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Abstract

Hermit crabs have soft abdomens and therefore must use empty gastropod shells as protec-
tion. Shell choices do not occur at random, and the animals often occupy shells with the
best fit among the available ones. To live in intertidal and sublittoral zones, regions subjected
to daily variations in abiotic factors, hermit crabs present a locomotory circadian rhythm.
Clibanarius antillensis has been the object of several studies in Brazil’s south-east, so this
study was aimed at describing its population in the south of Brazil and its movement activity
under laboratory conditions during night-time and daytime, while using two different shells.
The animals were sampled from the Sepultura and Lagoinha beaches, in the state of Santa
Catarina through free diving. Sex ratio was skewed for males, with ovigerous females present
during the whole year but with a spring peak. Males were more abundant than females, ovi-
gerous females and intersex individuals, being predominant in all size-classes analysed. The
hermit crabs occupied mainly two gastropod shells: Cerithium atratum and Agathistoma vir-
idulum, and ovigerous females used only the first. Clibanarius antillensis showed nocturnal
activity and the animals using C. atratum shells were more active than those using A. viridu-
lum. Cerithium atratum shells are lighter and less bulky than A. viridulum, implying that there
might be a tradeoff in which the hermit crabs use lighter shells, that provide less protection in
order to expend less energy and be more active.

Introduction

Hermit crabs are crustaceans that have a unique evolutionary life history (McLaughlin et al.,
2007; Tsang et al., 2011) because of their singular morphology, presenting a non-calcified
abdomen (Vance, 1972; Kellogg, 1976). This characteristic leads them to use empty gastropod
shells for protection and shelter against predators and environmental pressures (Kellogg,
1977). However, hermit crabs need to constantly change their shells in order to keep growing
and thriving (Mesce, 1993; Sant’Anna et al., 2012), even though shell resources are often scarce
in their environments (Kellogg, 1976; Abrams, 1981). Not only are they scarce but also often
damaged, with the presence of epibionts and sub-optimal sizes and weights (Kuhlmann, 1992;
Buckley & Ebersole, 1994; Carlon & Ebersole, 1995; da Silva et al., 2018).

When searching for the best fitting shell, hermit crabs use different cues, such as past
experiences the animals had with other shells, architecture in terms of spires, weight, condi-
tion, strength and size of the shells (Jackson & Elwood, 1989; Turra & Leite, 2003; Rotjan
et al., 2004; Gorman et al., 2015; Ragagnin et al., 2016), as well as trying to determine whether
heavier shells would cause changes in their energy expense (Osorno et al., 2005). These cues
help the animals choose shells that provide adequate protection and are light enough, yet
bulky, to minimize energy expenditure during routine activities (Osorno et al., 1998;
Ragagnin et al., 2016). Nevertheless, hermit crabs are not always able to find the best resources,
with many individuals often occupying suboptimal shells.

Sexual size dimorphism has been seen in hermit crabs, with males usually being bigger than
females (Turra & Leite, 1999, 2000; Argüelles et al., 2009). This sexual size dimorphism is
often related to the shells’ features and different energy allocation between males and females
(Asakura, 1992). In these situations, males which reach bigger sizes are often found occupying
larger shells (Markham, 1968; Bertness, 1981a; Asakura, 1992).

Osorno et al. (1998) described ‘in field’ natural aggressive shell competition between hermit
crabs, indicating preferences toward certain types of shell, as previously demonstrated in
laboratory conditions (Guillén & Osorno, 1993). Furthermore, another adversity these animals
face is their habitat, with most hermit crabs found inhabiting intertidal and sublittoral zones
(de Melo, 1999; Nucci & Melo, 2011, 2015). Such regions are subjected to daily variations in
abiotic characteristics, such as temperature and wave forces, in addition to containing many
potential predators (Lunt et al., 2017).
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In order to live in these harsh places, hermit crabs present a
locomotory circadian rhythm to mitigate potential negative effects
(abiotic and biotic) of the environment. The circadian rhythm is
related to the periods in which animals usually perform their daily
activities (Palmer, 1971), with many crustaceans being more
active during the night (Drzewina, 1906; Palmer, 1971;
Sokolowicz et al., 2007).

Part of these activities consists of foraging, with a great number
of hermit crab species being omnivorous detritivores (Kunze &
Anderson, 1979; Hazlet, 1981), and therefore having a potential
for carbon sequestration in aquatic environments and contribut-
ing to the global carbon cycle (Anderson et al., 2017). In Brazil
however, some of the species are interesting for the aquarium
industry because they feed on unwanted algae that grow in
these aquariums. These animals are then taken from their natural
environment to be commercialized (de Gurjão & Lotufo, 2018).

Among these species of hermit crabs, Clibanarius spp. are
widely sold in the aquarium trade as a ‘cleaning crew’
(de Gurjão & Lotufo, 2018). Clibanarius antillensis Stimpson,
1859, a tropical hermit crab found on intertidal zones (Turra &
Leite, 1999; Chiussi et al., 2001), with a geographic distribution
that comprises the Western Atlantic – Bermuda, Florida, Gulf
of Mexico, Antilles, Panama, north of South America, and
Brazil, in Atol das Rocas and from Ceará to Santa Catarina
(Nucci & Melo, 2015), is one of these species.

Clibanarius antillensis has been the subject of several studies
over the years, with most research focused on the south-eastern
Brazilian coast, with Turra & Leite (1999) analysing its population
structure and fecundity; Turra & Leite (2000) studying its popu-
lation biology and growth associated with two sympatric species
of hermit crabs; Turra (2004) investigating the function of inter-
sex individuals in C. antillensis and two other intertidal hermit
crab species; Floeter et al. (2000) and Turra & Leite (2002) study-
ing its patterns of shell utilization and selection, and Gorman
et al. (2015) evaluating its tendencies to abandon or not, shells
under different environmental stimuli. Chiussi et al. (2001) stud-
ied its visual orientation and corresponding enhancement due to
chemical cues in the National Park of Mochima, Venezuela, and
de Gurjão & Lotufo, 2018 included Clibanarius spp. in an article
about species exploited by the marine aquarium trade in Brazil.

Considering the use of Clibanarius spp. as ‘aquarium cleaners’
by the aquarium trade, and the non-existence of hermit crabs in
Brazil’s ‘Official National List for the Threatened Animal Species
– Fishes and Aquatic Invertebrates’ made by the Ministry of
Environment (de Gurjão & Lotufo, 2018), plus the fact that C.
antillensis distribution meets its southern limit in the state of
Santa Catarina, a faunistic transition zone that serves as a limit
for several other crustaceans (Nucci & Melo, 2015). With hermit
crabs at the limit of their distribution possibly being sensitive to
environmental changes, being able to expand their distribution
(Sanda et al., 2019), this study is focused on describing the popu-
lation structure of C. antillensis in southern Brazil and studying its
movement activity under laboratory conditions during night-time
and daytime, while using two different shells. The study of walking
patterns and circadian rhythm can provide knowledge of the ani-
mals’ behaviour and how their shell choices influence their move-
ment. This could generate information on how to maximize their
movement in aquariums and which shells would be the best to sup-
ply for them to thrive in these environments.

Materials and methods

Sampling

For the population structure analysis, the animals were sampled
from Lagoinha Beach (27°08′43.75′′S 48°28′49.17′′W), in the

municipality of Bombinhas, Santa Catarina, on the southern
Brazilian coast. Samples were taken seasonally in May/August/
October 2017 and March 2018 (autumn, winter, spring and sum-
mer, respectively). For the experiment regarding Clibanarius
antillensis movement activity, the animals were collected from
Sepultura Beach (27°08′28.67′′S 48°28′41.41′′W), also located in
the municipality of Bombinhas, during October 2016 (Figure 1).

The hermit crabs were found under rocks, on algae beds, and on
consolidated/unconsolidated substrates at low tide, and sampled
through free diving active search. The Lagoinha Beach specimens
were frozen, stored in plastic bags and later conserved in 70% etha-
nol for future analyses, while the Sepultura Beach specimens were
stored in plastic bags filled with local water. All the sampled ani-
mals were transported to the ‘Aquatic Biology Laboratory’ at
Universidade Estadual do Centro-Oeste (UNICENTRO).

Laboratory procedures and population structure

In the laboratory, Clibanarius antillensis specimens from
Lagoinha Beach, which were used for population structure ana-
lysis, were carefully removed from their shells, with the aid of
fine tweezers, and identified under a stereo microscope, according
to Nucci & Melo’s (2015) specific taxonomic keys. Each individ-
ual was then measured regarding the cephalothoracic shield
length (CSL), with the aid of a digital calliper (0.01 mm preci-
sion). The shells occupied by each hermit crab were identified
according to Rios (2009).

They were classified as males (M), females (F), ovigerous
females (OF) and intersex (IS), by observing the presence of
gonopores on the coxae of the fifth pereopod (males), third per-
eopod (females) and both (intersex) (Turra, 2004). The sex ratio
was estimated by dividing the number of males by the number of
females and the specimens were grouped into 0.4 mm size classes.
In order to evaluate the sexual size dimorphism between demo-
graphic groups (males, females, ovigerous females and intersex),
the CSL measures were log transformed and an ANOVA was per-
formed, followed by a Tukey HSD post-hoc test. After performing
the analyses, the collected hermit crabs were deposited in the
Aquatic Biology Laboratory at the Center for Educational and
Technological Development of Guarapuava (CEDETEG) of
UNICENTRO.

Influence of different shells on movement activity

The hermit crabs and gastropod shells from Sepultura Beach were
measured regarding the cephalothoracic shield length (CSL),
width (CSW), and their shells were weighed with the aid of a pre-
cision analytical balance (0.001 g). The animals were used for the
experiments regarding movement patterns during night-time and
daytime, and for that, they were kept for 2 weeks in aquarium
tanks (70 cm × 35 cm × 25 cm, ∼61 litres) with shell gravel and
rocks as substrate. The aquariums were linked through a rearing
system with a skimmer biological filter (Gregati et al., 2010).
Water quality was kept close to natural conditions: 35 salinity,
24°C (± 1°C) temperature, and 12-h dark/12-h light photoperiod.
The hermit crabs were fed daily ad libitum with ornamental fish
ration, nori algae and pieces of fish muscles.

In this experiment, we tested the Clibanarius antillensis
exploratory behaviour with shells from two different species:
Cerithium atratum (Born, 1778) and Agathistoma viridulum
(Gmelin, 1791). These gastropod species were chosen based on
the high number of hermit crabs found using their shells (see
Results). We used 24 hermit crabs occupying A. viridulum and
24 occupying C. atratum. Both shells are commonly used by
C. antillensis in natural environments (Turra & Leite, 1999),
however, they have different physical properties (Rios, 2009),
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with A. viridulum being heavier than C. atratum, which is also
less bulky.

After acclimatization, the animals were individually placed in
plastic trays (16.5 cm × 24.5 cm × 7 cm) filled with 1 l of water
from the original aquarium tank. Each observation tray had a
sandpaper-chequered squared bottom (2 cm × 2 cm) to facilitate
the measurement of hermit crabs movements. Each specimen
was filmed for 24 h with a security camera (Sony® Infrared SO,
1400 lines, 811 × 508 pixels), placed 30 cm above the tray.
During the daytime period, natural light was used as the light
source, and for the night-time period, infrared Light-Emitting
Diode (LED) lamps attached to the camera were used. The ani-
mals were not fed during the experiment (see Figure S1 for an
image of the experiment).

The experiment was conducted in October 2016, with 24 her-
mit crabs occupying C. atratum shells and the other 24 occupying
A. viridulum. The specimens using C. atratum shells presented a
mean CSL size of 3.3 mm (±3.35 SD), a mean CSW of 2.46 mm
(±0.12 SD), and the mean weight of the C. atratum shells was
1.48 g (± 0.19 SD). The specimens using A. viridulum shells
had a mean CSL size of 4.56 mm (±0.57 SD), a mean CSW of
3.4 mm (±0.48 SD), and the mean weight of the A. viridulum
shells was 3.96 g (± 0.17 SD). For each specimen, we measured
the time they moved (in seconds) and the distance travelled in
the tray (in cm), per shell between 10 a.m. to 2 p.m. (representing
daytime) and 10 p.m. to 2 a.m. (representing night-time). A total

of 28.800 s of video for each specimen were analysed, being
14.400 s filmed during daytime and 14.400 s, during night-time.
The time the animals spent moving was measured with a timer,
and the distance travelled was analysed with a 2 × 2 squared
space in which the animals moved.

A linear model was employed to test if there is a difference
between the distance travelled and the time of activity, separately,
during the periods (day × night), considering the shell types
(A. viridulum × C. atratum), and the interactions between vari-
ables (period × shell type). The shells’ influence in the distance
travelled and the time of activity were tested within each period
(day and night) through an ANOVA. All performed analyses
were run in R-environment (R-CORE TEAM, 2021).

Results

Population structure

A total of 613 specimens of Clibanarius antillensis were sampled
from Lagoinha Beach: 343 males, 35 females, 190 ovigerous
females and 45 intersex. The sex ratio for the species showed
dominance for males (1.52:1). Ovigerous females were present
in all seasons, however, they presented a peak of individuals in
spring. Males were the most abundant demographic group in
all seasons. Females and intersex were the less numerous groups,

Fig. 1. Lagoinha Beach (red flag) and Sepultura Beach (black flag), where C. antillensis specimens were sampled for the study of their population structure and
movement patterns.
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with females being more abundant than intersex only in the
spring (Figure 2).

Considering the size classes, males were the only group that
appeared in all size classes considered, being predominant in all of
them, except for the 2.8–3.19 mm, in which ovigerous females were
predominant. Ovigerous females only appeared in the 2.0–3.99
mm size classes. Females only appeared in the 1.6–3.2 size classes,
always in small numbers. Intersex individuals were always in small
numbers too, but appeared in the 2.0–5.2 size classes (Figure 3).

Out of the 613 specimens, 63.13% were found occupying
Cerithium atratum shells, 24.8% were found in Agathistoma viri-
dulum shells, while the remaining used various types of shells.
There were 146 males, 35 females, 190 ovigerous females and
16 intersex using C. atratum shells and 133 males and 19 intersex
using A. viridulum shells. All the ovigerous females sampled used
C. atratum shells (Table 1). Sexual size dimorphism was seen for
C. antillensis (ANOVA, F = 49.09, P < 0.05). Only males × intersex
did not differ (P > 0.05), all the other pairwise comparisons dif-
fered among themselves (P < 0.05), with males being bigger
than the other demographic groups (Figure 4).

Influence of different shells in movement activity

Considering the distance travelled, the model showed differences
between the periods (P < 0.05) and between the shell type

(P < 0.05) (Table 2, Figure 5). Regarding the time of activity, the
model showed differences between periods (P < 0.05) and between
the shell type (P < 0.05) (Figure 5, Table 3), with the animals
being more active during the night and when occupying C. atra-
tum shells. However, no interactions were found (P < 0.05)
between the period and shell type for both models (time of activ-
ity and distance travelled). During daytime, both the distance
travelled (ANOVA, F = 6.803, P < 0.05) and the time of activity
(ANOVA, F = 5.443, P < 0.05) differed between the shell type
used (Figure 6); and during night-time, again both the distance
travelled (ANOVA, F = 4.174, P < 0.05) and the time of activity
(ANOVA, F = 7.863, P < 0.05) differed between the shell type
used (Figure 6). During both daytime and night-time, the animals
walked more and for a longer period when using C. atratum
shells. The average time of movement and distance walked are
summarized in Tables 4 and 5.

Discussion

Population structure

All demographic groups were sampled across the four seasons,
indicating a well-established population. The presence of oviger-
ous females in all four periods suggests continuous reproduction,
however, an abundance peak of this group in spring indicates

Fig. 2. Abundance of each Clibanarius antillensis Stimpson, 1859 demographic group for each season sampled.

Fig. 3. Distribution of Clibanarius antillensis Stimpson, 1859 demographic groups in size classes (0.4 mm).
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better conditions for breeding around this time of the year. This
continuous but heterogeneous pattern of reproduction with a
peak around the end of spring until summer has been observed
for Clibanarius antillensis before (Turra & Leite, 1999; Ribeiro
et al., 2016).

Seasonal variation in planktonic productivity is an essential
factor regulating breeding in marine organisms, with reproductive
peaks generally associated with a higher availability of food
(Sastry, 1983). This productivity has a bloom during spring,
because of the higher temperatures around this time of the year,

Table 1. Species of shells occupied by the specimens of Clibanarius antillensis sampled

Species of shells Males Females Intersex Ovigerous Females

Astralium latispina 4 0 0 0

Aurantilaria aurantiaca 1 0 0 0

Buccinanops cochlidium 0 0 1 0

Buccinanops deforme 1 0 0 0

Cerithium atratum 146 35 16 190

Gemophos auritulus 10 0 1 0

Leucozonia nassa 12 0 2 0

Littoraria flava 1 0 0 0

Monoplex parthenopeus 1 0 0 0

Claremontiella nodulosa 1 0 0 0

Phrontis polygonata 1 0 1 0

Pisania pusio 5 0 2 0

Siratus tenuivaricosus 2 0 1 0

Stramonita brasiliensis 10 0 2 0

Stramonita haemastoma 15 0 0 0

Agathistoma viridulum 133 0 19 0

Fig. 4. Boxplot indicating Clibanarius antillensis Stimpson, 1859 cephalothoracic shield length (log mm) variation. Line inside the box indicates the median, the box
indicates the first and third quartiles, whiskers indicate minimum and maximum, and dots indicate outliers showing data variation. F, females; FO, ovigerous
females; INTER, intersex; M, males.
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and the spawning events in coastal marine animals typically coin-
cide with this period (Naylor, 2005; Castilho et al., 2007). This
could be why C. antillensis presents continuous reproduction
with a peak around spring/summer.

The species presents intersex individuals, with gonopores on
the coxae of both the third and fifth pereopods. Turra (2004)
reported three congener species of Clibanarius with intersex indi-
viduals working as fertile males: C. antillensis, Clibanarius sclope-
tarius (Herbst, 1796) and Clibanarius vittatus (Bosc, 1801). In
other decapods, intersex individuals have been reported as func-
tional hermaphrodites for Parastacus nicoleti (Philippi, 1882)
(Rudolph, 1995), or non-functional hermaphrodites for Cherax
quadricarinatus (von Martens, 1868), with the specimens being
fertile males (Sagi et al., 1996), just like in Turra (2004). We
did not, however, evaluate the animals’ fertility in this study.

Ovigerous females had their peak around the 2.8–3.59 size
classes, immediately disappearing in the subsequent size-classes,
a possible indicator of senescence, an event in which there is a
decline in survival and reproductive performance as the animal
ages (Charlesworth, 1993). Considering C. antillensis’ continuous
reproduction, its gonads are constantly developing and draining
throughout its life, with energy being shared for somatic growth

and gonad development (Hartnoll, 1982, 1985), but as the animal
becomes older, it could become senescent.

The sex ratio was skewed for males (1.52:1), although it is
skewed for females in most populational studies with the species
(Turra & Leite, 1999, 2000; Turra et al., 2000; Turra, 2004).
Argüelles et al. (2009) found more males close to the shoreline,
while ovigerous females were more abundant away from it, a pos-
sible explanation for the present sex ratio, considering the animals
were sampled close to the coast.

The males also dominated the size classes, appearing in all of
them, but being more frequent from the 2.8–3.19 size class
onward, which makes them generally larger than females. This
sexual dimorphism has already been shown in other studies
with the species (Turra & Leite, 1999; Argüelles et al., 2009).
Studies with congener species suggested that this dimorphism
could be due to higher energy allocation to reproduction in
females when compared with males (Bertness, 1981a), or sexual
selection, with larger males presenting higher mating success
than the smaller ones (Harvey, 1990). Sexual dimorphism can
also be seasonal and related to the size of the chelipeds and
pleon, with animals allocating more or less energy on these fea-
tures, depending on their breeding and non-breeding periods

Table 2. Linear model estimates for period of activity and shell type

Estimate Standard Error t P

Intercept 1292.3 146.4 8.825 < 0.05

Period 1404.2 292.9 4.794 < 0.05

Shell 1053.8 292.9 3.598 < 0.05

Period × Shell 728.7 585.8 1.244 0.21

Fig. 5. Boxplot indicating the distance Clibanarius antillensis Stimpson, 1859 walked (cm). A: considering each period regarding the shell type. B: considering dif-
ferent shells regardless of the period of the day. Ca, Cerithium atratum (Born, 1778); Av, Agathistoma viridulum (Gmelin, 1791). The time Clibanarius antillensis
Stimpson, 1859 spent moving (s) is also plotted. C: considering each period regarding the shell type. D: considering different shells regardless of the period of
the day. Ca, Cerithium atratum (Born, 1778); Av, Agathistoma viridulum (Gmelin, 1791). Line inside the box indicates the median, the box indicates the first and
third quartiles, whiskers indicate minimum and maximum, and dots indicate outliers showing data variation.

Table 3. Linear model estimates for time spent moving and shell type

Estimate Standard Error t P

Intercept 2790.7 295.1 9.458 < 0.05

Period 1781.3 590.1 3.019 < 0.05

Shell 3080.0 590.1 5.219 < 0.05

Period × Shell 711.3 1180.2 0.603 0.55
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(Hamasaki et al., 2020; Hamasaki & Dan, 2021). Despite C. antil-
lensis not having a calcified abdomen, a possible seasonal sexual
dimorphism should be evaluated in future research.

Regarding shell choice, individuals mainly occupied Cerithium
atratum and Agathistoma viridulum gastropod shells, which were
already reported as commonly used by C. antillensis (Leite et al.,
1998; Floeter et al., 2000; Turra & Leite, 2002), but they also used
another 14 types of shells. Some studies reported C. antillensis’
plasticity toward shell use according to their availability in the
environment (Leite et al., 1998; Argüelles et al., 2009; Silveira

et al., 2017). Even though crab selection preference for shells
can exist (Osorno et al., 1998, 2005; Floeter et al., 2000; Turra
& Leite, 2002; Sato & Jensen, 2005), hermit crabs also tend to
use shells of the most abundant coexisting gastropods (Reese,
1969; Wilber & Herrnkind, 1982; Leite et al., 1998).

Movement pattern

Our experiment showed that shells can influence hermit crab activ-
ity. When using C. atratum shells, the animals walked more, in
terms of time and distance, than when using A. viridulum shells,
that are heavier. The hermit crabs in this study would likely use
C. atratum shells, which are lighter and less bulky, despite the
risks of mechanical injury (Osorno et al., 2005), possibly because
they would spend less energy and be able to walk longer distances
for more time. Besides, these shells are more elongated, high spired
and have a small aperture (Floeter et al., 2000), making them pos-
sible effective water reservoirs, thus reducing thermal stress, and
offering more protection against predators that may attack through
the aperture (Bertness, 1981a, 1981b, 1982; Lively, 1988; Floeter
et al., 2000).

The trade-off between the benefits in reproduction and growth
and the costs of exposure to predation and desiccation, making
the hermit crabs balance between their shell preferences, has
already been reported (Osorno et al., 1998, 2005; Ragagnin
et al., 2016). While light and larger shells can improve growth
and reproductive output allowing the animals to save energy
(Osorno et al., 1998), heavier shells could be more difficult to
break, conferring resistance, despite being a limiting factor for
growth and movement (Osorno et al., 2005).

Hermit crabs seem to be able to assess shell density and weight
and often choose lighter shells with lower densities (Osorno et al.,

Fig. 6. Clibanarius antillensis Stimpson, 1859 Boxplot indicating A: distance (cm) walked during daytime regarding the shell type. B: time (s) spent moving during
daytime regarding the shell type. C: distance (cm) walked during night-time regarding the shell type. D: time (s) spent moving during night-time regarding the shell
type. Line inside the box indicates the median, the box indicates the first and third quartiles, whiskers indicate minimum and maximum, and dots indicate outliers
showing data variation.

Table 4. Mean (± Standard Deviation) time of movement (s) and distance
travelled (cm) for Clibanarius antillensis using different shells: Cerithium
atratum and Agathistoma viridulum

Time (s) Distance (cm)

C. atratum 3681.354 (±3601.7) 1819.208 (±1886.5)

A. viridulum 1900.021 (±2880.2) 765.4167 (±1243.2)

Table 5. Mean (± Standard Deviation) movement time (s) and distance (cm) by
Clibanarius antillensis in different shells (Cerithium atratum and Agathistoma
viridulum) during daytime and night-time

Time (s) Distance (cm)

C. atratum daytime 1963.5 (±2528.9) 934.9 (±1372.4)

C. atratum night-time 5399.1 (±3735.6) 2703.5 (±1938.2)

A. viridulum daytime 537.8 (±880) 245.5 (±460.4)

A. viridulum night-time 3262.1 (±3507.9) (±1543.4)
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1998; Ragagnin et al., 2016). The energy costs of carrying heavier
shells could limit the animals’ movement, therefore, C. atratum
shells would improve mobility and exploratory behaviour for
C. antillensis, by requiring less energy to be expended. Besides,
the benefits of this type of shell for reproduction could be the rea-
son why all the ovigerous females preferred it. However, the speci-
mens using A. viridulum shells, which are heavier, were larger in
both CSL and CSW. Whether it would be advantageous for the
animals to be larger but have their movement affected or not, is
something that could be explored in future studies.

Regarding the animals’ locomotory circadian rhythm, C. antil-
lensis proved to be more active during the night, as demonstrated
for this and another species of the genus (Hazlett, 1966; Turra &
Denadai, 2003), as well as other crustaceans (Drzewina, 1906;
Hazlett, 1966; Palmer, 1971). By doing this, hermit crabs could be
able to avoid potential visual predators, as they have already been
reported as part of the diet of some of these animals (Kuhlmann,
1992), that depend on light to hunt. Also, Clibanarius species
often share the environment with other diogenid hermit crabs
from the Calcinus genus (da Silva et al., 2020, 2022; Kruesi et al.,
2022), and it has recently been argued that a different temporal
niche could be a way to avoid shell competition (Kruesi et al.,
2022). In the same region of the present studies, C. antillensis coex-
ists with Calcinus tibicen (Herbst, 1791), and even though the circa-
dian rhythm ofC. tibicenwas not evaluated, this pattern found forC.
antillensis could be a way to avoid such competition.

Considering that the species is one of the hermit crabs
exploited by the marine aquarium trade in Brazil for feeding on
undesired algae, therefore serving as ‘cleaners’ (de Gurjão &
Lotufo, 2018), our results support that C. antillensis can be
more useful for this function when occupying C. atratum shells
compared with A. viridulum shells. In this circumstance, the ani-
mals are more active and move across more space in the aquar-
ium, thus being able to feed on more algae. Knowing what shell
fits this purpose best can mitigate the major issue that involves
the aquaculture of hermit crabs: their need for a constant supply
of shells (Calado et al., 2003), which makes it non-viable.

Breeding specimens of C. antillensis along with C. atratum
gastropods is something that could lessen the number of animals
taken from the natural environment, as well as of other species of
hermit crabs, minimizing the impacts that these actions have on
the environment and its fauna.

Summary

The occupation of shells by the hermit crab Clibanarius antillensis
in our study revealed the use of mainly two species of gastropod
shells: Cerithium atratum and Agathistoma viridulum, two of the
most abundant shells in the area, besides being commonly used
by the species. Our results showing the animals were more active
when using C. atratum shells and the ovigerous females’ absolute
use of this shell, along with the knowledge of their nocturnal behav-
iour and population structure generates linked understanding of the
biology of the species. This information may help with indicators
for artificial breeding of Clibanarius antillensis that would lessen
the impacts caused by the aquarium trade on fauna. Finally, the cir-
cadian rhythm observed is suggestive of a way this species might
mitigate impacts of shell competition with other hermit crabs.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0025315422000418
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