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1. Introduction

In this paper we study the following systems:
(—A)*u=uA—u—"bv) in £,
(=A)YPv=v(p—v—cu) in 0, (1.1)
u=v=0 on 0f2,

where 2 ¢ RN, N > 1, is a bounded and regular domain, \,p,b,c € R and
a, € (0,1). Here, u and v denote the densities of two species in {2 (the habitat),
which is surrounded by inhospitable areas due to the homogeneous Dirichlet bound-
ary conditions. In (1.1) we assume that the species diffuse following the fractional
Laplacian (see §2, where we define this non-local operator).

When o = 8 =1, (1.1) is the classical Lotka—Volterra system with random walk,
which has been widely studied in recent years in the following cases: competition
(b,c > 0), predator—prey (b > 0 and ¢ < 0) and symbiosis (b, c < 0) (see [8] and the
references therein).
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Fractional operators are used in different contexts: physics, finance and ecology
(see [15,21] for the ecological meaning of fractional diffusion). For many years, non-
oriented animal movement was modelled by classical Brownian motion. However,
it seems that when a species is searching for resources the strategy based on Lévy
flights (supported in long jumps) could be more appropriate in some situations.
This kind of strategy is optimal for the location of targets that are randomly and
sparsely distributed, but Brownian motion is optimal when resources are abundant.
The Lévy diffusion processes are generated by fractional powers of the Laplacian
(—A)Y for v € (0,1).

We are interested in the existence of non-negative solutions of (1.1). It is clear
that (1.1) possesses the trivial solution (u,v) = (0,0) for all A\, u € R, since when
u = 0 (respectively, v = 0) v (respectively, u) verifies an equation of the following
type:

(1.2)

(=A)w + c(x)w =w(o —w) in {2,
w =0 on 02,

where v € (0,1), 0 € R and ¢ € L*(§2). This is the classical logistic equation,
studied in [19,20] with homogeneous Dirichlet and Neumann boundary conditions,
respectively, with v = % in both papers. To study this equation, we analyse the
eigenvalue problem
—A)w+ c(x)w = Aw in (2,
(~A)"w + () } (13)

w=>0 on 0f2.

We study the existence of a principal eigenvalue, the unique eigenvalue of (1.3)
having a positive eigenfunction, denoted by A;[7y; ¢]. This problem has been analysed
in [1,19] (for v = ) and in [20] for the Neumann case. We study some properties
of this eigenvalue and of the associated eigenfunction.

Then, we prove that (1.2) has a positive solution if and only if ¢ > Ai[y;¢];
moreover, it is unique and we denote it by 0, ,_). Furthermore, we attempt to give
an ecological interpretation of the result, comparing our results with that obtained
in the local operator case, in which the fractional Laplacian is substituted by the
classical Laplacian operator.

To show the existence, we employ the sub—supersolution method. Note that this
method was used for the nonlinear fractional diffusion problem (see, for instance,
[3,9]; in both these papers, the method is the consequence of a maximum principle
and a classical iterative argument). However, we present a different proof, which is
also valid, with minor technical changes, for systems.

Once we have studied (1.2) in detail, we shall analyse the existence of solutions
with both positive components of (1.1). To do this, we apply the sub—supersolution
method, first showing that it works for systems, and then applying it to (1.1). Thus,
we must find appropriate sub—supersolutions of (1.1) using the results obtained for
the logistic equations. We prove the following results. There exists at least one
positive solution of (1.1) if

e byc>0orbc<0and bc < C(a,) for some positive constant (detailed in
§6) and A and p verify

A> Mo b0g,y] and g > Ai[B;c)q ], (1.4)
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or
e b>0and ¢ <0 and A and pu verify

A> Mg b0is oy, ) and g > A[B; i n)- (1.5)

We show that conditions (1.4) and (1.5) define regions on the (A, )-plane.

The paper is organized as follows. In §2 we present the functional setting neces-
sary for the remainder of the work. Section 3 is devoted to the eigenvalue problem:
we study the existence and main properties of the principal eigenvalue. In §4 we
study (1.2). The sub-supersolution method for systems is shown in §5. Finally, in
§6 we study the existence of a positive solution of (1.1).

2. Preliminaries

We begin by introducing the functional framework necessary to develop the theory,
and recover some known results about the different forms to define the fractional
power of the Laplacian with Dirichlet boundary condition.

2.1. Functional setting

Consider a smooth bounded domain 2 C RY. Since in bounded domains there are
some non-equivalent definitions of the fractional Laplacian operator, let us explain
what we mean by the symbol (—A)®. For u € C§°(£2) such that u = >, bypr,
where \g, o are the eigenpairs of (—A, H3(£2)) (with A repeated as many times
as its multiplicity and {¢} forming an orthonormal basis of L?(§2)), we define

e}
(—A)"u:= Y Abrpr.
k=1
Then the operator (—A)? is defined on

D((—A)%) = {u € L*(); iAgbi < +oo}

k=1

by density.
Now, let us consider the half cylinder

C:= 2 x (0,+00)
with base {2, and denote its lateral boundary by
9rC := 90 x [0, 4+00).
We set (z,y) € C, x € 2 and y > 0 and define

HY(C) == {v e HY(C); ||v]la < +o0},
HG(C) :={veHYC); v=0o0n IrC},
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where
1/2 1-2
3 3 2172201 — )
o= k' [ ¥ VoPdzd ko = ————~— 1
oo = (k" [ 21w asay) Fa aco,

and I" is the Gamma function. It is not difficult to see that H§(C) is a Hilbert space
when endowed with the norm || - ||, which comes from the following inner product:

(v, W)e = k! / y' 72V - Vw dz dy.
c

Consider the following subspace of the fractional Sobolev space H*({2):
VE(Q) = {trou; v e H(O)).
This is a Banach space when endowed with the norm
2 1/2
[ullve @) = <||U|%2(Q) + /Q Y m dﬂ«“dy>/ )
where try; is the trace operator defined by
trov =wv(-,0) forve H(C).

Moreover, by the trace theorem (see [9, proposition 2.1]) and embeddings for
fractional Sobolev spaces (see [12, theorem 6.7]) it follows that

ltro vl o) < Cllvlla Yo € HEEC), p € (1,24), (2.1)

where 2, = 2N/(N — 2a).
By [9, proposition 2.1] it holds that

Vi(02) = {u € L*(2); u= ZbMPk satisfying Zbi)\g < +oo}.
k=1 k=1

As far as the scalar non-local problem
(=A)*u = f(w,u) in £, }

2.2
u=20 on 012, (22)

is concerned, the approach we shall follow is by associating with (2.2) an (N + 1)-
dimensional local problem in C. This can be done by considering the procedure to
obtain a local realization of (—A)®, described below.
As proved in [9, § 2.1], for each u € V§ (£2) there exists a unique v € H§(C), called
its a-harmonic extension such that
—div(y'"**Vv) =0 inC,
v=0 onJdrC,
v(-,0) =u on (2.

Moreover, if u = Z,:il brpx is its spectral decomposition, then

vz,y) =Y bege(@)e (N *y) V(wy) ec, (2:3)
k=1
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where 1 solves the Bessel equation

1-2
W= =, s> 0,

- sli%h s17299/ (5) = ka, (2.4)
$(0) = 1.
Let u € V§(2) and let v € H§(C) be its a-harmonic extension. Define the
functional
1 ov
Tow Oy (0} EVo(£2)"
by

1 Ov 1 1—2 ~
— . P oy - Vaded
<kaaya(,0),g> ka/cy Vo - Vgdzdy,

where § is the a-harmonic extension of g € V§(§2) and

v i 1*20‘2—:(“@,;/) Vo € £2.
Then we can define an operator A, : V§(£2) — V§(£2)* such that

Agu= — 2%
alt ko Oy

_Q><{0}’

where v is the a-harmonic extension of u to C. Let us prove that the operators A,
and (—A)® are in fact the same, i.e. that, for all u € V§(£2),

Aju = Zbk)\ggpk, where u = Zbkcpk.
k=1 k=1

By linearity, it is enough to prove that, for all ¢y,

1 Ov
<ka6ya(.’0)’(pk> = <(—A)au#’k>L2(9) VE €N,

where v is the a-harmonic extension of w.
For u € V§(£2) and k € N, let v and ¢y, be the a-harmonic extensions of u and
¢k, respectively. By (2.3),

o(e,y) = Y beer(@o(N/%y) and Gila,y) = eula)p(n*y).
k=1

Now, integration by parts and properties of ¢ imply that, for each y > 0,

/ Y 20V ,0(z,y) - Vadr(z,y) de = v 2 (A %9)? + o' (0 *y)?)
(P73
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holds. Then, by (2.4),

1 ov 1 1—2a -
<kaaya("o)’¢k> k: / Vv - Vo dxdy
+oo
7/ Y20, (A 2))2 + o/ (A29)2) dy

— lim y" 2N 200 A 2w (A *y)|y=s
ko/ n—0+

Y
= ((=A)u, k) 12(2)-
Hence, in (2.2) we shall understand (—A)® to mean A,,.

For simplicity, without loss of generality, we can assume throughout the paper
that k, = 1. Then we have the following.

DEFINITION 2.1. u € Vy(§2) is a weak solution of (2.2) if u = trp v, where v €
HG(C) is a weak solution of
—div(y'™**Vv) =0 inC,
.
oy™

In this case, v is such that

(x,0) = f(z,v(z,0)) on £2.

/y1—2avv_vwdxdy:/ f@,v(z, 0)(z,0)dz Vb € HE(C). (2.5)
c [0}

2.2. Maximum principle

Throughout the paper, the following maximum principle will be very useful (see
[9, lemma 2.5] for a related result).

PROPOSITION 2.2. Let d € L*°(£2) and v € H*(C) such that v > 0 in 9.,C and
—div(y'7?*Vv) >0 inC,
v
(9 e}
(a) Assume that d >0 in 2; then v >0 in C.
(b) Assume that v >

Proof.
(a) The proof follows just by using —v™ as a test function, where v = v+ + v~

—(2,0) + d(z)v(z,0) =0 on 2.

0 in C; then either v =0 orv >0 in C.

(b) In this case we follow the proof of [6, lemma 4.9]. Define
w(w,y) = exp{Ay**}v(z,y).

Then, w satisfies
—div(y' 72V (exp{—Ay**}w)) = 0 in C,
ow

@(m,()) + (d(z) + 2Aa)w(z,0) = 0 on 2.
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We can choose A such that d(z) +2Aa < 0 in £2, and so

%(m,()) >0 in f2.

Taking R > 0, we now consider the even extension of w in {2 x (—R, R), defined by
s = {100 e
We can show that
—div(|Jy|* 2V (exp{—Aly[**}@)) =0 in 2 x (-R, R).
Now, define the problem

— div(|y[**V(exp{=Aly[**}h)) =0 in 2 x (R, R),
h=1w on (2x{—R})U(2x{R}).

The above problem possesses a solution by [13] (see also [6, theorem 3.2]) and by
the maximum principle we get that

h<® in2x(—R,R).

On the other hand, by the strong maximum principle (see [13, lemma 2.3.5]), we
conclude that
h > 0.

This completes the proof. O

REMARK 2.3. Observe that proposition 2.2 can equivalently be stated as follows:
assume d € L>*(2) and (—A)%u +d(x)u > 0in 2 and u > 0 on 9f2. Then,

(a) if d > 0in {2, then u > 0 in (2,

(b) assuming that u > 0 in {2, either u =0 or > 0 in £2.

2.3. Regularity results
The following result follows by [10, lemma 3.3] (see also [2, proposition 5.1]).

LEMMA 2.4. Assume that f € C(£2 x R) and that there exists a constant C' and
p € (2,2N/(N — 2a)) such that

fz, )] < CA+]tPY), zeR, teR.

If v € HG(C) is a solution of (2.5) and u = trov, then v € L>(C) N C°(C) and
u € C7(N2) for some o € (0,1).

Consider now the linear problem

(—A)u = g(z) n 2,
u=~0 on 8(2.} (2:6)

The following result is taken from [10, lemma 3.2] (see also [7]).
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LEMMA 2.5. Assume that g € H=*(£2) and v € HF(C) is a solution of (2.6) and
u = trov. Then we have the following.

(a) If g € L™(02) forr > N/(2a), then v € L*>(C) and u € L>=(12).
(b) If g € L*°(£2), then v € C°(C) and u € C°(£2) for some o € (0,1).

(c) If g € C°(2) and glon = 0, then v € CY7(C) and u € CY7(£2) for some
o€ (0,1).

(d) If g € CY9(2) and glon = 0, then v € C*7(C) and u € C*7(02) for some
o€ (0,1).

3. The eigenvalue problem

Given ¢ € L*(£2), we study the eigenvalue problem

(~A)u+e(x)u=u in 2, } (3.1)

u=0 on Jf2,

where a € (0,1) and A € R. Recall that v € V§(£2) is an eigenfunction associated
with an eigenvalue A of (3.1) if and only if u = trp v, where v € H&(C) is a solution

of
- div(ylf%‘Vu) =0 in C,
v=0 on 0r.C, (3.2)
%(m,()) + c(x)v(z,0) = Av(z,0) on £2.

In the following result, we show the existence of principal eigenvalue and positive
eigenfunction of (3.1) and their main properties.

THEOREM 3.1. There exists a principal eigenvalue of (3.1), denoted by M[c;c].
This eigenvalue is simple and possesses a unique eigenfunction @1 of (3.2), up to
multiplicative constants, which can be taken to be positive. Moreover, the principal
eigenfunction @y is strongly positive, and A[a;c] is the only eigenvalue of (3.1)
possessing a positive eigenfunction. If we define 1 := trg @1, we have that

01 €C7 () and &, € L®(C)NC(C) for some o € (0,1).

Furthermore, the map from ¢ € L= (£2) — A[w;c] is increasing.

Proof. For each v € H§(C) such that trov # 0 in L?({2), let us consider

T(v) = (/Cyl_mVv|2dxdy+/nc(x)v(x,0)2dx> (/Qv(x,O)Qdac>_1 (3.3)
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and note that J is bounded from below. In fact, the trace theorem and the bound-
edness of ¢ imply that

/yl_Q"‘\Vdexdy—&—/ c(x)v(x,0)? dx
c 7
> C/ v(x,0)2dx—|—/ c(x)v(x,0)? dx
o o
>K/ v(x,0)? du,
7

where K € R, for every such v.
Let us define

Mla;d == inf{J(v); v € HF(C) and trov # 0 in L*(§2)}. (3.4)

Let (vn)nen C HG(C) be such that [, v,(2,0)*dz =1 and J(v,) — Aifa;c]. It is
straightforward to see that (v,)nen is bounded in H(C), and hence there exists
w € HS(C) such that w,, — w in HG(C). Since H§(C) — V§({2) continuously and
V5 (£2) < L?(£2) compactly, [, w(x,0)*dz = 1. Just by imitating the arguments
of [14, §8.12], one can show that (v,)nen is a Cauchy sequence which strongly
converges to v in Hg(C). Hence, J(v) = Ai[a; .

If ¢ € HG(C), setting ¢(t) = J(v + t)), it follows that

0= ¢'(0)
:/ykaU'dezder/ c(x)v(z,0)y(z,0)dx
C

9]

—Al[a;c]/nv(x,())w(x,())d:c.

Hence, v is a solution of (3.2) with A = A\[«; ¢] and it is therefore an eigenfunction
associated with A [a; c].

Of course, the definition implies that Aj[a; c] is the smallest eigenvalue of (3.2).

Now let us prove that the eigenfunctions have at least C7(§2) regularity, where
~v = min{1, 2a}. This follows easily from lemmas 2.4 and 2.5 once we prove that
ltro @[ Lo () < 400 for every eigenfunction ¢. On the other hand, this L> estimate
can be obtained by a standard application of the Moser iteration technique, which
we describe below.

Let v € HF(C), satistying (3.2) for some A, and let M > 0. Defining vy =
min{v, M}, note that it is an H§(C) function. Let b > 0 be a constant to be
chosen conveniently, and let us take v4, as a test function in (3.2). Defining e(x) :=
(A —¢(x)) it follows that

b/cylfzo‘vf’QHVUM\zdxdy:/Qe(x)v(x,O)vM(x,O)bdx,
which implies that

4b
72/y1*2°‘|V(vJ(\Z+1)/2)|2dxdyg/ e(a)v(w,0)"+! da.
(b+1)% Je o
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By the trace theorem and the embedding of fractional Sobolev spaces, we have that

4b b4+1)/2
gy ltee el e < Cltra vl o)

Considering M — 400 and using Fatou’s lemma, we have that

4b
m”trﬂ UUH_D/QH%%(Q) < CHtrQ UHbLtil(Q)-
Then it follows that
b4+ 1 2\1/(b+1)
ltrc ollpauonragey < (cM) ltre oll s o) (3.5)

Let us consider a sequence (1) defined by 19 = 2 and n, = (24/2)nk—1 for k > 1.
Taking b in (3.5) such that b+ 1 = n;_1, we have that

n 1/Mk—1
lera vl < (Cqritys) Inavlne o
Iterating this expression in k, we get that

k—1 772 1/n;
t < c—~—— t .
o olionco < IT (€56 555) el

Note that there exists a constant C' > 0 such that 2%/4(z — 1) < Cz for all z > 1.
Taking into account the fact that n; = 27, /2771, it follows that

k—1 9i 271 /23,
ool < [T (c3%)  lavlio
=

k—1

< (QQC)A’C H(él*j)éj—l/QaHtrn v”L?(Q)v
=0

where § = 2/2,, € (0,1) and

1 k—1
_ E j—1
Ak - Z : 1(5J .
j=

Now, since 0 < § < 1, the series in Ay converges and

k—1 ,
[T /2 < oo
j=0

Now, observing that 7, — o0, it follows that |[trg v|| () < 400.

If v is a minimizer for J, then it is straightforward to see that |v| is too. Taking a
constant M > 0 such that M + ¢(x) > 0 in £2, proposition 2.2 implies that |v| > 0
in C. Since v is regular, it follows that v cannot change sign. Consequently, two of
them cannot be orthogonal, and A [o; ] is simple.
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Applying the same procedure to Aj[a;¢] proves that (denoting by V; the eigen-
space associated with the jth eigenvalue) the higher eigenvalues can be character-
ized as

Aj = inf{J(u);u # 0, (u,v)r2(p) = 0 Vv € span[Vy, ..., V;_1]}.

This characterization with the positiveness of the first eigenfunction implies that
the first eigenvalue is the only one that has a single-signed eigenfunction.

In order to complete the proof, note that the variational characterization of the
eigenvalues still implies that if ¢1,c9 € L (£2) and ¢; < ¢ in 2. Then Aj[a; 1] <
A1]a; ca. In fact, let w € H(C) such that tro w # 0 in L2(£2) and J(w) = A\i[o; ca).
Note that

(/Cyl_mwwdedy—i—/gcl(x)w(gg’oydx)(/Qw(%o)de)ﬂ
< (/cy”“Vdexdw/n CQ(x)w(x70)2dx> </Qw($,0)2dx)_17

which completes the proof. O

Analysing the behaviour of A1[a;c| with respect to the weights is a challenging
problem (see, for example, [20, § 3]). We would, however, like to study A1[a;c] in a
particular case. When ¢ = 0 we set A1 [a] := A1[a; 0]. Finally, for « = 1 we denote by
A1[1; ] the principal eigenvalue of the local operator —A + ¢(z) under homogeneous
Dirichlet boundary conditions and set A1 := A1[1;0]. Recall that Aj[a] = Af.

REMARK 3.2. Given ¢ € L*°({2), we define
cp = essQinf c(z) and c¢p = ess supc(x).
Q
Note that, by the definition of J and the fact that A;[a;¢] minimizes J, it follows

that
Atla] + e < Mg ] < Mifa] + e

It is not difficult to show that when ¢ € R we get
Aozl = Ma]+e= AT +e

In the following we show the dependence of Aj[a;c] for N = 1 with respect to the
domain {2 = B, = (—r,r). Denote by A [a; ¢; B, ] the principal eigenvalue of (3.1) in
B, and by A1[1; ¢; B,] the principal eigenvalue of the —A +¢ in B,, i.e. the principal
eigenvalue of

—Av+c(x)v = M[l;¢ ByJv in By, v=0 on 0B,. (3.6)
With this notation, we can prove the following.
PROPOSITION 3.3. It holds that

Ao ¢; Byr*® = Ao r*%c(r-); Bi] (3.7)
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and
ML ¢ Bor? = M[1;7%¢(r); By). (3.8)
Consequently,
lim Ao ¢; ByJr®® = Afas 03 Br] = (M[150; Bi)” (3.9)
Proof. By the definition of A\ [«; ¢; B,], there exists v such that
—div(y'7?*Vv) =0 in B, x (0,00),

v=0 ondB, x (0,00), (3.10)

%(LO) + c(z)v(z,0) = M[a; ¢; BrJu(z,0) on B,.

The change of variables

z Yy
= . nd  w(z,t) =v(zr tr),

z =

transforms (3.10) into
—div(t'?*Vw) =0 in By x (0,00),

w=0 on dB; x (0,00), (3.11)

:;)Tu;(z, 0) + r*c(rz)w(z,0) = r**\[o; ¢; B,Jw(z,0) on By.

This concludes the proof of (3.7).

In a similar way, under the change of variable

2= w(z) = v(zr)

in (3.6), we get (3.8). Obtaining (3.9) from (3.7) is trivial. O

Let us compare the eigenvalues of the Laplacian and fractional Laplacian for the
case when N =1, ce R and 2 = B,.

LEMMA 3.4. Assume c € R. Then,

Mo ¢ B > (resp. <,=) M[l;¢B,] < 1> (resp. <,=) VA1[l;Bi].
On the other hand, o — A|a;c; By is decreasing when r > 1/A1[1;0; B1] and

increasing when r < \/A1[1;0; By].

Proof. Observe that
AL ¢ B,«]r2 = )\1[1;7“20(7“-); By],

and so, if ¢ is a constant,

A (L;0; B
1 1]Jr

Al[l;c; Br] = 2
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and by proposition 3.3 we get

)\1[0450;31}+C: <>\1[1;0;B1]> Yo

Mlas e B,] = =

7“20‘

This concludes the result. ]

REMARK 3.5. Recall that A\;[1;0; By] = 372

4. The logistic equation

In this section, we want to study the logistic equation

_A « = )\ 2 1 Q
(=A)%u+ c(2)u u—u” in §2, @)
u=0 on 012,
where a € (0,1) and ¢ € L*(§2), or, equivalently,
—div(y'72*Vu) =0 inC
v=0 on JrC, (4.2)
;Tj;(% 0) + c(x)v(x,0) = \v(z,0) — v(x,0)> on £2.

THEOREM 4.1. Equation (4.1) possesses a positive solution if and only if X >
Ao c]. Moveover, if it exists, this is the unique positive solution and we denote it
by Opa,n—c)- Furthermore, 0jq x_¢) € C?7(£2) for some o € (0,1), and the follow-
ing property holds: if we denote by @1 the principal eigenfunction associated with
A[a; c] such that ||p1]|eo = 1, then

A=A c)oi(z) <bpr—qz) K X—cp Vre (4.3)

REMARK 4.2. A similar result holds for (4.2). In this case, we denote by O, x— the
unique positive solution of (4.2), i.e. Oy, x—¢] = tT0 Oa,r—¢- Moreover, Oy \_¢ €
C?%7(C) N L>=(C).

In the proof of theorem 4.1 we shall apply the well known sub-supersolution
method. Despite the definitions and results for this subject in the fractional setting
being a rather standard adaptation of the sub—supersolution method to second-
order operators, we present them here for completeness.

Let us consider problem (2.2), which is associated with the extension problem

div(y'™2*Vv) =0 in C,
v=20 OH(?LC, (4_4)

99 (1,0) = f(z,0(x,0)) on 2

B0 z,0) = f(x,v(z, o ,

where f € C(§2 x R). Recall the definition of the solution of (4.4) (definition 2.1).
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DEFINITION 4.3. We say that (v, ) is a sub—supersolution of (4.4) if v, € H*(C),
u:i=trou, u:=trpv € L*(f2) and

(a) v<vinCand v <0<7vondrC.

(b) for all ¥ € H§(C), ¥ > 0, it holds that

/yl_zaw.wdxdyg/ Flz,v(z,0))0(z, 0) do (4.5)
c (9]

and

/cyl_QO‘VT) -Vipdedy > /Q f(z,0(x,0))(x,0) de. (4.6)
THEOREM 4.4. Assume that (v,0) is a sub—supersolution of (4.4). Then, there
exists a solution v of (4.4) such that
v<v<v inC.
Consequently, there exists a solution u € V§(§2) of (2.2) such that
u = tr

v<usu=trov in 2.

o)
Proof. Let v, v be such that (4.5) and (4.6) hold, respectively. For x € £2 and t € R,
let us define

and consider the problem

div(y' 2*Vv) =0 inC,

v=0 on J.C, (4.7)
ﬂ(a: 0) = f(z,v(x,0)) on 2
aya ) - ) ) .
Observe that by the definition of f we have that
[ ftoute 0)wta.0)ds] < Clote 0o (4.

for some positive constant C' and for all u € H*(C) and ¢ € Hg(C). Here, we have
used that u,u € L>®(£2) and f € C(§2 x R).
First, we show that (4.7) possesses at least one solution. Define the operator

T: HG(C) = (HG(C))
given by

(Tu,v) = /ylfzo‘Vu -Vodzdy — / f(x,u(x,0)v(z,0)dz  Yu,v € HE(C).
C 9]
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We study some properties of the map 7.

e T is a bounded map. It is clear, using (4.8), that if u belongs to a bounded
set of Hg(C), then T'(u) is also bounded in (H§(C))'.

e T is pseudo-monotone: given a sequence u, — u in H§(C) such that
lim sup(T"uy,, up, — u) <0,
we must show that
lim inf (Tuy,, up — v) 2 (Tu,u —v) Yo € HG(C). (4.9)
Observe that from (4.8) we have that

< C’||un — u‘|L2(Q) — 0.

’ /Q f(@, up(x,0)) (un (z,0) — u(z,0)) dz

Hence, using the fact that u, — u in H§(C),
0 > lim sup(Tup, u, — )
= lim sup/cylf%‘Vun - V(up —uw)
= limsup [Jun |3 — [l
We can conclude that
[ullg, = limsup Jup[l > liminf [Ju, |7 > [Ju]2,

and then
i [ [|2, = [|ul2-

Consequently, u, — u in H§(C) and we get that

lim inf(Tuy,, uy, — v) = Uminf{(Tup, up — u) + (Ttp,u — )} = (Tu,u — v).

e T is coercive, i.e.
(T(v),) _

lola—oo  [v]la
It is clear that
(T(v),0) = [[vllz = CllvlZ2(a),
whence it follows that T is coercive.
Then, we can conclude from [16, ch. 2, theorem 2.7] that there exists a solution
of (4.7), i.e. T(v) = 0. Now, we show that

v € [v, 7],

and hence v is solution of (4.4). Indeed, define ¥ := v — v. Note that, for all

¥ e HG(C), ¢ =0,

/cy“mw.w(ixdyé/(f(aay(x,O))— (z,v(z,0)))(x,0) dz.

0
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Taking ¢ = (v —v)™", we have that

/y1’20‘|Vf1+|2dxdy <0.
C

Then v < v in C, and in a similar way one can prove that v < ©. O
Now let us present the proof of theorem 4.1.

Proof of theorem 4.1. First consider a positive solution v € V§(£2) of (4.1), and
consider v € H§ solution of (4.2). If A — ¢, < 0, then by the maximum principle
it follows that v < 0. So, assume that A — ¢, > 0. Taking ¢ = (v — (A —¢c1))T in
(4.2), we can show that

v<A—c¢y inC.

By lemma 2.4, we have that u € L®(£2); and then, using lemma 2.5 we obtain that
u and v are regular functions.

Now, suppose that there exists a positive solution u € V§(£2) of (4.1) for some
A € R. Then note that u is a positive solution of (3.1) with ¢(x) substituted by
(c(z) + u(z)). Then, by theorem 3.1,

A= Mo+ u] > Mo .

Now let us prove that A > A\;[«; ] is sufficient for the existence of a positive solution.
Let 2 CC {2, 2 be an open bounded set, C' = 2’ x (0,400) and E € H§(C') be
the unique positive solution of

div(y'7?*Vv) =0 in C/,

/
v=0 on 8LC, (4.10)
8871;(1:,0) =1 in .
Define
e(x) :=tro E.

Observe that, from the regularity results, e € L°°(2') and by proposition 2.2 we
get that £ > 0.

Note, in particular, that we can extend ¢ € HG(C), in such a way that ¢ €
HG(C"), and then the following holds:

/y1*QQVE.vwdxdy:/ ¥(x,0)da.
C 2

Let us take v = KF, where K is a positive constant to be chosen. Note that v is a
supersolution of (4.2) if and only if, for all ¢ € H§(C), ¥ > 0,

/yl_QaVE~V1/)dxdy+K/ c(z)E(z,0)i(z,0) dz
c 2

> / (AE(,0) — KE(z,0)2)i(z, 0) da.
(9]
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This is equivalent to
/ Y(z,0)(Ke(z)? +e(x)(c(z) = A) +1)dz >0 Yo € HF(C), 1 = 0.
Q

It suffices that Ke(z)? + e(z)(cp — A) + 1 > 0 almost everywhere in {2, which is
possible by choosing K large enough.

For the subsolution, let us take v = e¥;, where € > 0 is a constant to be chosen
and ¥y € HG(C) is a positive eigenfunction associated with Aj[a;c]. Then, for all
€ HG, ¥ >0, writing Ay = A\ [o; ], we have

/ Y2V - Vepdo dy + /
C

c(@)u(z,0)p(z,0)dr = ¢ | Mpiy(z,0)de
0 0

< [ corwla 00— o) do
Q
if and only if
ep1 < (A— A1) in £2, (4.11)

where we have defined ¢; = tr ¥. Since 1 € V§(£2), o1 € L>®(£2) and ¢; > 0 in
§2, (4.11) is possible and it follows that we have a sub—supersolution pair if € > 0 is
small enough. Now theorem 4.4 implies the existence of a solution if A > A\ [«; ¢].
To prove the uniqueness of positive solution, all the arguments of [4] (see also [5])
can be adapted to the fractional setting (see [3, lemma 5.2] or [19, proposition 4.2]).
Then, there exists a solution 0}, x—_¢ € V§'(§2) of (4.1) if and only if X > Aq[e; c].
We now prove (4.3). The first inequality follows since e is a subsolution for all
€ € (0, A — Ay c]]. For the second, note that ), x—) < A —cL. O

To compare different solutions of the logistic equation we need the following
result.

PROPOSITION 4.5. Assume that v is a bounded subsolution of (4.2). Then
trov < 9[04,/\70]-

Proof. Since v is bounded, it is clear that we can choose K > 0 such that KFE is
a supersolution of (4.2) and v < KE. By uniqueness, we conclude that v(z,0) <
0[04,/\—0]' O

As a direct consequence of proposition 4.5, we deduce the following.
COROLLARY 4.6. If Ay < A2 and ca < c1 in 2, then Ojq x, —c;] < Oja,ro—cs]-

Let us give an interesting biological interpretation of this result, comparing it
with the linear diffusion case. Recall that the classical logistic equation

—Au+c(x)u = u—u? in £, } (4.12)

u=20 on 012,
possesses a unique positive solution if and only if

A> )\1[1; 70}.
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Figure 1. The solid line represents the map G1(r) = A1[1; ¢; B,] and
the dotted line represents Go (1) = Ai[a; ¢; Br]. Ao = VA1

Let us compare this result with that obtained for (4.1) in the particular case when
N =1,c e Rand 2 = B,. In figure 1 we represent G1(r) := A1 [1; ¢; B;] by the solid
line and by G, (r) := Ai[a; ¢; B;] the dotted line with ¢ = 0 (a similar representation

can be made with ¢ # 0). Take A large (A > 1). Then, there exist r, < r; such
that

A = Gl(’l“l) = Ga<7‘a>.
Then, we have the following.

(a) If r < rq, for (4.1) and (4.12) the species dies.
(b) If r > rq, the species persists in both cases.

(c¢) Assume that r € (rq,71). Then, the species disappears in the local diffusion
and it persists in the fractional diffusion case.

Now, assume A is small (A < 1). Then, there exist R; < R, such that

A= Gi(R1) = Ga(Ra).

Moreover, we have the following.

(a) If r < Ry for (4.1) and (4.12), the species dies.

(b) If r > R, the species persists in both cases.

(¢) Assume that r € (R, R,). Then, the species disappears in the fractional
diffusion and it persists in the local diffusion case.
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Hence, in the case of favourable habitats (abundant resources) there exist domains
such that the species with fractional diffusion persists, while the species with linear
diffusion dies. On the other hand, for unfavourable habitats, there exist domains
when the opposite occurs.

5. The sub—supersolution method for systems

In this section we extend the sub—supersolution method employed in the last section
to the system setting. Let us consider

(=A)*u = f(z,u,v) in 2,
(—=A)Pv = g(z,u,v) in £, (5.1)
u=v=0 on 0f2,
where f,g € C°(2 x R?) and o, 8 € (0,1).

DEFINITION 5.1. We say that (u,v) € V§(92) x Voﬁ(()) is a solution of (5.1) if there
exists (U, V) € H§(C) x HJ(C) such that tro U :=u, troV :=v and (U,V) is a
solution of

div(y' ~2VU) = div(y'~?’VV) =0 inC,
U=V =0 onJ.C,
ou 59
%(1‘70):f(x,U(.Z‘,O),V(-T,O)) on *Qa ( ' )
g;/ﬁ (z,0) = g(z,U(x,0),V(x,0)) on £2.

DEFINITION 5.2. We say that U,U € H®(C), V.,V € HP(C) is a pair of sub—
supersolutions of (5.1) if

u:=troU, u:=troU, vi=troV, vi=troV € L®(0),
and
(a) USUand V< VinCandU <0< U a
(b) for all (1,¢) € HG(C) x Hg(C), 1,¢ > 0 and (u,v) € [U,U] x [V, V], the
following hold:

/ykzavg - Vepdady < / f(z,U(z,0),v(x,0))(z,0)dz,
c o

nd V <0< VondrC,

/ y'720v0 -V daedy > | f(z,U(z,0),v(x,0))(z,0) dz,

I 2

/y1—2ﬁvz. V(bdxdy < / f(x,u(x,o),K(JU,O)W(%O) dLE,
c 2

[0V Vodody > [ fauw.0),V(2,0)6(w.0) da.
c 2

where [U,U] = {w € H*(C); U < w < U in C} and [V, V] is defined analo-
gously.

https://doi.org/10.1017/50308210516000305 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210516000305

524 M. O. Alves, M. T. O. Pimenta and A. Sudrez

THEOREM 5.3. Assume that there ezists a pair (U,U), (V, V) of sub-supersolutions
of (5.2). Then, there exists a solution (U, V) € HE(C) x ’H@(C) of (5.1) such that

UKULU, V<V<LV inC.

Moreover, there exists a solution (u,v) € V§(2) x VE(2) of (5.1) such that u <
u<Luin 2 andv<v <0 in (.

Proof. The proof is similar to theorem 4.4. Define the operators T and T by

u ifw<u, v if z <,
T (w)=Rw ifu<w<i, To(z) =1z ifv<z<7,
u if w >4, v if z > v,

and the functions by

f((E, u, U) = f(mv T (’U,), T2(v))v f](x, U, U) = g(xa T (u)v T2(U))'
Consider the problem

div(y'~2VU) = div(y'~?’VV) =0 inC,
U=V =0 onod.C,

ou 5

gy (@ 0) = f@.U(,0,V(@,0)) on 2, (5.3)
ov .

W(mvo) zg(x,U(m,O),V(x,O)) on {2.

First, we prove that (5.3) has at least one solution. To do this, consider the space
H = HG(C) x H(C)

with the norm ||(u,v)|| = ||l + ||v|lg and the map T: H — (H)" defined by

(T(u,v), (w,2)) = (/Cyl_zo‘Vu -Vwdzdy — /Q f(z, u(z,0)w(z,0) dz,

/yl—Qﬁvv Vzdg;dy—/ g(m,U(Q?’O))Z(LU,O) dl’)
c 2

Now, we can just follow the arguments of theorem 4.4 and show that there exists
a solution (U, V) of (5.3), i.e. T(U,V) = (0,0). Again, we can prove that (U, V)
is a solution of (5.1), as it suffices to show that (U,V) € [U,U] x [V, V]. Define
U = U — U. Then, taking T5(V) in the definition of the subsolution, we get that,
for all ¢ € HE, v > 0,

/yl_mVﬁ Vi dady < / [f (2, U To(V)) = f(a, U, V)] (2, 0) dz < 0.
c o

Taking 1 = (U — U)T we get that U < U. The same argument can be applied to
the other inequalities. O
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6. Application to the Lotka—Volterra systems

In this section we apply the above results to system (1.1), or equivalently, to the

system
div(y*~2°VU) = div(y'~?’VV) =0 inC,
U=V=0 on0d.C,
oU : 6.1
@(z,O) = U(z,0)(A — U(x,0) — bV (z,0)) in £2, (6.1)
oV :
w(m,O) =V(z,0)(n—V(z,0) — cU(z,0)) in £2.

First, we deduce some bounds of the solutions of (1.1).

PROPOSITION 6.1.

(a) Assume that b,c > 0 and let (u,v) be a positive solution of (1.1). Then,

U< b,  v<Op.

(b) Assume that b > 0 and ¢ < 0 and let (u,v) be a positive solution of (1.1).
Then,

U< Oan—bo 0] SOy Ogu SU<Ou—cop, -
(c) Assume that b,c <0 and let (u,v) be a positive solution of (1.1). Then,

Oan Su,  Oig ) <wv.

Proof.

(a) Assume that b,c > 0 and let (u,v) be a positive solution of (1.1), i.e. (u,v) =
(tro U, tro V), (U, V) being a solution of (6.1). With similar reasoning to that used
in theorem 4.1 we can show that U,V € L>°(C). Moreover, u € L>(2). It is thus
clear that U is a bounded subsolution of (4.1) with ¢ = 0. Then, U < 0y,_y], and so

U< 9[04,/\] in £2.
In a similar way, we can show that v < 0,

(b) It is easy to show that u < 0}, and 03 ) < v. The latter inequality shows that
O3,y is a subsolution of (—A)Pv = v(u — v — cu). Moreover, using that V > O[5 ),

we can show that U is a subsolution of (4.2) with c(x) = =003 ), and so u <
O A—b015,,)-
(c¢) This is shown in a similar way to the statements above. O

COROLLARY 6.2.

(a) Assume that b,c > 0. If there exists a positive solution of (1.1), then A > A1
and p > M)

(b) Assume that b > 0 and ¢ < 0. If there exists a positive solution of (1.1), then
A > Mo 0015,,] and > M[B; cOiq, 5]
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We now introduce some notation. Denote by F, the unique positive solution of
(4.10) in C and e, = tr E. We define

Cla,f) = (Z;)M (Z)M

Our main result is as follows.
THEOREM 6.3.

(a) Assume b,c > 0 (the competitive case). Assume also that A > Ai[a] and
> A[B]. If (A, p) verifies

A> Mo b05,]  and  p> Ai[B;ciq, N, (6.2)
then there exists at least one coezistence state of (1.1).
(b) Assume that b > 0 and ¢ < 0 (the predator—prey case). If (A, u) verifies
A > Al[a;be[ﬁ,“,w[mm] and p > M[B;clia,x], (6.3)
then there exists at least one coexistence state of (1.1).

(¢) Assume that b < 0, ¢ < 0 and be < C(a, 8) (the symbiosis case). If (A, p)
verifies (6.2), then there exists at least one coexistence state of (1.1).

Proof.
(a) Assume that b, c > 0. We take the following sub—supersolutions:

(U, U) = (Orax—b6y5.,1> O] (V. V) = (O18,—cbpo 115 Olul)-
Indeed, observe that, for ¢ € HS(C), v > 0,

/ YOV Vi dedy = / 0 (2, 0)(A — O (z,0))(x, 0) da
C 2
> / U(I,O)()\ — U(x, 0) — bV (z,0))¢(x,0)dx
(9]

for all V € [V, V]. B
On the other hand, observe that if V' € [V, V], then V' < O3, and so
V(.%‘,O) < 9[[3’“].

Hence, for ¢ € H§(C), 3 > 0,
/cy1*2avg- Vi daedy = /QQ(J:,O)()\ — U(x,0) — bjg,,,))¢(z,0) dz
< /QU(LU,O)()\— 0 (z,0) — bV (2, 0))0(z, 0) dz
for all V € [V, V]. B
We can proceed with V and V in a similar way.

Finally, observe that, due to (6.2), U > 0 and V > 0. Moreover, since b,c > 0,
we have U < U and V < V in C.
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(b) Assume that b > 0, ¢ < 0 and (6.3) holds. Now, we take a pair of sub—
supersolutions

(U, U) = (O r—7 (2,0 O] (V. V) = (B, Ot u—ctpa 1)])-

First, since b > 0 and ¢ < 0 it is clear that U < U and V. < V, and by (6.3) we get
that U > 0 and V > 0.

It is not difficult to show that V and U are sub-supersolutions. Consider V. We
have that, for ¢ € H(C), ¢ > 0,

/ y1—2av"/ Védrdy = / ‘7(1‘7 0)(p — V(z,O) — cﬂ[a,k])qﬁ(x,()) dz
c (9]

>/ V(2,0 (1 — V(2,0) — cU(x,0))p(x, 0) dz
(9]

for all U € [U, U] because ¢ < 0.
Finally, we consider U. In this case, we have

/ Y120V - Ve dr dy — / U(z,0)(\ — U(x,0) — bV (z,0))¢(z,0) do
c 7

< / O(,0)(A — U(,0) - bV (,0))(x, 0) dz
(9}

for all V € [V, V].
(¢) Assume b,c < 0, be < C(a, §) and (6.2) holds. Take

(U, U) = (Brar—bo5,,]» M1 Ea), (V,V) = (6 1: M2Eg),

NS PN

where My, M are positive constants to be chosen and E, is the unique solution
of (4.10). It is easy to show that U and V. are subsolutions. On the other hand, U
and V are supersolutions provided that

Mlei = eq A+ bMaeqeg —1  and Mg@% > egpt+cMieqeg —1 Ve (2.
Since be < C(a, 3), we can take M7 and Ms to be large. O

REMARK 6.4. Conditions (6.2) and (6.3) define a region in the (A, p)-plane that
could eventually be empty. There are detailed studies of these regions in the a =
0 =1 case (see, for example, [8,11,17,18]). The latter are beyond the scope of this
paper; we point out only that if b > 0, then

p € [M[B],00) = Ma;bbig, ] € R

is an increasing map, because p +— 6g ) is increasing and ¢ — Aifa;c] is also
increasing.
Similarly, it is decreasing when b < 0.
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