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1. Introduction

In this paper we study the following systems:

(−∆)αu = u(λ − u − bv) in Ω,

(−∆)βv = v(µ − v − cu) in Ω,

u = v = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (1.1)

where Ω ⊂ R
N , N � 1, is a bounded and regular domain, λ, µ, b, c ∈ R and

α, β ∈ (0, 1). Here, u and v denote the densities of two species in Ω (the habitat),
which is surrounded by inhospitable areas due to the homogeneous Dirichlet bound-
ary conditions. In (1.1) we assume that the species diffuse following the fractional
Laplacian (see § 2, where we define this non-local operator).

When α = β = 1, (1.1) is the classical Lotka–Volterra system with random walk,
which has been widely studied in recent years in the following cases: competition
(b, c > 0), predator–prey (b > 0 and c < 0) and symbiosis (b, c < 0) (see [8] and the
references therein).
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Fractional operators are used in different contexts: physics, finance and ecology
(see [15,21] for the ecological meaning of fractional diffusion). For many years, non-
oriented animal movement was modelled by classical Brownian motion. However,
it seems that when a species is searching for resources the strategy based on Lévy
flights (supported in long jumps) could be more appropriate in some situations.
This kind of strategy is optimal for the location of targets that are randomly and
sparsely distributed, but Brownian motion is optimal when resources are abundant.
The Lévy diffusion processes are generated by fractional powers of the Laplacian
(−∆)γ for γ ∈ (0, 1).

We are interested in the existence of non-negative solutions of (1.1). It is clear
that (1.1) possesses the trivial solution (u, v) = (0, 0) for all λ, µ ∈ R, since when
u ≡ 0 (respectively, v ≡ 0) v (respectively, u) verifies an equation of the following
type:

(−∆)γw + c(x)w = w(σ − w) in Ω,

w = 0 on ∂Ω,

}
(1.2)

where γ ∈ (0, 1), σ ∈ R and c ∈ L∞(Ω). This is the classical logistic equation,
studied in [19,20] with homogeneous Dirichlet and Neumann boundary conditions,
respectively, with γ = 1

2 in both papers. To study this equation, we analyse the
eigenvalue problem

(−∆)γw + c(x)w = λw in Ω,

w = 0 on ∂Ω.

}
(1.3)

We study the existence of a principal eigenvalue, the unique eigenvalue of (1.3)
having a positive eigenfunction, denoted by λ1[γ; c]. This problem has been analysed
in [1, 19] (for γ = 1

2 ) and in [20] for the Neumann case. We study some properties
of this eigenvalue and of the associated eigenfunction.

Then, we prove that (1.2) has a positive solution if and only if σ > λ1[γ; c];
moreover, it is unique and we denote it by θ[γ,σ−c]. Furthermore, we attempt to give
an ecological interpretation of the result, comparing our results with that obtained
in the local operator case, in which the fractional Laplacian is substituted by the
classical Laplacian operator.

To show the existence, we employ the sub–supersolution method. Note that this
method was used for the nonlinear fractional diffusion problem (see, for instance,
[3,9]; in both these papers, the method is the consequence of a maximum principle
and a classical iterative argument). However, we present a different proof, which is
also valid, with minor technical changes, for systems.

Once we have studied (1.2) in detail, we shall analyse the existence of solutions
with both positive components of (1.1). To do this, we apply the sub–supersolution
method, first showing that it works for systems, and then applying it to (1.1). Thus,
we must find appropriate sub–supersolutions of (1.1) using the results obtained for
the logistic equations. We prove the following results. There exists at least one
positive solution of (1.1) if

• b, c > 0 or b, c < 0 and bc < C(α, β) for some positive constant (detailed in
§ 6) and λ and µ verify

λ > λ1[α; bθ[β,µ]] and µ > λ1[β; cθ[α,λ]], (1.4)
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or

• b > 0 and c < 0 and λ and µ verify

λ > λ1[α; bθ[β,µ−cθ[α,λ]]] and µ > λ1[β; cθ[α,λ]]. (1.5)

We show that conditions (1.4) and (1.5) define regions on the (λ, µ)-plane.
The paper is organized as follows. In § 2 we present the functional setting neces-

sary for the remainder of the work. Section 3 is devoted to the eigenvalue problem:
we study the existence and main properties of the principal eigenvalue. In § 4 we
study (1.2). The sub–supersolution method for systems is shown in § 5. Finally, in
§ 6 we study the existence of a positive solution of (1.1).

2. Preliminaries

We begin by introducing the functional framework necessary to develop the theory,
and recover some known results about the different forms to define the fractional
power of the Laplacian with Dirichlet boundary condition.

2.1. Functional setting

Consider a smooth bounded domain Ω ⊂ R
N . Since in bounded domains there are

some non-equivalent definitions of the fractional Laplacian operator, let us explain
what we mean by the symbol (−∆)α. For u ∈ C∞

0 (Ω) such that u =
∑∞

k=1 bkϕk,
where λk, ϕk are the eigenpairs of (−∆, H1

0 (Ω)) (with λk repeated as many times
as its multiplicity and {ϕk} forming an orthonormal basis of L2(Ω)), we define

(−∆)αu :=
∞∑

k=1

λα
k bkϕk.

Then the operator (−∆)α is defined on

D((−∆)α) =
{

u ∈ L2(Ω);
∞∑

k=1

λα
k b2

k < +∞
}

by density.
Now, let us consider the half cylinder

C := Ω × (0, +∞)

with base Ω, and denote its lateral boundary by

∂LC := ∂Ω × [0, +∞).

We set (x, y) ∈ C, x ∈ Ω and y > 0 and define

Hα(C) := {v ∈ H1(C); ‖v‖α < +∞},

Hα
0 (C) := {v ∈ Hα(C); v = 0 on ∂LC},
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where

‖v‖α :=
(

k−1
α

∫
C

y1−2α|∇v|2 dxdy

)1/2

, kα =
21−2αΓ (1 − α)

Γ (α)
, α ∈ (0, 1),

and Γ is the Gamma function. It is not difficult to see that Hα
0 (C) is a Hilbert space

when endowed with the norm ‖ · ‖α, which comes from the following inner product:

〈v, w〉α = k−1
α

∫
C

y1−2α∇v · ∇w dxdy.

Consider the following subspace of the fractional Sobolev space Hα(Ω):

Vα
0 (Ω) := {trΩ v; v ∈ Hα

0 (C)}.

This is a Banach space when endowed with the norm

‖u‖Vα
0 (Ω) :=

(
‖u‖2

L2(Ω) +
∫

Ω

∫
Ω

|u(x) − u(y)|2
|x − y|N+2α

dxdy

)1/2

,

where trΩ is the trace operator defined by

trΩ v = v(·, 0) for v ∈ Hα
0 (C).

Moreover, by the trace theorem (see [9, proposition 2.1]) and embeddings for
fractional Sobolev spaces (see [12, theorem 6.7]) it follows that

‖trΩ v‖Lp(Ω) � C‖v‖α ∀v ∈ Hα
0 (C), p ∈ (1, 2α), (2.1)

where 2α = 2N/(N − 2α).
By [9, proposition 2.1] it holds that

Vα
0 (Ω) =

{
u ∈ L2(Ω); u =

∞∑
k=1

bkϕk satisfying
∞∑

k=1

b2
kλα

k < +∞
}

.

As far as the scalar non-local problem

(−∆)αu = f(x, u) in Ω,

u = 0 on ∂Ω,

}
(2.2)

is concerned, the approach we shall follow is by associating with (2.2) an (N + 1)-
dimensional local problem in C. This can be done by considering the procedure to
obtain a local realization of (−∆)α, described below.

As proved in [9, § 2.1], for each u ∈ Vα
0 (Ω) there exists a unique v ∈ Hα

0 (C), called
its α-harmonic extension such that

− div(y1−2α∇v) = 0 in C,

v = 0 on ∂LC,

v(·, 0) = u on Ω.

Moreover, if u =
∑∞

k=1 bkϕk is its spectral decomposition, then

v(x, y) =
∞∑

k=1

bkϕk(x)ψ(λ1/2
k y) ∀(x, y) ∈ C, (2.3)
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where ψ solves the Bessel equation

ψ′′ +
1 − 2α

s
ψ′ = ψ, s > 0,

− lim
s→0+

s1−2αψ′(s) = kα,

ψ(0) = 1.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.4)

Let u ∈ Vα
0 (Ω) and let v ∈ Hα

0 (C) be its α-harmonic extension. Define the
functional

1
kα

∂v

∂yα

∣∣∣∣
Ω×{0}

∈ V0(Ω)∗

by 〈
1
kα

∂v

∂yα
(·, 0), g

〉
:=

1
kα

∫
C

y1−2α∇v · ∇g̃ dxdy,

where g̃ is the α-harmonic extension of g ∈ Vα
0 (Ω) and

∂v

∂yα
(x, 0) = − lim

y→0+
y1−2α ∂v

∂y
(x, y) ∀x ∈ Ω.

Then we can define an operator Aα : Vα
0 (Ω) → Vα

0 (Ω)∗ such that

Aαu :=
1
kα

∂v

∂yα

∣∣∣∣
Ω×{0}

,

where v is the α-harmonic extension of u to C. Let us prove that the operators Aα

and (−∆)α are in fact the same, i.e. that, for all u ∈ Vα
0 (Ω),

Aαu =
∞∑

k=1

bkλα
k ϕk, where u =

∞∑
k=1

bkϕk.

By linearity, it is enough to prove that, for all ϕk,〈
1
kα

∂v

∂yα
(·, 0), ϕk

〉
= 〈(−∆)αu, ϕk〉L2(Ω) ∀k ∈ N,

where v is the α-harmonic extension of u.
For u ∈ Vα

0 (Ω) and k ∈ N, let v and ϕ̃k be the α-harmonic extensions of u and
ϕk, respectively. By (2.3),

v(x, y) =
∞∑

k=1

bkϕk(x)ψ(λ1/2
k y) and ϕ̃k(x, y) = ϕk(x)ψ(λ1/2

k y).

Now, integration by parts and properties of ϕk imply that, for each y > 0,∫
Ω

y1−2α∇xv(x, y) · ∇xϕ̃k(x, y) dx = y1−2αbk(λkψ(λ1/2
k y)2 + ψ′(λ1/2

k y)2)
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holds. Then, by (2.4),〈
1
kα

∂v

∂yα
(·, 0), ϕk

〉
=

1
kα

∫
C

y1−2α∇v · ∇ϕ̃k dxdy

=
1
kα

∫ +∞

0
y1−2αbk(λkψ(λ1/2

k y)2 + ψ′(λ1/2
k y)2) dy

=
1
kα

lim
η→0+

y1−2αλ
1/2
k bkψ′(λ1/2

k y)ψ(λ1/2
k y)|y=η

= bkλα
k

= 〈(−∆)αu, ϕk〉L2(Ω).

Hence, in (2.2) we shall understand (−∆)α to mean Aα.
For simplicity, without loss of generality, we can assume throughout the paper

that kα = 1. Then we have the following.

Definition 2.1. u ∈ V0(Ω) is a weak solution of (2.2) if u = trΩ v, where v ∈
Hα

0 (C) is a weak solution of

− div(y1−2α∇v) = 0 in C,

∂v

∂yα
(x, 0) = f(x, v(x, 0)) on Ω.

In this case, v is such that∫
C

y1−2α∇v · ∇ψ dxdy =
∫

Ω

f(x, v(x, 0))ψ(x, 0) dx ∀ψ ∈ Hα
0 (C). (2.5)

2.2. Maximum principle

Throughout the paper, the following maximum principle will be very useful (see
[9, lemma 2.5] for a related result).

Proposition 2.2. Let d ∈ L∞(Ω) and v ∈ Hα(C) such that v � 0 in ∂LC and

− div(y1−2α∇v) � 0 in C,

∂v

∂yα
(x, 0) + d(x)v(x, 0) � 0 on Ω.

(a) Assume that d � 0 in Ω; then v � 0 in C.

(b) Assume that v � 0 in C; then either v ≡ 0 or v > 0 in C.

Proof.
(a) The proof follows just by using −v− as a test function, where v = v+ + v−.

(b) In this case we follow the proof of [6, lemma 4.9]. Define

w(x, y) := exp{Ay2α}v(x, y).

Then, w satisfies

− div(y1−2α∇(exp{−Ay2α}w)) � 0 in C,

∂w

∂yα
(x, 0) + (d(x) + 2Aα)w(x, 0) � 0 on Ω.
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We can choose A such that d(x) + 2Aα � 0 in Ω, and so

∂w

∂yα
(x, 0) � 0 in Ω.

Taking R > 0, we now consider the even extension of w in Ω × (−R, R), defined by

w̃(x, y) =

{
w(x, y) if y > 0,

w(x,−y) if y � 0.

We can show that

− div(|y|1−2α∇(exp{−A|y|2α}w̃)) � 0 in Ω × (−R, R).

Now, define the problem

− div(|y|2α∇(exp{−A|y|2α}h)) = 0 in Ω × (−R, R),
h = w̃ on (Ω × {−R}) ∪ (Ω × {R}).

The above problem possesses a solution by [13] (see also [6, theorem 3.2]) and by
the maximum principle we get that

h � w̃ in Ω × (−R, R).

On the other hand, by the strong maximum principle (see [13, lemma 2.3.5]), we
conclude that

h > 0.

This completes the proof.

Remark 2.3. Observe that proposition 2.2 can equivalently be stated as follows:
assume d ∈ L∞(Ω) and (−∆)αu + d(x)u � 0 in Ω and u � 0 on ∂Ω. Then,

(a) if d � 0 in Ω, then u � 0 in Ω,

(b) assuming that u � 0 in Ω, either u ≡ 0 or u > 0 in Ω.

2.3. Regularity results

The following result follows by [10, lemma 3.3] (see also [2, proposition 5.1]).

Lemma 2.4. Assume that f ∈ C(Ω̄ × R) and that there exists a constant C and
p ∈ (2, 2N/(N − 2α)) such that

|f(x, t)| � C(1 + |t|p−1), x ∈ Ω, t ∈ R.

If v ∈ Hα
0 (C) is a solution of (2.5) and u = trΩ v, then v ∈ L∞(C) ∩ Cσ(C̄) and

u ∈ Cσ(Ω̄) for some σ ∈ (0, 1).

Consider now the linear problem

(−∆)αu = g(x) in Ω,

u = 0 on ∂Ω.

}
(2.6)

The following result is taken from [10, lemma 3.2] (see also [7]).
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Lemma 2.5. Assume that g ∈ H−α(Ω) and v ∈ Hα
0 (C) is a solution of (2.6) and

u = trΩ v. Then we have the following.

(a) If g ∈ Lr(Ω) for r > N/(2α), then v ∈ L∞(C) and u ∈ L∞(Ω).

(b) If g ∈ L∞(Ω), then v ∈ Cσ(C̄) and u ∈ Cσ(Ω̄) for some σ ∈ (0, 1).

(c) If g ∈ Cσ(Ω̄) and g∂Ω ≡ 0, then v ∈ C1,σ(C̄) and u ∈ C1,σ(Ω̄) for some
σ ∈ (0, 1).

(d) If g ∈ C1,σ(Ω̄) and g∂Ω ≡ 0, then v ∈ C2,σ(C̄) and u ∈ C2,σ(Ω̄) for some
σ ∈ (0, 1).

3. The eigenvalue problem

Given c ∈ L∞(Ω), we study the eigenvalue problem

(−∆)αu + c(x)u = λu in Ω,

u = 0 on ∂Ω,

}
(3.1)

where α ∈ (0, 1) and λ ∈ R. Recall that u ∈ Vα
0 (Ω) is an eigenfunction associated

with an eigenvalue λ of (3.1) if and only if u = trΩ v, where v ∈ Hα
0 (C) is a solution

of
− div(y1−2α∇v) = 0 in C,

v = 0 on ∂LC,

∂v

∂yα
(x, 0) + c(x)v(x, 0) = λv(x, 0) on Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2)

In the following result, we show the existence of principal eigenvalue and positive
eigenfunction of (3.1) and their main properties.

Theorem 3.1. There exists a principal eigenvalue of (3.1), denoted by λ1[α; c].
This eigenvalue is simple and possesses a unique eigenfunction Φ1 of (3.2), up to
multiplicative constants, which can be taken to be positive. Moreover, the principal
eigenfunction Φ1 is strongly positive, and λ1[α; c] is the only eigenvalue of (3.1)
possessing a positive eigenfunction. If we define ϕ1 := trΩ Φ1, we have that

ϕ1 ∈ Cσ(Ω̄) and Φ1 ∈ L∞(C) ∩ Cσ(C̄) for some σ ∈ (0, 1).

Furthermore, the map from c ∈ L∞(Ω) �→ λ1[α; c] is increasing.

Proof. For each v ∈ Hα
0 (C) such that trΩ v �= 0 in L2(Ω), let us consider

J(v) :=
( ∫

C
y1−2α|∇v|2 dxdy +

∫
Ω

c(x)v(x, 0)2 dx

)( ∫
Ω

v(x, 0)2 dx

)−1

(3.3)
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and note that J is bounded from below. In fact, the trace theorem and the bound-
edness of c imply that∫

C
y1−2α|∇v|2 dxdy +

∫
Ω

c(x)v(x, 0)2 dx

� C

∫
Ω

v(x, 0)2 dx +
∫

Ω

c(x)v(x, 0)2 dx

� K

∫
Ω

v(x, 0)2 dx,

where K ∈ R, for every such v.
Let us define

λ1[α; c] := inf{J(v); v ∈ Hα
0 (C) and trΩ v �= 0 in L2(Ω)}. (3.4)

Let (vn)n∈N ⊂ Hα
0 (C) be such that

∫
Ω

vn(x, 0)2 dx = 1 and J(vn) → λ1[α; c]. It is
straightforward to see that (vn)n∈N is bounded in Hα

0 (C), and hence there exists
w ∈ Hα

0 (C) such that wn ⇀ w in Hα
0 (C). Since Hα

0 (C) ↪→ Vα
0 (Ω) continuously and

Vα
0 (Ω) ↪→ L2(Ω) compactly,

∫
Ω

w(x, 0)2 dx = 1. Just by imitating the arguments
of [14, § 8.12], one can show that (vn)n∈N is a Cauchy sequence which strongly
converges to v in Hα

0 (C). Hence, J(v) = λ1[α; c].
If ψ ∈ Hα

0 (C), setting ϕ(t) = J(v + tψ), it follows that

0 = ϕ′(0)

=
∫

C
y1−2α∇v · ∇ψ dxdy +

∫
Ω

c(x)v(x, 0)ψ(x, 0) dx

− λ1[α; c]
∫

Ω

v(x, 0)ψ(x, 0) dx.

Hence, v is a solution of (3.2) with λ = λ1[α; c] and it is therefore an eigenfunction
associated with λ1[α; c].

Of course, the definition implies that λ1[α; c] is the smallest eigenvalue of (3.2).
Now let us prove that the eigenfunctions have at least Cγ(Ω̄) regularity, where

γ = min{1, 2α}. This follows easily from lemmas 2.4 and 2.5 once we prove that
‖trΩ φ‖L∞(Ω) < +∞ for every eigenfunction φ. On the other hand, this L∞ estimate
can be obtained by a standard application of the Moser iteration technique, which
we describe below.

Let v ∈ Hα
0 (C), satisfying (3.2) for some λ, and let M > 0. Defining vM =

min{v, M}, note that it is an Hα
0 (C) function. Let b > 0 be a constant to be

chosen conveniently, and let us take vb
M as a test function in (3.2). Defining e(x) :=

(λ − c(x)) it follows that

b

∫
C

y1−2αvb−1
M |∇vM |2 dxdy =

∫
Ω

e(x)v(x, 0)vM (x, 0)b dx,

which implies that

4b

(b + 1)2

∫
C

y1−2α|∇(v(b+1)/2
M )|2 dxdy �

∫
Ω

e(x)v(x, 0)b+1 dx.
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By the trace theorem and the embedding of fractional Sobolev spaces, we have that

4b

(b + 1)2
‖trΩ v

(b+1)/2
M ‖2

L2α (Ω) � C‖trΩ v‖b+1
Lb+1(Ω).

Considering M → +∞ and using Fatou’s lemma, we have that

4b

(b + 1)2
‖trΩ v(b+1)/2‖2

L2α (Ω) � C‖trΩ v‖b+1
Lb+1(Ω).

Then it follows that

‖trΩ v‖L2α(b+1)/2(Ω) �
(

C
(b + 1)2

4b

)1/(b+1)

‖trΩ v‖Lb+1(Ω). (3.5)

Let us consider a sequence (ηk)k defined by η0 = 2 and ηk = (2α/2)ηk−1 for k � 1.
Taking b in (3.5) such that b + 1 = ηk−1, we have that

‖trΩ v‖Lηk (Ω) �
(

C
η2

k−1

4(ηk−1 − 1)

)1/ηk−1

‖trΩ v‖Lηk−1 (Ω).

Iterating this expression in k, we get that

‖trΩ v‖Lηk (Ω) �
k−1∏
j=0

(
C

η2
j

4(ηj − 1)

)1/ηj

‖trΩ v‖L2(Ω).

Note that there exists a constant C > 0 such that z2/4(z − 1) � Cz for all z � 1.
Taking into account the fact that ηj = 2j

α/2j−1, it follows that

‖trΩ v‖Lηk (Ω) �
k−1∏
j=0

(
C

2j
α

2j−1

)2j−1/2j
α

‖trΩ v‖L2(Ω)

� (2αC)Ak

k−1∏
j=0

(δ1−j)δj−1/2α‖trΩ v‖L2(Ω),

where δ = 2/2α ∈ (0, 1) and

Ak =
1
2a

k−1∑
j=1

δj−1.

Now, since 0 < δ < 1, the series in Ak converges and

k−1∏
j=0

(δ1−j)δj−1/2α < +∞.

Now, observing that ηk → +∞, it follows that ‖trΩ v‖L∞(Ω) < +∞.
If v is a minimizer for J , then it is straightforward to see that |v| is too. Taking a

constant M > 0 such that M + c(x) > 0 in Ω, proposition 2.2 implies that |v| > 0
in C. Since v is regular, it follows that v cannot change sign. Consequently, two of
them cannot be orthogonal, and λ1[α; c] is simple.
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Applying the same procedure to λ1[α; c] proves that (denoting by Vj the eigen-
space associated with the jth eigenvalue) the higher eigenvalues can be character-
ized as

λj = inf{J(u); u �= 0, 〈u, v〉L2(Ω) = 0 ∀v ∈ span[V1, . . . , Vj−1]}.

This characterization with the positiveness of the first eigenfunction implies that
the first eigenvalue is the only one that has a single-signed eigenfunction.

In order to complete the proof, note that the variational characterization of the
eigenvalues still implies that if c1, c2 ∈ L∞(Ω) and c1 < c2 in Ω. Then λ1[α; c1] <
λ1[α; c2]. In fact, let w ∈ Hα

0 (C) such that trΩ w �= 0 in L2(Ω) and J(w) = λ1[α; c2].
Note that( ∫

C
y1−2α|∇w|2 dxdy +

∫
Ω

c1(x)w(x, 0)2 dx

)( ∫
Ω

w(x, 0)2 dx

)−1

<

( ∫
C

y1−2α|∇w|2 dxdy +
∫

Ω

c2(x)w(x, 0)2 dx

)( ∫
Ω

w(x, 0)2 dx

)−1

,

which completes the proof.

Analysing the behaviour of λ1[α; c] with respect to the weights is a challenging
problem (see, for example, [20, § 3]). We would, however, like to study λ1[α; c] in a
particular case. When c ≡ 0 we set λ1[α] := λ1[α; 0]. Finally, for α = 1 we denote by
λ1[1; c] the principal eigenvalue of the local operator −∆+c(x) under homogeneous
Dirichlet boundary conditions and set λ1 := λ1[1; 0]. Recall that λ1[α] = λα

1 .

Remark 3.2. Given c ∈ L∞(Ω), we define

cL := ess inf
Ω

c(x) and cM := ess sup
Ω

c(x).

Note that, by the definition of J and the fact that λ1[α; c] minimizes J , it follows
that

λ1[α] + cL � λ1[α; c] � λ1[α] + cM .

It is not difficult to show that when c ∈ R we get

λ1[α; c] = λ1[α] + c = λα
1 + c.

In the following we show the dependence of λ1[α; c] for N = 1 with respect to the
domain Ω = Br = (−r, r). Denote by λ1[α; c; Br] the principal eigenvalue of (3.1) in
Br and by λ1[1; c; Br] the principal eigenvalue of the −∆+c in Br, i.e. the principal
eigenvalue of

−∆v + c(x)v = λ1[1; c; Br]v in Br, v = 0 on ∂Br. (3.6)

With this notation, we can prove the following.

Proposition 3.3. It holds that

λ1[α; c; Br]r2α = λ1[α; r2αc(r·); B1] (3.7)
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and

λ1[1; c; Br]r2 = λ1[1; r2c(r·); B1]. (3.8)

Consequently,

lim
r→0

λ1[α; c; Br]r2α = λ1[α; 0;B1] = (λ1[1; 0;B1])α. (3.9)

Proof. By the definition of λ1[α; c; Br], there exists v such that

− div(y1−2α∇v) = 0 in Br × (0,∞),

v = 0 on ∂Br × (0,∞),
∂v

∂yα
(x, 0) + c(x)v(x, 0) = λ1[α; c; Br]v(x, 0) on Br.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.10)

The change of variables

z =
x

r
, t =

y

r
and w(z, t) = v(zr, tr),

transforms (3.10) into

− div(t1−2α∇w) = 0 in B1 × (0,∞),

w = 0 on ∂B1 × (0,∞),
∂w

∂tα
(z, 0) + r2αc(rz)w(z, 0) = r2αλ1[α; c; Br]w(z, 0) on B1.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.11)

This concludes the proof of (3.7).

In a similar way, under the change of variable

z =
x

r
, w(z) = v(zr)

in (3.6), we get (3.8). Obtaining (3.9) from (3.7) is trivial.

Let us compare the eigenvalues of the Laplacian and fractional Laplacian for the
case when N = 1, c ∈ R and Ω = Br.

Lemma 3.4. Assume c ∈ R. Then,

λ1[α; c; Br] > (resp. <,=) λ1[1; c; Br] ⇐⇒ r > (resp. <,=)
√

λ1[1;B1].

On the other hand, α �→ λ1[α; c; Br] is decreasing when r >
√

λ1[1; 0;B1] and
increasing when r <

√
λ1[1; 0;B1].

Proof. Observe that
λ1[1; c; Br]r2 = λ1[1; r2c(r·); B1],

and so, if c is a constant,

λ1[1; c; Br] =
λ1[1; 0;B1]

r2 + c,
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and by proposition 3.3 we get

λ1[α; c; Br] =
λ1[α; 0;B1]

r2α
+ c =

(
λ1[1; 0;B1]

r2

)α

+ c.

This concludes the result.

Remark 3.5. Recall that λ1[1; 0;B1] = 1
4π2.

4. The logistic equation

In this section, we want to study the logistic equation

(−∆)αu + c(x)u = λu − u2 in Ω,

u = 0 on ∂Ω,

}
(4.1)

where α ∈ (0, 1) and c ∈ L∞(Ω), or, equivalently,

− div(y1−2α∇v) = 0 in C,

v = 0 on ∂LC,

∂v

∂yα
(x, 0) + c(x)v(x, 0) = λv(x, 0) − v(x, 0)2 on Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.2)

Theorem 4.1. Equation (4.1) possesses a positive solution if and only if λ >
λ1[α; c]. Moveover, if it exists, this is the unique positive solution and we denote it
by θ[α,λ−c]. Furthermore, θ[α,λ−c] ∈ C2,σ(Ω̄) for some σ ∈ (0, 1), and the follow-
ing property holds: if we denote by ϕ1 the principal eigenfunction associated with
λ1[α; c] such that ‖ϕ1‖∞ = 1, then

(λ − λ1[α; c])ϕ1(x) � θ[α,λ−c](x) � λ − cL ∀x ∈ Ω. (4.3)

Remark 4.2. A similar result holds for (4.2). In this case, we denote by Θ[α,λ−c] the
unique positive solution of (4.2), i.e. θ[α,λ−c] = trΩ Θ[α,λ−c]. Moreover, Θ[α,λ−c] ∈
C2,σ(C̄) ∩ L∞(C).

In the proof of theorem 4.1 we shall apply the well known sub–supersolution
method. Despite the definitions and results for this subject in the fractional setting
being a rather standard adaptation of the sub–supersolution method to second-
order operators, we present them here for completeness.

Let us consider problem (2.2), which is associated with the extension problem

div(y1−2α∇v) = 0 in C,

v = 0 on ∂LC,

∂v

∂yα
(x, 0) = f(x, v(x, 0)) on Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.4)

where f ∈ C(Ω̄ × R). Recall the definition of the solution of (4.4) (definition 2.1).
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Definition 4.3. We say that (v, v̄) is a sub–supersolution of (4.4) if v, v̄ ∈ Hα(C),
u := trΩ v, ū := trΩ v̄ ∈ L∞(Ω) and

(a) v � v̄ in C and v � 0 � v̄ on ∂LC.

(b) for all ψ ∈ Hα
0 (C), ψ � 0, it holds that∫
C

y1−2α∇v · ∇ψ dxdy �
∫

Ω

f(x, v(x, 0))ψ(x, 0) dx (4.5)

and ∫
C

y1−2α∇v̄ · ∇ψ dxdy �
∫

Ω

f(x, v̄(x, 0))ψ(x, 0) dx. (4.6)

Theorem 4.4. Assume that (v, v̄) is a sub–supersolution of (4.4). Then, there
exists a solution v of (4.4) such that

v � v � v̄ in C.

Consequently, there exists a solution u ∈ Vα
0 (Ω) of (2.2) such that

u = trΩ v � u � ū = trΩ v̄ in Ω.

Proof. Let v, v̄ be such that (4.5) and (4.6) hold, respectively. For x ∈ Ω and t ∈ R,
let us define

f̃(x, t) :=

⎧⎪⎨
⎪⎩

f(x, u(x)) if t � u(x),
f(x, t) if u(x) � t � ū(x),
f(x, ū(x)) if t � ū(x),

and consider the problem

div(y1−2α∇v) = 0 in C,

v = 0 on ∂LC,

∂v

∂yα
(x, 0) = f̃(x, v(x, 0)) on Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.7)

Observe that by the definition of f̃ we have that∣∣∣∣
∫

Ω

f̃(x, u(x, 0))ψ(x, 0) dx

∣∣∣∣ � C‖ψ(x, 0)‖L2(Ω) (4.8)

for some positive constant C and for all u ∈ Hα(C) and ψ ∈ Hα
0 (C). Here, we have

used that u, ū ∈ L∞(Ω) and f ∈ C(Ω̄ × R).
First, we show that (4.7) possesses at least one solution. Define the operator

T : Hα
0 (C) �→ (Hα

0 (C))′

given by

(Tu, v) =
∫

C
y1−2α∇u · ∇v dxdy −

∫
Ω

f̃(x, u(x, 0))v(x, 0) dx ∀u, v ∈ Hα
0 (C).
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We study some properties of the map T .

• T is a bounded map. It is clear, using (4.8), that if u belongs to a bounded
set of Hα

0 (C), then T (u) is also bounded in (Hα
0 (C))′.

• T is pseudo-monotone: given a sequence un ⇀ u in Hα
0 (C) such that

lim sup(Tun, un − u) � 0,

we must show that

lim inf(Tun, un − v) � (Tu, u − v) ∀v ∈ Hα
0 (C). (4.9)

Observe that from (4.8) we have that∣∣∣∣
∫

Ω

f̃(x, un(x, 0))(un(x, 0) − u(x, 0)) dx

∣∣∣∣ � C‖un − u‖L2(Ω) → 0.

Hence, using the fact that un ⇀ u in Hα
0 (C),

0 � lim sup(Tun, un − u)

= lim sup
∫

C
y1−2α∇un · ∇(un − u)

= lim sup ‖un‖2
α − ‖u‖2

α.

We can conclude that

‖u‖2
α � lim sup ‖un‖2

α � lim inf ‖un‖2
α � ‖u‖2

α,

and then
lim ‖un‖2

α = ‖u‖2
α.

Consequently, un → u in Hα
0 (C) and we get that

lim inf(Tun, un − v) = lim inf{(Tun, un − u) + (Tun, u − v)} � (Tu, u − v).

• T is coercive, i.e.

lim
‖v‖α→∞

(T (v), v)
‖v‖α

= ∞.

It is clear that
(T (v), v) � ‖v‖2

α − C‖v‖2
L2(Ω),

whence it follows that T is coercive.

Then, we can conclude from [16, ch. 2, theorem 2.7] that there exists a solution
of (4.7), i.e. T (v) = 0. Now, we show that

v ∈ [v, v̄],

and hence v is solution of (4.4). Indeed, define ṽ := v − v. Note that, for all
ψ ∈ Hα

0 (C), ψ � 0,∫
C

y1−2α∇ṽ · ∇ψ dxdy �
∫

Ω

(f(x, v(x, 0)) − f̃(x, v(x, 0)))ψ(x, 0) dx.
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Taking ψ = (v − v)+, we have that∫
C

y1−2α|∇ṽ+|2 dxdy � 0.

Then v � v in C, and in a similar way one can prove that v � v̄.

Now let us present the proof of theorem 4.1.

Proof of theorem 4.1. First consider a positive solution u ∈ Vα
0 (Ω) of (4.1), and

consider v ∈ Hα
0 solution of (4.2). If λ − cL � 0, then by the maximum principle

it follows that v � 0. So, assume that λ − cL > 0. Taking ψ = (v − (λ − cL))+ in
(4.2), we can show that

v � λ − cL in C.

By lemma 2.4, we have that u ∈ L∞(Ω); and then, using lemma 2.5 we obtain that
u and v are regular functions.

Now, suppose that there exists a positive solution u ∈ Vα
0 (Ω) of (4.1) for some

λ ∈ R. Then note that u is a positive solution of (3.1) with c(x) substituted by
(c(x) + u(x)). Then, by theorem 3.1,

λ = λ1[α; c + u] > λ1[α; c].

Now let us prove that λ > λ1[α; c] is sufficient for the existence of a positive solution.
Let Ω ⊂⊂ Ω′, Ω′ be an open bounded set, C′ = Ω′ × (0, +∞) and E ∈ Hα

0 (C′) be
the unique positive solution of

div(y1−2α∇v) = 0 in C′,

v = 0 on ∂LC′,

∂v

∂yα
(x, 0) = 1 in Ω′.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.10)

Define
e(x) := trΩ′ E.

Observe that, from the regularity results, e ∈ L∞(Ω′) and by proposition 2.2 we
get that E > 0.

Note, in particular, that we can extend ψ ∈ Hα
0 (C), in such a way that ψ ∈

Hα
0 (C′), and then the following holds:∫

C
y1−2α∇E · ∇ψ dxdy =

∫
Ω

ψ(x, 0) dx.

Let us take v̄ = KE, where K is a positive constant to be chosen. Note that v̄ is a
supersolution of (4.2) if and only if, for all ψ ∈ Hα

0 (C), ψ � 0,
∫

C
y1−2α∇E · ∇ψ dxdy + K

∫
Ω

c(x)E(x, 0)ψ(x, 0) dx

�
∫

Ω

(λE(x, 0) − KE(x, 0)2)ψ(x, 0) dx.
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This is equivalent to∫
Ω

ψ(x, 0)(Ke(x)2 + e(x)(c(x) − λ) + 1) dx � 0 ∀ψ ∈ Hα
0 (C), ψ � 0.

It suffices that Ke(x)2 + e(x)(cL − λ) + 1 � 0 almost everywhere in Ω, which is
possible by choosing K large enough.

For the subsolution, let us take v = εΨ1, where ε > 0 is a constant to be chosen
and Ψ1 ∈ Hα

0 (C) is a positive eigenfunction associated with λ1[α; c]. Then, for all
ψ ∈ Hα

0 , ψ � 0, writing λ1 = λ1[α; c], we have∫
C

y1−2α∇v · ∇ψ dxdy +
∫

Ω

c(x)v(x, 0)ψ(x, 0) dx = ε

∫
Ω

λ1ϕ1ψ(x, 0) dx

�
∫

Ω

εϕ1ψ(x, 0)(λ − εϕ1) dx

if and only if
εϕ1 � (λ − λ1) in Ω, (4.11)

where we have defined ϕ1 = trΩ Ψ1. Since ϕ1 ∈ Vα
0 (Ω), ϕ1 ∈ L∞(Ω) and ϕ1 > 0 in

Ω, (4.11) is possible and it follows that we have a sub–supersolution pair if ε > 0 is
small enough. Now theorem 4.4 implies the existence of a solution if λ > λ1[α; c].

To prove the uniqueness of positive solution, all the arguments of [4] (see also [5])
can be adapted to the fractional setting (see [3, lemma 5.2] or [19, proposition 4.2]).

Then, there exists a solution θ[α,λ−c] ∈ Vα
0 (Ω) of (4.1) if and only if λ > λ1[α; c].

We now prove (4.3). The first inequality follows since εϕ1 is a subsolution for all
ε ∈ (0, λ − λ1[α; c]]. For the second, note that θ[α,λ−c] � λ − cL.

To compare different solutions of the logistic equation we need the following
result.

Proposition 4.5. Assume that v is a bounded subsolution of (4.2). Then

trΩ v � θ[α,λ−c].

Proof. Since v is bounded, it is clear that we can choose K > 0 such that KE is
a supersolution of (4.2) and v � KE. By uniqueness, we conclude that v(x, 0) �
θ[α,λ−c].

As a direct consequence of proposition 4.5, we deduce the following.

Corollary 4.6. If λ1 � λ2 and c2 � c1 in Ω, then θ[α,λ1−c1] � θ[α,λ2−c2].

Let us give an interesting biological interpretation of this result, comparing it
with the linear diffusion case. Recall that the classical logistic equation

−∆u + c(x)u = λu − u2 in Ω,

u = 0 on ∂Ω,

}
(4.12)

possesses a unique positive solution if and only if

λ > λ1[1;−c].
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Λ

λ

1

rαr1 RαR1λ0 r

Figure 1. The solid line represents the map G1(r) = λ1[1; c; Br] and
the dotted line represents Gα(r) = λ1[α; c; Br]. λ0 =

√
λ1.

Let us compare this result with that obtained for (4.1) in the particular case when
N = 1, c ∈ R and Ω = Br. In figure 1 we represent G1(r) := λ1[1; c; Br] by the solid
line and by Gα(r) := λ1[α; c; Br] the dotted line with c = 0 (a similar representation
can be made with c �= 0). Take Λ large (Λ > 1). Then, there exist rα < r1 such
that

Λ = G1(r1) = Gα(rα).

Then, we have the following.

(a) If r < rα, for (4.1) and (4.12) the species dies.

(b) If r > r1, the species persists in both cases.

(c) Assume that r ∈ (rα, r1). Then, the species disappears in the local diffusion
and it persists in the fractional diffusion case.

Now, assume λ is small (λ < 1). Then, there exist R1 < Rα such that

λ = G1(R1) = Gα(Rα).

Moreover, we have the following.

(a) If r < R1 for (4.1) and (4.12), the species dies.

(b) If r > Rα, the species persists in both cases.

(c) Assume that r ∈ (R1, Rα). Then, the species disappears in the fractional
diffusion and it persists in the local diffusion case.
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Hence, in the case of favourable habitats (abundant resources) there exist domains
such that the species with fractional diffusion persists, while the species with linear
diffusion dies. On the other hand, for unfavourable habitats, there exist domains
when the opposite occurs.

5. The sub–supersolution method for systems

In this section we extend the sub–supersolution method employed in the last section
to the system setting. Let us consider

(−∆)αu = f(x, u, v) in Ω,

(−∆)βv = g(x, u, v) in Ω,

u = v = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (5.1)

where f, g ∈ C0(Ω̄ × R
2) and α, β ∈ (0, 1).

Definition 5.1. We say that (u, v) ∈ Vα
0 (Ω)×Vβ

0 (Ω) is a solution of (5.1) if there
exists (U, V ) ∈ Hα

0 (C) × Hβ
0 (C) such that trΩ U := u, trΩ V := v and (U, V ) is a

solution of
div(y1−2α∇U) = div(y1−2β∇V ) = 0 in C,

U = V = 0 on ∂LC,

∂U

∂yα
(x, 0) = f(x, U(x, 0), V (x, 0)) on Ω,

∂V

∂yβ
(x, 0) = g(x, U(x, 0), V (x, 0)) on Ω.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.2)

Definition 5.2. We say that U, Ū ∈ Hα(C), V , V̄ ∈ Hβ(C) is a pair of sub–
supersolutions of (5.1) if

u := trΩ U, ū := trΩ Ū , v := trΩ V , v̄ := trΩ V̄ ∈ L∞(Ω),

and

(a) U � Ū and V � V̄ in C and U � 0 � Ū and V � 0 � V̄ on ∂LC,

(b) for all (ψ, φ) ∈ Hα
0 (C) × Hβ

0 (C), ψ, φ � 0 and (u, v) ∈ [U, Ū ] × [V , V̄ ], the
following hold:∫

C
y1−2α∇U · ∇ψ dxdy �

∫
Ω

f(x, U(x, 0), v(x, 0))ψ(x, 0) dx,

∫
C

y1−2α∇Ū · ∇ψ dxdy �
∫

Ω

f(x, Ū(x, 0), v(x, 0))ψ(x, 0) dx,

∫
C

y1−2β∇V · ∇φ dxdy �
∫

Ω

f(x, u(x, 0), V (x, 0))φ(x, 0) dx,

∫
C

y1−2β∇V̄ · ∇φ dxdy �
∫

Ω

f(x, u(x, 0), V̄ (x, 0))φ(x, 0) dx,

where [U, Ū ] = {w ∈ Hα(C); U � w � Ū in C} and [V , V̄ ] is defined analo-
gously.
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Theorem 5.3. Assume that there exists a pair (U, Ū), (V , V̄ ) of sub–supersolutions
of (5.2). Then, there exists a solution (U, V ) ∈ Hα

0 (C) × Hβ
0 (C) of (5.1) such that

U � U � Ū , V � V � V̄ in C.

Moreover, there exists a solution (u, v) ∈ Vα
0 (Ω) × Vβ

0 (Ω) of (5.1) such that u �
u � ū in Ω and v � v � v̄ in Ω.

Proof. The proof is similar to theorem 4.4. Define the operators T1 and T2 by

T1(w) =

⎧⎪⎨
⎪⎩

u if w � u,

w if u � w � ū,

ū if w � ū,

T2(z) =

⎧⎪⎨
⎪⎩

v if z � u,

z if v � z � v̄,

v̄ if z � v̄,

and the functions by

f̃(x, u, v) = f(x, T1(u), T2(v)), g̃(x, u, v) = g(x, T1(u), T2(v)).

Consider the problem

div(y1−2α∇U) = div(y1−2β∇V ) = 0 in C,

U = V = 0 on ∂LC,

∂U

∂yα
(x, 0) = f̃(x, U(x, 0), V (x, 0)) on Ω,

∂V

∂yβ
(x, 0) = g̃(x, U(x, 0), V (x, 0)) on Ω.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.3)

First, we prove that (5.3) has at least one solution. To do this, consider the space

H := Hα
0 (C) × Hβ

0 (C)

with the norm ‖(u, v)‖ = ‖u‖α + ‖v‖β and the map T : H �→ (H)′ defined by

(T (u, v), (w, z)) =
( ∫

C
y1−2α∇u · ∇w dxdy −

∫
Ω

f̃(x, u(x, 0))w(x, 0) dx,∫
C

y1−2β∇v · ∇z dxdy −
∫

Ω

g̃(x, v(x, 0))z(x, 0) dx

)
.

Now, we can just follow the arguments of theorem 4.4 and show that there exists
a solution (U, V ) of (5.3), i.e. T (U, V ) = (0, 0). Again, we can prove that (U, V )
is a solution of (5.1), as it suffices to show that (U, V ) ∈ [U, Ū ] × [V , V̄ ]. Define
Ũ = U − U . Then, taking T2(V ) in the definition of the subsolution, we get that,
for all ψ ∈ Hα

0 , ψ � 0,∫
C

y1−2α∇Ũ · ∇ψ dxdy �
∫

Ω

[f(x, U, T2(V )) − f̃(x, U, V )]ψ(x, 0) dx � 0.

Taking ψ = (U − U)+ we get that U � U . The same argument can be applied to
the other inequalities.
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6. Application to the Lotka–Volterra systems

In this section we apply the above results to system (1.1), or equivalently, to the
system

div(y1−2α∇U) = div(y1−2β∇V ) = 0 in C,

U = V = 0 on ∂LC,

∂U

∂yα
(x, 0) = U(x, 0)(λ − U(x, 0) − bV (x, 0)) in Ω,

∂V

∂yβ
(x, 0) = V (x, 0)(µ − V (x, 0) − cU(x, 0)) in Ω.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.1)

First, we deduce some bounds of the solutions of (1.1).

Proposition 6.1.

(a) Assume that b, c > 0 and let (u, v) be a positive solution of (1.1). Then,

u � θ[α,λ], v � θ[β,µ].

(b) Assume that b > 0 and c < 0 and let (u, v) be a positive solution of (1.1).
Then,

u � θ[α,λ−bθ[β,µ]] � θ[α,λ], θ[β,µ] � v � θ[β,µ−cθ[α,λ]].

(c) Assume that b, c < 0 and let (u, v) be a positive solution of (1.1). Then,

θ[α,λ] � u, θ[β,µ] � v.

Proof.
(a) Assume that b, c > 0 and let (u, v) be a positive solution of (1.1), i.e. (u, v) =
(trΩ U, trΩ V ), (U, V ) being a solution of (6.1). With similar reasoning to that used
in theorem 4.1 we can show that U, V ∈ L∞(C). Moreover, u ∈ L∞(Ω). It is thus
clear that U is a bounded subsolution of (4.1) with c ≡ 0. Then, U � Θ[α,λ], and so

u � θ[α,λ] in Ω.

In a similar way, we can show that v � θ[β,µ].

(b) It is easy to show that u � θ[α,λ] and θ[β,µ] � v. The latter inequality shows that
Θ[β,µ] is a subsolution of (−∆)βv = v(µ − v − cu). Moreover, using that V � Θ[β,µ],
we can show that U is a subsolution of (4.2) with c(x) = −bθ[β,µ], and so u �
θ[α,λ−bθ[β,µ]].

(c) This is shown in a similar way to the statements above.

Corollary 6.2.

(a) Assume that b, c > 0. If there exists a positive solution of (1.1), then λ > λ1[α]
and µ > λ1[β].

(b) Assume that b > 0 and c < 0. If there exists a positive solution of (1.1), then
λ > λ1[α; bθ[β,µ]] and µ > λ1[β; cθ[α,λ]].
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We now introduce some notation. Denote by Eα the unique positive solution of
(4.10) in C and eα = trΩ E. We define

C(α, β) :=
(

eα

eβ

)
M

(
eβ

eα

)
M

.

Our main result is as follows.

Theorem 6.3.

(a) Assume b, c > 0 (the competitive case). Assume also that λ > λ1[α] and
µ > λ1[β]. If (λ, µ) verifies

λ > λ1[α; bθ[β,µ]] and µ > λ1[β; cθ[α,λ]], (6.2)

then there exists at least one coexistence state of (1.1).

(b) Assume that b > 0 and c < 0 (the predator–prey case). If (λ, µ) verifies

λ > λ1[α; bθ[β,µ−cθ[α,λ]]] and µ > λ1[β; cθ[α,λ]], (6.3)

then there exists at least one coexistence state of (1.1).

(c) Assume that b < 0, c < 0 and bc < C(α, β) (the symbiosis case). If (λ, µ)
verifies (6.2), then there exists at least one coexistence state of (1.1).

Proof.
(a) Assume that b, c > 0. We take the following sub–supersolutions:

(U, Ū) = (Θ[α,λ−bθ[β,µ]], Θ[α,λ]), (V , V̄ ) = (Θ[β,µ−cθ[α,λ]], Θ[β,µ]).

Indeed, observe that, for ψ ∈ Hα
0 (C), ψ � 0,∫

C
y1−2α∇Ū · ∇ψ dxdy =

∫
Ω

Ū(x, 0)(λ − Ū(x, 0))ψ(x, 0) dx

�
∫

Ω

Ū(x, 0)(λ − Ū(x, 0) − bV (x, 0))ψ(x, 0) dx

for all V ∈ [V , V̄ ].
On the other hand, observe that if V ∈ [V , V̄ ], then V � Θ[β,µ], and so

V (x, 0) � θ[β,µ].

Hence, for ψ ∈ Hα
0 (C), ψ � 0,∫

C
y1−2α∇U · ∇ψ dxdy =

∫
Ω

U(x, 0)(λ − U(x, 0) − bθ[β,µ])ψ(x, 0) dx

�
∫

Ω

Ū(x, 0)(λ − Ū(x, 0) − bV (x, 0))ψ(x, 0) dx

for all V ∈ [V , V̄ ].
We can proceed with V and V̄ in a similar way.
Finally, observe that, due to (6.2), U > 0 and V > 0. Moreover, since b, c > 0,

we have U � Ū and V � V̄ in C.
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(b) Assume that b > 0, c < 0 and (6.3) holds. Now, we take a pair of sub–
supersolutions

(U, Ū) = (Θ[α,λ−bV̄ (x,0)], Θ[α,λ]), (V , V ) = (Θ[β,µ], Θ[β,µ−cθ[α,λ]]).

First, since b > 0 and c < 0 it is clear that U � Ū and V � V̄ , and by (6.3) we get
that U > 0 and V > 0.

It is not difficult to show that V and Ū are sub–supersolutions. Consider V̄ . We
have that, for φ ∈ Hα

0 (C), φ � 0,∫
C

y1−2α∇V̄ · ∇φ dxdy =
∫

Ω

V̄ (x, 0)(µ − V̄ (x, 0) − cθ[α,λ])φ(x, 0) dx

�
∫

Ω

V̄ (x, 0)(µ − V̄ (x, 0) − cU(x, 0))φ(x, 0) dx

for all U ∈ [U, Ū ] because c < 0.
Finally, we consider U . In this case, we have∫

C
y1−2α∇U · ∇φ dxdy =

∫
Ω

U(x, 0)(λ − U(x, 0) − bV̄ (x, 0))φ(x, 0) dx

�
∫

Ω

Ū(x, 0)(λ − Ū(x, 0) − bV (x, 0))φ(x, 0) dx

for all V ∈ [V , V̄ ].

(c) Assume b, c < 0, bc < C(α, β) and (6.2) holds. Take

(U, Ū) = (Θ[α,λ−bθ[β,µ]], M1Eα), (V , V̄ ) = (Θ[β,µ−cθ[α,λ]], M2Eβ),

where M1, M2 are positive constants to be chosen and Eα is the unique solution
of (4.10). It is easy to show that U and V are subsolutions. On the other hand, Ū
and V̄ are supersolutions provided that

M1e
2
α � eαλ + bM2eαeβ − 1 and M2e

2
β � eβµ + cM1eαeβ − 1 ∀x ∈ Ω.

Since bc < C(α, β), we can take M1 and M2 to be large.

Remark 6.4. Conditions (6.2) and (6.3) define a region in the (λ, µ)-plane that
could eventually be empty. There are detailed studies of these regions in the α =
β = 1 case (see, for example, [8,11,17,18]). The latter are beyond the scope of this
paper; we point out only that if b > 0, then

µ ∈ [λ1[β],∞) �→ λ1[α; bθ[β,µ]] ∈ R

is an increasing map, because µ �→ θ[β,µ] is increasing and c �→ λ1[α; c] is also
increasing.

Similarly, it is decreasing when b < 0.
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