. Consequently, f̃
is Drygas on E and hence the result follows. �

Remark 2.8. If h1 = h2 = h, then we immediately obtain [1, Corollary 2.3] and hence
Theorem 2.1 of [1] by letting c(x, y) = 0 and g(x) = 0.
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Before moving on, we remark on the Condition (W2) of Theorem AS(1):
(W2) limm→∞bhe(m) = 0 and limm→∞bhe(−m) = 0.
It is easy to see that limm→∞bhe(m) = 0 ⇐⇒ limm→∞bhe(−m) = 0. In fact, we note

that bhe(m) ≤ bhe(−1)bhe(−m) ≤ bhe2(−1)bhe(m). Moreover, it follows from Condition
(W2) that M1 := {m ≥ M : 2bhe(m + 1) + bhe(m) + bhe(−m) + bhe(2m + 1) < 1} is an
infinite set. In particular, Condition (W1) in Theorem AS(1) is superfluous.

Remark 2.9. According to Corollary 2.7, we note that bhe(·) is not necessarily defined
if E satisfies only Condition (D2*) in place of Condition (D2).

The following example shows that our Corollary 2.5 is a genuine generalisation
of [1, Theorem 2.1].

Example 2.10. Let ϕ : (R\{0}) × (R\{0})→ [0,∞) be a function defined by

ϕ(x, y) :=
1

1 + |x + y|
+

1
1 + |x − y|

for all x, y ∈ R\{0}.

Then there are no functions h1, h2 : R\{0} → [0,∞) such that:

(a) ϕ(x, y) ≤ h1(x) + h2(y) for all x, y ∈ R\{0} with x ± y ∈ R\{0}; and
(b) limm→∞bh1e(m) = limm→∞bh2e(m) = 0.

We first note that:

• limm→∞ ϕ(xm,my) = 0 for all x, y ∈ R\{0} with x ± y ∈ R\{0}; and
• limm→∞ ϕ(x,mx) = 0 for all x ∈ R\{0}.

Suppose that there are two functions h1, h2 such that (a) and (b) hold. Choose
x0 ∈ R\{0}. For a large m ∈ N, it follows from (a) that

0 <
1

1 + |x0|
≤ ϕ(mx0, (m + 1)x0)

≤ h1(mx0) + h2((m + 1)x0)
≤ bh1e(m)h1(x0) + bh2e(m + 1)h2(x0).

It follows from (b) that limm→∞ ϕ(mx0, (m + 1)x0) = 0, which is impossible.

2.3. An error in the proof of Theorem 2.2 of [1] and its correction. The proof
of Theorem AS(2) (see [1, Theorem 2.2 and its proof]) is based on the fixed point
theorem of Brzdęk [7]. The authors of [1] only made use of Conditions (W′

1) and (W′
2)

until the very last line of the proof to obtain the following inequality

‖Fm(x) − f (x)‖ ≤
bh1e(m + 1)bh2e(m)

1 − 2α(m + 1) − α(m) − α(−m) − α(2m + 1)
,

where α(n) := bh1e(n)bh2e(n). The authors claim that

lim
m→∞

bh1e(m + 1)bh2e(m)
1 − 2α(m + 1) − α(m) − α(−m) − α(2m + 1)

= 0

as a consequence of Conditions (W′
2) and (W′

3). Unfortunately, it is not true. We show
that there exist two functions h1, h2 : Z \ {0} → [0,∞) such that:
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• limm→∞bh1e(±m)bh2e(±m) = 0;
• limm→∞bh1e(m) = 0; and
• limm→∞bh1e(m + 1)bh2e(m) , 0.

The construction is as follows. Let P be the set of all primes. For convenience, we
write P := {p1, p2, . . .}, where p1 < p2 < · · · . We first observe that if h : P→ [0,∞) is
given and

h(m) := h(p1)α1 h(p2)α2 · · · h(pl)αl , (2.2)

where m := pα1
1 pα2

2 · · · p
αl
l and α1, . . . , αl are nonnegative integers, then h : N→ [0,∞)

is completely multiplicative, that is, h(mn) = h(m)h(n) for all m, n ∈ N.

Proposition 2.11. Suppose that h : N→ [0, 1) is a completely multiplicative function.
If limm→∞ h(pm) = 0, then limm→∞ h(m) = 0.

Proof. Let ε > 0. We choose N ∈ N such that h(pm) < ε for all m > N. We also choose
M such that h(pM

j ) < ε for all j = 1, 2, . . . , N. Let m ≥ (p1 p2 · · · pN)M be an integer.
We consider the following two cases.

Case 1: pk is a factor of m for some k > N. Since h : N→ [0, 1) is completely
multiplicative, we have h(m) < h(pk) < ε.

Case 2: m = pα1
1 pα2

2 · · · p
αN
N , where α1, α2, . . . , αN are nonnegative integers. Since

m ≥ (p1 p2 · · · pN)M , we have α j ≥ M for some j = 1, 2 . . . ,N. In particular, this gives
h(m) ≤ h(pM

j ) < ε. The proof is finished. �

Proposition 2.12. There exist two completely multiplicative functions h1, h2 mapping
N→ [0,∞) such that:

• limm→∞ h1(m)h2(m) = 0;
• limm→∞ h1(m) = 0; and
• limm→∞ h1(m + 1)h2(m) , 0.

Proof. We first construct inductively a strictly increasing sequence {in} of positive
integers. Suppose that i1 := 1. If im is already defined, then let im+1 be the largest
integer j such that

p j | (p1 p2 · · · pim + 1).

Obviously, im+1 > im. Moreover,

p1 p2 · · · pim + 1 = pαim+1

im+1 pαim+2

im+2 · · · p
αim+1
im+1

,

where αim+1, αim+2, . . . , αim+1 are nonnegative integers and αim+1 ≥ 1. We note that

pim
im
> p1 p2 · · · pim + 1 = pαim+1

im+1 pαim+2

im+2 · · · p
αim+1
im+1

> p
αim+1+αim+2+···+αim+1
im

and hence
im > αim+1 + αim+2 + · · · + αim+1 .
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For convenience, we write

(m] := {im + 1, im + 2, . . . , im+1}.

For each j ∈ (2m − 1], we define

h1(p j) :=
( 1
2m2

)(i2m+1−i2m)i2m

,

h2(p j) := (2m)(i2m+1−i2m)i2m .

For each j ∈ (2m], we define

h1(p j) :=
( 1
2m

)i2m−i2m−1

,

h2(p j) := 1.

Note that:

• limm→∞ h1(pm)h2(pm) = 0; and
• limm→∞ h1(pm) = 0.

Moreover,

h1(p1 p2 · · · pi2m + 1)h2(p1 p2 · · · pi2m )

≥ h1

(
pi2m

i2m+1 pi2m
i2m+2 · · · p

i2m
i2m+1

)
h2

(
pi2m−1+1 pi2m−1+2 · · · pi2m

)
=

( 1
2m

)(i2m−i2m−1)i2m(i2m+1−i2m)
(2m)(i2m+1−i2m)i2m(i2m−i2m−1) = 1.

By defining h : N→ [0, 1) as in (2.2), it is easy to see from Proposition 2.12 that:

• limm→∞ h1(m)h2(m) = 0;
• limm→∞ h1(m) = 0; and
• limm→∞ h1(m + 1)h2(m) , 0. �

For h1, h2 : N → [0, ∞) in Proposition 2.12, we now define completely
multiplicative functions h̃1, h̃2 : Z\{0} → [0,∞) by

h̃i(m) = h̃i(−m) := hi(m) for all m ∈ N and for all i = 1, 2.

It is easy to see that D := Z\{0} satisfies Conditions (D1) and (D2). We note that
b̃hie(m) = h̃i(m) for all m ∈ N. Hence h̃1 and h̃2 are our candidates.

Finally, we propose the following correction of Theorem AS(2), which is a
consequence of our Corollary 2.5 where ϕ(x, y) := h1(x)(h2(y) + h2(−y)).

Corollary 2.13. Suppose that ∅ , E ⊂ X \ {0} satisfies Conditions (D1) and (D2). Let
h1, h2 : E → [0,∞) be functions such that one of the following conditions is satisfied.
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(1) limm→∞bh1e(m)bh2e(m) = limm→∞bh1e(m + 1)bh2e(m) = 0.
(2) limm→∞bh1e(m)bh2e(m) = limm→∞bh1e(m)bh2e(m + 1) = 0.

Suppose that f : E → Y satisfies

‖∆ f (x, y)‖ ≤ h1(x)h2(y) for all x, y ∈ E with x ± y ∈ E.

Then f is Drygas on E.
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