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IDENTIFICATION OF PAIRED
NONSEPARABLE MEASUREMENT

ERROR MODELS

YINGYAO HU AND YUYA SASAKI
Johns Hopkins University

This paper studies the paired nonseparable measurement error models, where two
measurements, X and Y , are produced by mutually independent unobservables, U ,
V , and W , through the system, X = g(U,V ) and Y = h(U,W ). We propose re-
strictions to identify the marginal distribution of the common component U and the
conditional distributions of X and Y given U . Applying this method to twin panel
data, we find the following robust reporting patterns for years of education: (1) self
reports are accurate only when the true years of education are 16 or 18, typically
corresponding to advanced university degrees in the US education system; (2) sib-
ling reports are accurate whenever the true years of education are 12, 14, 16, and 18,
which are typical diploma years.

1. INTRODUCTION

We consider the paired nonseparable measurement error model of the following
form{

X = g(U,V )

Y = h(U,W )
where U , V , and W are mutually independent. (1.1)

The random variables X and Y are observed by econometricians, but the vari-
ables U , V , and W are not. For example, we may think of U as the true years of
education in which econometricians are interested but do not observe in the data.
Instead, we observe self reports X and sibling reports Y of U . The nonsepara-
ble errors V and W are nonadditive factors of self- and sibling-reporting errors,
respectively. Throughout the main text, we focus on the case where U is finitely
supported—see Section B.5 in the online appendix for a general case.

Under the stated independence condition, we can represent the model (1.1) by
the triple (FX |U ,FY |U ,FU ) of conditional and marginal distribution functions.1

For observed variables X and Y , we assume their conditional distributions given
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U are either discrete or continuous. Let fX |U and fY |U denote the conditional
pmf (respectively, pdf) when they are discrete (respectively, continuous). Let fU

denote the marginal pmf of U , the distribution of which is assumed to be finitely
supported. The supports of the marginal distributions of X , Y , and U are denoted
by X , Y , and U , respectively. We are interested in finding restrictions under which
the triple ( fX |U , fY |U , fU ) is identified from the observed joint distribution fX,Y .

Our identification strategy works in the following manner. We order the sup-
port of U as U = {u1, . . . ,u J } from u1 to u J . If x1 ∈ X and y1 ∈ Y are the
reports produced only by those individuals with u1 (i.e., fX |U (x1 | u1) > 0 and
fY |U (y1 | u1) > 0 but fX |U (x1 | uj ) = fY |U (y1 | uj ) = 0 for all j > 1), then we
use this “support exclusion restriction” to identify fX |U ( · | u1) > 0 with y1 as a
control variable and to identify fY |U ( · | u1) > 0 with x1 as a control variable. This
high-level restriction of the support exclusion can be rationalized by assumptions
on economic behaviors. For example, if we assume that the respondent and his
sibling have no incentive to report numbers lower than the true years of education,
then we obtain fX |U (u1 | uj )= fY |U (u1 | uj )= 0 for all j > 1. The identification
of fX |U ( · | uj ) > 0 and fY |U ( · | uj ) > 0 for j > 1 follows inductively by similar
arguments based on the principle of mathematical induction.

The model (1.1) of our interest is related to a number of nonclassical measure-
ment error models considered in the literature (e.g., Chen, Hong and Tamer, 2005;
Mahajan, 2006; Lewbel, 2007; Chen, Hong and Tarozzi, 2008; Hu, 2008; Hu
and Schennach, 2008; Chen, Hu, and Lewbel, 2009; Carroll, Chen and Hu, 2010;
D’Haultfoeuille and Février, 2010; Song, Schennach and White, 2012). One of the
most closely related is D’Haultfoeuille and Février (2010), who show nonpara-
metric identification of nonseparable measurement error models using support
variations and three or more measurements of the latent variable. Similarly to the
approach of D’Haultfoeuille and Février, we use support variations as a source of
identification. The empirical data that we use in this paper are based only on self
and sibling reports, and contains neither a third measurement nor an additional
instrument. We thus need to relax the data requirements of these existing econo-
metric methods. To this end, we develop alternative identifying restrictions where
our model (1.1) requires only two measurements, X and Y , instead of three, and
our identification strategy does not rely on instrumental variables. Another one
of the most closely related is Chen, Hu, and Lewbel (2009), where they identify
a regression model under misclassification without requiring an additional mea-
surement. This setup parallels our data requirement, and the assumptions that they
impose on regression functions imply our assumption. In other words, we provide
a generalized assumption for this particular setup, although a direct comparison
is difficult due to the different support cardinality assumptions about U .

Related to our model (1.1) is the repeated measurement model with additive
errors:{

X = U + V

Y = U + W
where U , V , and W are mutually independent.
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While we do not consider the case of continuous (U,V ,W ), a large number of
econometric papers use this paired additive model or its variants under the set-
ting of continuous random variables.2 Furthermore, (1.1) can be used to model
nonadditive structural functions. For example, consider a production structure
Y = h(U,W ), where U is the quantity of a factor of production and W summa-
rizes unobserved technologies. The true quantity U is often imperfectly observed
with conceivably endogenous measurement errors φ(U,V ). Let X denote an
observed proxy of U . We hence obtain the following paired structure.{

X = U +φ(U,V )
Y = h(U,W )

where U , V , and W are mutually independent.

Economists are interested in identifying the structural responses of the produced
quantity Y to the true unobserved quantity U of factors, i.e., h or FY |U .3

This paper is organized as follows. In Section 2, we derive identification of
the triple ( fX |U , fY |U , fU ) representing the model (1.1). Two alternative assump-
tions tailored to our empirical application are proposed in Sections 2.1 and 2.2.
In Section 3, we propose an estimation procedure following the identification ap-
proach. We apply our method to twin panel data in Section 4, where we analyze
self- and sibling-reporting patterns for years of education. Before presenting our
conclusions, we discuss an application to regression models in Section 5.

2. IDENTIFICATION

Let the support U = {u1, . . . ,u J } of U satisfy the following restriction.

Restriction 1 (The Basic Identifying Restriction).

(i) X (uj ) := support
(

fX |U ( · | uj )
)\∪j<k support

(
fX |U ( · | uk)

) �= ∅ for all
j ∈ {1, . . . , J },

(ii) Y(uj ) := support
(

fY |U ( · | uj )
)\ ∪j<k support

(
fY |U ( · | uk)

) �= ∅ for all
j ∈ {1, . . . , J }.

Examples of sufficient conditions for this restriction will be stated as Assump-
tions 1 and 2 in Section 2.1 and Assumption 3 in Section 2.2. Furthermore, when
we apply our model to regression models, Restriction 1 implies the assumptions
that papers in the literature (e.g., Chen, Hu, and Lewbel, 2009) impose on
regression functions, although a direct comparison is not possible due to the
different support cardinality assumptions about U—see Section 5. This restric-
tion can be considered as a support exclusion restriction, where an element
xj ∈ X (uj ) excluded from support

(
fX |U ( · | uk)

)
for all k > j is used as a

control variable to identify fY |U ( · | uj ). Similarly, an element yj ∈ Y(uj )
excluded from support

(
fY |U ( · | uk)

)
for all k > j is used as a control variable

to identify fX |U ( · | uj ). In this sense, this restriction is also related to the
monotonicity restriction often used in the treatment effects literature. The fol-
lowing two auxiliary lemmas provide main devices to prove the identification of
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( fX |U , fY |U , fU ) by Restriction 1 through the principle of mathematical induction
on the index set {1, . . . , J }.

LEMMA 1. Suppose that Restriction 1 holds for the model (1.1). If sets X (u1)
and Y(u1) are known, then ( fX |U ( · | u1), fY |U ( · | u1), fU (u1)) is identified.

LEMMA 2. Suppose that Restriction 1 holds for the model (1.1). Let 1 � j
and j + 1 � J . If ( fX |U ( · | uk), fY |U ( · | uk), fU (uk)) is identified for all
k � j and if sets X (uj+1) and Y(uj+1) are known, then ( fX |U ( · | uj+1), fY |U ( · |
uj+1), fU (uj+1)) is identified.

See Sections A.1 and A.2 in the appendix for proof of Lemmas 1 and 2,
respectively. Lemma 1 serves as the base step, and Lemma 2 serves as the
inductive step in the principle of mathematical induction. We illustrate how to
use these auxiliary lemmas in the following two subsections under alternative
lower-level assumptions.

2.1. Monotone Support Boundaries

One special instance to satisfy Restriction 1 is the case of monotone support
boundaries of fX |U and fY |U , as formally stated below.

Assumption 1 (Monotone Support Boundaries). The supports of X and Y are
bounded, and the following two conditions are satisfied.

(i) inf
(
supp( fX |U ( · | uj ))

)
is increasing in j or sup

(
supp( fX |U ( · | uj ))

)
is

decreasing in j .

(ii) inf
(
supp( fY |U ( · | uj ))

)
is increasing in j or sup

(
supp( fY |U ( · | uj ))

)
is

decreasing in j .

We will later characterize this assumption in terms of reporting patterns in
Assumption 2. Furthermore, when we apply our baseline model to the regression
analysis, this assumption is implied by the standard assumptions (e.g., monotonic-
ity and independence) used in the literature—see Section 5. The most closely
related assumptions used in the literature are a variety of monotonicity assump-
tions used to allow for unique ordering of eigenvalues in the spectral decompo-
sition approaches when an additional measurement is available (e.g., Hu, 2008).
While those existing monotonicity assumptions concern the values of conditional
densities or the values of conditional expectations, our monotonicity assumption
concerns the support boundaries of conditional distributions. Our monotonicity
assumption, together with the support cardinality assumption for U , allows us to
identify the model without additional measurements.

PROPOSITION 1. Assumption 1 for (1.1) implies Restriction 1 for (1.1).

See Section A.3 for a proof. While this proposition only shows that Assump-
tion 1 is sufficient for nonemptiness of X (uj ) and Y(uj ) for each j ∈ {1, . . . , J },
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this assumption also allows these nonempty sets to be identified. We state this
argument as the following two auxiliary lemmas.

LEMMA 3. Suppose that Assumption 1 holds for (1.1). The sets X (u1) and
Y(u1) are identified.

LEMMA 4. Suppose that Assumption 1 holds for (1.1). If ( fX |U ( · | uk),
fY |U ( · | uk), fU (uk)) is known for each k < j , then the sets X (uj ) and Y(uj )
are identified.

See Sections A.4 and A.5 in the appendix for proofs of Lemmas 3 and 4, re-
spectively. With the Lemmas 1–4, we can now identify the triple ( fX |U , fY |U , fU )
through the principle of mathematical induction.

THEOREM 1. If Assumption 1 holds for (1.1), then

(i) the sets X (uj ) and Y(uj ) are identified for each j ∈ {1, . . . , J }; and

(ii) ( fX |U ( · | uj ), fY |U ( · | uj ), fU (uj )) is identified for each j ∈ {1, . . . , J }.

Proof. First, note that Restriction 1 is satisfied by Proposition 1. We prove
the theorem by the principle of mathematical induction on {1, . . . , J }. For the
base step, the sets X (u1) and Y(u1) are identified by Lemma 3. Consequently,
( fX |U ( · | u1), fY |U ( · | u1), fU (u1)) is identified by Lemma 1. Now, assume in-
ductively that ( fX |U ( · | uk), fY |U ( · | uk), fU (uk)) is identified for each k < j +1.
Then, the sets X (uj+1) and Y(uj+1) are identified by Lemma 4. Consequently,
( fX |U ( · | uj+1), fY |U ( · | uj+1), fU (uj+1)) is identified by Lemma 2. �

In the special case whereX andY are exactly the same sets as U ={u1, . . . ,u J },
the sets X (uj ) andY(uj ) for each j = {1, . . . , J } can be constructed easily without
relying on Lemmas 3 and 4. Specifically, if inf

(
supp( fX |U ( · | uj ))

)
is increasing

in j as in Assumption 1(i), then the equality U = X forces X (uj ) = {uj } for
each j = {1, . . . , J }. A similar argument applies to the set Y(uj ) for each j =
{1, . . . , J }.

Finally, we discuss the main assumption of the current subsection in the context
of our application to years of education. What kind of survey reporting pattern
rationalizes the monotone support boundaries of Assumption 1? We propose the
following reporting pattern as a sufficient condition for Assumption 1, which in
turn is sufficient for Restriction 1.

Assumption 2 (No Under-Reporting). The following two conditions are satis-
fied.

(i) Pr(X <U)= Pr(Y <U)= 0.

(ii) Pr(X = U | U = u) > 0 and Pr(Y = U | U = u) > 0 for each u ∈ U .

Part (i) states that individuals do not under-report years of education. Part (ii)
states that honest individuals exist for each actual year u of education. Under
the triangular conditional support imposed by part (i), the requirement (ii) of the
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positive probabilities of zero errors plays a similar role to the matrix invertibility
assumption made in the three-measurements literature (e.g., Hu, 2008). At the
expense of assuming this specific invertibility, we improve upon this three-
measurements literature by reducing the required number of measurements from
three to two. This assumption is consistent with the empirical fact that the self-
reporting errors for years of education are likely to be negatively correlated with
the true years of education (Siegel and Hodge, 1968). In other words, this negative
correlation may well arise when people do not under-report their education, as in-
dividuals with low education have more room for over-reporting while individuals
with high education have little choice but to report truthfully. Section B.4.1 in the
online appendix proposes a choice model where Assumption 2 is rationalized by
a utility maximization behavior. Part (i) may be restrictive in applications. Thus,
Section 2.2 introduces an alternative assumption to relax this restriction. The fol-
lowing proposition claims that Assumption 2 implies Assumption 1.

PROPOSITION 2. If Assumption 2 holds, then Assumption 1 holds with the
ordering of U = {u1, . . . ,u J } defined by j < k if and only if uj < uk.

2.2. Alternative Reporting Patterns

Assumption 2, which entirely prohibits under-reporting of years of education,
may be restrictive in applications. Certainly, those individuals having just com-
pleted diploma-granting years of education, e.g., U = 12, 14, 16, and 18,4 may
have no incentive to under-report their education. On the other hand, the re-
maining individuals, i.e., those with U = 13, 15, and 17, may have an incentive
to under-report their education by one year due to the stigma of dropping out
before gaining a diploma, or simply by rounding numbers to the diploma-
granting year for mnemonic reasons. As such, min (support(X | U = 12)) =
min (support(X | U = 13)) = 12 may result and Assumption 1 can thus fail.
In light of this possibility, we propose the following alternative assumption in
the current subsection.

Assumption 3 (Dropout and Diploma). Let D = {d1, . . . ,dL} ⊂ U be a set of
diploma-granting years, and Dc = U\D be its complement. The following are
true.

(i) Pr(X ∈ Dc | U ∈ D)= Pr(Y ∈ Dc | U ∈ D)= 0.

(ii) X <U ⇒ X = max{d ∈ D | d � U} and Y <U ⇒ Y = max{d ∈ D | d �
U}.

(iii) Pr(X = U | U = u) > 0 and Pr(Y = U | U = u) > 0 for each u ∈ U .

For example, D = {12,14,16,18} can be used for common years of educa-
tion associated with high-school diploma, associate degrees, bachelor’s degrees,
and master’s degrees in the US education system. Part (i) states that individuals
who have actually just completed diploma-granting years of education do not re-
port non-diploma-granting years of education. This restriction is plausible if we
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assume they have no incentive to voluntarily lie to avoid the stigma of dropout.
Part (ii) states that under-reporting individuals report the years of education as-
sociated with the highest diploma that they have received, so they can signal
that they did not drop out while only minimally suppressing the years. Part (iii)
requires the existence of an honest subpopulation. Section B.4.2 in the online
appendix proposes a choice model where Assumption 3 is rationalized by a util-
ity maximization behavior. Under this set of assumptions, the general identifying
restriction of Section 2 is satisfied as follows

PROPOSITION 3. If Assumption 3 holds for (1.1), then U can be written as
an indexed set U = {u1, . . . ,u J } such that Restriction 1 is satisfied.

Proof is given in Section A.7 in the appendix. In view of the proof, we can
construct the indices 1, . . . , J for an ordering of the set U by following the rule:

If uj ∈ Dc and uk = max{u ∈ D | u < uj }, then j < k.

Otherwise, uj < uk ⇐⇒ j < k. (2.1)

This definition of ordering states that 1. a non-diploma-granting year should pre-
cede the highest lower diploma-granting year; and 2. otherwise lower years should
precede higher years.

Example 1
In the US education system, high-school diplomas, associate degrees, bachelor’s
degrees, and master’s degrees are associated with 12, 14, 16, and 18 years of
education, respectively. If D = {12,14,16,18} and Dc = {13,15,17} for U =
{12,13,14,15,16,17,18}, then we order U by u1 = 13,u2 = 12,u3 = 15,u4 =
14,u5 = 17,u6 = 16, and u7 = 18 according to (2.1).

Example 2
Associate degrees are less likely to be terminal degrees. If u = 14 is removed from
D, i.e., D= {12,16,18} and Dc = {13,14,15,17}, then the rule (2.1) produces the
alternative ordering of U by u1 = 13,u2 = 14,u3 = 15,u4 = 12,u5 = 17,u6 = 16,
and u7 = 18.

In addition to ensuring their nonemptiness, we can also construct the sets X (u)
and Y(u) for each u. Specifically, if X = Y = U is the case, then we can see that
X (uj ) = Y(uj ) = {uj } for each uj ∈ U . As the sets X (u) and Y(u) are known
for each u ∈ U , we can readily use Lemmas 1 and 2 to identify ( fX |U , fY |U , fU )
through the principle of mathematical induction.

THEOREM 2. If Assumption 3 holds for (1.1) and a given D ⊂ U , then for the
rule (2.1):

(i) the sets X (uj ) and Y(uj ) are identified for each j ∈ {1, . . . , J }; and

(ii) ( fX |U ( · | uj ), fY |U ( · | uj ), fU (uj )) is identified for each j ∈ {1, . . . , J }.
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Proof. First, note that Restriction 1 is satisfied by Proposition 3. Assumption
3 and the rule (2.1) construct the sets X (uj ) and Y(uj ) for each j ∈ {1, . . . , J }.
Thus, applying the principle of mathematical induction, with Lemma 1 for the
base step and Lemma 2 for the inductive step, yields identification of ( fX |U ( · |
uj ), fY |U ( · | uj ), fU (uj )) for each j ∈ {1, . . . , J }. �

2.3. Identifying Formulas

In this section, we display for convenience the inductive identifying formulas ob-
tained in the proofs. For the first element u1 ∈ U , the identifying formulas are:

fX |U (x | u1)= fXY (x, y1)

fY (y1)
for all x ∈ X

fY |U (y | u1)= fXY (x1, y)

fX (x1)
for all y ∈ Y

fU (u1)= fX (x1) fY (y1)

fXY (x1, y1)

with x1 ∈ X (u1) and y1 ∈ Y(u1). Recall that there is an analogy between our
identification strategy and the existing control variable approaches. The first one
of the above identifying formulas reflects the idea that the excluded variable y1
plays the role of a control variable for u1 while varying x . Likewise, the second
identifying formula above reflects the idea that the excluded variable x1 plays the
role of a control variable for u1 while varying y.

For subsequent elements uj+1 ∈ U , the identifying formulas are:

fX |U (x | uj+1)= fXY (x, yj+1)−∑
k� j fX |U (x | uk) fY |U (yj+1 | uk ) fU (uk )

fY (yj+1)−∑
k� j fY |U (yj+1 | uk ) fU (uk )

for all x ∈ X

fY |U (y | uj+1)= fXY (xj+1, y)−∑
k� j fX |U (xj+1 | uk) fY |U (y | uk ) fU (uk )

fX (xj+1)−∑
k� j fX |U (xj+1 | uk) fU (uk )

for all y ∈ Y

fU (uj+1)=
[

fX (xj+1)−∑
k� j fX |U (xj+1 | uk ) fU (uk )

][
fY (yj+1)−∑

k� j fY |U (yj+1 | uk) fU (uk )
]

fXY (xj+1, yj+1)−∑
k� j fX |U (xj+1 | uk) fY |U (yj+1 | uk ) fU (uk )

with xj+1 ∈ X (uj+1) and yj+1 ∈ Y(uj+1), where fX |U ( · | uk), fY |U ( · | uk) and
fU (uk) for all k � j have been inductively identified in previous steps. Further-
more, see Section B.2 in the online appendix for closed-form identifying formu-
las obtained by successive substitutions of these inductive formulas. As in the
previous paragraph, the first identifying formula above reflects the idea that the
excluded variable yj+1 plays the role of a control variable for uj+1 while varying
x . Likewise, the second identifying formula above reflects the idea that the ex-
cluded variable xj+1 plays the role of a control variable for uj+1 while varying x .

3. ESTIMATION

The identification results imply that information accumulates as the sample
size increases, which leads to consistent estimation of the representing model
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( fX |U , fY |U , fU ). Section 2.3 suggests that the following iterative procedure esti-
mates the representing model. Let f N

XY denote the empirical joint pmf of the ob-
served variables (X,Y ), with f N

X and f N
Y denoting its marginals. Choosing points

x1 ∈ X (u1) and y1 ∈ Y(u1), we estimate ( fX |U ( · | u1), fY |U ( · | u1), fU (u1)) by
the following formulas.

f̂X |U (x | u1)= f N
XY (x, y1)

f N
Y (y1)

for all x ∈ X

f̂Y |U (y | u1)= f N
XY (x1, y)

f N
X (x1)

for all y ∈ Y

f̂U (u1)= f N
X (x1) f N

Y (y1)

f N
XY (x1, y1)

.

The fact that u1 does not appear on the right-hand sides of these formulas may be
intuitively understood by noting that x1 and y1 serve as control variables for u1
under the varying support condition.

By the beginning of the j -th step, we have obtained ( f̂X |U ( · | uk), f̂Y |U ( · | uk),

f̂U (uk)) for all k < j . Therefore, choosing xj ∈ X (uj ) and yj ∈ Y(uj ), we
estimate ( fX |U ( · | uj ), fY |U ( · | uj ), fU (uj )) in the j -th step by the following
formulas.

f̂ X |U (x | uj ) = f N
XY (x, yj )−∑ j−1

k=1 f̂ X |U (x | uk ) f̂Y |U (yj | uk ) f̂U (uk)

f N
Y (yj )−∑ j−1

k=1 f̂Y |U (yj | uk ) f̂U (uk)
for all x ∈ X

f̂Y |U (y | uj ) = f N
XY (xj , y)−∑ j−1

k=1 f̂ X |U (xj | uk) f̂Y |U (y | uk ) f̂U (uk)

f N
X (xj )−∑ j−1

k=1 f̂ X |U (xj | uk) f̂U (uk)
for all y ∈ Y

f̂U (uj ) =
[

f N
X (xj )−∑ j−1

k=1 f̂ X |U (xj | uk ) f̂U (uk)
][

f N
Y (yj )−∑ j−1

k=1 f̂Y |U (yj | uk) f̂U (uk)
]

f N
XY (xj , yj )−∑ j−1

k=1 f̂ X |U (xj | uk ) f̂Y |U (yj | uk ) f̂U (uk )
.

Because J is finite, we can complete this iterative procedure to eventually obtain
an estimate ( f̂ X |U , f̂Y |U , f̂U ) of the representing model. See Section B.3 in the
online appendix for closed-form estimators.

3.1. Asymptotic Properties

Note that the estimator ( f̂ X |U ( · | uj ), f̂Y |U ( · | uj ), f̂U (uj ))
J
j=1 is a smooth trans-

formation of the empirical data F N
XY through the above closed-form arithmetic

formulas provided that singular cases are excluded. Therefore, the standard
√

N -
asymptotic normality of this estimator immediately follows from the first-order
asymptotics by the weak convergence of the empirical process

√
N (F N

XY − FXY )
through the delta method. Although the arguments are standard, we present con-
crete expressions for asymptotic variances. In the main text, we focus on the case
of j = 1 for compactness of exposition. Similar arguments continue to apply for
higher j—see Section B.3 in the online appendix.
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PROPOSITION 4. Suppose that one of the alternative identifying restrictions
is satisfied and that the sample is drawn independently from an identical distribu-
tion.

(i) If fY (y1) > 0, then
√

N
(

f̂ X |U (x | u1) − fX |U (x | u1)
)

asymptoti-
cally follows the normal distribution with mean zero and variance
fXY (x,y1)[ fY (y1)− f XY (x,y1)]

fY (y1)3
.

(ii) If fX (x1) > 0, then
√

N
(

f̂Y |U (y | u1) − fY |U (y | u1)
)

asymptoti-
cally follows the normal distribution with mean zero and variance
fXY (x1,y)[ fX (x1)− fXY (x1,y)]

fX (x1)3
.

(iii) If fXY (x1, y1)> 0, then
√

N
(

f̂U (u1)− fU (u1)
)

asymptotically follows the
normal distribution with mean zero and variance

fX (x1) fY (y1) [( fX (x1)− fXY (x1, y1))( fY (y1)− fXY (x1, y1))+ fXY (x1, y1)( f XY (x1, y1)− fX (x1) fY (y1))]

fXY (x1, y1)3
.

Note that the singularity issue occurs simply when fY (y1) = 0, fX (x1) = 0,
and fXY (x1, y1) = 0 for parts (i), (ii), and (iii), respectively. For higher j , the
singularity occurs in more complicated ways. Specifically, for the asymptotic
normality of

√
N

(
f̂U (u2)− fU (u2)

)
, we require the nonsingularity condition

fXY (x1, y1) · fXY (x2, y2) �= fXY (x1, y2) · fXY (x2, y1) in addition to fXY (x1, y1) >
0—see Proposition 5 in Section B.3 in the online appendix for details. Continu-
ing with uj for higher j for a couple of steps, we can see that nonzero leading

minors of the j × j matrix [ fXY (xr , yc)]
j
r,c=1 are required for the asymptotic nor-

mality for
√

N
(

f̂U (uj )− fU (uj )
)
. We numerically study the performance of the

estimators for parameter values near these singularities in the following section.

3.2. Monte Carlo Simulations

We consider the following simulation design. The observed reports (X,Y ) and
the latent variable U are supported on the set, U = X = Y = {1,2,3}, consisting
of three ordered elements, u1 = 1, u2 = 2, and u3 = 3. The marginal distribution
of U is given by the uniform law fU (1) = fU (2)= fU (3) = 1/3. The reporting
patterns follow the assumption of no under-reporting (Assumption 2). We vary
probabilities fX |U (1 | 1), fY |U (1 | 1), fX |U (2 | 2), and fY |U (2 | 2) of honest re-
porting as shown in the first two columns of Table 1 across sets of simulations. In
addition, we fix the conditional probabilities, Pr(X = 3 | U = 1,X > 1)= 0.5 and
Pr(Y = 3 | U = 1,Y > 1) = 0.5. These specifications are sufficient to define the
joint probability of (U,X,Y ). We run Monte Carlo simulations with the sample
size of N = 300,5 repeated for 5,000 iterations in each set.

The third and fourth columns in Table 1 show the first two leading principal
minors, D1 := fXY (1,1) and D2 := fXY (1,1) fXY (2,2)− fXY (1,2) fXY (2,1), of
the matrix [ fXY (xr , yc)]3

r,c=1. Recall from Section 3.1 (and Section B.3 in the
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TABLE 1. Simulation results for N = 300 with 5,000 Monte Carlo iterations.
The first two columns show the data-generating processes. The next two columns
show the first and second leading principal minors, D1 := fXY (1,1) and D2 :=
fXY (1,1) fXY (2,2)− fXY (1,2) fXY (2,1), respectively, for each data-generating
process. The remaining columns show estimation results, including the bias, the
root mean square errors (RMSE), and the 95% coverage probabilities of the es-
timators that are computed using the asymptotic normality results provided in
Propositions 4 and 5

Data-Generating Process Estimators

fX |U (1 | 1) fX |U (2 | 2) Minors f̂U (1) f̂U (2)

fY |U (1 | 1) fY |U (2 | 2) D1 D2 Bias RMSE 95% Bias RMSE 95%

0.800 0.100 0.213 0.001 −0.000 0.029 0.947 6E+11 4E+13 0.733
0.800 0.200 0.213 0.003 0.000 0.028 0.954 0.106 2.226 0.909
0.800 0.400 0.213 0.011 −0.000 0.028 0.955 0.008 0.065 0.946

0.800 0.800 0.213 0.046 −0.000 0.029 0.949 −0.000 0.030 0.946

0.400 0.800 0.053 0.011 0.004 0.047 0.946 −0.003 0.042 0.955
0.200 0.800 0.013 0.003 0.013 0.089 0.940 −0.009 0.061 0.964
0.100 0.800 0.003 0.001 0.026 0.120 0.939 −0.015 0.089 0.952

online appendix) that the singularity of these leading principal minors is associ-
ated with problems in the estimators—see Propositions 4 and 5 . In other words,
we expect that the estimators behave poorly when these minors take small val-
ues. The middle row of the table shows the benchmark setting, fX |U (1 | 1) =
fY |U (1 | 1)= fX |U (2 | 2)= fY |U (2 | 2) = 0.8, where the probabilities of honest
reporting is high enough. In this case, both leading principal minors, D1 and D2,
are relatively far away from zero. Consequently, we indeed see that the estima-
tors f̂U (1) and f̂U (2) behave fairly well in terms of the biases, the root mean
square errors (RMSE), and the 95% coverage rates that are computed based on
the asymptotic normality results displayed in Propositions 4 and 5.

As we move down from the middle row in the table, the probabilities,
fX |U (1 | 1) and fY |U (1 | 1), of honest reporting given U = 1 decrease toward
zero. Accordingly, both of the two leading principal minors, D1 and D2, also
decrease toward zero. Notice that the performance of the estimators, f̂U (1) and
f̂U (2), becomes worse in terms of the biases, the RMSE, and the 95% coverage
rates toward the bottom row. This result is consistent with the fact that the singu-
larity of D1 is ruled out in Proposition 4 for the estimator f̂U (1), and the fact that
the singularity of both D1 and D2 is ruled out in Proposition 5 for the estimator
f̂U (2).

On the other hand, as we move up from the middle row in the table, the prob-
abilities, fX |U (2 | 2) and fY |U (2 | 2), of honest reporting given U = 2 decrease
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toward zero. Accordingly, the second leading principal minor D2 also decreases
toward zero, but the first leading principal minor D1 stays constant. Notice that
the performance of the estimator f̂U (2) becomes worse in terms of the biases, the
RMSE, and the 95% coverage rates toward the top row, but the performance of
the other estimator f̂U (1) is not affected. This result is consistent with the fact
that the singularity of D2 is not ruled out in Proposition 4 for the estimator f̂U (1),
and the fact that the singularity of D2 is ruled out in Proposition 5 for the estima-
tor f̂U (2).

4. THE TRUE DISTRIBUTION OF YEARS OF EDUCATION

In labor economics and economics of education, isolating unobserved innate abil-
ities from intensities of endogenous treatments, such as years of education, is a
great concern for program evaluations. For panel data of monozygotic twins shar-
ing innate abilities as common factors, it is a common practice to assume that
within-pair differences in labor outcomes are imputed to differential treatment
intensities. Behrman, Taubman, and Wales (1977) use a sample of twin panels
to estimate the effects of schooling on labor outcomes. Ashenfelter and Krueger
(1994) advance this literature by accounting for potential measurement errors in
years of education in addition to controlling for the unobserved heterogeneity. See
Miller, Mulvey, and Martin (1995), Behrman and Rosenzweig (1999), and Rouse
(1999) for related empirical research.

To correct errors in self-reported education, Ashenfelter and Krueger collected
a sample of not only self-reported education, but also sibling-reported education
in the 16th annual Twins Days Festival in Twinsburg, Ohio, in 1991. The paired
classical measurement error model assumed by their study can be represented by{

X = U + V

Y = U + W
where U , V , and W are mutually independent. (4.1)

The unobserved variable U denotes the true years of education. Econometri-
cians observe the self-reported years of education denoted by X , and the sibling-
reported years of education denoted by Y . The exogenous unobserved variables
V and W are self-reporting error and sibling-reporting error, respectively.

If the additive independent errors in the model (4.1) were indeed true, then ex-
isting approaches might be applicable to identify the distribution of true years of
education. However, this classical measurement error setup is perhaps too restric-
tive in the current context for at least two reasons. First, self-reporting errors V are
likely to be negatively correlated with U , as reported by Siegel and Hodge (1968).
For example, individuals with less U may have upwardly biased errors V due to
stigma, whereas individuals with high U may have no such incentive to give bi-
ased reports. In this light, it is more general to assume endogenous self-reporting
error via the nonseparable model X = g(U,V ), where the self-reporting error de-
fined by [g(U,V )− U ] is no longer independent of U by construction. Second,
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sibling-reporting errors W are likely to be correlated with the true U . For exam-
ple, siblings may round true U up to the nearest diploma years, such as Y = 14,
16, and 18, simply due to limited memory. In this case, the reporting errors W
may be almost degenerate if true U is already one of the diploma years, whereas
W may be nondegenerate otherwise. In other words, the distribution of W is likely
to depend on U without any monotonic patterns. For such irregular endogenous
reporting errors, a nonseparable model Y = h(U,W ) is probably a more natu-
ral description of the true reporting behaviors, where the sibling-reporting error
defined by h(U,W )− U is no longer independent of U by construction. There-
fore, we replace the paired classical measurement error model (4.1) by the paired
nonseparable measurement error model (1.1) in our empirical analysis:{

X = g(U,V )

Y = h(U,W )
where U , V , and W are mutually independent.

Sections 2.1 and 2.2 propose sufficient conditions for identifying this model,
particularly in the context of the current empirical problem. Recall that Assump-
tion 2 and thus Assumption 1 are consistent with the aforementioned empirical
fact that the self-reporting errors for years of education are likely to be negatively
correlated with the true years of education (Siegel and Hodge, 1968). For exam-
ple, this negative correlation may well arise when people do not under-report their
education, as individuals with low education have more room for over-reporting
while individuals with high education have little choice but to report truthfully.
In addition, we propose a couple of choice models in Sections B.4.1 and B.4.2 in
the online appendix as theoretical support for Assumptions 2 and 3, respectively.
A remaining issue is whether these assumptions are also consistent with other po-
tential reasons for reporting errors, such as poor memory, misunderstanding the
question, and recording errors. If reporters with poor memory are to round up
(respectively, round down) to the nearest diploma granting year, then the resul-
tant reporting pattern can be consistent with Assumptions 1 and 2 (respectively,
Assumption 3). A similar argument applies to the case of recording errors where
rounding occurs on the part of the interviewers.

Table 2 summarizes the orderings of U = {u1, . . . ,u J } obtained through each
of the approaches proposed in Sections 2.1 and 2.2. Recall that each of these
restrictions uniquely defines X (uj ) and Y(uj ) for each j in the current setup
provided U = X = Y; hence there is no need of pre-estimating them using data.
As neither Assumption 2 nor Assumption 3 is empirically testable, we do not want
to rely on any one of these particular identifying restrictions. Instead, we estimate

TABLE 2. Summary of identifying restrictions and the implied well-orders

Section Assumption Reporting Pattern Implied Ordering of U

2.1 1, 2 No Under-Reporting {u1, . . . ,u7} = {12,13,14,15,16,17,18}
2.2 3 Stigma against Dropout {u1, . . . ,u7} = {13,12,15,14,17,16,18}
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our model under each of these alternative assumptions, and report the results that
we obtain robustly across these alternative assumptions.

In our empirical analysis, we use the data of Ashenfelter and Krueger that con-
sist of an extract from a survey of twins conducted at the 16th annual Twins Days
Festival in Twinsburg, Ohio, in 1991. The sample contains 340 twins (680 indi-
viduals). Figure 1(a) shows probability masses of self-reported years of education
X (dashed lines) and sibling-reported years of education Y (dotted lines). Both
X and Y have relative peaks at the diploma years, namely high-school graduation

FIGURE 1. (a) Probability masses of self-reported education X and sibling-reported educa-
tion Y . The remaining two graphs illustrate estimated probability masses of true education
U under (b) the assumption of no under-reporting and under (c) the assumption of stigma
against dropout without diploma. The vertical lines indicate ±1.96 × estimated standard
errors. The bottom left graph overlays the estimates in (c) on top of the estimates in (b) for
the purpose of comparison.
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(12), associate degrees (14), bachelors degrees (16), and masters degrees (18).
The sibling report Y particularly stands out at these peaks, which is consistent
with the hypothesis that sibling reports may perhaps tend to round the true U
to near diploma years more evidently than the self reports X . The discrepancy
between X and Y suggests that at least one of X and Y is false.

Following the iterative procedure outlined in Section 3, we estimate the distri-
bution FU of the true years of schooling under each of the alternative restrictions
given in Table 2. The two remaining graphs in Figure 1 show the probability
masses of the estimated true years of schooling under Figure 1(b) the assump-
tion of no under-reporting and under Figure 1(c) the assumption of stigma against
dropout without diploma. The frequencies of self reports are accurate at 16 and
17 years of education robustly across the alternative identifying restrictions. How-
ever, this particular result does not imply that individuals with U = 16 are honest
reporters. There may exist individuals with other values of U who falsely report
X = 16, i.e., frequency ‘inflows’ into X = 16. These inflows must be compen-
sated for by false reports by individuals with U = 16, i.e., frequency ‘outflows’
from U = 16, because f̂U (16)≈ f N

X (16) requires conservation of inflowing and
outflowing frequencies. By similar arguments, the discrepancy in the frequencies
between self reports and the estimated truths at 18 does not imply that individuals
with U = 18 tend to lie. The difference may be due only to frequency inflows
from other values of U into X = 18.

In Figure 2, we compare our estimates to more naive estimates of the cumula-
tive distribution of U , such as using the distribution of X , the distribution of Y ,
or the distribution of (X + Y )/2. The left figure shows that our estimate based
on the assumption of no under-reporting is first-order stochastically dominated
by all three naive estimates. Likewise, the figure on the right shows that our esti-

FIGURE 2. Comparisons of our estimates for the distribution of true years of schooling
with more naive estimates based on X , Y , and (X + Y )/2. The left figure displays our
estimate based on the assumption of no under-reporting, and the right figure displays our
estimate based on the assumption of stigma against dropout without diploma.
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mate based on the assumption of stigma against dropping out without a diploma is
almost stochastically dominated by all three naive estimates, except at the lowest
level u ∈ [12,13). These comparisons imply overall left shifts of our estimated
distributions relative to the naively estimated distributions.

To assess the actual reporting behaviors (i.e., to reveal who tends to report
correctly or falsely), we can use the estimated pmfs ( f̂ X |U , f̂Y |U , f̂U ) to compute
the conditional probabilities of correct reports given the truth as follows:

P̂r(Self report is correct | U = u)= f̂ X |U (u | u)

P̂r(Sibling report is correct | U = u)= f̂Y |U (u | u).

These estimated conditional probabilities of correct self and sibling reports are
shown in Figure 3. The left and right columns show the results of self reports and
sibling reports, respectively. The results displayed in the top and bottom rows are
based on the estimates under Figure 3(a) the assumption of no under-reporting
and under Figure 3(b) the assumption of stigma against dropout without diploma,
respectively. The pattern of self reports are somewhat different across the alterna-
tive specifications, but the left column robustly shows that the self reports tend to
be accurate whenever the true years of education are U = 16 or 18, correspond-
ing to bachelor’s and master’s degrees in the US education system, while they
are robustly inaccurate when the true years of education are U = 13, who may
be characterized as freshman/sophomore dropouts. On the other hand, the right
column robustly shows that the accuracy of sibling reports stands out at every
even number, U = 12, 14, 16, and 18, corresponding to the typical diploma years,
while sibling reports are robustly inaccurate whenever the truth is an odd number.
Note that the estimation method used to obtain the results in the top row Figure
3(a) does not rely on direct assumptions associated with a distinction between
diploma years and other years, but the results show that the peaks of correct re-
porting probabilities occur exactly at diploma years. In other words, these robust
results are not entirely driven by the assumptions.

By these robust parts of the results across the alternative identifying assump-
tions, we draw the following conclusion. First, the hypothesis that self reports
are accurate when the true years of education correspond to the typical years
granting high-level diplomas is not overturned. Second, the hypothesis that sib-
ling reports tend to round the true numbers to typical diploma-granting years for
mnemonic reasons is not overturned. These conclusions are not due to statisti-
cal sampling variation, except for the second conclusion about the sibling reports
given U = 17, for which the long 95% confidence interval extends all the way
up to 1.0.

In concluding the empirical application, we remark on some interpretation
problems under a possible violation of our identifying assumptions. While the
nonseparability condition generalizes the classical measurement error model to
a large extent, the assumption that U , V , and W are independent can be still
questionable for this application. For example, twins may agree upon a mismea-

https://doi.org/10.1017/S0266466616000207 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000207


PAIRED NONSEPARABLE MEASUREMENT ERROR MODELS 971

FIGURE 3. Left column: conditional probabilities that self reporting is correct given the
truth. Right column: conditional probabilities that sibling reporting is correct given the
truth. The conditional probabilities are estimated under (a) the assumption of no under-
reporting, and (b) the assumption of stigma against dropping out without a diploma The
vertical lines indicate ±1.96 × estimated standard errors.

sure ψ(U,η) with the common error η. Suppose that the true structure consists
of X = g̃(ψ(U,η), Ṽ ) and Y = h̃(ψ(U,η), W̃ ). It is observationally equivalent to
the structure, X = g(U,V ) and Y = h(U,W ), where V = (η, Ṽ ) and W = (η, W̃ ).
In this case, even if U , η, Ṽ , and W̃ are mutually independent, U , V , and W are
not. Our method then identifies the distribution of ψ(U,η) instead of U , but it
is still better than the aforementioned naive estimates, such as using the distribu-
tion of X or the distribution of Y , in the sense that ψ(U,η) is at least free of the
additional noises Ṽ and W̃ .
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5. EXTENSION TO REGRESSION ANALYSIS

Thus far, we have focused on the repeated measurement model (1.1), where U is
the unobserved latent variable and (X,Y ) are two measurements. In economet-
rics, we are often interested in structural models and regression models. Before
concluding the paper, we discuss how our identification results can be applied to
regression analyses.

Suppose that we are interested in the model

Y = h(U)+ W, (5.1)

where the outcome variable Y is observed, but the explanatory variable U is not
observable. Instead, we observe a noisy measure X of U , produced by the nonad-
ditive measurement error model:

X = g(U,V ). (5.2)

We assume the explanatory variable U is finitely supported on U = {u1, . . . ,u J }
with the order u1 < · · ·< u J on R. The noisy measure X and the outcome variable
Y may be distributed discretely or continuously distributed.

Assumption 4. The following conditions are satisfied for the regression model
(5.1) and the measurement model (5.2).

(i) The regression function h is strictly monotone.

(ii) U , V , and W are mutually independent, E[W ] = 0, and W is compactly
supported.

(iii) Pr(X <U)= 0.

(iv) Pr(X = U | U = u) > 0 for each U .

Part (i) is the shape restriction ruling out hump-shaped and wavy regression
functions. The function h is assumed to be either strictly increasing or strictly de-
creasing. This sort of shape restriction is not new in the literature of measurement
errors (e.g., Chen, Hu, and Lewbel, 2009). Part (ii) requires the strong exogeneity
assumption that the regressor U is statistically independent of the residual W in
(5.1), in addition to the standard locational normalization E[W ] = 0 and a com-
pact support restriction for W . We require these two parts, (i) and (ii), to guarantee
that the conditional distributions fY |X ( · | uj ) have monotone support boundaries
required by Assumption 1 (ii). Parts (iii) and (iv) of Assumption 4 are the same
as the assumption of no under-reporting (Assumption 2 for X), which in turn
implies Assumption 1(i) by Proposition 2. Therefore, fY |U is identified under As-
sumption 4 by Theorem 1. Furthermore, by Assumption 4(ii), this identification of
fY |U in turn implies the identification of the nonparametric regression function h
as h(uj )=

∫
y fY |U (y | uj )dy or h(uj )= ∑

y y fY |U (y | uj ) for each j ∈ {1, . . . , J }.
Summarizing these arguments, we obtain the following corollary of Theorem 1.

COROLLARY 1. If Assumption 4 is satisfied for the regression model (5.1)
and the measurement model (5.2), then the regression function h is identified.
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At the cost of invoking Assumption 4 and the finite support U , we can identify
the nonparametric regression model using only one measurement. This feature is
to be contrasted with the existing identification results for nonparametric regres-
sion models that require two measurements (e.g., Li, 2002; Schennach, 2004ab;
Hu and Sasaki, 2015) and the identification results for the nonseparable models
(e.g., Hu, 2008; Hu and Schennach, 2008; D’Haultfoeuille and Février, 2010).
On the other hand, this corollary parallels the result by Chen, Hu, and Lewbel
(2009) where they also identify regression models without requiring additional
measurements, although direct comparisons are difficult due to the different sup-
port cardinality assumptions about U . They require the monotonicity of h as in
our Assumption 4(i) as well as the independence and the locational normaliza-
tion as in our Assumption 4(ii) in order to identify the regression function m
without using additional measurements as in our context. Although our baseline
restriction (Restriction 1) imposes a strong condition when the model is applied
to regression models, it is effectively no stronger than the assumption imposed on
the regression models with the same measurement setting in the literature.

6. SUMMARY

This paper proposes nonparametric identifying restrictions for nonseparable
paired measurement error models. The general identifying restriction requires that
some ordering on the support of unobserved truth entails nonoverlapping condi-
tional support. We provide sufficient conditions for this high-level assumption in
the context of our empirical application.

Focusing on our empirical application, we propose several primitive sufficient
conditions for the general identifying restriction. Applying the method to the
twin panel data of Ashenfelter and Krueger (1994) containing self-reported and
sibling-reported years of education, we attempt to recover the distribution of true
years of education as well as the behavioral patterns of self reports and sibling
reports. Across alternative identifying restrictions, we obtain the following robust
patterns. Self reports are accurate if the true years of education are 16 or 18, typ-
ically corresponding to advanced university degrees. On the other hand, sibling
reports are accurate when the true years of education are 12, 14, 16, or 18, which
are typical diploma years. Such a nonlinear result would not have been obtained
with the traditional methods based on additively separable independent errors.

NOTES

1. This representation of an otherwise observationally equivalent set of underlying structures fol-
lows by normalizing the distributions of V and W . See Matzkin (2003) for necessity of normalizing
the error distributions for nonseparable models, and for examples of normalization.

2. Examples include, but are not limited to, measurement error models (Li and Vuong, 1998; Li,
2002; Schennach, 2004ab; Song, Schennach, and White, 2012), auction models (Li, Perrigne, and
Vuong, 2000; Krasnokutskaya, 2011), panel models (Evdokimov, 2010; Arellano and Bonhomme,
2012), and labor economic applications (Cunha, Heckman, and Navarro, 2005; Bonhomme and Robin,
2010; Hansen, Heckman, and Mullen, 2004; Kennan and Walker, 2011).
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3. For a related example, Kim, Petrin, and Song (2016) propose how to estimate production func-
tions with mismeasured factors.

4. In the United States, 12, 14, 16, and 18 years of education are often, but not necessarily, associ-
ated with high-school diplomas, associate degrees, bachelor’s degrees, and master’s degrees, respec-
tively.

5. We chose this sample size because it is close to the size (N = 340) of the empirical data that we
use for our empirical application in Section 4.
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APPENDIX A

A.1. Proof of Lemma 1

Proof. Note that fU (u1) > 0 because u1 ∈ U . By Restriction 1, we can choose x∗ ∈
X (u1) and y∗ ∈ Y(u1). Because fX |U (x∗ | uj )= 0 for all j > 1 by the choice of x∗, we

have fXY (x
∗, y) = ∑J

j=1 fX |U (x∗ | uj ) fY |U (y | uj ) fU (uj ) = fX |U (x∗ | u1) fY |U (y |
u1) fU (u1) for all y ∈ Y by the independence assumption of the model (1.1). Simi-
larly, fXY (x, y∗) = fX |U (x | u1) fY |U (y∗ | u1) fU (u1) holds for all x ∈ X . In particu-
lar, fXY (x

∗, y∗) = fX |U (x∗ | u1) fY |U (y∗ | u1) fU (u1). Moreover, fX (x
∗) = fX |U (x∗ |

u1) fU (u1) and fY (y
∗) = fY |U (y∗ | u1) fU (u1) follow. Using all these equalities,

we get

fX |U (x | u1)=
fX |U (x | u1) fY |U (y∗ | u1) fU (u1)

fY |U (y∗ | u1) fU (u1)
= fXY (x, y∗)

fY (y∗) for all x ∈ X

fY |U (y | u1)=
fX |U (x∗ | u1) fY |U (y | u1) fU (u1)

fX |U (x∗ | u1) fU (u1)
= fXY (x

∗, y)

fX (x∗) for all y ∈ Y

fU (u1)=
fX |U (x∗ | u1) fY |U (y∗ | u1) fU (u1)

2

fX |U (x∗ | u1) fY |U (y∗ | u1) fU (u1)
= fX (x

∗) fY (y
∗)

fXY (x∗, y∗) .

Note that the right-hand sides of these equalities consist of the observed data fXY . There-
fore, ( fX |U ( · | u1), fY |U ( · | u1), fU (u1)) is identified. �
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A.2. Proof of Lemma 2

Proof. Note that fU (uj+1) > 0 because uj+1 ∈ U . By Restriction 1, we can choose
x∗ ∈ X (uj+1) and y∗ ∈ Y(uj+1). Because fX |U (x∗ | uk) = 0 for all k > j + 1 by

the choice of x∗, we have fXY (x
∗, y) = ∑J

k=1 fX |U (x∗ | uk) fY |U (y | uk ) fU (uk ) =∑
k� j fX |U (x∗ | uk) fY |U (y | uk) fU (uk)+ fX |U (x∗ | uj+1) fY |U (y | uj+1) fU (uj+1) for

all y ∈ Y . Similarly, fXY (x, y∗) = ∑
k� j fX |U (x | uk) fY |U (y∗ | uk) fU (uk)+ f X |U (x |

uj+1) fY |U (y∗ | uj+1) fU (uj+1) holds for all x ∈ X . In particular, fXY (x
∗, y∗) =∑

k� j fX |U (x∗ | uk ) fY |U (y∗ | uk) fU (uk)+ fX |U (x∗ | uj+1) fY |U (y∗ | uj+1) fU (uj+1).
Moreover, fX (x

∗) = ∑
k� j fX |U (x∗ | uk) fU (uk) + fX |U (x∗ | uj+1) fU (uj+1) and

fY (y
∗) = ∑

k� j fY |U (y∗ | uk) fU (uk)+ fY |U (y∗ | uj+1) fU (uj+1) follow. Using all
these equalities, we get

fX |U (x | uj+1) = fXY (x, y∗)−∑
k� j fX |U (x | uk) fY |U (y∗ | uk) fU (uk )

fY (y∗)−∑
k� j fY |U (y∗ | uk) fU (uk)

for all x ∈ X

fY |U (y | uj+1) = fXY (x∗, y)−∑
k� j fX |U (x∗ | uk) fY |U (y | uk) fU (uk )

fX (x∗)−∑
k� j f X |U (x∗ | uk ) fU (uk)

for all y ∈ Y

fU (uj+1) =
[

fX (x∗)−∑
k� j f X |U (x∗ | uk) fU (uk)

][
fY (y∗)−∑

k� j fY |U (y∗ | uk) fU (uk)
]

fXY (x∗, y∗)−∑
k� j f X |U (x∗ | uk ) fY |U (y∗ | uk) fU (uk)

.

Note that the right-hand sides of these equalities consist of the observed data fXY , or are
assumed in the statement of the lemma to be known. Therefore, ( fX |U ( · | uj+1), fY |U ( · |
uj+1), fU (uj+1)) is identified. �

A.3. Proof of Proposition 1

Proof. To show that Restriction 1(i) is satisfied, assume without loss of generality that
inf supp

(
fX |U ( · | uj )

)
is increasing in j as in Assumption 1(i). Similar arguments fol-

low in the other case. Let uj ,uj+1 ∈ U . Let sj = infsupp
(

fX |U ( · | uj )
)

and sj+1 =
inf supp

(
fX |U ( · | uj+1)

)
, where sj < sj+1 holds by Assumption 1(i). By the definition of

sj as the infimum of the set supp
(

fX |U ( · | uj )
)
, there exists xj such that sj � xj < sj+1.

By Assumption 1(i), xj is not an element of supp
(

fX |U ( · | uk)
)

for all k > j . Therefore,
Restriction 1(i) is satisfied. Similar lines of argument show that Assumption 1(ii) implies
that Restriction 1(ii) is satisfied. �

A.4. Proof of Lemma 3

Proof. Assume without loss of generality that inf
(

fX |U ( · | uj )
)

and inf
(

fY |U ( · | uj )
)

are increasing in j as in Assumption 1(i) and (ii). Similar arguments follow in the other
cases. We use the short-hand notations sj = inf{x ∈X | fX |U (x | uj ) > 0} and tj = inf{y ∈
Y | fY |U (y | uj ) > 0} for each j = 1, . . . , J . Notice that s1 = infX and t1 = infY under
the current assumption. To prove the lemma, we want to find s2 and t2. To this end, we
claim that the equality fXY (x1, y1) fXY (x2, y2) = fXY (x1, y2) fXY (x2, y1) holds for all
x1, x2 ∈ [s1,s)∩X and all y1, y2 ∈ Y if and only if s � s2.

Suppose that s � s2 holds. For all x ∈ [s1,s) ∩X , fX |U (x | u1) > 0 but fX |U (x |
uj ) = 0 for all j = 2, . . . , J by Assumption 1. Therefore, fXY (x, y) = ∑

j fX |U (x |
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uj ) · fU (uj ) · fY |U (y | uj )= fX |U (x | u1) · fU (u1) · fY |U (y | u1) for all x ∈ [s1,s)∩X and
all y ∈Y . It follows that fXY (x1, y1) fXY (x2, y2)= fX |U (x1 | u1) fX |U (x2 | u1) fY |U (y1 |
u1) fY |U (y2 | u1) fU (u1)

2 = fXY (x1, y2) fXY (x2, y1) holds for all x1, x2 ∈ [s1,s)∩X and
all y1, y2 ∈ Y .

Conversely, suppose that s > s2 holds. By definition of s2 as the infimum of the
set {x ∈ X | fX |U (x | u2) > 0}, there exists x1 ∈ [s2,s) ∩ X such that fX |U (x1 |
u2) > 0. Because of Assumption 1, we can choose such x1 so that x1 < s3.
Let x2 ∈ [s1,s2) ∩ X ⊂ [s1,s) ∩ X , y1 ∈ {y ∈ Y | fY |U (y | u2) > 0} ⊂ Y , and
y2 ∈ [t1, t2) ∩ Y ⊂ Y . Note that fXY (x1, y1) fXY (x2, y2) = fX |U (x1 | u1) fX |U (x2 |
u1) fY |U (y1 | u1) fY |U (y2 | u1) fU (u1)

2 + fX |U (x1 | u2) fX |U (x2 | u1) fY |U (y1 |
u2) fY |U (y2 | u1) fU (u1) fU (u2) �= fX |U (x1 | u1) fX |U (x2 | u1) fY |U (y1 | u1) fY |U (y2 |
u1) fU (u1)

2 because fX |U (x1 | u2) fU (u2) fY |U (y1 | u2) �= 0 for our choice of x1 and
y1 as well as fX |U (x2 | u1) fU (u1) fY |U (y2 | u1) �= 0 for our choice of x2 and y2.
On the other hand, fXY (x1, y2) fXY (x2, y1) = fX |U (x1 | u1) fX |U (x2 | u1) fY |U (y1 |
u1) fY |U (y2 | u1) fU (u1)

2 for our choice of x2 and y2 under Assumption 1. It
follows that fXY (x1, y1) fXY (x2, y2) �= fXY (x1, y2) fXY (x2, y1) for these x1, x2 ∈
[s1,s) ∩ X and y1, y2 ∈ Y . This shows that the equality fXY (x1, y1) fXY (x2, y2) =
fXY (x1, y2) fXY (x2, y1) need not hold for all x1, x2 ∈ [s1,s)∩X and all y1, y2 ∈Y when
s > s2.

Therefore, it follows that the equality fXY (x1, y1) fXY (x2, y2) = fXY (x1, y2)

fXY (x2, y1) holds for all x1, x2 ∈ [s1,s) ∩X and all y1, y2 ∈ Y if and only if s � s2.
This implies that s2 can be characterized by s2 = inf{s ∈ X |∃ x1, x2 ∈ [s1,s)∩X and
y1, y2 ∈Y s.t. fXY (x1, y1) fXY (x2, y2) �= fXY (x1, y2) fXY (x2, y1)}. Similar lines of argu-
ment show that t2 can be characterized by t2 = inf{t ∈Y|∃ x1, x2 ∈X and y1, y2 ∈ [t1, t)∩
Y s.t. fXY (x1, y1) fXY (x2, y2) �= fXY (x1, y2) fXY (x2, y1)}. Notice that every component
in the right-hand sides of these equalities can be directly identified by the observed data
fXY . Hence, under Assumption 1, we identify X (u1) and Y(u1) by [s1,s2) ∩X and
[t1, t2)∩Y , respectively. �

A.5. Proof of Lemma 4

Proof. We use the short-hand notations sk = inf{x ∈ X | fX |U (x | uk) > 0} and
tk = inf{y ∈ Y | fY |U (y | uk) > 0} for each k = 1, . . . , J . Assume without loss of gen-
erality that inf

(
fX |U ( · | uk)

)
and inf

(
fY |U ( · | uk )

)
are increasing in k as in Assump-

tion 1(i) and (ii). In this case, sj and tj are known by the inductive assumption. Sim-
ilar arguments follow in the other cases. To prove the lemma, we want to find sj+1
and tj+1. To this end, we claim that the equality [ fXY (x1, y1)−

∑
k< j fX |U (x1 | uk)

fU (uk) fY |U (y1 | uk)][ fXY (x2, y2) − ∑
k< j fX |U (x2 | uk) fU (uk) fY |U (y2 | uk)] =

fX |U (x1 | uj ) fX |U (x2 | uj ) fY |U (y1 | uj ) fY |U (y2 | uj ) fU (uj )
2 = [ fXY (x1, y2) −∑

k< j fX |U (x1 | uk ) fU (uk ) fY |U (y2 | uk)][ fXY (x2, y1)−
∑

k< j fX |U (x2 | uk) fU (uk)

fY |U (y1 | uk)] holds for all x1, x2 ∈ [sj ,s)∩X and all y1, y2 ∈ Y if and only if s � sj+1.
Suppose that s � sj+1 holds. For all x ∈ [sj ,s) ∩X , fX |U (x | uk) = 0 for all k =

j +1, . . . , J by Assumption 1. Therefore, fXY (x, y)= ∑
k fX |U (x | uk) · fU (uk) · fY |U (y |

uk ) = ∑
k� j fX |U (x | uk) · fU (uk) · fY |U (y | uk) for all x ∈ [sj ,s)∩X and all y ∈ Y .

It follows that [ fXY (x1, y1)−
∑

k< j fX |U (x1 | uk ) fU (uk ) fY |U (y1 | uk )][ fXY (x2, y2)−∑
k< j fX |U (x2 | uk ) fU (uk) fY |U (y2 | uk)] = fX |U (x1 | uj ) fX |U (x2 | uj ) fY |U (y1 | uj )
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fY |U (y2 | uj ) fU (uj )
2 = [ fXY (x1, y2) − ∑

k< j fX |U (x1 | uk) fU (uk) fY |U (y2 | uk )]
[ fXY (x2, y1)−

∑
k< j fX |U (x2 | uk) fU (uk) fY |U (y1 | uk )] holds for all x1, x2 ∈ [sj ,s)∩

X and all y1, y2 ∈ Y .
Conversely, suppose that s > sj+1 holds. By definition of sj+1 as the infi-

mum of the set {x ∈ X | fX |U (x | uj+1) > 0}, there exists x1 ∈ [sj+1,s) ∩ X
such that fX |U (x1 | uj+1) > 0. Because of Assumption 1, we can choose such
x1 so that x1 < sj+2. Let y1 ∈ {y ∈ Y | fY |U (y | uj+1) > 0} ⊂ Y . Also let
x2 ∈ [sj ,sj+1) ∩ X ⊂ [sj ,sj+1) ∩ X and y2 ∈ [tj , tj+1) ∩ Y ⊂ Y be such that
fX |U (x2 | uj ) > 0 and fY |U (y2 | uj ) > 0, where such x2 and y2 are guaranteed to exist
by the definitions of sj and tj as the infima of the sets {x ∈ X | fX |U (x | uj ) > 0} and
{y ∈ Y | fY |U (y | uj ) > 0}, respectively. Given these choices, note that [ fXY (x1, y1)−∑

k< j fX |U (x1 | uk) fU (uk) fY |U (y1 | uk)][ fXY (x2, y2) − ∑
k< j fX |U (x2 | uk)

fU (uk) fY |U (y2 | uk)] = fX |U (x1 | uj ) fX |U (x2 | uj ) fY |U (y1 | uj ) fY |U (y2 | uj )

fU (uj )
2 + fX |U (x1 | uj+1) fX |U (x2 | uj ) fY |U (y1 | uj+1) fY |U (y2 | uj ) fU (uj )

fU (uj+1) �= fX |U (x1 | uj ) fX |U (x2 | uj ) fY |U (y1 | uj ) fY |U (y2 | uj ) fU (uj )
2 because

fX |U (x1 | uj+1) fU (uj+1) fY |U (y1 | uj+1) �= 0 for our choice of x1 and y1, as well as
fX |U (x2 | uj ) fU (uj ) fY |U (y2 | uj ) �= 0 for our choice of x2 and y2. On the other hand,
[ fXY (x1, y2)− ∑

k< j fX |U (x1 | uk ) fU (uk ) fY |U (y2 | uk)][ fXY (x2, y1)− ∑
k< j fX |U

(x2 | uk) fU (uk) fY |U (y1 | uk)] = fX |U (x1 | uj ) fX |U (x2 | uj ) fY |U (y1 | uj ) fY |U (y2 |
uj ) fU (uj )

2 for our choice of x2 and y2 under Assumption 1. As a consequence, we have
[ fXY (x1, y1)− ∑

k< j fX |U (x1 | uk ) fU (uk ) fY |U (y1 | uk)][ fXY (x2, y2)− ∑
k< j fX |U

(x2 | uk) fU (uk) fY |U (y2 | uk)] �= [ fXY (x1, y2)−
∑

k< j fX |U (x1 | uk) fU (uk) fY |U (y2 |
uk )][ fXY (x2, y1) − ∑

k< j fX |U (x2 | uk) fU (uk) fY |U (y1 | uk )] for these x1, x2 ∈
[sj ,s)∩X and y1, y2 ∈ Y . This shows that [ fXY (x1, y1)−

∑
k< j fX |U (x1 | uk) fU (uk)

fY |U (y1 | uk)][ fXY (x2, y2) − ∑
k< j fX |U (x2 | uk) fU (uk) fY |U (y2 | uk )] =

[ fXY (x1, y2)− ∑
k< j fX |U (x1 | uk ) fU (uk ) fY |U (y2 | uk)][ fXY (x2, y1)− ∑

k< j fX |U
(x2 | uk) fU (uk) fY |U (y1 | uk)] need not hold for all x1, x2 ∈ [sj ,s)∩X and all y1, y2 ∈ Y
when s > sj+1.

It therefore follows that the equality [ fXY (x1, y1) − ∑
k< j fX |U (x1 | uk) fU (uk)

fY |U (y1 | uk )][ fXY (x2, y2)−
∑

k< j fX |U (x2 | uk) fU (uk) fY |U (y2 | uk)] = fX |U (x1 | uj )

fX |U (x2 | uj ) fY |U (y1 | uj ) fY |U (y2 | uj ) fU (uj )
2 = [ fXY (x1, y2)− ∑

k< j fX |U (x1 |
uk ) fU (uk ) fY |U (y2 | uk)][ fXY (x2, y1) − ∑

k< j fX |U (x2 | uk ) fU (uk) fY |U (y1 | uk )]
holds for all x1, x2 ∈ [sj ,s) ∩ X and all y1, y2 ∈ Y if and only if s � sj+1. This
implies that sj+1 can be characterized by sj+1 = inf{s ∈ X | ∃ x1, x2 ∈ [sj ,s) ∩ X
and y1, y2 ∈ Y s.t. [ fXY (x1, y1) − ∑

k< j fX |U (x1 | uk ) fU (uk ) fY |U (y1 | uk )]·
[ fXY (x2, y2) − ∑

k< j fX |U (x2 | uk) fU (uk) fY |U (y2 | uk)] �= [ fXY (x1, y2) −∑
k< j fX |U (x1 | uk) fU (uk) fY |U (y2 | uk )] · [ fXY (x2, y1)−

∑
k< j fX |U (x2 | uk) fU (uk)

fY |U (y1 | uk)]}. Similarly, tj+1 can be characterized by tj+1 = inf{t ∈ Y | ∃ x1, x2 ∈ X
and y1, y2 ∈ [tj , t)∩Y s.t. [ fXY (x1, y1)−

∑
k< j fX |U (x1 | uk) fU (uk) fY |U (y1 | uk )]·

[ fXY (x2, y2) − ∑
k< j fX |U (x2 | uk) fU (uk) fY |U (y2 | uk)] �= [ fXY (x1, y2) −∑

k< j fX |U (x1 | uk) fU (uk) fY |U (y2 | uk )]· [ fXY (x2, y1) − ∑
k< j fX |U (x2 |

uk ) fU (uk ) fY |U (y1 | uk)]}. Notice that every component in the right-hand sides of
these equalities can be directly identified by the observed data fXY or known by the induc-
tive assumption. Therefore, sj+1 and tj+1 are identified, and we have X (uj )⊂ [sj ,sj+1)
and Y(uj )⊂ [tj , tj+1).

To further pin down X (uj ) and Y(uj ), it remains to find the subsets of [sj ,sj+1)
and [tj , tj+1) on which fX |U ( · | uj ) > 0 and fY |U ( · | uj ) > 0, respectively.
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Consider the sets Xj = {
x ∈ X | fX (x)−

∑
k< j fXU (x,uk ) > 0

}
and Yj = {

y ∈ Y |
fY (y)−

∑
k< j fY U (x,uk ) > 0

}
. Note that every component in the right-hand sides of

these equalities can be directly identified by the observed data fXY or known by the in-
ductive assumption. Therefore, these sets Xj and Yj are identified. We now claim that
X (uj )= Xj ∩ [sj ,sj+1), where the right-hand side is identified. First, X (uj )⊂ [sj ,sj+1)
was already claimed. Furthermore, if x ∈X (uj )∩ [sj ,sj+1), then fX (x)−

∑
k< j fX |U (x |

uk ) fU (uk ) = fX |U (x | uj ) > 0 so that x ∈ Xj holds. Conversely, let x ∈ Xj ∩ [sj ,sj+1).
Then, we have x ∈ Xj ∩ [sj ,sj+1) ⊂ Xj \[sj+1,∞) ⊂ support( fX |U ( · | uk ))\ ∪j<k
support( fX |U ( · | uk )), thus showing that x ∈ X (uj ). Similarly, we can show Y(uj ) =
Xj ∩ [tj , tj+1) where the right-hand side is identified. �

A.6. Proof of Proposition 2

Proof. By Assumption 2(i), inf supp( fX |U (· | u)) � u and infsupp( fY |U (· | u)) � u
for each u ∈ U . On the other hand, by Assumption 2(ii), infsupp( fX |U (· | u)) � u
and infsupp( fY |U (· | u)) � u for each u ∈ U . Therefore, infsupp( fX |U (· | u)) =
inf supp( fY |U (· | u)) = u for each u ∈ U . It then follows that infsupp( fX |U (· | uj )) and
inf supp( fY |U (· | uj )) are increasing in j with the ordering on U defined by j < k if and
only if uj < uk . �

A.7. Proof of Proposition 3

Proof. For ease of writing, we define a relation ≺ on U in the following manner:
If u ∈ Dc and u′ = max{u′′ ∈ D | u′′ < u}, then u ≺ u′; Otherwise, u < u′ ⇐⇒ u ≺ u′.
The induced relation � can be shown to be a linear order on U , so it can construct the
indexed set U = {u1, . . . ,u J } such that j � k if and only if uj � jk .

Let u ∈ D. If {u′ ∈ D | u′ > u} = ∅, then there exist no element u′ ∈ U for which u ≺ u′
holds due to our definition of ≺, and thus u �∈ support( fX |U ( · | u′)) trivially holds for
this u′. Next, assume that {u′ ∈ D | u′ > u} �= ∅, and let u+ = min{u′ ∈ D | u′ > u}. If
u ≺ u′, then we have u+ � u′ by our definition of ≺. Assumption 3(ii) then implies u �∈
support( fX |U ( · | u′)). Therefore, Restriction 1(i) follows for this u by Assumption 3(iii).

Let u ∈Dc . If u ≺ u′, then we have u′ = max{u′′ ∈D | u′′< u} or u< u′ by our definition
of ≺. If the former is the case, then Assumption 3(i) implies u �∈ support( fX |U ( · | u′)). If
the latter is the case, then Assumption 3(i) and (ii) together imply u �∈ support( fX |U ( · |
u′)). Therefore, Restriction 1(i) follows in both cases for this u by Assumption 3(iii).

The above two paragraphs show that Restriction 1(i) is satisfied by Assumption 3.
Similar lines of argument show that Restriction 1(ii) is satisfied. Because U is discrete,
{u′ ∈ U | u′ � u} ∈ σ(U) and {u′ ∈ U | u′ ≺ u} ∈ σ(U), so Restriction 1(iii) trivially
holds. Finally, Restriction 1(iii) follows from the monotonicity of probability measures,
i.e., μU ({u′ ∈ U | u′ � u}∩ B(u,r))� μU ({u}) > 0 for all u ∈ U . �
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