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THE TREE PROPERTY UP TO ℵ�+1

ITAY NEEMAN

Abstract. Assuming� supercompact cardinals we force to obtain amodel where the tree property holds
both at ℵ�+1, and at ℵn for all 2 ≤ n < �. A model with the former was obtained by Magidor–Shelah
from a large cardinal assumption above a huge cardinal, and recently by Sinapova from � supercompact
cardinals. A model with the latter was obtained by Cummings–Foreman from � supercompact cardinals.
Our model, where the two hold simultaneously, is another step toward the goal of obtaining the tree
property on increasingly large intervals of successor cardinals.

§1. Introduction. The tree property is a combinatorial principle that resembles
large cardinal reflection properties, but may hold at successor cardinals. It states for
a cardinal κ that every κ-tree, meaning every tree of height κ with levels of width
< κ, has a branch of length κ. That it holds at κ = ℵ0 is simply König’s lemma.
On the other hand it fails at ℵ1 by a construction of Aronszajn. (Trees witnessing
failure of the tree property are called Aronszajn trees.) The question of whether and
to what extent it can hold at successor cardinals greater than ℵ1 has been researched
starting with work of Mitchell and Silver in Mitchell [5]. They show that the tree
property can hold at ℵ2, and is a remnant of a large cardinal property, specifically
weak compactness, in the sense that given a weakly compact cardinal κ, a forcing
extension defined by Mitchell turns κ into ℵ2 while securing the tree property, and
conversely, if ℵ2 has the tree property in V , then it is weakly compact in an inner
model.
One can use the same forcing techniques repeatedly to obtain the tree property

simultaneously at many successor cardinals, provided there are gaps between them.
It is substantially harder to obtain the tree property simultaneously at consecutive
successor cardinals. Partly the reason is that the tree property at κ = �++ has
an effect on cardinal arithmetic already below �+; it implies that 2� ≥ �++. (This
follows from the construction in Specker [9] showing that the tree property fails at
�+ if �<� = �.) Nonetheless, it is possible for the tree property to hold at consecutive
successor cardinals. Abraham [1] produces a model where the tree property holds
at both ℵ2 and ℵ3. Again it is a remnant of large cardinals, supercompactness and
weak compactness for the cardinals that are turned into ℵ2 and ℵ3, respectively, in
Abraham’s model. Since supercompactness is beyond the reach of current methods
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of inner model theory, it is not known whether it is necessary for Abraham’s result.
But some large cardinal, substantially beyond the weakly compact that was enough
for the tree property at one cardinal, is needed by work of Magidor in [1] and later
work of Foreman–Magidor. This need for substantially stronger large cardinals
is a mathematical aspect of the added difficulty in obtaining the tree property at
consecutive cardinals.
Moving further, Cummings–Foreman [2] produced a model where the tree prop-
erty holds at ℵn for all 2 ≤ n < �, starting from � supercompact cardinals. For
known lower bounds on the necessary large cardinals see Foreman–Magidor–
Schindler [3]. A little earlier Magidor–Shelah [4] showed that the tree property
can hold at ℵ�+1. They used an assumption above a huge cardinal, specifically the
existence of elementary j : V →M withM closed under �+-sequences where � is a
limit of �+-supercompact cardinals above j(crit(j)), but recent workof Sinapova [8]
reduced the large cardinal assumption to � supercompact cardinals.
Cummings–Foreman [2] asked whether it is consistent to have both these out-
comes simultaneously, namely whether it is possible for the tree property to hold at
all successor cardinals in the interval [ℵ2,ℵ�+1].
Starting from � supercompact cardinals, we prove in this paper that the answer
is yes.
Whether one can go further is still open. It is not knownwhether the tree property
can hold at all successor cardinals in the interval [ℵ2,ℵ�+2], or even if it can hold
simultaneously at ℵ�+1 and ℵ�+2. By Specker’s result above, the tree property at
ℵ�+2 implies that 2ℵ� ≥ ℵ�+2, and it is not known if even this is consistent with
the tree property at ℵ�+1. In our context, where ℵ� is a strong limit cardinal, this
particular question has a long history. We refer the reader to Neeman [6] and
Sinapova [7] for positive answers at some singular strong limit cardinal κ and at
ℵ�2 , respectively.
Our proof that the tree property can hold at all successor cardinals in the interval
[ℵ2,ℵ�+1] builds on ideas and techniques from several of the papers mentioned
above.
In Section 3 we obtain a fairly wide class of posets that, given supercompact
cardinals κn , 2 ≤ n < �, collapse so that κn becomes ℵn and the tree property
holds at ℵ�+1. One example of a poset in the class, assuming indestructibility of
the supercompact cardinals, is simply the product Col(�,�) × Col(�+, <κ2) ×∏
2≤n<� Col(κn,<κn+1) for some � < κ2, whose successor becomes ℵ1 in the exten-
sion. Note that the proof does not give the tree property in the extension for any
particular �; it only shows the existence of such a �. This “retreat” to just showing
the existence of � was first used by Sinapova [8] and was a crucial part of her argu-
ment to obtain an extension with the tree property at ℵ�+1, from � supercompact
cardinals. (Sinapova’s argument involves a diagonal Prikry extension andother than
this “retreat” it is completely different from ours.) More generally, we show that the
tail-end of the poset above can be replaced by any poset that leaves the cardinals
κn for n > 2 “generically supercompact”, and that Col(�,�) × Col(�+, <κ2) can
be replaced by any family of posets L(�), � < κ2, that can, on a measure one set
of substructures relative to a supercompactness measure on κ2, be subsumed by
Knaster posets. The precise formulation of this is given in Lemma 3.10.
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In Section 4 we modify the Cummings–Foreman [2] poset for obtaining the tree
property below ℵ�, so that it (almost) fits the requirements of Lemma 3.10. In broad
terms the modifications are necessary to bring the poset closer to a product, rather
than an iteration, so that one can separate its tail-end from its initial segment below
κ2, and argue that the tail-end by itself preserves generic supercompactness for the
cardinals κn , n > 2. We cannot quite bring the poset to this form, but we can get
close in the sense that the poset we define is subsumed by a poset of this form
(see Section 5), and the factor poset is � closed. By a preservation theorem of
Magidor–Shelah [4] this is enough to put the two constructions together. This final
combination is done in Section 6.

§2. Preliminaries. We present in this section a few forcing claims that are used
in later sections. Most are folklore, with the exception of Claim 2.4 which is due to
Unger [11]. Unger in a different paper [10] also proved a strengthening of Claim 2.3,
which reduces the assumption on P to just the requirement that P × P is κ+-
c.c. More precisely he showed, and this implies the claim, that if P × P is �-c.c.,
where � is regular, then forcing with P does not add branches to trees of height
� in V . He used this to prove a generalization of the tree property in the model of
Cummings–Foreman [2].

Definition 2.1. Let K ⊆ V be a model of a sufficiently large fragment of ZFC.
K has the <� covering property (with respect to V ) if for every A ⊆ K in V with
|A| < �, there is B ∈ K so that (|B| < �)K and B ⊇ A.
Claim 2.2. Suppose � < κ are regular cardinals,K is a model of some large enough

fragment of ZFC, K has the <κ covering property in V , and (∀� < κ)(�<� < κ)K .
Let P be a forcing notion in K , whose conditions are all functions with domain of size
< � in K . Then any family of size κ in V of conditions in P can be refined to a family
of the same size whose domains form a Δ system.

Proof. It is enough to show that for anyA of size< κ inV , the set {x∩A | x ∈ K
and (|x| < �)K} has size< κ. Standard arguments then yield a Δ-system lemma for
families of size κ in V , consisting of sets of size < � in K .
Using the covering property we may assume that A ∈ K and (|A| < κ)K . Then

sinceK is closed under intersections (a consequence of some fragment ofZFC inK),
{x ∩ A | x ∈ K and (|x| < �)K} is equal to P<�(A)K . Since (|A| < κ)K , by the
claim assumptions P<�(A)K has size < κ in K , and therefore also in V . �
Claim 2.3. Let T be a tree of height of cofinality at least κ+, and levels of width

less than �, for some � ≥ κ+. Let P be κ+-c.c. Suppose there is some κ+-c.c. forcing
notion P� which adds � filters, all mutually generic for P. (This holds, for example, if
P is isomorphic to some � product of itself.) Then forcing with P does not add any new
cofinal branches through T .

Proof. Without loss of generality, elements of T are sequences of ordinals
ordered by extension. Let ḃ be a P name for a cofinal branch through T , viewed as
a sequence of ordinals of length κ+. Let G = 〈G	 | 	 < �〉 be generic for P�. Let R
be a large initial segment of V and letM ≺ R with κ ∪ {T, κ, κ+,P,P�} ⊆ M and
|M | = κ. Let α = sup(M ∩ height(T )). Note that α < height(T ), since height(T )
has cofinality at least κ+. For each 	 let �	 = ḃ[G	 ](α). Since P� is κ+-c.c., it

https://doi.org/10.1017/jsl.2013.25 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2013.25


432 ITAY NEEMAN

does not collapse �. Since level α of T has width less than � in V , it follows that
there are 	 �= � so that �	 = �� . Hence ḃ[G	]�α = ḃ[G� ]�α. This implies that
M [G	 × G� ] |= ḃ[G	] = ḃ[G� ]. (We are using the fact that P × P is κ+-c.c., and
thereforeM [G	 ×G� ]∩V =M so thatM [G	 ×G� ]∩height(T ) ⊆ α.) By elemen-
tarity ofM [G	 ×G� ] inR[G	 ×G� ] it follows that ḃ[G	 ] = ḃ[G� ], and since the two
filters are mutually generic, ḃ[G	] = ḃ[G� ] must belong to V . �
Claim 2.4 (Unger [11]). Let � < κ. Let T be a κ+ tree, i.e., a tree of height κ+

with levels of width κ. Let W ⊆ V and suppose that V is a κ-c.c. forcing extension
of W . Let P ∈ W be < κ closed in W . Suppose that 2� > κ in W . Then forcing
with P (over V ) does not add cofinal branches to T .

Whenever we talk aboutκ+ trees, throughout the paper, we view them as relations
on κ+ × κ, with level α consisting of pairs in {α} × κ. We view cofinal branches
through the trees as functions from κ+ to κ, whose graphs form chains in the tree
order.

Proof of Claim 2.4. Let A be generic for A overW , where A is κ-c.c. inW and
V =W [A]. Let Ṫ ∈W be anA name forT , and suppose without loss of generality
that Ṫ is forced to be a κ+ tree. In particular, if a ∈ A forces that 〈α, 	1〉 and 〈α, 	2〉
are both predecessors of 〈α′, 	′〉 in Ṫ , then 	1 = 	2.
Let ḃ ∈ W be an A × P name for a cofinal branch through T . Suppose for
contradiction that ḃ is forced to not belong to V = W [A]. It is then forced in
A × P × P that, letting A × G1 × G2 be generic, ḃ[A × G1] �= ḃ[A × G2]. Thus,
for any conditions p1, p2 ∈ P, and for any condition a ∈ A, there is α < κ+,
a′ ≤ a, p′1 ≤ p1, and p′2 ≤ p2, so that 〈a′, p′1〉 and 〈a′, p′2〉 force distinct values
for ḃ(α). By repeated applications of this inside W , using the closure of P and
the κ-chain condition for A, it follows that there are p∗1 ≤ p1, p∗2 ≤ p2, and a set
{〈a	, α	〉 | 	 < �} of size < κ, so that 〈a	, p∗1 〉 and 〈a	, p∗2 〉 force distinct values
for ḃ(α	), and {a	 | 	 < �} is a maximal antichain in A. As Ṫ is forced to be a
tree, letting α = sup{α	 | 	 < �} < κ+, it then follows that there is no a and
no p∗∗1 ≤ p∗1 , p∗∗2 ≤ p∗2 , so that 〈a, p∗∗1 〉 and 〈a, p∗∗2 〉 force the same value for
ḃ(α). We say in such a case that p∗1 and p

∗
2 enforce complete separation at α. Note

that if p∗1 and p
∗
2 enforce complete separation at α, then they also enforce complete

separation at everyα′ ≥ α. This again uses the fact that Ṫ is forced to be a tree. Note
also that if p∗1 and p

∗
2 enforce complete separation at α, then so do all extensions of

p∗1 and p
∗
2 .

Let � ≤ � be least so that 2� > κ in W . Working inside W , using the closure
of P and the conclusion of the previous paragraph, construct an extension preserv-
ing embedding � from 2≤� into P with the property that for any s ∈ 2<� , there is
an ordinal αs so that �(s0) and �(s1) enforce complete separation at αs . Let
α = sup{αs | s ∈ 2<�}. By minimality of �, α < κ+. By construction, for every
distinct s, t ∈ 2�, there is ᾱ < α, p1 ≥ �(s), and p2 ≥ �(t), so that p1 and p2
enforce complete separation at ᾱ. Hence �(s) and �(t) enforce complete separa-
tion at α.
Continuing to work insideW , find for each s ∈ 2� , some as ∈ A and qs ≤ �(s)
so that 〈as , qs 〉 forces a value for ḃ(α). Since T is forced to be a κ+ tree, the values
forced for ḃ(α) belong to κ. Since 2� > κ inW , and since A is κ-c.c. in W , there
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must be s �= t both in 2� , so that as and at are compatible, and so that 〈as , qs〉 and
〈at, qt〉 force the same value for ḃ(α). Letting a ∈ A extend as and at , it follows
that 〈a, qs 〉 and 〈a, qt〉 force the same value for ḃ(α), but this contradicts the fact
that �(s) and �(t) enforce complete separation at α. �
Claim 2.5. Let P be <κ closed inW , where V is a κ-c.c. forcing extension ofW .

Then forcing with P over V does not add any sequences of ordinals of length < κ.

Proof. This is a part of Easton’s Lemma. Let A be a κ-c.c. poset in W so that
V is an extension of W by A. Let A × P be generic for A × P over W . Then by
closure of P, A remains κ-c.c. inW [P]. Hence any A name inW [P] for a sequence
of ordinals of length < κ is equivalent to a name of size < κ, which by closure of P
belongs toW . So all sequences of ordinals of length < κ inW [A][P] = W [P][A]
belong toW [A]. �

§3. The tree property at ℵ�+1. Magidor–Shelah [4] were the first to obtain the
tree property at ℵ�+1. They used a large cardinal assumption above a huge cardi-
nal. Sinapova [8] found an argument that requires only � supercompact cardinals.
Her model is obtained by a diagonal Prikry extension that turns the lowest of the
supercompact cardinals into ℵ�. One of the crucial novelties in her argument is
that the poset itself selects which cardinal is turned into ℵ1. We show here that
with a similar selection mechanism, and assuming indestructibility of the super-
compact cardinals, the product of ordinary collapse posets between and below �
supercompact cardinals leads to a model where the tree property holds at ℵ�+1.
This is Corollary 3.9. Moreover the same is true for other posets, so long as they
leave enough “generic supercompactness” at κn for n > 2, and so long as their
component below κ2 has many hulls that are subsumed by Knaster posets. The
exact formulation of this is given by Lemma 3.10. We will use several tools from a
different paper by Sinapova, [7], and from Magidor–Shelah [4].
Let � be a strong limit cardinal of cofinality �.

Definition 3.1 (Magidor–Shelah [4]). A system on D × �, where D ⊆ Ord, is
a collection of transitive, reflexive relations Ri (i ∈ I ) on D × �, so that:
1. If 〈α, 	〉 Ri 〈�, �〉 and 〈α, 	〉 �= 〈�, �〉, then α < � .
2. If 〈α0, 	0〉 and 〈α1, 	1〉 are both below 〈�, �〉 in Ri , then 〈α0, 	0〉 and 〈α1, 	1〉
are comparable in Ri . (By condition (1) this implies that 〈α0, 	0〉 Ri 〈α1, 	1〉
if α0 < α1, 〈α1, 	1〉 Ri 〈α0, 	0〉 if α1 < α0, and 	0 = 	1 if α0 = α1.)

3. For every α < � both inD, there is i ∈ I , and 	, � ∈ �, so that 〈α, 	〉 Ri 〈�, �〉.

Systems arise naturally from names for trees. For example, if Ṫ is a P name
for a �+ tree (viewed in the manner explained after Claim 2.4), then the relations
〈α, 	〉 Rp 〈�, �〉 iff p � 〈α, 	〉 Ṫ 〈�, �〉, for p ∈ P, form a system on �+ × �. For any
D ⊆ �+ and � < �, the restrictions of the relations to D × � still satisfy conditions
(1) and (2) in Definition 3.1. Condition (3) may in general fail for the restrictions.
Maintaining it is key to some of the arguments below.

Definition 3.2 (Sinapova [7]). Let {Ri}i∈I be a system on D × �. A system of
branches through {Ri}i∈I is a collection {bj}j∈J so that:
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1. Each bj is a branch through Ri for some i = ij ∈ I . This means that bj is a
partial function from D taking values in �, and for any � ∈ dom(bj) and any
α < � in D, α ∈ dom(bj) iff (∃	)〈α, 	〉 Ri 〈�, bj(�)〉, and bj(α) is equal to
the unique 	 witnessing this. (	 is unique by condition (2) of Definition 3.1.)

2. For every α ∈ D, there is j so that α ∈ dom(bj).
We do not require the branches bj to be cofinal (meaning that dom(bj) is cofinal
in D). But if |J | is smaller than the cofinality of D, then by condition (2), at least
one of the branches has to be cofinal.

Lemma 3.3 (Sinapova [7]). Let {Ri}i∈I be a system on D × �, with D cofinal in
�+, andmax{|I |, �} < �. Suppose that there isW ⊆ V , a poset P ∈W , and a regular
cardinal κ < � abovemax{|I |, �}+, so that:
1. The empty condition in P forces that there exists a system {bj}j∈J of branches
through {Ri}i∈I , with |J |+ < κ.

2. P is <κ closed inW , and V is a forcing extension ofW by a κ-c.c. poset.

Then there exists j so that bj is cofinal and belongs to V . In particular, there is i ∈ I
so that in V , Ri has a cofinal branch.

Proof. Let A be a κ-c.c. poset so thatV is an extension ofW by A, and let E be
generic for A overW with V =W [E].
Let ḃj ∈ V = W [E] name bj in the poset P. Suppose for contradiction that no
cofinal bj belongs to V . Without loss of generality we may assume that the empty
condition in P forces ḃj �∈ V if ḃj is cofinal.
Let � = max{|I |, |J |, �}+. By assumption, � < κ. Let P� be the full support �th
power of P, defined inW . Let 〈G	 | 	 < �〉 be generic for P� over V =W [E].
P� is <κ closed inW , and V is a κ-c.c. extension ofW . It follows by Claim 2.5
that forcing with P� over V does not add sequences of ordinals of length < κ. In
particular, �+ has cofinality greater than � in V [G	 | 	 < �], and all cardinals of V
up to � remain cardinals in V [G	 | 	 < �].
Let b	j = ḃj [G	]. Since cof(�

+) is greater than � in V [G	 | 	 < �], we can find
�0 < �

+ so that for every 	 and j, dom(b	j ) ⊆ �0 whenever dom(b	j ) is bounded in
�+. Since by assumption the cofinal b	j does not belong to V , it follows by mutual

genericity thatwhenever 	 �= � anddom(b	j ) anddom(b�j ) both havepoints above �0,
then the branches b	j and b

�
j are distinct. Again using the fact that cof(�

+) > � in

V [G	 | 	 < �], we can find �1 > �0 so that whenever b	j and b�j both have α > �1
in their domains, the two branches differ at a point below �1 (possibly because one
is defined and the other is not). By Definition 3.2 and since α > �1, this implies,
in particular, that b	j (α) �= b�j (α) (possibly because one is defined and the other is
not) if both are branches through the same relation Ri .
Let α > �1 belong toD. By Definition 3.2, for each 	 < � there is some j	 so that
α ∈ dom(b	j	 ). Let �	 = b	j	 (α) and let i	 be such that b	j	 is a branch through Ri	 .
� is greater than |I | · |J | · �, in V and hence also in V [G	 | 	 < �]. So there must
be 	 �= � so that j	 = j� , i	 = i� , and �	 = �� . But then letting j = j	 = j� and
i = i	 = i� we have b

	
j (α) = b

�
j (α), where b

	
j and b

�
j are both branches through the

same relation Ri , contradicting the conclusion of the previous paragraph. �
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Remark 3.4. Our proof of Lemma 3.3 makes it clear that assumption (2) of
the lemma can be weakened to require only that there is a poset P� which adds
� mutually generic filters for P without collapsing any cardinals ≤ � and without
reducing the cofinality of �+ to � or below, where � = max{|I |, |J |, �}+.
Lemma 3.5 (Sinapova [7] based onMagidor–Shelah [4]). Let {Ri}i∈I be a system

on D × �, where D is cofinal in �+ and � < �. Suppose that forcing with P adds
an elementary embedding � : V → V ∗, with crit(�) > max{�, |I |} and �(�+) >
sup(�′′�+). Then forcing with P adds a system of branches {bj}j∈J through {Ri}i∈I ,
with J = I × �.
Proof. Let G be generic for P over V . Let � ∈ V [G ] be an embedding as in the

assumption of the lemma. Note that �(�) = � as crit(�) > �. Since crit(�) > |I |,
we may assume, modifying I if needed, that �(I ) = I . So �({Ri}i∈I ) is equal to
{�(Ri)}i∈I , and is a system on �(D)× � in V ∗.
Let � be an ordinal in �(D) between sup(�′′�+) and �(�+). For each 〈i, �〉 ∈ I ×�,

let bi,� be the partial map sending α ∈ D to the unique 	 < � so that 〈�(α), 	〉 �(Ri)
〈�, �〉 if such 	 exists. Uniqueness is guaranteed by condition (2) in Definition 3.1,
since {�(Ri)}i∈I is a system. It is clear from the same definition, and elementarity,
that bi,� is a branch of Ri .
Finally, to check condition (2) of Definition 3.2, fix α ∈ D, and note that since

{�(Ri)}i∈I is a system on �(D)× �, there is by condition (3) of Definition 3.1 some
	, � < �, and some i ∈ I , so that 〈�(α), 	〉 �(Ri) 〈�, �〉. Then α ∈ dom(bi,�), as
required. �
Lemma 3.6. Let κn , 2 ≤ n < � be a strictly increasing sequence of regular

cardinals cofinal in �. Suppose that κ2 is supercompact, and that for eachm ≥ 2 there
is a generic embedding � : V → V ∗ added by a poset P so that:

• sup(�′′�+) < �(�+).
• crit(�) > κm.
• P is <κm closed in a modelW ⊆ V so that V is a κm-c.c. extension ofW .

For each strong limit cardinal� < κ2 of cofinality�, letL(�) be the posetCol(�,�)×
Col(�+, <κ2). Then there is � < κ2 so that the extension of V by L(�) satisfies the
tree property at �+.

Proof. Let κ denote κ2. Suppose for contradiction that the tree property at
�+ fails in all extensions of V by L(�) as � ranges over strong limit cardinals of
cofinality � below κ. Fix L(�) = Col(�,�) × Col(�+, <κ) names Ṫ (�) ∈ V for
trees forced to witness this.
Let I = {〈a, b, �〉 | � < κ is a singular strong limit of cofinality � and 〈a, b〉 ∈

Col(�,�)×Col(�+, <κ)}. For i = 〈a, b, �〉 ∈ I let Si be the relation 〈α, 	〉 Si 〈�, �〉
iff 〈a, b〉 � 〈α, 	〉 Ṫ (�) 〈�, �〉. It is clear, using the fact that each Ṫ (�) is forced to
be a �+ tree, that {Si}i∈I is a system on �+ × �.
Using the supercompactness of κ, let � : V → V ∗ be elementary, with crit(�) =

κ, �(κ) > �, and V ∗ closed under sequences of length �+ in V . In particular,
�′′�+ ∈ V ∗ and hence �(�+) > sup(�′′�+).
Let G∗

0 × G∗
1 be generic for Col(�, �)

V ∗ × Col(�,<�(κ))V ∗
over V , hence also

over V ∗. Let T ∗ = �(Ṫ )(�)[G∗
0 × G∗

1 ], where Ṫ here denotes the map � �→ Ṫ (�).
In V [G∗

0 ×G∗
1 ], � is collapsed to �, and �

+ is �1.
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Let �∗ be an ordinal between sup(�′′�+) and �(�+). For each α < �+ let 	∗ = 	∗α
be the unique ordinal so that 〈�(α), 	∗〉 T ∗ 〈�∗, 0〉. 	∗α is an ordinal below �(�) =
supn<� �(κn). For each α, let n = nα be least so that 	

∗
α < �(κn). Let 	̇

∗
α and ṅα in

V be the canonical Col(�, �)V
∗ × Col(�+, <�(κ))V ∗

names for 	∗α and nα .
Since �+ is equal to �1 in V [G∗

0 × G∗
1 ], there is a cofinal D

∗ ⊆ �+, and n < �,
so that n∗α = n for all α ∈ D∗. The fact that n∗α = n is forced by some condition
〈aα, bα〉 ∈ G∗

0 × G∗
1 . aα is an initial segment of G

∗
0 and of finite length. Shrinking

D∗ we may therefore assume that there is a specific initial segment a so that aα = a
for all α ∈ D∗. In particular, then D∗ can be determined using a without reference
to the full generic G∗

0 , and hence D
∗ ∈ V [G∗

1 ].

Claim 3.7. {Si�(D∗ × κn)}i∈I is a system.
Proof. Conditions (1) and (2) of Definition 3.1 hold for {Si�(D∗ × κn)}i∈I ,
because they hold for the system {Si}i∈I . We have to check condition (3).
Fix α < � both in D∗. Then 	∗α and 	

∗
� are both smaller than �(κn). By the

definitions above, 〈�(α), 	∗α〉 and 〈�(�), 	∗� 〉 are both below 〈�, 0〉 in the relation T ∗,
and, in particular, they are compatible.Hence there is a condition 〈a∗, b∗〉 ∈ G∗

0×G∗
1

forcing that 〈�(α), 	∗α〉 �(Ṫ )(�) 〈�(�), 	∗� 〉.
By elementarity of �, it follows that there is � < κ, 	α, 	� < κn , and a condition

〈a, b〉, so that 〈a, b〉 � 〈α, 	α〉 Ṫ (�) 〈�, 	� 〉. Then 〈α, 	α〉 and 〈�, 	�〉 are related
in Sa,b,��(D∗ × κn), witnessing condition (3) for the system {Si�(D∗ × κn)}i∈I at
α and � . �
Claim 3.8. There is, in V , a cofinal set D ⊆ �+ so that {Si�(D × κn)}i∈I is a
system.

Proof. Let R be a large initial segment of V and let X ≺ R be an elementary
substructure of size �+, with �+ ⊆ X , closed under sequences of length < �+, and
containing all objects relevant to the constructions above. Col(�+, <�(κ))V

∗
is<�+

closed in V ∗, hence also in V , so working in V we can find, without any further
forcing, Ḡ∗

1 ⊆ X which is generic for Col(�+, <�(κ))V ∗
over X .

By Claim 3.7, applied inside X [Ḡ∗
1 ], there is D̄

∗ ∈ X [Ḡ∗
1 ], cofinal in �

+, so that
X [Ḡ∗

1 ] satisfies that {Si�(D̄∗ × κn)}i∈I is a system.
Since being a system is absolute, {Si�(D̄∗ × κn)}i∈I is a system in V . �
We so far have n < � andD ⊆ �+ cofinal, so that {Si�(D × κn)}i∈I is a system.
Let m = n + 2. By assumption of the lemma, there is a poset P adding an
embedding � with crit(�) > κm, �(�+) > sup(�′′�+), and such that P is<κm closed
in a modelW so that V is a κm-c.c. extension ofW .
By Lemma 3.5, forcing with P adds a system of branches {bj}j∈J to {Si�(D ×
κn)}i∈I , with J = I × κn, and, in particular, |J |+ < κn+2 = κm. By Lemma 3.3
there is i ∈ I so that a cofinal branch through Si �(D × κn) exists already in V . Fix
such i , and let f ∈ V be the cofinal branch.
Let � and 〈a, b〉 ∈ Col(�,�)V × Col(�+, <κ)V be such that i = 〈a, b, �〉. Then
by definition of Si , 〈a, b〉 � 〈α,f(α)〉 Ṫ (�) 〈�,f(�)〉 for all α < � both in
dom(f), which is cofinal in �+. LettingG0×G1 be generic with 〈a, b〉 ∈ G0×G1, it
follows that in V [G0 ×G1], f determines a cofinal branch through Ṫ (�)[G0 ×G1].
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But this contradicts the fact that Ṫ (�) is forced to have no cofinal branches. This
contradiction completes the proof of Lemma 3.6. �
Corollary 3.9. Let κn , 2 ≤ n < �, be an increasing sequence of indestructibly

supercompact cardinals. Let � = sup{κn | n < �}. Then there is a strong limit cardinal
� < κ2 of cofinality �, so that in the extension of V by Col(�,�)×Col(�+, <κ2)×∏
2≤n<� Col(κn,<κn+1), the tree property holds at �

+. �+ is equal to ℵ�+1 of the
extension.
The indestructibility assumed in the corollary can be arranged by standard

arguments, with a preparatory forcing, starting from � supercompact cardinals.
Proof of Corollary 3.9. Let H =

∏
2≤n<� Hn be generic for the poset∏

2≤n<� Col(κn,<κn+1). It is enough to prove that the assumptions of Lemma
3.6 hold in V [H ]. Then, by the lemma, there is � < κ2 so that in the further
extension by Col(�,�) × Col(�+, <κ2), the tree property holds at �+.
The assumptions of the lemma are easy to verify in V [H ]. κ = κ2 is super-

compact in V [H ], by indestructibility. For each m ≥ 2, forcing over V [H ] with
Col(κm, �)V for sufficiently large � adds an embedding � : V [H ] → V ∗[H ∗] with
critical point κm+1 and �(�+) > sup(�′′�+). (Use indestructibility to obtain,
in V [

∏
m+1≤n Hn], a �

+ supercompactness embedding with critical point κm+1.
� extends to act on V [

∏
m+1≤n Hn][

∏
2≤n<m Hn], since the posets Col(κn,<κn+1)

for n < m have size below crit(�). A further extension, to act on V [H ] =
V [

∏
m+1≤n Hn][

∏
2≤n<m Hn][Hm], can be obtained in any model with a generic

for Col(κm,<�(κm+1))V over V [H ].) Col(κm, �)V is <κm closed inW = V [Hm ×
Hm+1 × . . . ], and V [H ] is a κm-c.c. extension of V [Hm ×Hm+1 × . . . ]. �
The corollary produces a model where the supremum of � supercompact cardi-

nals is turned into ℵ�, and the tree property holds at ℵ�+1. For future arguments
that involve securing the tree property also below ℵ� , it is useful to notice that
our assumptions in Lemma 3.6 can be weakened in a couple of ways, to pro-
duce a lemma that works in somewhat more general settings. The next lemma
formalizes this.
Lemma 3.10. Let κn, 2 ≤ n < �, be a strictly increasing sequence of regular

cardinals cofinal in �. Let Index ⊆ κ2 and suppose that L(�) for each � ∈ Index is a
poset of size≤ κ2. LetR be a large rank initial segment ofV satisfying a large enough
fragment of ZFC. Suppose that:
1. For each m ≥ 2, there is a generic embedding � : V → V ∗ added by a poset P
so that:
(a) sup(�′′�+) < �(�+).
(b) crit(�) > κm.
(c) There is a κmth power of P that adds κm mutually generic filters for P,
without collapsing any cardinals ≤ κm, and without reducing the cofinality
of �+ to or below κm.

2. For each X ≺R with �+ ⊆ X , let V̄ = V̄X be the transitive collapse ofX . Then,
for stationarily many such X , there exists a �+-Knaster poset P = PX forcing
the existence of � and L so that:
(a) � : V̄ → V̄ ∗ is elementary with sup(�′′�+) < �(�+).
(b) crit(�) = κ2, �(κ2) > �, and � ∈ �(Index).
(c) L is generic over V̄ ∗ for �(L)(�).
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Then there is � < κ2 so that the extension of V by L(�) satisfies the tree property
at �+.

Recall that a poset P is �+-Knaster if every sequence of �+ conditions in the poset
can be refined to a subsequence of the same size so that any two conditions in
the subsequence are compatible. The poset Col(�, �) that was used in the proof of
Lemma 3.6 is of course �+-Knaster.

Proof of Lemma 3.10. The proof is similar to that of Lemma 3.6. The main
difference is in the use of the embeddings given by condition (2) as a replacement
for the assumption that κ2 is supercompact.
Suppose for contradiction that the tree property fails at �+ in all extensions by

L(�), � ∈ Index. Let Ṫ (�) be names witnessing this, meaning that Ṫ (�) is forced
in L(�) to be a �+ tree with no cofinal branches. Let I = {〈r, �〉 | � ∈ Index and
r ∈ L(�)}. For i = 〈r, �〉 ∈ I let Si be the relation 〈α, 	〉 Si 〈�, �〉 iff r �L(�)

〈α, 	〉 Ṫ (�) 〈�, �〉. As in the proof of Lemma 3.6, {Si}i∈I is a system on �+×�, and
our first goal is to show that its restriction to D × κn is a system, for some cofinal
D ⊆ �+ and n < �.
Let X , V̄ , and P be as in condition (2), with the function � �→ Ṫ (�) in X .
Let G be generic for P over V , and let �,L ∈ V [G ] be as in condition (2). Let
T ∗ = �(Ṫ )(�)[L] ∈ V [G ].
Let �∗ be an ordinal between sup(�′′�+) and �(�+). For each α < �+ let 	∗α be
the unique ordinal so that 〈�(α), 	∗α〉 T ∗ 〈�∗, 0〉. 	∗α is an ordinal below �(�) =
supn<� �(κn). For each α, let n = nα be least so that 	

∗
α < �(κn). Let ṅα name nα

in the forcing P.
For each α < �+, fix a condition pα ∈ P forcing a value for ṅα . Note that this
is done in V , with no reference to the generic G . (Our use of G above was just for
notational convenience.)
Since P is �+-Knaster, there is a cofinal D ⊆ �+ so that for any α, � ∈ D, pα
and p� are compatible in P. Thinning the set D, but maintaining the fact that it is
cofinal, we may assume that there is a fixed n < � so that for each α ∈ D, the value
pα forces for ṅα is n.

Claim 3.11. {Si�(D × κn)}i∈I is a system.
Proof. Conditions (1) and (2) of Definition 3.1 are inherited from {Si}i∈I .
We have to check condition (3). Fix α < � both in D. Then pα and p� are
compatible. Let p extend both. Revising G , we may assume p ∈ G . Then by
definitions, 〈�(α), 	∗α〉 and 〈�(�), 	∗� 〉 are both below 〈�∗, 0〉 in T ∗, and hence they
are compatible. It follows, again by definitions and since nα = n� = n, that V̄ ∗

satisfies “there exists � ∈ �(Index), r ∈ �(L)(�), and 	, � < �(κn), so that r ��(L)(�)
〈�(α), 	〉 �(Ṫ )(�) 〈�(�), �〉”. By elementarity of �, there exists � ∈ Index, r ∈
L(�), and 	, � < κn, so that r �L(�) 〈α, 	〉 Ṫ (�) 〈�, �〉. Then 〈α, 	〉 and 〈�, �〉 are
related in S〈r,�〉�(D × κn), as required. �
As in the proof of Lemma 3.6, an application of Lemma 3.5 now shows that
forcing with the poset P given by condition (1) of the current lemma form = n + 1
adds a systemof branches {bj}j∈J through {Si}i∈I , with J = I×κn. An application
of Lemma 3.3, in conjunction with Remark 3.4, then shows that there must be a
cofinal branch through one of the relations S〈r,�〉, already in V . This gives a cofinal

https://doi.org/10.1017/jsl.2013.25 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2013.25


THE TREE PROPERTY UP TO ℵ�+1 439

branch through an interpretation of one of the names Ṫ (�), completing the proof
of Lemma 3.10. �

§4. The tree property below ℵ� . Let κn, 2 ≤ n < � be an increasing sequence of
supercompact cardinals. Let � = sup{κn | n < �}. We describe a forcing extension
in which κn becomes ℵn and the tree property holds at ℵn for all n ≥ 2.
Our construction is a modification of the poset defined in Cummings–Foreman

[2]. There are several differences between the two constructions. One difference is
that we do not preserve ℵ1. Instead we allow the poset to select a cardinal �, from a
specific index set thatwedefine,whose successor is then turnedby the forcing intoℵ1.
Other differences, throughout the poset’s definition, make the poset more amenable
to “reverse analysis”, meaning analysis by splitting the poset into a product of an
initial segment and a tail-end. These modifications are intended to bring the poset
to a form that fits with Lemma 3.10 (although parts of the “reverse analysis” will
be useful already before we get to that). We cannot literally reach a poset that splits
into a product of an initial segment and a tail-end; some elements of the tail-end
poset cannot be brought into V and so the split cannot be viewed as a product. But
we take products where we can, and in cases where composition is necessary, we
identify variants of the tail-end posets that exist in V .
Suppose that each κn is indestructibly supercompact, and suppose moreover that

there is a partial function φ so that for each n, φ�κn is an indestructible Laver
function for κn. By this we mean that for each A ∈ V , ordinal �, and <κn directed
closed forcing extension V [E] of V , there is a � supercompactness embedding � in
V [E] with critical point κn , so that ��Ord belongs toV , �(φ)(κn) = A, and the next
point in dom(�(φ)) above κn is greater than �. This situation can easily be arranged
with V obtained by the standard construction of indestructibility. (Suppose κn is
supercompact in V̄ ⊆ V , and fix a Laver function F ∈ V̄ for κn. Define functions
F1 and F2 by setting F1(α) = x and F2(α) = y if F (α) = 〈x, y〉, and otherwise
leaving F1 and F2 undefined at α. Note that F1 is a Laver function for κn in V̄ .
Suppose V = V̄ [Ḡ ], where Ḡ is generic over V̄ for the standard poset to make κn
indestructibly supercompact, using the Laver function F1. Now define φ in V on
ordinals between κn−1 and κn by setting φ(α) = F2(α)[Ḡ�α] if this makes sense
and F ′′

1 α ⊆ Vα , and leaving φ(α) undefined otherwise.) Thinning the domain of φ
we may also assume that for every α ∈ dom(φ), � ∈ dom(φ) ∩ α → φ(�) ∈ Vα .
For n ≥ 2, let An be the forcing Add(κn, κn+2). Let κ0 denote �, and let A0 =

Add(�, κ2). Let A1 = Σ�∈Index Add(�+, κ3), where the sum is defined to be the
disjoint union of the posets, with conditions in distinct posets of the union taken
to be incompatible, so that a generic for A1 is simply a generic for one of the posets
Add(�+, κ3). In contexts where we work with such a generic, � is determined by
the generic, and we use κ1 to denote �+. We will define the set Index over which
the sum is taken shortly. For now we just say that all elements of Index are limit
cardinals of cofinality �, below κ2.
Let A be the full support product of the posets An, n < �. We use A[n,m] to

denote the poset
∏
n≤i≤m Ai , and similarly with open and half open intervals. We

use An��, for � ≤ κn+2, to denote the obvious restriction of An , and use similar
notation for generic objects and conditions, so that, for example, if G is generic for
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Add(κn, κn+2), then G�� consists of the first � subsets of κn added by G , and is
generic for Add(κn, �) = Add(κn, κn+2)��.
By A�α we mean the poset A[0,n) × An�α, where n is least so that α ≤ κn+2.
Definition 4.1. Define a poset B in V and a poset U in the extension of V by

A, simultaneously as follows. (For notational convenience, fix A generic for A over
V . U is described in V [A], and this translates naturally to a definition of a name
U̇ ∈ V for this poset.)
1. All conditions p in B are functions so that dom(p) ⊆ �, and for every inac-
cessible cardinal α, |dom(p) ∩ α| < α. (This parallels Easton support.) In
particular, |dom(p) ∩ κn+2| < κn+2 for each n.

2. If α ∈ dom(p), then α is an inaccessible cardinal, α is not equal to any κn ,
α ∈ dom(φ), and φ(α) is an (A�α) ∗ (U̇�α) name for a poset forced to be <α
directed closed.

3. p(α) is an (A�α) ∗ (U̇�α) name for a condition in φ(α).
4. p∗ ≤ p inB iff dom(p∗) ⊇ dom(p) and for each α ∈ dom(p), 〈∅, p∗�α〉 forces
in (A�α) ∗ (U̇�α) that p∗(α) ≤ p(α).

5. U = U̇[A] has the same conditions as B, but the richer order given by p∗ ≤ p
iff dom(p∗) ⊇ dom(p) and there exists a condition a∗ ∈ A so that for every
α ∈ dom(p), 〈a∗�α, p∗�α〉 �(A�α)∗(U̇�α) p∗(α) ≤ p(α).

Remark 4.2. The condition defining the order in (5) is equivalent to the seem-
ingly weaker condition that dom(p∗) ⊇ dom(p) and for every α ∈ dom(p) there
exists a ∈ A�α so that 〈a, p∗�α〉 �(A�α)∗(U̇�α) p∗(α) ≤ p(α). To see that the two
are equivalent, suppose the seemingly weaker condition holds, and let a∗ ∈ A force
this fact about p∗ and p over V . Then a∗ witnesses that the condition in (5) holds.

Definition 4.1 is such that (A�α)∗(U̇�α+1)makes sense, and forα that satisfies the
requirements in condition (2), it can be viewed as an iteration (A�α)∗ (U̇�α)∗φ(α).
One can think of U̇ as an iteration of posets given by the indestructible Laver
function φ, with initial segments of A folded in.
When taking a filter in A ∗ U̇, we always assume that it is strong enough on the

A coordinate, to be generated by a set of pairs 〈a, b̌〉, where a ∈ A and b ∈ B.
(Any generic filter has this property, since any condition 〈a, ḃ〉 in the filter can be
strengthened on the A coordinate to force a value for ḃ.)

Definition 4.3. Let � < �, and let F ⊆ A ∗ U̇�� be a filter. Define B+F �[�, �)
to consist of conditions p ∈ B with dom(p) ⊆ [�, �) ordered as follows: p∗ ≤ p
iff dom(p∗) ⊇ dom(p) and there exists 〈a, b〉 ∈ F so that for every α ∈ dom(p),
〈a�α, b ∪ p∗�α〉 forces p∗(α) ≤ p(α).
Ourmain initial uses ofDefinition 4.3 are in caseswhereF is generic forA��∗U̇�� .
Other uses will include situations where F = {〈∅, b〉 | b ∈ B�} with B� generic for
B�� . We will also have hybrids of these two forms, where a part of F is of the first
form above, and another part is of the second.
U itself can be viewed as a use of Definition 4.3. Let A be generic for A over V .
Then F = {〈a, ∅〉 | a ∈ A} is a filter contained in A ∗ U̇�0. It is easy to check that
the poset B+F �[0, �) in this case is simply the poset U.
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Similarly, if U� is generic for U�� over V [A], then F = {〈a, u〉 | a ∈ A, u ∈ U�}
is a filter contained in A ∗ U̇�� . B+F �[�, �) is a poset in V [A][U� ]. We denote it
by U�[�, �). More generally, U�[�, �) denotes the poset B+A∗U� �[�, �). The poset
belongs to the extension of V by A ∗ U�� . The generic A ∗ U� is omitted in the
notation U�[�, �), and is understood from the context.
Let U0 = U�κ2, and for n > 0 let Un = U�[κn+1, κn+2). Define U[0,n] = U�κn+2,

and define other interval posets similarly. U[0,n] is a poset in V [A[0,n]]. For n > 0,
Un is a poset in V [A[0,n] ∗U[0,n)].
We sometimes use the notation B+F[�,�) for B

+F �[�, �), and similarly with U.
Recall that we left the exact definition of the set Index used in the definition ofA1

unspecified. We now discharge our obligation to specify the set. Its definition refers
to A0 and U̇0, but these are both known before any use of A1.

Definition 4.4. Define Index to consist of all � < κ2 so that:

1. � is a strong limit cardinal of cofinality � and dom(φ) has a largest point �
below �.

2. Over any extension V [E] of V by a � closed poset, the further extension by
A0�� ∗ U̇0��+ 1 does not collapse (�+)V .

3. A0�� ∗ U̇0��+ 1 has size at most �+.

There are many � satisfying the requirements of the definition. For example, any
strong limit cardinal � < κ2 of cofinality �, with largest point � below � in dom(φ)
and so that |φ(�)| < �, satisfies the requirements, as the poset A�� ∗ U̇��+1 in this
case has size less than �, and, in particular, cannot collapse �+ over anymodel. Our
forcing constructions will use a slightly different situation, where |φ(�)| = �+, but
forcing with A�� ∗ U̇��+ 1 still preserves �+.
Claim 4.5. Let F̄ ⊆ F both be filters forA ∗ U̇�� . Let Ḡ be generic for B+F̄ �[�, �)

over some model containing F̄ and F . Then the upward closure of Ḡ in B+F �[�, �) is
generic for B+F �[�, �) over the same model.
Proof. Note to begin with that B+F̄ �[�, �) and B+F �[�, �) have the same condi-

tions, and that the latter has a richer order, immediately by their definitions. So the
upward closure of Ḡ in B+F �[�, �) makes sense, and is a filter.
It is easy to check that if q ≤B+F �[�,�) p, then there is r ≤B+F �[�,�) q so that r ≤B p.

(Let 〈a, u〉 ∈ F witness that q ≤B+F �[�,�) p. Define r with the same domain as q as
follows. If α �∈ dom(p), set r(α) = q(α). For α ∈ dom(p), set r(α) to be a name
forced equal to q(α) by 〈a�α, u ∪ r�α〉, and forced equal to p(α) by all conditions
of A�α ∗ U̇�α that are incompatible with 〈a�α, u ∪ r�α〉.)
So every dense open set in B+F �[�, �) is dense in B+∅�[�, �), hence also in

B+F̄ �[�, �). The claim follows. �

Remark 4.6. The converse of Claim 4.5 may fail in general. A generic G for
B+F �[�, �) may contain conditions which are incompatible in B+F̄ �[�, �), and, in
particular, it is not a filter in the latter poset, let alone a generic filter. However,
by standard forcing arguments using Claim 4.5, one can force to add a refinement
Ḡ ⊆ G which is a generic filter for B+F̄ �[�, �), and so that G is the upward closure
of Ḡ .
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We refer to the forcing refining a generic G for B+F �[�, �) to a generic Ḡ ⊆ G for
B+F̄ �[�, �) as the factor forcing. The forcing is simply the restriction of B+F̄ �[�, �)
to conditions in G .

Claim 4.7. Let �̄ ≤ � . Suppose that F̄ is generic for A��̄ ∗ U̇��̄ over V . Then
B+F̄ �[�, �) is <� directed closed in V [F̄ ].
Proof. Let � ∈ V name a sequence in V [F̄ ], of length � < � , of conditions in

B+F̄ �[�, �) that form a directed set. Without loss of generality suppose that the fact
that the set is directed is forced by the empty condition in A��̄ ∗ U̇��̄ .
LetD be the unionof all possible values forced for dom(�	), 	 < �.� is the smallest
possible element ofD, and for every α > � ,D ∩α is the union of fewer than α sets
which each satisfy the support requirements of condition (1) of Definition 4.1 at α.
It follows thatD ∩ α too satisfies these requirements.
We now define a condition p, with domain D, that is forced to be a lower bound
for all conditions �	 . The definition is by induction on α ∈ D. Working in V , let
p(α) be an A�α ∗ U̇�α name forced by 〈∅, p�α〉 to be a lower bound in φ(α)[Fα] for
the conditions �	 [Fα��̄](α)[Fα ]. (Fα here indicates a generic forA�α ∗ U̇�α.) Such a
name exists since by condition (2) ofDefinition 4.1,φ(α) is forced inA�α∗U̇�α to be
<α directed closed, and, using induction and the initial assumption about �, 〈∅, p�α〉
forces �	 [Fα��̄](α)[Fα ] to be directed.
Then p is a lower bound in B+F̄ �[�, �) for the conditions �	 [F̄ ]. �

Remark 4.8. Let α < κn+1 be a successor point of dom(B), above κn. (If n ≥ 1,
the set of such α is cofinal in κn+1.) The poset (A[0,n] ∗ U̇�α) × B+∅�[α, κn+2)
is a product of an α-c.c. poset with a <α closed poset. (The first factor is α-
c.c. since A[0,n] is κ+n -c.c. in V and U�α has size less than α. The second factor
is <α closed by Claim 4.7.) By Claim 2.5, it does not collapse α. Forcing with
(A[0,n]∗U̇�α)×B+∅�[α, κn+2) subsumes forcingwithA[0,n]∗U̇[0,n], since, byClaim 4.5,
the upward closure of a generic forB+∅�[α, κn+2) provides a generic forU�[α, κn+2).
Hence forcingwithA[0,n]∗U̇[0,n] does not collapseα. If n ≥ 1, this is true for cofinally
many α < κn+1, so forcing with A[0,n] ∗ U̇[0,n] does not collapse κn+1.

Claim 4.9. LetA∗U be generic forA∗U̇ overV . Let � < � and letF = A��∗U �� .
Then, in the factor poset to add a genericG for B+F �[�, �) that refinesU �[�, �), every
decreasing sequence of length < � that belongs to V [F ] has a lower bound.

Proof. Let �p = 〈p	 | 	 < �〉 in V [F ] be a descending sequence of length � < �
in the factor poset, meaning that the sequence is descending in B+F �[�, �), and the
conditions p	 all belong to U �[�, �).
Let 〈a, u〉 ∈ A[�,�) ∗ U[�,�) force, over V [F ], that (∀	 < �)p	 ∈ U �[�, �).
Then u ≤ p	 in U�[�, �) for all 	, and this is forced by a. Extending 〈a, u〉 if
needed we may assume it also forces that �p has no lower bound in the factor
poset. In other words it forces that no lower bound for �p in B+F �[�, �) belongs to
U �[�, �).
By Claim 4.7 and since the sequence �p belongs to V [F ], there is p which is a
lower bound for �p in B+F �[�, �).
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An argument similar to that in the proof of Claim 4.5 now produces a condition
r ≤U�[�,�) u so that r ≤B+F �[�,�) p	 for all 	. (Define r so that for each α ∈ dom(r),
〈a�α, u�α〉 forces r(α) = u(α), and all conditions incompatible with 〈a�α, u�α〉
force r(α) = p(α).)
But then r is a lower bound for �p in B+F �[�, �), and since r ≤U�[�,�) u, 〈a, u〉 does

not force r outside U �[�, �), contradicting the choice of 〈a, u〉. �

Definition 4.10. Let V [E] be an extension of V by a poset E, and let P = Ṗ[E]
be a poset in V [E]. Define the poset P̂ in V to consist of canonical names ṗ forced
to be elements of Ṗ, with ṗ∗ ≤

P̂
ṗ iff �V

E
ṗ∗ ≤ ṗ. P̂ is called the termspace forcing,

and its definition is due to Laver.

Claim 4.11. Let Ṗ and P̂ be as in Definition 4.10.

1. If Ṗ is forced to be <α directed closed, then P̂ is <α directed closed in V .
2. Let Ĝ be generic for P̂ over a model that containsV [E]. Then the upward closure
of {ṗ[E] | ṗ ∈ Ĝ} in Ṗ[E] is generic for P over the same model.

Proof. Similar to the proof of Claims 4.5 and 4.7. �
Lemma 4.12. Let n < �. Let A ∗ U[0,n] be generic for A ∗ U̇[0,n] over V . Then

in V [A][U[0,n]], κn+2 is generically supercompact, and this supercompactness is inde-
structible under forcing with posets in V [A[0,n]][U[0,n]] that are <κn+2 directed closed
in V [A[0,n]][U[0,n]].
The forcing notion producing the generic supercompactness embedding is iso-

morphic to Add(κn, �(κn+2))V × Add(κn+1, �(κn+3))V , where � is the embedding
produced.

Precisely the statement of the lemma means the following. Let P be <κn+2
directed closed in V [A[0,n]][U[0,n]]. Let G be generic for P over V [A][U[0,n]]. Then
for each � there is, in an extension of V [A][U[0,n]][G ], an elementary embedding
� : V [A][U[0,n]][G ] → V ∗[A∗][U ∗

[0,n]][G
∗] so that crit(�) = κn+2, �(κn+2) > �,

��Ord belongs to V , and V ∗[A∗][U ∗
[0,n]][G

∗] is � closed in the generic extension
producing the embedding. The generic extension producing the embedding is an
extension of V [A][U[0,n]][G ] by Add(κn, �(κn+2))V ×Add(κn+1, �(κn+3))V .
Proof of Lemma 4.12. Fix �. Let Ṗ ∈ V name P. Using the fact that φ is an inde-

structible Laver function, find a � supercompactness embedding � : V [A[n+2,�)] →
V ∗[A∗

[n+2,�)], in V [A[n+2,�)], with ��Ord in V , crit(�) = κn+2, and �(φ)(κn+2) = Ṗ.
Increasing � if needed, wemaypick � so that �++ is a fixed point of the embedding.

In particular, then the set {dense subsets of �(B)+∅�(κn+2, �(κn+2)) that belong to
V ∗} has cardinality �+ in V . Using this, the fact that the first point in dom(�(φ))
aboveκn+2 is greater than �, and the closure given byClaim 4.7, one can construct, in
V [A[n+2,�)], a filter B̂ which is generic for �(B)+∅�(κn+2, �(κn+2)) overV ∗[A∗

[n+2,�)].

(Claim 4.7 is applied in V ∗ with �̄ = 0. It shows that the poset �(B)+∅�(κn+2, �(�))
is � closed in V ∗, and therefore so is �(B)+∅�(κn+2, �(κn+2)). This closure transfers
to V [A[n+2,�)], since V

∗ is itself � closed in this model. In V [A[n+2,�)] one can then
enumerate the dense sets that belong to V ∗[A∗

[n+2,�)] and meet all of them through
a construction of length �+.)
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Let P̂ be the forcing notion associated with Ṗ by Definition 4.10. By Claim 4.11, P̂
is <κn+2 directed closed in V . By elementarity of � it follows that �(P̂) is <�(κn+2)
directed closed in V ∗, and this implies that it is � closed in V [A[n+2,�)]. Working in
V [A[n+2,�)] we can therefore find Ĝ∗ which is generic for �(P̂) overV ∗[A∗

[n+2,�)][B̂ ].

We build Ĝ∗ below a specific condition ṗ∗0 in P̂. We will say what this condition
is later on.
Let Ân be generic for �(An)�[κn+2, �(κn+2)) over V [A][U[0,n]][G ]. Similarly
let Ân+1 be generic for �(An+1)�(�(κn+3) − �′′κn+3)) over V [A][U[0,n]][G ][Ân ].
(These posets are isomorphic to Add(κn, �(κn+2))V and Add(κn+1, �(κn+3))V ,
respectively.)
Then An and Ân can be joined to form a generic A∗

n for �(An), and similarly
An+1 and Ân+1 can be joined to form a generic A∗

n+1 for �(An+1). Let A
∗
[0,n+1] be

the resulting sequence 〈A0, . . . , An−1, A∗
n , A

∗
n+1〉. It is clear that � : V [A[n+2,�)] →

V ∗[A∗
[n+2,�)] now extends to an embedding, which we also denote �, from V [A] to

V ∗[A∗].
U[0,n], G , and the upward closure of B̂ in �(U)�(κn+2, �(κn+2)) can be joined
to form a generic U ∗

[0,n] for �(U�κn+2). It is clear that � extends further, to an
embedding of V [A][U[0,n]] to V ∗[A∗][U ∗

[0,n]].
Since �′′�V belongs to V [A[n+2,�)], V ∗ is � closed in V [A[n+2,�)], and G is part
of the generic U ∗

[0,n], �
′′G belongs to V ∗[A∗

[0,n]][U
∗
[0,n]]. It follows from this and the

directed closure of �(P) inV ∗[A∗
[0,n]][U

∗
[0,n]] that �

′′G has a lower bound in �(P). Let
ṗ∗0 ∈ V ∗ name such a lower bound. Note that ṗ∗0 can be defined without reference
to A∗

[0,n] andU
∗
[0,n], and, in particular, with no reference to Ân and Ân+1, so it could

have defined earlier in the proof, before fixing Ĝ∗. We may therefore assume that ṗ∗0
belongs to Ĝ∗.
So far we extended � to an embedding of V [A][U[0,n]] into V ∗[A∗][U ∗

[0,n]]. Ĝ
∗ is

generic for �(P̂) over V ∗[A∗
[n+2,�)][B̂]. From this and the genericity of A

∗
[0,n+1],

U[0,n], and G over V ∗[A∗
[n+2,�)][B̂][Ĝ

∗] (indeed these objects are generic over

V [A[n+2,�)], which contains V ∗[A∗
[n+2,�)][B̂][Ĝ

∗]), it follows that Ĝ∗ is generic

over V ∗[A∗
[n+2,�)][B̂][A

∗
[0,n+1]][U[0,n]][G ]. Hence Ĝ

∗ is generic also over (the smaller
model) V ∗[A∗][U ∗

[0,n]].
By Claim 4.11 it follows that the upward closure of {ṗ[A∗

[0,n]][U
∗
[0,n]] | ṗ ∈ Ĝ∗}

is generic for �(P) over V ∗[A∗][U ∗
[0,n]]. Let G

∗ denote this upward closure. Since
ṗ∗0 [A

∗
[0,n]][U

∗
[0,n]] is a lower bound for �

′′G , G∗ contains �′′G . So � extends, finally,
to an embedding of V [A][U[0,n]][G ] into V ∗[A∗][U ∗

[0,n]][G
∗]. �

The definition of B and U was designed specifically to lead to Lemma 4.12. We
continue now with definitions of posets that collapse all cardinals between κn+1 and
κn+2 to κn+1, and secure the tree property at κn+2. One can view this as being done
(for κn+2) over the model V [A�κn+1 ∗U �κn+1]. Viewed this way our poset is similar
to the one in Mitchell [5] (termed “Mitchell forcing” in Abraham [1]), but using
An = Add(κn, κn+2)V rather than the version computed in V [A�κn+1 ∗ U �κn+1].
This modification helps us with reverse analysis of the end poset later on.
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Definition 4.13. For each n < � define a poset Cn in V as follows. Conditions
in Cn are functions p so that:

1. dom(p) is contained in the interval (κn+1, κn+2), and |dom(p)| < κn+1.
2. For each α ∈ dom(p), p(α) is an (A�α) ∗ U̇�κn+1 name for a condition in the
poset Add(κn+1, 1) of the extension by (A�α) ∗ U̇�κn+1.

Conditions are ordered as follows: p∗ ≤ p iff dom(p∗) ⊇ dom(p), and for each
α ∈ dom(p), it is forced (by the empty condition) in (A�α) ∗ U̇�κn+1 that p∗(α) ≤
p(α).

If n ≥ 1, then U�κn+1 is simply U[0,n). In this case the poset (A�α) ∗ U̇�κn+1 used
in the definition can also be written as (A[0,n) ∗ U̇[0,n)) × An�α. (If n = 0 this is not
quite a precise match, since U�κ1 is part of U0.)
Let C be the full support product of the posets Cn. We use interval notation in

the usual way, so that, for example, C�[κn+1, κn+2) is Cn, and C�[κn+1, �) is C[n,�).

Definition 4.14. For a filter F ⊆ A∗ U̇ define the enrichment ofC to F , denoted
C+F , to be the poset with the same conditions as C, but the richer order given
by p∗ ≤ p iff there exists a condition 〈a, u〉 ∈ F so that for each α ∈ dom(p),
〈a�α, u�κi〉 �A�α∗U̇�κi p

∗(α) ≤ p(α), where i is largest so that κi ≤ α.
The poset we intend to use is the enrichment C+A∗U , where A ∗ U is generic

for A ∗ U̇ over V . We will refer to intervals of this poset, for example, C+A∗Un =
C+A∗U �[κn+1, κn+2). In such references only A�κn+2 ∗ U �κn+1 is relevant to the
enrichment, but to reduce notational clutter we still use the superscript +A ∗U .
The definition ofC andC+A∗U is similar to the corresponding definition of B and

U, except that the underlying posets used at each coordinate α are different, the
support is different, and there is no self-reference, meaning that the ordering at
coordinate α does not rely on the restriction of the conditions ordered to α. The
definition ofC is simpler than the simultaneous definition of B andU, because there
is no need to deal with self-reference here.
Note that the definition of C0 makes a reference to κ1. In contexts where we have

a generic A1 for A1, κ1 is determined by this generic. In other contexts, κ1 is a
parameter in the definition of C0. We sometimes refer to the poset as C0(κ1), when
κ1 is not understood from the context.

Claim 4.15. 1. Let F be generic for A�� ∗ U̇�� for � ≤ κn+1. Then the poset
C+F �[κn+1, �) is <κn+1 directed closed in V [F ].

2. Let � ∈ (κn+1, κn+2) and let F be generic for A�� ∗ U̇�κn+1. Then the poset
C+F �[�, κn+2) is <κn+1 directed closed in V [F ].

Proof. Similar to Claim 4.7, except that (a) the amount of closure here in condi-
tion (2) is lower, because the underlying poset at each coordinate α is only forced to
be<κn+1 directed closed; and (b) the domainD of the lower boundmust be defined
more carefully, since it is required here to have size < κn+1, a stricter demand than
the support restrictions in the case of Claim 4.7.
We indicate how to obtain the domain D, in the harder of the two cases of the

claim, case (2), and leave the remaining details to the reader.
Let � ∈ V name a sequence in V [F ] of conditions in C+F �[�, κn+2), of length

� < κn+1, that form a directed set.
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Suppose to begin with that n ≥ 1. By Remark 4.8, κn+1 is not collapsed in V [F ].
Since � is forced to be a sequence of length < κn+1, it follows that there is � < κn+1
so that the restriction of F to A�� ∗ U̇�� is sufficient to interpret �. Let 〈a, u〉 in
F force this.
Increasing � wemay assume it is a successor point in dom(φ) and greater than κn ,
so that A�� ∗ U̇�� is �-c.c. in V . Below 〈a, u〉, there are then fewer than � possible
values for the domain of �	 for each 	 < �. The set D equal to the union of these
possible values over all 	 < � then has size less than κn+1.
Suppose next thatn = 0.ByDefinition 4.4 and since κ1 = �+ for some� ∈ Index,

A�� ∗ U̇�� + 1 has size at most κ1, and does not collapse κ1, where � is the largest
point of dom(φ) below �. U�κ1 is equal to U��+ 1, so the full poset A�� ∗ U̇�κ1 is
equal to (A�� ∗ U̇��+ 1)× Add(�, [�, �)). Since Add(�, [�, �)) is κ1-c.c. over any
model that preserves κ1, the full poset does not collapse κ1. As in the case of n > 0 it
now follows that �[F ] can be determined from the restriction of F to Add(�, [�, �))
and some part of A�� ∗ U̇��+ 1 of size � < κ1. Again as in the case of n > 0, this
allows bounding the union of possible domains for �	 by a set of size < κ1. �
Claim 4.16. LetA∗U be generic forA∗ U̇ overV , and let S be generic forC+A∗U
over V [A ∗U ]. Let n < � and let F = A�κn+2 ∗U �κn+2. Then, in the factor poset to
add a generic G for C+F �[κn+2, �) that refines S�[κn+2, �), every decreasing sequence
of length < κn+2 that belongs to V [F ] has a lower bound.

Proof. Similar to Claim 4.9 (with � = κn+2). �
Claim 4.17. LetA�κn+2∗U �κn+1 be generic forA�κn+2∗U�κn+1 overV . Then forc-
ing withC+A�κn+2∗U�κn+1�[κn+1, κn+2) overV [A�κn+2 ∗U �κn+1] collapses all cardinals
between κn+1 and κn+2 to κn+1.

Proof. Let Sn be generic for C+A�κn+2∗U�κn+1�[κn+1, κn+2). For each α ∈
(κn+1, κn+2), let xα =

⋃
p∈Sn p(α)[A�α ∗ U �κn+1]. Then by the definition of

C+A�κn+2∗U�κn+1 and genericity, xα is a subset of κn+1, added generically using
bounded initial segments that belong to V [A�α ∗ U �κn+1]. In V [A�α] there are
at least α subsets of κn. (This is because An�α = Add(κn, α).) By genericity, each
of these occurs as a segment of xα . Since xα is a subset of κn+1, it follows that α is
collapsed to κn+1. �
Let A be generic for A over V , let U be generic for U over V [A], and let S be
generic for C+A∗U over V [A][U ]. Let e be generic over V [A][U ][S] for the poset
Col(�,�)V . (Recall that the generic A1 selects �. A1 is generic for Add(κ1, κ3),
where κ1 = �+.) We intend to show that in the extension V [A][U ][S][e], κn is ℵn
for each n, and the tree property holds at κn+2.
We begin by determining the cardinals of the model. For this we use a reverse
analysis of the forcing. Let C refine S to a generic for C over V [A][U ][e]. Let B
refine U to a generic for the product B�κ1 ×

∏
B+∅�[κn+1, κn+2) over V [A][C ][e].

(This product is not the same as B, since B is not a product of its coordinates.) Then
V [A][U ][S][e] ⊆ V [A][B][C ][e]. (Indeed, U is the upward closure of B in U, and
S is the upward closure of C in C+A∗U .) V [A][B][C ][e] is a product of its segments
between successive κns, rather than a composition, and therefore easier to analyze.

Claim 4.18. Let n < �. Then Vn+2 = V [A[n+2,�) ×B�[κn+2, �)×C �[κn+2, �)] is
a <κn+2 closed extension of V .
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Proof. Closure is clear for A[n+2,�), holds by Claim 4.7 (with �̄ = 0) for
B+∅�[κn+2, �), and by part (1) of Claim 4.15 (with � = 0) for C�[κn+2, �). �
LetBn denoteB+∅�[κn+1, κn+2), and letBn = B�[κn+1, κn+2), so thatBn is generic

for Bn, and B = B�κ1 ×
∏
Bn . (With this indexing, U0 is an upward closure of

B�κ1 × B0, and for n ≥ 1, Un is an upward closure of Bn.)
Claim 4.19. κn+2 is an inaccessible cardinal in Vn+2[Bn]. Moreover Vn+2 has the

<� covering property in Vn+2[Bn], for every cardinal � ≥ κn+2 of Vn+2. In particular,
the extension does not collapse any cardinals above κn+2.

Proof. For any successor point α ∈ dom(Bn), B+∅�[κn+1, α) × B+∅�[α, κn+2)
subsumes Bn by Claim 4.5. (Given a generic B[κn+1,α)× Ḡ for the product, the claim
is used to convert Ḡ to a generic for B+B[κn+1 ,α)�[α, κn+2) that can then be appended
to B[κn+1,α).) This is a product of a poset which has size less than α (because α is
a successor point in dom(Bn)), with a poset which is <α closed (by Claim 4.7).
It follows that α remains a cardinal in the extension by this product, that the
cofinality of κn+2 is not changed to be smaller than α, and that there are at most
α bounded subsets of α in the extension. It also follows that every subset of Vn+2
of size < α in the extension is contained in a set of size less than α in Vn+2. Since
the product subsumes Bn , all these claims hold also for the extension by Bn . Taken
together for all successor points α ∈ dom(Bn) they imply that κn+2 is inaccessible in
Vn+2[Bn], and thatVn+2 has the<κn+2 covering property in Vn+2[Bn]. Finally, since
the forcing notion adding Bn has size κn+2, every subset of Vn+2 of size � ≥ κn+2 in
Vn+2[Bn] is contained in a set of the same size in Vn+2. �
Claim 4.20. Cn is κn+2-c.c. in Vn+2[Bn]. In particular, no cardinals ≥ κn+2 are

collapsed in the extension of Vn+2[Bn] by Cn, and Vn+2[Bn] has the <� covering
property in the extension, for every cardinal � ≥ κn+2 of Vn+2[Bn].
Proof. By Claims 4.18 and 4.19,V has the<κn+2 covering property inVn+2[Bn].

Since all conditions in Cn are functions in V with domain of size < κn+1 in V , it
follows by Claim 2.2 that any antichain of Cn of size κn+2 in Vn+2[Bn] can be
refined to an antichain of the same size, with conditions whose domains form a Δ
system. Letting r be the root of the system this implies that there are κn+2 pairwise
incompatible conditions inCn with domain r. But as sup(r) < κn+2, this contradicts
the definition of Cn and the fact that κn+2 is inaccessible in Vn+2[Bn]. �
Claim 4.21. An+1 is κn+2-c.c. in Vn+2[Bn][Cn]. In particular, no cardinals ≥ κn+2

are collapsed in the extension of Vn+2[Bn][Cn] by An+1, and the model has the <�
covering property in the extension, for every cardinal � ≥ κn+2 of the model.
Proof. Similar to the proof of Claim 4.20, using the fact that, by Claims

4.18–4.20, V has the <κn+2 covering property in Vn+2[Bn][Cn]. �
Corollary 4.22. For n ≥ 2, κn is a cardinal in V1 = V [A[1,�)][B�[κ1, �)][C ], and

V has the <κn covering property in V1.

Proof. Immediate working through the extensions in reverse, using Claims
4.18–4.21. �
Claim 4.23. V1 = V [A[1,�)][B�[κ1, �)][C ] is a <κ1 closed extension of V , and, in

particular, κ1 is a cardinal in this extension.
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Proof. V2 = V [A[2,�)][B[1,�)][C[1,�)] is a <κ2 closed extension of V by Claim
4.18. The posets A1, B0, and C0 are <κ1 closed in V , hence also in V2, so
V [A[1,�)][B[κ1,�)][C[0,�)] is a <κ1 closed extension of V . �
Lemma 4.24. In the extension V [A][U ][S][e], κn = ℵn for each n, and V has
the <κn covering property for all n ≥ 2. The same is true in the larger extension
V [A][U �κ1][B�[κ1, �)][C ][e].
Proof. By Corollary 4.22, κn remains a cardinal in V [A[1,�)][B�[κ1, �)][C ]
for each n ≥ 2, and V has the <κn covering property in this model. Since
A0 = Add(�, κn+2)V is �1-c.c. in this model, the poset Col(�,�) leading to
e has size � < κ1, and the poset U�κ1 has size at most κ1 by the requirements in
Definition 4.4, the same is true of themodelV [A[1,�)][B�[κ1, �)][C ][A0][e][U �κ1] =
V [A][B�[κ1, �)][C ][e][U �κ1].
By Claim 4.23, V [A[1,�)][B�[κ1, �)][C ] is a <κ1 closed extension of V , and, in
particular, κ1 is a cardinal in this extension. Recall that κ1 = �+ for some �
which belongs to the set Index given in Definition 4.4. By definition of Index, this
implies that there is a largest point � in dom(φ) below � (equivalently largest
below κ1, as dom(φ) includes only inaccessible cardinals), so that forcing with
A�� ∗ U̇�� + 1 over any <κ1 closed extension of V does not collapse κ1. So κ1
remains a cardinal in V [A[1,�)][B�[κ1, �)][C ][A��][U �� + 1]. Since there are no
points in the domains of conditions of B between � and �, U ��+ 1 is the same as
U �κ1. Since A0 and Col(�,�) are κ1-c.c. in any model where κ1 is a cardinal, the
addition of A0�[�, κ2) and e does not collapse κ1. It follows that κ1 is a cardinal in
V [A[1,�)][B�[κ1, �)][C ][e][A�κ2][U �κ1] = V [A][B�[κ1, �)][C ][e][U �κ1]. κ0 = � is
of course a cardinal in the model too. The addition of e, A�κ2, and U �κ1 does not
destroy the <� covering property for any � ≥ κ2, since these objects are added by
posets which are κ1-c.c. or of size κ1.
We showed so far that κn is a cardinal in V [A][B�[κ1, �)][C ][e][U �κ1] for all n,
and thatV has the<κn covering property in this model for n ≥ 2. These properties
transfer to the smaller model V [A][U �κ1][U �[κ1, �)][S][e] = V [A][U ][S][e]. To
complete the proof of the lemma, it is enough to show that for every n < �, all
cardinals between κn and κn+1 are collapsed to κn in this model. For n ≥ 1 this is
true by Claim 4.17, and for n = 0 it is true, because e collapses �, the predecessor
of κ1, to � = κ0. �
Remark 4.25. Recall that � = supκn. It follows from Lemma 4.24 that �+ is not
collapsed in the extensions V [A][U ][S][e] and V [A][U �κ1][B�[κ1, �)][C ][e]. Since
the posets leading to these extensions have size �+, no greater cardinals are collapsed
either. Note that the proof of Lemma 4.24 and the claims leading to it could be
repeated over any � closed extension V [E] of V , with no change. It follows that for
any such E, �+ is not collapsed by the forcing to add A ∗U ∗ S ∗ e over V [E], and
similarly it is not collapsed by the forcing to add A ∗ U �κ1 ∗ B�[κ1, �) ∗ C ∗ e over
V [E].

Lemma 4.26. For each n < �, all sequences of ordinals of length < κn+1 in
V [A][U ][S][e] belong to V [A�κn+2][U �κn+1][S�κn+1][e].
Proof. Let f be a sequence of ordinals of length < κn+1 in V [A][U ][S][e].
Then f belongs to V [A][U �κn+1][B�[κn+1, �)][S�κn+1][C �[κn+1, �)][e], in other
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words to Vn+1[A[0,n]][U �κn+1][S�κn+1][e]. Let ḟ ∈ Vn+1 be a name so that
f = ḟ[A[0,n]][U �κn+1][S�κn+1][e].
Since κn+1 is a cardinal in Vn+1[A[0,n]][U �κn+1][S�κn+1][e], and since the length

of f is smaller than κn+1, there is � < κn+1 so that the parts of U �κn+1 and S�κn+1
needed to interpret ḟ are just U �� and S��. (In case n = 0, where � < κ1, U ��
means the restriction ofU to a subset of U̇ of size �. We can find such a restriction,
which still suffices to interpret ḟ, because of the properties of κ1 = �+ given by the
definition of the set Index, specifically condition (3) in Definition 4.4.)
Since A[0,n] is κn+1-c.c. in Vn+1, and the poset giving rise to e, Col(�,�), has size

� < κn+1, it follows using these restrictions that ḟ can be replaced by a name of
size < κn+1 in Vn+1. By Claim 4.18, or Claim 4.23 if n = 0, it follows that ḟ belongs
to V . Hence f belongs to V [A[0,n]][U �κn+1)][S�κn+1][e]. �
Remark 4.27. It follows from the proof of Lemma 4.26 that if Q ∈ V is <κn+1

closed in V , then forcing with Q over V [A][U ][S][e] does not add sequences of
ordinals of length < κn+1. To see this, let Q be generic for Q over V [A][U ][S][e],
and repeat the proof of Lemma 4.26 using Vn+1[Q] instead of Vn+1 throughout.
(Vn+1[Q] is a <κn+1 closed extension of V , by the closure of Q, and this is all that
the proof required.) The proof shows that any sequence of ordinals of length< κn+1
in V [A][U ][S][e][Q] belongs to V [A�κn+2][U �κn+1][S�κn+1][e], and, in particular,
it belongs to V [A][U ][S][e].

Claim 4.28. In V [A][U ][S][e], 2κn = κn+2 for each n.

Proof. It is clear that 2κn ≥ κn+2, sinceAn addsκn+2 subsets ofκn . For the reverse
direction, it is enough by Lemma 4.26 to show that 2κn ≤ κn+2 in the extension
V [A�κn+2][U �κn+1][S�κn+1][e].
The extension V [A�κn+1][U �κn+1][S�κn+1][e] is obtained through a poset of size

κn+1, leaving κn+2 an inaccessible cardinal. A standard counting of names shows
that in the further extension by A�[κn+1, κn+2), 2κn ≤ κn+2. �
Lemma 4.29. In V [A][U ][S][e], the tree property holds at κn+2 for each n.

Proof. Fix n. LetT be a κn+2 tree, in other words anℵn+2 tree, inV [A][U ][S][e].
We intend to produce, in a generic extension of V [A][U ][S][e] by some poset P, an
elementary embedding � : V [A][U ][S][e] → V [A∗][U ∗][S∗][e] with critical point
κn+2. Then since T is a κn+2 tree, �(T )�κn+2 is simply T itself. Any node on level
κn+2 of �(T ) determines a cofinal branch through �(T )�κn+2, hence through T . So
T has cofinal branches in the extension producing �, namely the extension by P.
We will end the proof by showing that P is a forcing notion that does not add new
cofinal branches to T , so T must already have cofinal branches in V [A][U ][S][e].
We begin by producing �, while keeping track of the forcing notions needed to

obtain it.
Let F = A�κn+2 ∗U �κn+2. Let P1 be the forcing notion refining U �[κn+2, �) to a

generic G1 for B+F �[κn+2, �). Let P2 be the forcing notion refining S�[κn+2, �) to
a generic G2 for C+F �[κn+2, �).

Claim 4.30. P1 and P2 are <κn+1 closed in V [A][U ][S�[κn+1, �)].
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Proof. By Claim 4.9, every decreasing sequence of P1 that has length < κn+2
and belongs to V [F ] has a lower bound in P1. By Lemma 4.26, every decreas-
ing sequence of length < κn+1 in P1 that belongs to V [A][U ][S�[κn+1, �)] belongs
already to V [A�κn+2][U �κn+1] ⊆ V [F ]. (A direct application of the lemma gives
that the sequence belongs toV [A�κn+2][U �κn+1][S�κn+1]. The sequence is assumed
to belong to V [A][U ][S�[κn+1, �)]. These two models are mutually generic exten-
sions of V [A�κn+2][U �κn+1]. Since the sequence belongs to both, it must belong to
V [A�κn+2][U �κn+1].)
It follows that all decreasing sequences of length < κn+1 in P1 that belong to
V [A][U ][S�[κn+1, �)] have lower bounds inP1. A similar argument using Claim 4.16
applies to P2. �
The posets B+F �[κn+2, �) and C+F �[κn+2, �) belong to V [F ] and are <κn+2
directed closed in thismodel, byClaims 4.7 and 4.15.We can therefore apply Lemma
4.12, using specifically the indestructibility of the generic supercompactness of κn+2
under forcing with the product of these two posets. Applying the lemma we obtain
an elementary embedding � : V [A][U[0,n]][G1][G2]→ V ∗[A∗][U ∗

[0,n]][G
∗
1 ][G

∗
2 ].

By Lemma 4.12, � is obtained in the extension of V [A][U[0,n]][G1][G2] by the
posets Add(κn, �(κn+2))V × Add(κn+1, �(κn+3))V . Let Ân and Ân+1 be the corre-
sponding generics.
Let U ∗

[n+1,�) be the upward closure of G
∗
1 in �(U[n+1,�)). Then U

∗
[n+1,�) is generic

for �(U[n+1,�)) over V ∗[A∗][U ∗
[0,n]][G

∗
2 ]. Letting U

∗ be the sequence obtained by
joining U ∗

[0,n] and U
∗
[n+1,�), it follows that U

∗ is generic for �(U) over V ∗[A∗],
and that G∗

2 is generic over V
∗[A∗][U ∗]. Moreover, � restricts to an elementary

embedding, which we also denote �, from V [A][U ][G2] to V ∗[A∗][U ∗][G∗
2 ].

Let S∗[n+1,�) be the upward closure of G
∗
2 in �(C)

+A∗∗U∗
[n+1,�) . As in the previous

paragraph, � restricts further, to an elementary embedding of V [A][U ][S[n+1,�)]
into V ∗[A∗][U ∗][S∗[n+1,�)]. Since e and S[0,n−1] are generic for posets of size less
than κn+2 = crit(�), this embedding in turn extends to an elementary embedding
of V [A][U ][S[n+1,�)][S[0,n−1]][e] into V ∗[A∗][U ∗][S∗[n+1,�)][S[0,n−1]][e].
Finally, let G3 be generic for P3 = �(C)+A�κn+2∗U�κn+1�[κn+2, �(κn+2)). Let
G+3 be the upward closure of G3 in �(Cn)

+A∗∗U∗�[κn+2, �(κn+2)). (Note A∗ ∗
U ∗ extends A�κn+2 ∗ U �κn+1.) Let S∗n = Sn × G+3 . Then S∗n is generic for
�(C+A∗Un ) = �(Cn)+A

∗∗U∗
, and � extends to an embedding of V [A][U ][S][e] =

V [A][U ][S[n+1,�)][S[0,n−1]][e][Sn] into V ∗[A∗][U ∗][S∗[n+1,�)][S[0,n−1]][e][S
∗
n ] which

is equal to V ∗[A∗][U ∗][S∗][e].
Claim 4.31. The poset P3 = �(C)+A�κn+2∗U�κn+1�[κn+2, �(κn+2)) used to addG3 is
<κn+1 closed in V [A][U ][S�[κn+1, �)].
Proof. By part (2) of Claim 4.15, applied in V ∗[A∗][U ∗], the poset is <κn+1
closed in V ∗[A∗�κn+2][U ∗�κn+1] = V ∗[A�κn+2][U �κn+1].
V ∗ is κn+2 closed in V [A[n+2,�)], and hence V ∗[A�κn+2][U �κn+1] is <κn+2 closed
inV [A[n+2,�)][A�κn+2][U �κn+1]. By the previous paragraph then, the poset is<κn+1
closed in V [A[n+2,�)][A�κn+2][U �κn+1].
By Lemma 4.26, any sequence of ordinals of length < κn+1 that belongs to
V [A][U ][S�[κn+1, �)], belongs already to V [A�κn+2][U �κn+1], and hence belongs
to V [A[n+2,�)][A�κn+2][U �κn+1]. It follows that any descending chain of length
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< κn+1 in the poset, that belongs to V [A][U ][S�[κn+1, �)], belongs already to
V [A[n+2,�)][A�κn+2][U �κn+1], and has a lower bound using the closure in the
previous paragraph. �
We have so far produced an elementary embedding � on V [A][U ][S][e], with

critical point κn+2. Since �(T ) determines cofinal branches through �(T )�κn+2 =
T , the model containing the embedding has such branches. This model is a
generic extension of V [A][U ][S][e] by the product of P1, P2, Add(κn, �(κn+2))V ,
Add(κn+1, �(κn+3))V , and P3. The generics added by these posets are G1, G2, Ân,
Ân+1, andG3. It remains to see that the extension by these objects does not add new
cofinal branches to T . Since there are cofinal branches in the extension, this implies
that there are cofinal branches through T already in V [A][U ][S][e].
Note that all the posets involved in the extension belong to V [A][U ][S][e]. We

may therefore consider them in any order we wish. We will add Ân+1 first, followed
by G1 ×G2 ×G3, followed finally by Ân.
By Lemma 4.24, V has the<κn+2 covering property in V [A][U ][S][e]. It follows

using Claim 2.2 that the poset Add(κn+1, �(κn+3))V adding Ân+1 is κn+2-c.c. in
V [A][U ][S][e]. Hence by Claim 2.3, the extension by Ân+1 does not add new cofinal
branches to T .
The extension by Ân+1, being κn+2-c.c., does not collapse any cardinals at or

above κn+2. By Remark 4.27 it does not add any sequences of ordinals of length
< κn+1 (hence it does not collapse cardinals below κn+2 either). By Claims 4.30 and
4.31 it follows that P1, P2, and P3 are <κn+1 closed in V [A][U ][S�[κn+1, �)][Ân+1].
LetW denote this model. Note that 2κn = κn+2 inW , and V [A][U ][S][e][Ân+1] is
an extension ofW by the poset C+A∗U[0,n) × Col(�,�).

Claim 4.32. The poset C+A∗U[0,n) × Col(�,�) is κn+1-c.c. inW .

Proof. Since � < κn+1, and the posets C+A∗Ui for i < n − 1 have size < κn+1, it
is enough to check that (if n ≥ 1) C+A∗Un−1 is κn+1-c.c. inW .
Recall that Ân+1 does not add sequences of ordinals of length< κn+1. From this,

the fact that n ≥ 1, and Lemma 4.24, it follows that V has the <κn+1 covering
property in V [A][U ][S][e][Ân+1], and therefore also inW . By an argument similar
to that of Claim 4.20, this implies that C+A∗Un−1 is κn+1-c.c. inW . �
Since P1 × P2 × P3 belongs toW and is <κn+1 closed in W , 2κn = κn+2 in W ,

and V [A][U ][S][e][Ân+1] is a κn+1-c.c. extension ofW , it follows using Claim 2.4
that forcing with P1×P2×P3 over V [A][U ][S][e][Ân+1], to addG1×G2×G3, does
not add any new cofinal branches to T .
It remains to show that forcing to add Ân overV [A][U ][S][e][Ân+1][G1×G2×G3]

does not add new cofinal branches to T .
By Claim 2.5, the extension by G1 × G2 × G3 does not add any sequences of

ordinals of length < κn+1. If n ≥ 1 it follows from this and Lemma 4.24 that V has
the <κn+1 covering property in V [A][U ][S][e][Ân+1][G1 × G2 × G3]. This in turn
implies that Add(κn, �(κn+2))V , the poset adding Ân, is κn+1-c.c. in this model, and
indeed so is Add(κn, �(κn+2) · �)V for any cardinal �. The same conclusion is true
for n = 0, because the poset is Add(�, �(κn2 ) · �)V in this case, and this poset is
κ1-c.c. in any model where κ1 is a cardinal.
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κn+2 is collapsed in the extension by G1 × G2 × G3. But since the extension
does not add sequences of ordinals of length < κn+1, the cofinality of κn+2 in
the extension is at least κn+1. The poset Add(κn, �(κn+2) · �)V is a �th power
of the poset Add(κn, �(κn+2))V adding Ân, meaning that it adds � mutually
generic filters for Add(κn, �(κn+2))V . Using the fact that this poset is κn+1-c.c.
it now follows by Claim 2.3 that the final extension, by Ân over the model
V [A][U ][S][e][Ân+1][G×G2 × G3], does not add new cofinal branches to T . This
completes the proof of Lemma 4.29. �
We showed as part of the proof of Lemma 4.29 that for any m ≥ 2, there are
generic elementary supercompactness embeddings on V [A][U ][S][e], with critical
point κm. The next claim summarizes some properties of these embeddings and the
posets used to obtain them.
Claim 4.33. Let � < �, and let n ≥ 2 be large enough that κn > �. Then there is a
poset P in V [A][U ][S][e], and a �th power of this poset, P�, so that:
1. Forcing with P over V [A][U ][S][e] adds an elementary � : V [A][U ][S][e] →
V ∗[A∗][U ∗][S∗][e], with crit(�) = κn+2 and sup(�′′�+) < �(�+).

2. Forcing with P� over V [A][U ][S][e] does not add any sequences of ordinals of
length < κn . In particular, no cardinals ≤ κn are collapsed, and the cofinality
of �+ is not reduced below κn.

By a �th power of P here we mean a poset adding � mutually generic filters for P.
Proof. P is the product of Add(κn, �(κn+2))V , Add(κn+1, �(κn+3))V , P1, P2, and

P3, used in the proof of Lemma 4.29 to extend the embedding �. Starting with an
embedding which is at least �+ supercompact we then immediately get condition
(1). It remains to define P� and prove condition (2).
Let P� be the product of the posets Add(κn, �(κn+2))V , Add(κn+1, �(κn+3))V , P�1,

P�2, and P
�
3, where the powers of P1, P2, and P3 are taken with full support in the

model V [A][U ][S�[κn+1, �)]. By Claims 4.30 and 4.31, P1, P2, and P3 are <κn+1
closed in this model, and therefore so are their full support �th powers.
Since each of Add(κn, �(κn+2))V andAdd(κn+1, �(κn+3))V is isomorphic to a �th
power of itself, P� adds �mutually generic filters for P.
By Remark 4.27, forcing with Add(κn, �(κn+2))V ×Add(κn+1, �(κn+3))V to add
Ân and Ân+1 does not add sequences of ordinals of length < κn. As in the proof
of Lemma 4.29, P�1 × P�2 × P�3 is <κn+1 closed in V [A][U ][S�[κn+1, �)][Ân+1],
and using Claim 2.5 this implies that forcing with this poset over the model
V [A][U ][S][Ân+1][Ân] does not add sequences of ordinals of length < κn+1. �

§5. Further analysis. We showed in the last section that in V [A][U ][S][e], κn =
ℵn for each n < �, and the tree property holds at κn for n ≥ 2. In this section we
explore the model obtained by “removing” A1, e, and S0. We use this model later
on. For now we just collect results on generic elementary embeddings acting on the
model.
Since U[1,�) and C

+A∗U
[1,�) rely on A1 in their definitions, we have to pass to coarser

generics, in posets that do not rely on A1, before we can remove A1. We begin by
defining the relevant posets.
Recall that whenever we work with a filter F on A�� ∗ U̇�� , we assume without
saying that the filter is rich enough that every condition in F can be strengthened
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inside F to a condition of the form 〈a, ǔ〉 (which abusing notation we refer to as
〈a, u〉). This assumption holds for generic filters.
Definition 5.1. Let F be a filter on A�� ∗ U̇�� . Let � ≤ � and let B be a filter

on B+F �[�, �). Define F + B to be {〈a, u〉 | 〈a, u��〉 ∈ F and u�[�, �) ∈ B}.
For a condition b ∈ B+F �[�, �), define F + b to be {〈a, u〉 | 〈a, u��〉 ∈ F and
b ≤B+F �[�,�) u�[�, �)}.
It is easy to check that F + B is a filter on A�� ∗ U̇��, and similarly with F + b.
Claim 5.2. Suppose that F is generic for A�� ∗ U̇�� over V , and B is generic for

B+F �[�, �) over V [F ]. Then:
1. B+F+B�[�, �) is <� directed closed in V [F ][B].
2. If � ≤ κn+2, then C+F+B�[κn+2, �) is <κn+2 directed closed in V [F ][B].
3. If � ≤ κn+2, then C+F+B�[κn+2, �) is <κn+2 directed closed in V [F ][B].
Proof. Conditions (1) and (2) are similar to Claims 4.7 and 4.15, respec-

tively. For condition (3), note that any set of size < κn+2 in V [F ][B] belongs to
V [F ][B�κn+2], since by condition (1), B�[κn+2, �) is added by a <κn+2 closed forc-
ing over V [F ][B�κn+2]. Thus, it is enough to show that directed sets of size < κn+2
in C+F+B�[κn+2, �) that belong toV [F ][B�κn+2] have lower bounds. This again can
be done by arguments similar to those in the proofs of Claims 4.7 and 4.15. �
Definition 5.3. Let F be a filter on A�� ∗ U̇�� . Define Q(�, F ) to be the poset

consisting of pairs 〈b, c〉 ∈ B�[�, �) × C�[�, �), ordered by 〈b∗, c∗〉 ≤ 〈b, c〉 iff b∗
extends b in B+F �[�, �), and c∗ extends c in C+F+b∗�[�, �).

TheposetQ(�, F ) is forcing isomorphic to the composition ofB+F �[�, �) followed
by C+F+B�[�, �), where B is the generic added by the first stage of the composi-
tion. Indeed, the restriction of the composition to conditions of the form 〈b, č〉
(as opposed to the more general 〈b, ċ〉) is isomorphic to Q(�, F ).
Claim 5.4. Let � = κn+2, and let F be generic forA�� ∗U̇�� overV . ThenQ(�, F )

is <κn+2 directed closed in V [F ].

Proof. Immediate fromClaim 5.2, viewingQ(�, F ) as a composition. Condition
(1) of the claim implies that the first stage B+F �[κn+2, �) is <κn+2 directed closed
in V [F ], and condition (3) implies that the second stage C+F+B�[κn+2, �) is <κn+2
directed closed in V [F ][B]. �
Let Q̇(�) ∈ V name the poset Q(�, F ) in the extension by A�� ∗ U̇�� to add

F . Let Q̂(�) be the forcing associated with Q̇(�) by Definition 4.10. Conditions in
Q̂(�) are A�� ∗ U̇�� names for elements of Q̇(�), with the ordering p∗ ≤ p iff this
is forced by the empty condition in A�� ∗ U̇�� . For a filter F̄ ⊆ A�� ∗ U̇�� , Q̂(�)+F̄
is the enriched poset with the same conditions but richer order given by p∗ ≤ p iff
this is forced by some condition in F̄ .

Claim 5.5. Let A0 ∗ U0 be generic for A0 ∗ U̇0 over V , and let B̄ be generic for
B+A0∗U0�[κ2, κn+2) over V [A0 ∗ U0]. Let F̄ = A0 ∗ U0 + B̄ . Then a dense subset of
Q̂(κn+2)+F̄ is isomorphic to Q(κn+2, F̄ ).

Proof. Q(κn+2, F̄ ) is, immediately from the definitions, isomorphic to the restric-
tion of Q̂(κn+2)+F̄ to “check names”, that is, conditions of the form 〈b̌, č〉 rather

https://doi.org/10.1017/jsl.2013.25 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2013.25


454 ITAY NEEMAN

than the more general form 〈ḃ, ċ〉. The isomorphism witnessing this is the map
〈b, c〉 �→ 〈b̌, č〉.
Thus, it is enough to prove that densely many conditions in Q̂(κn+2)+F̄ are equiv-
alent to check names.
Let 〈ḃ, ċ〉 be a condition in Q̂(κn+2). Then ḃ is an A�κn+2 ∗ U̇�κn+2 name for
an element of B[κn+2,�). Similarly ċ is an A�κn+2 ∗ U̇�κn+2 name for an element of
C[κn+2,�).
LetDḃ be the set of α ∈ [κn+2, �) which can be forced into the domain of ḃ. Since
these points are all inaccessible cardinals greater than κn+2, and since A�κn+2 ∗
U̇�κn+2 has size κn+2, Dḃ satisfies the support requirements in condition (1) of
Definition 4.1.
Define b ∈ B[κn+2,�), with dom(b) = Dḃ , as follows. For each α ∈ Dḃ , let b(α) be
the canonical A�α ∗ U̇�α name for ḃ[A�κn+2 ∗U �κn+2](α)[A�α ∗U �α], where this
is understood to be the empty condition if α �∈ dom(ḃ[A�κn+2 ∗U �κn+2]).
Define c ∈ C[κn+2,�) similarly, using the name ċ, except that Dċ must be defined
more carefully, since the support restrictions in Definition 4.13 are more stringent:
Dċ ∩ [κn+2, κn+3) must have size < κn+2.Dċ satisfying this can be obtained as in the
proof of Claim 4.15.
Extending 〈ḃ, ċ〉 trivially we may assume that the domain of ḃ is forced equal
to Ďḃ , and the domain of ċ is forced equal to Ďċ . One can now check that 〈ḃ, ċ〉 ≤
〈b̌, č〉 in Q̂(κn+2)+F̄ , and vice versa. �
Let A0 ∗U0 be generic for A0 ∗ U̇0 over V , let B[1,�) be generic for B+A0∗U0�[κ2, �)
over V [A0 ∗ U0], and let C[1,�) be generic for C+A0∗U0+B�[κ2, �) over V [A0 ∗
U0][B[1,�)]. (Equivalently for the last two extensions, B[1,�) ∗ C[1,�) is generic for
Q(κ2, A0 ∗U0).) Let A[2,�) be generic for A[2,�) over V [A0 ∗U0][B[1,�)][C[1,�)].
Let M denote the model V [A[2,�)][A0 ∗ U0][B[1,�)][C[1,�)]. We work with this
model for the rest of the section. Let F = A0 ∗U0 + B[1,�).
Lemma 5.6. Let n ≥ 3. Let � < κn. Then there is a poset P inM , and a �th power

P� of P, so that, overM :
1. Forcing with P adds an elementary embedding� : M →M∗ with crit(�) = κn+2,
and sup(�′′�+) < �(�+).

2. Forcing with P� does not add sequences of ordinals of length < κn .
Proof. This is similar to a combination of Lemma 4.12 and the construction of
� in the proof of Lemma 4.29, but various changes have to be made to account for
the fact that we are working with the filter F �κn+2 rather than a full generic filter
on A�κn+2 ∗ U̇�κn+2.
Let � : V [A[n+2,�)]→ V ∗[A∗

[n+2,�)] be a � supercompactness embedding for some
� > �+, inV [A[n+2,�)], with crit(�) = κn+2, ��Ord inV , and such that�(φ)(κn+2) =
Q̇(κn+2) and the next element of dom(�(φ)) above κn+2 is greater than �. Such an
embedding can be found using the indestructibility properties of κn+2 and φ. We
can also arrange that �++ is a fixed point of the embedding, so that the various
posets that come up in the construction below have at most �+ dense subsets that
belong to the appropriate extensions of V ∗.
Since A0 ∗U0 is added by a small forcing relative to κn+2, � extends to an embed-
ding of V [A[n+2,�)][A0 ∗U0] to V ∗[A∗

[n+2,�)][A0 ∗U0].
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Let G = B[1,�)�[κn+2, �) ∗ C[1,�)�[κn+2, �). Let F̄ = F �κn+2 = A0 ∗ U0 +
B[1,�)�κn+2. Then by definitions, G is generic for Q(κn+2, F̄ ) over V [A[2,�)][F̄ ].
By Claim 5.5, G (more precisely its isomorphic image) is generic for Q̂(κn+2)+F̄ . It
follows from this and the choice of � that B[1,�)�κn+2 and G join to form a generic
filter for �(B)+A0∗U0�[κ2, κn+2 + 1). Denote this generic by B∗

[1,�)�κn+2 + 1. (It con-
sists of conditions u so that u�κn+2 ∈ B[1,�), and i(u(κn+2)) ∈ G , where i is the
isomorphism given by Claim 5.5.)
Let B∗

top denote the poset �(B)
+A0∗U0+B∗

[1,�)�κn+2+1�[κn+2 + 1, �(�)). By Claim 5.2,
this poset is <α closed in V ∗[A0 ∗ U0][B[1,�)�κn+2][G ], where α is the first
point in dom(�(φ)) above κn+2. By choice of �, α is greater than � and
V ∗[A0 ∗ U0][B[1,�)�κn+2][G ] is � closed in V [A[n+2,�)][A0 ∗ U0][B[1,�)�κn+2][G ],
which is equal to V [A[n+2,�)][A0 ∗ U0][B[1,�)][C[1,�)�[κn+2, �)]. Working inside this
model we can therefore find a filter H ∗

top on B∗
top which meets all dense sets

that belong to V ∗[A0 ∗ U0][B[1,�)�κn+2][G ]. Since �′′B[1,�)�[κn+2, �) belongs to
V ∗[A0 ∗U0][B[1,�)�κn+2][G ] (it can be computed from G using �), and by directed
closure has a lower bound inB∗

top, we canbuildH
∗
top so that it contains a lower bound

for �′′B[1,�)�[κn+2, �). ThenB∗
[1,�)�κn+2+1 andH ∗

top join to form a genericB
∗
[1,�) for

�(B)+A0∗U0�[κ2, �(�)), and� extends to an embedding ofV [A[n+2,�)][A0∗U0][B[1,�)]
to V ∗[A∗

[n+2,�)][A0 ∗U0][B∗
[1,�)].

A similar argument, using the fact that C[1,�)�[κn+2, �) is also part of G , allows
finding, still inside the model V [A[n+2,�)][A0 ∗ U0][B[1,�)][C[1,�)�[κn+2, �)], a fil-
ter C ∗

[1,�)�[�(κn+2), �(�)), so that � extends to an embedding of V [A[n+2,�)][A0 ∗
U0][B[1,�)][C[1,�)�[κn+2, �)] to V ∗[A∗

[n+2,�)][A0 ∗U0][B∗
[1,�)][C

∗
[1,�)�[�(κn+2), �(�))].

Since A[2,n) and C[1,�)�κn+1 are added by small forcing, the embedding trivially
extends to absorb these generics too.
Finally, standard arguments allow extending � further, to absorb also An , An+1,

and C[1,�)�[κn+1, κn+2). These extensions require further forcing, with the posets
Add(κn, �(κn+2))V , Add(κn+1, �(κn+3))V , and �(C)+F̄ �[κn+2, �(κn+2)).
This completes the proof of part (1) of the lemma. The poset P needed to produce

the final extension of � is the product of the three posets in the previous paragraph.
The proof of part (2) for this poset is similar to the corresponding proof in Claim
4.33. Let us only note that P� is taken to be the product of Add(κn, �(κn+2))V ,
Add(κn+1, �(κn+3))V , and the full support �th power of �(C)+F̄ �[κn+2, �(κn+2)) in
V ∗[A0 ∗U0][B[1,�)�κn+2], where this poset is <κn+1 closed. �

Lemma 5.7. In V [A[2,�)] there is a �+ supercompactness embedding � from
V [A[2,�)] into V ∗[A∗

[2,�)], so that:

1. crit(�) = κ2, �(κ2) > �, |�(κ2)| = �++, and ��Ord belongs to V . (�+ super-
compactness implies that also sup(�′′�+) < �(�+).)

2. In any extensionM [Â0] ofM by the poset Add(�, [κ2, �(κ2)))V
∗
, � extends to

an elementary embedding � : M →M∗, with � ∈ �(Index).

Since |�(κ2)| = �++, the poset in condition (2) is isomorphic, in V and hence also in
M , to Add(�, �++).
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Proof. This is an application of Lemma 4.12, or more precisely its proof, but
withoutA1. Generic supercompactness is used in the extension ofV [A[2,�)][A0 ∗U0]
by Q(κ2, A0 ∗U0).
The properties of � in condition (1) follow directly from the construction of �,
as does the fact that � extends to act on M given the additional generic Â0. We
leave the details of the construction of the embedding to the reader, noting only
that becauseM omits A1, there is no need to force to add the filter Â1 appearing in
the proof of Lemma 4.12.
It remains to verify that, with the extended �, � ∈ �(Index), meaning that �
satisfies the requirements of Definition 4.4 over V ∗. Condition (1) of the definition
is immediate, as � is a strong limit inV ∗, and the largest point below � in dom(�(φ))
is κ2. Condition (3) holds, because A∗�κ2 ∗ U̇∗�κ2 + 1 is the poset A�κ2 ∗ U̇�κ2
composed with �(φ)(κ2)[A0 ∗ U0], which in this case is equal to Q(κ2, A0 ∗ U0),
and has size �+. Finally, condition (2) of the definition holds, because forcing
with A�κ2 ∗ U̇�κ2 composed with Q(κ2, A0 ∗ U0) does not collapse �+, over any �
closed extension V ∗[E∗] of V ∗. This follows from Remark 4.25, as V ∗[E∗] can be
subsumed byV [E][A[2,�)], whereV [E] is a � closed extension ofV , and the further
extension by A�κ2 ∗ U̇�κ2 composed with Q(κ2, A0 ∗ U0) is then subsumed by the
forcing in the remark to add A ∗U �κ1 ∗ B�[κ1, �) ∗ C ∗ e over V [E]. �
For each � < κ2 that belongs to the set Index of Definition 4.4 (defined over V ),
let L(�) be the poset Add(�+, κ3)V ×C0(�+)+A0∗U0 ×Col(�,�). (Recall that κ1 is
a parameter in the definition of C0, and C0(�+) denotes the poset defined relative
to the parameter κ1 = �+.)

Lemma 5.8. Let R be a rank initial segment of the universe, large enough to
contain all relevant objects. Let M̄ = V̄ [A[2,�)][A0 ∗ U0][B[1,�)][C[1,�)], where V̄ is
the transitive collapse of X ≺R with X ∈ V , V� ⊆ X , |X | = �+, and X closed under
sequences of length � in V . Let Â0 be generic forAdd(�, (�++)M̄ ) overM , hence also
over M̄ . Let �̄ : M̄ → M̄∗ be the embedding given by Lemma 5.7, applied in M̄ [Â0].
Finally, let e be generic for Col(�, �) overM [Â0].
Then there are, in M [Â0][e], filters A∗

1 and S
∗
0 so that A

∗
1 × S∗0 × e is generic for

�(L)(�) over M̄∗.

Proof. Let V̄ ∗, Ā∗
[2,�), A

∗
0 ∗ U ∗

0 , B̄
∗
[1,�), and C̄

∗
[1,�) be such that M̄

∗ is the model
V̄ ∗[Ā∗

[2,�)][A
∗
0 ∗ U ∗

0 ][B̄
∗
[1,�)][C̄

∗
[1,�)]. By Lemma 5.7, V̄

∗ belongs to V̄ [A[2,�)], and
hence also toV [A[2,�)]. Using the closure properties given by the lemma, the closure
of V̄ itself, and the fact that any A[2,�) name for a sequence of ordinals of length
� can be thinned below some condition in A[2,�) to a name of size �, V̄ ∗ is closed
under sequences of length � in V [A[2,�)].
It is enough to produce a generic A∗

1 × C ∗
0 for Add(�

+, �(κ3))V̄
∗ × �(C0)(�+)

over M̄∗[e], in M [Â0]. The upward closure of C ∗
0 in �(C0)(�

+)+A
∗
0 ∗U∗

0 then yields
the necessary S∗0 .
Since M̄∗ is contained in M̄ [Â0], it is enough to ensure that A∗

1 × C ∗
0 is generic

over M̄ [Â0][e] = V̄ [A[2,�)][A0 ∗ U0][B[1,�)][C[1,�)][Â0][e]. Since the poset adding
A∗
1 × C ∗

0 belongs to V̄
∗ ⊆ V̄ [A[2,�)], it is enough to construct A∗

1 × C ∗
0 so that it

is generic over V̄ [A[2,�)], and so that A0 ∗ U0 ∗ B[1,�) ∗ C[1,�) × Â0 × e is generic
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over V̄ [A[2,�)][A
∗
1 × C ∗

0 ]. This in turn holds automatically if A
∗
1 × C ∗

0 belongs to
V [A[2,�)], as A0 ∗U0 ∗ B[1,�) ∗ C[1,�) × Â0 × e is generic over V [A[2,�)].
So, it is enough to constructA∗

1 ×C ∗
0 , generic for Add(�

+, �(κ3))V̄
∗ ×�(C0)(�+)

over V̄ [A[2,�)], inside V [A[2,�)].
The poset Add(�+, �(κ3))V̄

∗ × �(C0)(�+) is � closed in V̄ ∗, and hence also �
closed in V [A[2,�)]. Since V̄ [A[2,�)] has size �+, a generic over this model can be
constructed in V [A[2,�)] by enumerating all dense sets in V̄ [A[2,�)] in order type �+,
and meeting them one by one. �
Lemma 5.9. Let � ∈ Index and let A1 × S0 × e be generic for L(�) overM . Let

A = A0×A1×A[2,�), letU = U0 ∗U[1,�), whereU[1,�) is the upward closure of B[1,�)
in U[1,�), and let S = S0×S[1,�), where S[1,�) is the upward closure ofC[1,�) inC+A∗U[1,�) .
Let N denote V [A][U ][S].
Then B[1,�) and C[1,�) belong to a forcing extension N [G ] of N by a poset which is

� closed in N . Moreover G is generic also over N [e], and � and �+ are not collapsed
in N [e][G ]. (In fact none of the κns is collapsed.)
Proof. B[1,�) andC[1,�) belong to the extension of V [A][U ][S][e] by the product

of the factor poset refiningU[1,�) to a filter for B+A0∗U0�[κ2, �), and the factor poset
refining S[1,�) to a filter for C

+A0∗U0�[κ2, �). (B[1,�) is itself generic for the former;
C[1,�) is the upward closure in C

+A0∗U0+B[1,�)�[κ2, �) of a generic for the latter.) The
factor posets belong to V [A][U ][S]. By Claims 4.9 and 4.16, descending sequences
of length < κ2 in these posets, that belong to V [A0 ∗ U0], have lower bounds. By
Lemma 4.26, all descending sequences of length< κ1 in these posets that belong to
V [A][U ][S] belong toV [A�κ2][U �κ1], and, in particular, they belong toV [A0∗U0].
So the factor posets are <κ1 closed, in other words � closed, in N = V [A][U ][S].
The model resulting from the extension of N [e] by the factor posets is contained
in the model V [A][U �κ1][B�[κ1, �)][C ][e] of Lemma 4.24 and Remark 4.25, and it
follows from the lemma and remark that �+ remains a cardinal in the extension, as
does each κn, and hence so does �. �

§6. The tree property up to ℵ�+1. In this section we combine the ingredients given
by the previous sections into a construction of amodel where the tree property holds
both at all ℵn for 2 ≤ n < �, and at ℵ�+1. A direct combination of these ingredients
will yield the tree property at ℵ�+1 not in the model we construct, but in a forcing
extension of this model. The following preservation lemma from Magidor–Shelah
[4] will allow us to then pull the necessary branches back to the original model.
(The posets we refer to as � closed, in the lemma and throughout the paper, are
called �+ closed in Magidor–Shelah [4].)
Lemma 6.1 (Magidor–Shelah [4, Theorem 5.2]). Suppose � is a strong limit car-

dinal of cofinality �. Let N ⊆ N [G ], where N [G ] is a � closed forcing extension of
N , for some � < �. Let e be generic over N [G ] for a poset E ∈ N of size �. Let T be
a �+ tree in N [e]. Then any cofinal branch of T in N [e][G ] belongs already to N [e].
Theorem 6.2. Suppose there are� supercompact cardinals, and let κn , 2 ≤ n < �,

enumerate them in increasing order. Let � = sup{κn | 2 ≤ n < �}. Then there is a
forcing extension in which κn = ℵn, ℵ� is a strong limit, (�+)V = ℵ�+1, and the tree
property holds at each successor cardinal in the interval [ℵ2,ℵ�+1].
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Proof. Using a preparatory forcing for indestructibility, we may assume that
each κn, 2 ≤ n < �, is indestructibly supercompact. We may also assume that each
κn carries an indestructible Laver function in the sense of Section 4. We begin the
construction of the model witnessing Theorem 6.2 as in Section 5. Let A0 ∗ U0 be
generic forA0 ∗ U̇0 overV . Let B[1,�) be generic forB+A0∗U0�[κ2, �) overV [A0 ∗U0].
Let C[1,�) be generic for C

+A0∗U0+B�[κ2, �) over V [A0 ∗ U0][B[1,�)]. Let A[2,�) be
generic for A[2,�) over V [A0 ∗U0][B[1,�)][C[1,�)].
LetM denote the model V [A[2,�)][A0 ∗U0][B[1,�)][C[1,�)]. Let Index ⊆ κ2 be the
set given by Definition 4.4. (The definition refers to A0 and U0.)
For each � ∈ Index, let L(�) be the poset Add(�+, κ3)V × C0(�+)+A0∗U0 ×
Col(�,�).

Claim 6.3. There is � ∈ Index, so that in the extension of M by L(�), the tree
property holds at �+.

Proof. It is enough to check that the assumptions of Lemma 3.10 hold in M .
The claim then follows by an application of the lemma.
Assumption (1) of the lemma holds overM by Lemma 5.6, used with n = m+1
and � = κm.
Assumption (2) of the lemma holds over M by Lemma 5.8, and the properties
of the embedding � given by Lemma 5.7. The poset P = PX needed to introduce
the embedding � (acting on M̄ ) and the generic L is the poset Add(�, �+) ×
Col(�, �). (This poset is isomorphic to the one used in Lemma 5.8, as (�++)M̄ has
cardinality �+ inM .) It is �+-Knaster by standard arguments using a Δ-system for
the component Add(�, �+) and the fact that Col(�, �) has size less than �+. �
Let � be given by Claim 6.3, and let A1 × S0 × e be generic for L(�) overM . Let
κ1 = �+.
Let A = A0×A1×A[2,�). Let U[1,�) be the upward closure of B[1,�) in U[1,�), and
let U = U0 ∗ U[1,�). Similarly, let S[1,�) be the upward closure of C[1,�) in C+A∗U[1,�) ,
and let S = S0 ∗ S[1,�). Let N be the model V [A][U ][S].
Claim 6.4. In N [e], κn = ℵn, ℵ� is a strong limit, and the tree property holds at

ℵn for n ≥ 2.N [e] and V have the same cardinals from � upward.
Proof. These are simply the results of Section 4, including, in particular,
Claim 4.28, Lemmas 4.29 and 4.24, and Remark 4.25. �
Claim 6.5. In N [e], the tree property holds at �+.

Proof. Let T ∈ N [e] be a �+ tree. Then T belongs toM [A1 ×S0× e] (asN was
defined inM [A1 × S0]). By Claim 6.3 and the subsequent choice of �, this model
satisfies the tree property at �+, and therefore T has a cofinal branch in the model.
By Lemma 5.9, there is a � closed forcing extensionN [G ] ofN , so thatB[1,�) and
C[1,�) belong to N [G ], G is generic also over N [e], and � and �

+ remain cardinals
in N [e][G ].
Since B[1,�) and C[1,�) belong to N [G ], and since A0 ∗ U0, A1, A[2,�), and S0
belong toN , the entire modelM [A1 ×S0× e] is contained inN [e][G ]. Since T has
a cofinal branch inM [A1 × S0 × e], it has a cofinal branch in N [e][G ].
An application of Lemma 6.1 now shows that T has a cofinal branch already
in N [e]. �

https://doi.org/10.1017/jsl.2013.25 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2013.25


THE TREE PROPERTY UP TO ℵ�+1 459

Claims 6.4 and 6.5 establish that in N [e], the tree property holds at ℵn (which is
equal to κn) for 2 ≤ n < �, and at ℵ�+1 (which is equal to �+). This completes the
proof of Theorem 6.2. �
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