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In this paper, a discrete-time framework is proposed to value power exchange options with
counterparty default risk, where counterparty risk is considered in a reduced-form setting
and the variance processes of the underlying assets are captured by GARCH processes. In
addition, the proposed model allows for the correlation between the intensity of default
and the variances of the underlying assets by breaking down the total risk into systematic
and idiosyncratic components. By dint of measure-change techniques and characteristic
functions, we obtain the closed-form pricing formula for the value of power exchange
options with counterparty default risk. Finally, numerical results are presented to show
the power exchange option values.
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1. INTRODUCTION

The over-the-counter (OTC) derivatives market has grown considerably in the last decades.
The notional amounts of all the OTC contracts reached almost $542,435 billion at the end
of June 2017 and the largest amount has reached $710,338 billion over the past 10 years.
The OTC derivatives mainly involve foreign exchange contracts, interest rate contracts,
equity-linked contracts, commodity contracts, and credit default swaps (CDS). The largest
part of this market is interest rate contracts, which comprise 76–81% of the OTC derivative
market. Although the equity-linked contracts have only a 10% ratio, the corresponding
notional amounts are about $7,000 billion.

In this paper, we are interested in the counterparty risk that may stem from the
OTC derivatives markets. Counterparty risk largely springs from the creditworthiness of
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an institution such as banks, broker dealers, or other non-banking institutions in the finan-
cial system. In addition, the risk causes cumulative losses to the financial system from a
counterparty that fails to deliver on its OTC derivative obligation. The financial market
turmoil from 2007 onwards has emphasized the importance of counterparty risk. Therefore,
one must take the credit exposure seriously when discussing credit-sensitive OTC deriva-
tives such as forwards, swaps and options. For example, Jarrow and Yu [16] present the
pricing formulae of defaultable bonds and CDS including default intensities dependent on
the default of a counterparty. In their model, firms have correlated defaults due not only to
an exposure to common risk factors, but also to firm-specific risks. Leung and Kwok [21]
perform valuation of CDS with counterparty risk with inter-dependent default correlation.
Yoon and Kim [29] study the European vulnerable options under constant and stochas-
tic interest rates model using double Mellin transforms. Carr and Ghamami [5] consider
risk-neutral valuation of a contingent claim under bilateral counterparty risk. Crepey [8,9]
develop a backward stochastic differential equations approach to the valuation and hedging
of bilateral counterparty risk on OTC derivatives. Wang [27] presents a valuation model
for vulnerable European call options with counterparty default risk at the exercise time. In
a word, the counterparty default risk has been one of the risks that participants in OTC
markets have to face.

The main idea of this paper is to propose a discrete-time framework to value power
exchange options, which are widely prevailing in OTC markets, with counterparty default
risk at any time prior to maturity of the option. The power exchange option is a European
option with payoff

(μ1S
α1
1 (T ) − μ2S

α2
2 (T ))+

at maturity T , which means to exchange the value μ1S
α1
1 (T ) of asset S1 for the value

μ2S
α2
2 (T ) of asset S2. Here α1, α2, μ1, and μ2 are positive constants.
Power exchange options are a generation of Fischer–Margrabe exchange options (see,

e.g., Fischer [13] and Margrabe [22]) and power options (see, e.g., Tompkins [25]), both
of which have voluminously useful applications in the field of compensation design and in
hedging nonlinear risks. Blenman and Clark [2] explicitly solve the valuation of European
power exchange options under the assumption that the underlying assets follow geometric
Brownian motions without default risk. Wang [26] extends the framework of Blenman and
Clark [2] to deal with the pricing problem of power exchange options with correlated jump
risk. Wang et al. [28] investigate the valuation of power exchange options not only with
jump risk but also counterparty default risk under the assumption that default occurs only
at maturity. In this paper, we focus on counterparty default risk that may occur prior to
the maturity of the option.

Generally speaking, there are two approaches for credit risk modeling: the structural
model and the reduced-form one. The structural model seriously considers the problem what
exactly triggers the default event and assumes that the default is triggered when assets or
some function thereof hit or fall below some certain boundary. The pioneering work by Black
and Scholes [1] and Merton [23] describes a default happening if the value of a firm’s asset is
below the debt obligations at maturity. Johnson and Stulz [17] first propose the structural
model for pricing European options with default risk, which only occurs at the maturity of
the option. Klein [20] extends the result of Johnson and Stulz [17] to consider the Black–
Scholes options with connection between the option’s underlying asset and the assets of the
counterparty. Without regard to the problem of what exactly triggers the default event, the
reduced-form model assumes Poisson-type arrivals of defaults with an exogenously given
intensity. Hull and White [15] develop a general reduced-form default risk model for pricing
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European and American options, in which the underlying asset and the option issuer’s
defaults are assumed to be independent. Duffie and Singleton [11] present the valuation of
defaultable bonds and credit-spread options subject to default risk in a reduced-form model.
Bo et al. [3] investigates a stochastic portfolio optimization problem with default risk under
a reduced-form framework. Fard [12] proposes a jump-diffusion model to price European
vulnerable options with credit risk in a reduced-form model.

In this paper, we develop a pricing model for power exchange options with default risk
in a reduced-form setting and the time-varying variances of the underlying assets driven by
GARCH processes. GARCH processes are first proposed by Bollerslev [4] and then used to
price options by Duan [10], Heston and Nandi [14], Christoffersen et al. [6] and many other
studies. Moreover, there is a connection between the variance processes and the intensity
of default in the proposed model. Compared with the earlier studies, this paper has three
main features. First, this paper is the first try to consider the valuation of power exchange
option in a GARCH reduced-form model. Second, the proposed model allows the correlation
between the intensity of default and the variances of the two underlying assets. Lastly, the
closed-form valuation formula of power exchange options is obtained.

The remainder of the paper is organized as follows. In Section 2, we present the model
and derive a closed-form pricing formula for power exchange options. Section 3 presents
the numerical results. The conclusion is summarized in Section 4. The detailed proofs are
shown in the appendix.

2. THE FRAMEWORK OF VALUING POWER EXCHANGE OPTIONS

In this section, we present the pricing framework in detail and derive a closed-form pricing
formula for power exchange options. Moreover, the proposed model considers counterparty
default risk in a reduced-form setting and allows for the correlation between the variances
of the two underlying assets and the default intensity. To connect the variance processes
of the two underlying assets and the default intensity, we start with the dynamic of the
market index, standing for a common risk factor.

2.1. Model Description

Throughout this paper, we suppose P is the physical probability measure on some probability
space (Ω,F , P) and the dynamic of the market index M(t) satisfies,

{
ln M(t) = lnM(t − 1) + r + (λm − 1

2 )hm(t) +
√

hm(t)Zm(t),
hm(t) = wm + bmhm(t − 1) + am(Zm(t − 1) − cm

√
hm(t − 1))2,

(1)

where wm > 0, bm > 0, am > 0, cm > 0, r is the risk-free interest rate, λm is the market price
of risk, and Zm(t) is a standard normal disturbance which reflects the shocks to the return.
hm(t) is the conditional variance of the return between time t − 1 and t which is known
from the information set at time t − 1, appearing in the mean as a return premium, i.e.,

E
P

t

[
M(t)

M(t − 1)

]
= er+λmhm(t),

where E
P

t [·] means the conditional expectation E
P[·|Ft] under measure P given information

at time t. This GARCH process is first adopted by Heston and Nandi [14] to value index
options and has been extended by Christoffersen et al. [6] and Christoffersen et al. [7]. Here
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we use Heston and Nandi [14] as the benchmark model and further adopt it to connect the
dynamics of the two underlying assets.

Based on the postulate of the market index, we assume that shocks to the returns of
the underlying assets consist of two parts: idiosyncratic shocks and common ones. Following
Wang [27], we suppose the prices of underlying assets under measure P satisfy the following
processes,

⎧⎨
⎩

ln Si(t) = lnSi(t − 1) + r + (λi − 1
2 )hi(t) +

√
hi(t)Zi(t)

+(βiλm − 1
2β2

i )hm(t) + βi

√
hm(t)Zm(t),

hi(t) = wi + bihi(t − 1) + ai(Zi(t − 1) − ci

√
hi(t − 1))2,

(2)

where wi > 0, bi > 0, ai > 0, ci > 0, Si(t), i = 1, 2 represents the price of underlying asset i
at the close of day t, and Zi(t) is a standard normal disturbance reflecting the idiosyncratic
shocks to the return of the underlying asset Si(t). Zm(t) is defined in Eq. (1), reflecting
the common shocks to returns of the underlying assets and is assumed to be independent
with Zi(t). hi(t) is the conditional variance of the log return of underlying assets between
time t − 1 and t corresponding to idiosyncratic shocks, which is also known at the end of
day t − 1, and λi denotes the market price of risk, stemming from idiosyncratic shocks. βi

figures the impact of common shocks on the return of underlying asset Si(t) and the value
of βi can be shown in the following way,

Covt−1(ln((M(t))/(M(t − 1))), ln((Si(t))/(Si(t − 1))))
Vart−1(ln((M(t))/(M(t − 1))))

=
Covt−1(

√
hm(t)Zm(t),

√
hi(t)Zi(t) + βi

√
hm(t)Zm(t))

Vart−1(
√

hm(t)Zm(t))

= βi, (3)

where Covt−1(·, ·) means the covariance under measure P and the fact that Zi(t) and Zm(t)
are independent is used in the second equation. Clearly, the total conditional variance of
ln Si(t) is given by hi(t) + β2

i hm(t), consisting of conditional variance of the log return of
underlying assets corresponding to idiosyncratic shocks and common ones.

For valuation purposes, we determine an equivalent martingale measure in the following.
Inspired by the affine structure of the pricing kernel in Christoffersen et al. [7], we define
the following conditional Radon–Nikodym derivative,

L(t + 1) :=
dQ

dP

∣∣∣
Ft

=

exp{θm

√
hm(t + 1)Zm(t + 1) + θ1

√
h1(t + 1)Z1(t + 1)

+ θ2

√
h2(t + 1)Z2(t + 1)}

E
P

t [exp{θm

√
hm(t + 1)Zm(t + 1) + θ1

√
h1(t + 1)Z1(t + 1)

+ θ2

√
h2(t + 1)Z2(t + 1)}]

, (4)

where hi(t + 1), i = m, 1, 2 are the conditional variances of the log return of market index
and underlying assets, known at time t and Zm(t + 1), Z1(t + 1), Z2(t + 1) are the normal
shocks to returns of the market index, the underlying asset S1 and S2. To make sure that
Q is an equivalent martingale measure, we introduce Proposition 2.1.
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Proposition 2.1: The measure Q is an equivalent martingale measure if and only if

θm = −λm, θ1 = −λ1, θ2 = −λ2.

Moreover, Zi(t) + λi

√
hi(t) is a standard normal distribution under measure Q, for i =

m, 1, 2.

Proof. The proof is similar to that of Proposition 2.1 in Wang [27]. We give the detail
in the appendix.

Based on the above proposition, the risk-neutral dynamics of the market index and the
underlying assets are given as follows.

Proposition 2.2: The dynamic of the market index M(t) under Q meets the following
form,

{
ln M(t) = lnM(t − 1) + r − 1

2hm(t) +
√

hm(t)Z∗
m(t),

hm(t) = wm + bmhm(t − 1) + am(Z∗
m(t − 1) − (cm + λm)

√
hm(t − 1))2,

(5)

where Z∗
m(t) := Zm(t) + λm

√
hm(t) is a standard normal variable under measure Q.

The dynamic of the underlying assets Si(t), i = 1, 2 under Q satisfy the following forms,

{
ln Si(t) = lnSi(t − 1) + r − 1

2hi(t) +
√

hi(t)Z∗
i (t) − 1

2β2
i hm(t) + βi

√
hm(t)Z∗

m(t),
hi(t) = wi + bihi(t − 1) + ai(Z∗

i (t − 1) − (ci + λi)
√

hi(t − 1))2,
(6)

where Z∗
i (t) := Zi(t) + λi

√
hi(t) is a standard normal variable under measure Q.

Proof. Girsanov’s theorem (see page 190 in Karatzas [18]) immediately gives us that
Z∗

i (t) := Zi(t) + λi

√
hi(t), i = m, 1, 2. Further, Z∗

m(t), Z∗
1 (t) and Z∗

2 (t) are independent
standard normal variables under Q because Zm(t), Z1(t), and Z2(t) are independent
under P.

2.2. Counterparty Default Risk

In this subsection, we consider counterparty default risk in a reduced form model, in which
the default event is governed by a specified intensity process. Let τ be a random variable
which stands for the first jump time of a doubly stochastic Poisson process (Cox process)
with intensity Λ(t). Suppose that the intensity Λ(t) satisfies the following process under the
risk-neutral measure Q,

Λ(t + 1) = wλ + bλΛ(t) + aλ(Z∗
m(t))2 + cλZ2

λ(t), (7)

where wλ > 0, bλ ≥ 0, cλ ≥ 0, aλ ≥ 0, and Zλ(t) is a standard normal variable under Q inde-
pendent of Z∗

m(t) and Z∗
i (t), two independent standard normal variables under Q defined in

Proposition 2.2. It should be noted that the intensity process is also affected by Z∗
m(t), and

hence the correlation between the variances of the two underlying assets and the default
intensity is captured in the proposed model. The proposed framework is more realistic, since
all assets are exposed to systematic risk.

https://doi.org/10.1017/S0269964818000530 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964818000530


284 X. Wang, G. Xu, and D. Li

2.3. Valuation of Power Exchange Options

Now, we are in position to value power exchange options with default risk in the proposed
framework.

Due to the possible default of the counterparty, the payoff of power exchange options
depends on whether the default event occurs or not during the lifetime of the options.
Consequently, the payoff of power exchange options is composed of two parts. If there is no
default before the maturity T , the payoff of power exchange options can be expressed as
I(τ > T )(μ1S

α1
1 (T ) − μ2S

α2
2 (T ))+, where τ denotes the default time and I(τ > T ) indicates

that there is no default events before the maturity T . If the default event occurs during the
lifetime of the option, only a proportion α ∈ (0, 1) of its market value can be recovered. In
the circumstances, the payoff of power exchange options equals αE

Q[e−r(T−τ)(μ1S
α1
1 (T ) −

μ2S
α2
2 (T ))+|Fτ ], where E

Q[e−r(T−τ)(μ1S
α1
1 (T ) − μ2S

α2
2 (T ))+|Fτ ] stands for the value of

power exchange options at time τ and α is the recover rate. Therefore, the value C∗ of a
power exchange option with the possibility of default prior to the maturity is

C∗ = e−rT
E

Q[I(τ > T )(μ1S
α1
1 (T ) − μ2S

α2
2 (T ))+]

+ E
Q[I(0 ≤ τ ≤ T )αe−rτ

E
Q[e−r(T−τ)(μ1S

α1
1 (T ) − μ2S

α2
2 (T ))+|Fτ ]]

= e−rT
E

Q[I(τ > T )(μ1S
α1
1 (T ) − μ2S

α2
2 (T ))+]

+ αe−rT
E

Q[I(0 ≤ τ ≤ T )(μ1S
α1
1 (T ) − μ2S

α2
2 (T ))+]. (8)

Note the fact that I(0 ≤ τ ≤ T ) = 1 − I(τ > T ), we can rewrite the above equation C∗ as
follows,

C∗ = e−rT
E

Q[I(τ > T )(μ1S
α1
1 (T ) − μ2S

α2
2 (T ))+]

+ αe−rT
E

Q[I(0 ≤ τ ≤ T )(μ1S
α1
1 (T ) − μ2S

α2
2 (T ))+]

= (1 − α)e−rT
E

Q[I(τ > T )(μ1S
α1
1 (T ) − μ2S

α2
2 (T ))+]

+ αe−rT
E

Q[(μ1S
α1
1 (T ) − μ2S

α2
2 (T ))+]

:= (1 − α)e−rT I1 + αe−rT I2, (9)

where I1 and I2 are given by

I1 = E
Q[I(τ > T )(μ1S

α1
1 (T ) − μ2S

α2
2 (T ))+], (10)

I2 = E
Q[(μ1S

α1
1 (T ) − μ2S

α2
2 (T ))+]. (11)

From the above equations, it is clear that the closed-form formula of the power exchange
option price C∗ in Eq. (9) can be derived through the explicit form of I1 and I2. Therefore,
we now turn to calculate the explicit solutions of I1 and I2. In order to compute I1 and
I2, we adopt the moment generating function method in this paper. Suppose that x1(T ) :=
ln S1(T ) and x2(T ) := lnS2(T ), then the characteristic function f(0;T, φ1, φ2, φ3) of x1(T ),
x2(T ) and

∑T
s=1 Λ(s) is defined as follows,

f(0;T, φ1, φ2, φ3) = E
Q[eφ1x1(T )+φ2x2(T )+φ3

∑T
s=1 Λ(s)].

By inverting the characteristic function, we can compute the probabilities and hence obtain
the explicit solutions of I1 and I2 shown in Proposition 2.4. The following proposition gives
the explicit form of the conditional characteristic function f(t;T, φ1, φ2, φ3),

f(t;T, φ1, φ2, φ3) = E
Q
t [eφ1x1(T )+φ2x2(T )+φ3

∑T
s=1 Λ(s)].
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Proposition 2.3: The conditional moment generating function of x1(T ) := lnS1(T ),
x2(T ) := lnS2(T ) and

∑T
s=1 Λ(s), meets the following form,

f(t;T, φ1, φ2, φ3) = exp{φ1x1(t) + φ2x2(t) + φ3

t∑
s=1

Λ(s) + A(t) + B1(t)h1(t + 1)

+ B2(t)h2(t + 1) + B3(t)hm(t + 1) + B4(t)Λ(t + 1)},

where A(t) and Bi(t), i = 1, 2, 3, 4 are the abbreviations of A(t;T, φ1, φ2, φ3) and
Bi(t;T, φ1, φ2, φ3) for convenience and are given by

A(t) = (φ1 + φ2)r + A(t + 1) + w1B1(t + 1) + w2B2(t + 1) + wmB3(t + 1) + wλB4(t + 1)

− 1
2

ln(1 − 2a1B1(t + 1)) − 1
2

ln(1 − 2a2B2(t + 1))

− 1
2

ln(1 − 2(amB3(t + 1) + aλB4(t + 1))) − 1
2

ln(1 − 2cλB4(t + 1)),

B1(t) = b1B1(t + 1) − 1
2
φ1 + φ1(c1 + λ1) − 1

2
(c1 + λ1)2 +

(1/2)(φ1 − (c1 + λ1))2

1 − 2a1B1(t + 1)
,

B2(t) = b2B2(t + 1) − 1
2
φ2 + φ2(c2 + λ2) − 1

2
(c2 + λ2)2 +

(1/2)(φ2 − (c2 + λ2))2

1 − 2a2B2(t + 1)
,

B3(t) = bmB3(t + 1) − 1
2
φ1β

2
1 − 1

2
φ2β

2
2 + amB3(t + 1)(cm + λm)2

+
(φ1β1 + φ2β2 − 2amB3(t + 1)(cm + λm))2

2(1 − 2(amB3(t + 1) + aλB4(t + 1)))
,

B4(t) = φ3 + bλB4(t + 1),

and these coefficients can be obtained recursively using the terminal conditions A(T ) =
B1(T ) = B2(T ) = B3(T ) = B4(T ) = 0.

Proof. See the detail in the appendix.

Based on the above moment generating function f(0;T, φ1, φ2, φ3), we can obtain the
power exchange option price in (8) in the following proposition.

Proposition 2.4: The price of power exchange options in (8) is given by

C∗ =(1 − α)e−rT (μ1Π1(0;T ) − μ2Π2(0;T )) + αe−rT (μ1Π3(0;T ) − μ2Π4(0;T )), (12)

where the closed form of f(0;T, φ1, φ2, φ3) is derived in Proposition 2.3 and Πi(t;T ), i =
1, 2, 3, 4 are given as follows,

Π1(0;T ) =
1
2
f(0;T, α1, 0,−1)

+
1
π

∫ ∞

0

Re
[
e−iφ1 ln((μ2)/(μ1))f(0;T, iφ1α1 + α1,−iφ1α2,−1)

iφ1

]
dφ1,

https://doi.org/10.1017/S0269964818000530 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964818000530


286 X. Wang, G. Xu, and D. Li

Π2(0;T ) =
1
2
f(0;T, 0, α2,−1)

+
1
π

∫ ∞

0

Re
[
e−iφ1 ln((μ2)/(μ1))f(0;T, iφ1α1,−iφ1α2 + α2,−1)

iφ1

]
dφ1,

Π3(0;T ) =
1
2
f(0;T, α1, 0, 0)

+
1
π

∫ ∞

0

Re
[
e−iφ1 ln((μ2)/(μ1))f(0;T, iφ1α1 + α1,−iφ1α2, 0)

iφ1

]
dφ1,

Π4(0;T ) =
1
2
f(0;T, 0, α2, 0)

+
1
π

∫ ∞

0

Re
[
e−iφ1 ln((μ2)/(μ1))f(0;T, iφ1α1,−iφ1α2 + α2, 0)

iφ1

]
dφ1.

Proof. See the appendix.

In virtue of the explicit solution of the generating function, we have obtained the
closed-form valuation formula of the power exchange options under the proposed GARCH
framework with counterparty default risk in a reduced-form model. In the case of μ1 = μ2 =
1 and α1 = α2 = 1, the derived pricing formula reduces to exchange options with default
risk and adding another condition S2(T ) = K, it reduces to European call options with
default risk. The closed-form pricing formula of power options and European put options
with default risk can similarly be derived employing the explicit solution of the generating
function.

3. NUMERICAL RESULTS

In this section, we investigate the prices of power exchange options with counterparty risk
under the proposed framework. For comparison, we also report the values of power exchange
options without counterparty risk. In addition, we study the effects of the power exponents
on prices.

To obtain the prices, we use the following values of the parameters: λm = 1.576E + 00,
wm = 3.000E − 15, bm = 8.500E − 01, am = 3.921E − 06, cm = 1.755E + 02, λ1 = 1.017E +
00, w1 = 9.319E − 11, b1 = 9.497E − 01, a1 = 1.874E − 05, and c1 = 4.385E − 04. These
parameters are borrowed from Wang [27], where the parameters are estimated using maxi-
mum likelihood and daily closing prices for the Standard and Poor’s 500 index and Microsoft
Corporation stocks for the period from January 3, 1995 to December 31, 2009. In addi-
tion, the initial levels of the variance for the S&P 500 index and the stock price are
set to be the historical variances calculated from the returns data mentioned above, i.e.,
hm(1) = 7.596E − 03 and hs(1) = 3.383E − 02, and let β1 = 1.20. Moreover, the param-
eter values for two underlying assets are set to be equal for simplicity. Without loss of
generality, the annual risk-free interest rate is set to 0.02, and we set the current price of
the stock to be 1, as the values of power exchange options do not depend on the current
value of the S&P 500 index. For the parameters of the intensity, we set wλ = 8.637E − 07,
bλ = 9.949E − 01, aλ = 1.372E − 10, and cλ = 1.372E − 10. The corresponding cumulative
default probabilities are plotted in Figure 1, using the derived formula of 1 − f(0;T, 0, 0,−1).

To show the efficiency of the pricing method, here we present cpu times for obtaining
values of power exchange options with α1 = α2 = 2.0 and default risk. The cpu times on
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Figure 1. Cumulative default probabilities. The solid, dashed, and dotted lines corre-
spond to cumulative default probabilities for λ(1) = 1.275E − 06, λ(1) = 1.275E − 05, and
λ(1) = 1.275E − 04, respectively.

Figure 2. Option prices against time to maturity. The dotted and solid lines corre-
spond to option prices with default risk and no default when α1 = α2 = 1.0. The dashed
and dot-dashed lines correspond to option prices with default risk and no default when
α1 = α2 = 2.0. The initial levels of the default is λ(1) = 1.275E − 06.
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Figure 3. Option prices against recovery rate. The dotted and solid lines correspond
to option prices with default risk and no default when α1 = α2 = 1.0. The dashed and
dot-dashed lines correspond to option prices with default risk and no default when
α1 = α2 = 2.0. The initial levels of the default is λ(1) = 1.275E − 06.

a Core I5 1.7 GHz personal computer are 1.0931, 2.7801, and 5.6680 seconds for T = 1.0,
T = 2.0 and T = 5.0, respectively. Figure 2 depicts the values of power exchange options
under alternative maturities. It can be seen that counterparty risk has little impacts when
the maturity is less than 1 year. Additionally, the impacts of counterparty risk become
pronounced as the maturity rises and the power exponents enhance these impacts. Figure 3
presents option prices against recovery rate. Recovery rate only affects the payoff of the
options when default happens, hence the values of the options without counterparty risk
are not affected. Increasing the recovery rate from 0.30 to 0.80, values of the options with
α1 = α2 = 1.0 change from 0.2671 to 0.2795, while those of the options with α1 = α2 = 2.0
are 0.7759 and 0.8119, respectively. The effects are enhanced by the power exponents. In
addition, the more likely the counterparty is to default, the stronger the effects of the power
exponents are.

Figures 4 and 5 plot option prices against the value of β1. As shown in Figures 4
and 5, option prices first decrease and then increase as the market beta of the underlying
asset S1 rises. The market β of the underlying asset S1 affects the total risk of S1 and
the correlation between two underlying assets as well. An increase in the market β of
the underlying asset S1 corresponds to a stronger correlation between the two underlying
assets. The stronger correlation ensures that the values of two assets move in the same
direction more likely, reducing option prices. On the other hand, a higher total risk of the
underlying asset S1 enhances option prices. Hence, the U-shaped curves appear. However, it
should be noted that the values of the market β of the underlying asset S1 corresponding to
minimum option prices are quite different in Figures 4 and 5, which are affected by the power
exponents.
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Figure 4. Option prices against the value of β1. The dotted and solid lines correspond to
option prices with default risk and no default when α1 = α2 = 1.0. The initial levels of the
default is λ(1) = 1.275E − 06.

Figure 5. Option prices against the value of β1. The dotted and solid lines correspond to
option prices with default risk and no default when α1 = α2 = 2.0. The initial levels of the
default is λ(1) = 1.275E − 06.
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4. CONCLUSION

This article presents a closed-form valuation formula of power exchange options in a discrete-
time framework, where counterparty risk is considered in a reduced-form setting and the
variance processes of the underlying assets are captured by GARCH processes. In virtue of
measure-change techniques and characteristic functions, we obtain the closed-form valuation
formula for power exchange options, which involves the pricing formula for exchange options,
power options, and vanilla call/put options as special cases. Finally, we present numerical
results on power exchange option values.
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APPENDIX

Proof of Proposition 2.1: It is widely known the expected returns of M(t) and Si(t), i = 1, 2 under
measure Q should be the risk-free interest rate, i.e.,

E
P
t

[
L(t + 1)

M(t + 1)

M(t)

]
= er, (A.1)

E
P
t

[
L(t + 1)

Si(t + 1)

S(t)

]
= er, (A.2)

where E
P
t [·] means the conditional expectation under measure P given the information at time t

and L(t) is the Radon–Nikodym derivative defined in (4).
Using the expression of L(t + 1) and M(t) defined in (4) and (1), we can obtain

E
P
t

[
L(t + 1)

M(t + 1)

M(t)

]

=
E

P
t [eθm

√
hm(t+1)Zm(t+1)+θ1

√
h1(t+1)Z1(t+1)+θ2

√
h2(t+1)Z2(t+1)((M(t + 1))/(M(t)))]

E
P
t [eθm

√
hm(t+1)Zm(t+1)+θ1

√
h1(t+1)Z1(t+1)+θ2

√
h2(t+1)Z2(t+1)]

=
E

P
t [eθm

√
hm(t+1)Zm(t+1)((M(t + 1))/(M(t)))]

E
P
t [eθm

√
hm(t+1)Zm(t+1)]

=
E

P
t [eθm

√
hm(t+1)Zm(t+1)+r+(λm−(1/2))hm(t+1)+

√
hm(t+1)Zm(t+1)]

E
P
t [eθm

√
hm(t+1)Zm(t+1)]

=
e1/2(θm+1)2hm(t+1)+r+(λm−(1/2))hm(t+1)

e1/2θ2
mhm(t+1)

= e(θm+λm)hm(t+1)+r,

where we have used the fact that Zi(t + 1), i = 1, 2 is independent of Zm(t + 1) given the infor-
mation at time t in the second equality. Therefore, from (A.1), it is clear that θm = −λm. In a
similar way, we can have θi = −λi, i = 1, 2. And Z∗

i (t) := Zi(t) + λi

√
hi(t) is standard normal

distribution under measure Q, for i = m, 1, 2 from the Girsanov’s theorem. �
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Proof of Proposition 2.3: Recall the definition of x1(t) := ln S1(t), x2(t) := ln S2(t) and f(t; T, φ1,
φ2, φ3):

f(t; T, φ1, φ2, φ3) = E
Q
t

⎡
⎣e

φ1x1(T )+φ2x2(T )+φ3

∑T

s=1
Λ(s)

⎤
⎦ .

Below, we will show that the moment generating function f(t; T, φ1, φ2, φ3) has the log-linear form,

f(t; T, φ1, φ2, φ3) = exp{φ1x1(t) + φ2x2(t) + φ3

t∑
s=1

Λ(s) + A(t) + B1(t)h1(t + 1)

+ B2(t)h2(t + 1) + B3(t)hm(t + 1) + B4(t)Λ(t + 1)}.

Here and below, the notations f(t), A(t), and Bi(t), i = 1, 2, 3, 4 are the abbreviations of
f(t; T, φ1, φ2, φ3), A(t; T, φ1, φ2, φ3), and Bi(t; T, φ1, φ2, φ3) for simplicity. At time T , x1(T ), x2(T ),

and
∑T

s=1 Λ(s) are known and it holds that f(T ) = exp{φ1x(T ) + φ2x2(T ) + φ3
∑T

s=1 Λ(s)},
which in turn implies the following terminal conditions

A(T ) = B1(T ) = B2(T ) = B3(T ) = B4(T ) = 0.

In virtue of the law of iterated expectations, the form of f(t) becomes

f(t) = E
Q
t [eφ1x1(T )+φ2x2(T )+φ3

∑T
s=1 Λ(s)]

= E
Q
t [EQ

t+1[e
φ1x1(T )+φ2x2(T )+φ3

∑T
s=1 Λ(s)]]

= E
Q
t [f(t + 1)]

= E
Q
t [exp{φ1x1(t + 1) + φ2x2(t + 1) + φ3

t+1∑
s=1

Λ(s) + A(t + 1) + B1(t + 1)h1(t + 2)

+ B2(t + 1)h2(t + 1) + B3(t + 1)hm(t + 1) + B4(t + 1)Λ(t + 2)}].

Substituting the dynamics of x1(t + 1), x2(t + 1), h1(t + 2), h2(t + 2), and Λ(t + 2) in Eqs. (6) and
(7) into the above equation and simplifying the results, we have

f(t) = E
Q
t

[
exp{φ1x1(t) + φ1r + φ2x2(t) + φ2r + φ3

t∑
s=1

Λ(s)

+ A(t + 1) + B1(t + 1)w1 + B2(t + 1)w2

+ B3(t + 1)wm + B4(t + 1)wλ + h1(t + 1)

(
b1B1(t + 1) − 1

2
φ1

)

+ h2(t + 1)

(
b2B2(t + 1) − 1

2
φ2

)

+ hm(t + 1)

(
bmB3(t + 1) − 1

2
φ1β2

1 − 1

2
φ2β2

2

)
+ Λ(t + 1)(φ3 + bλB4(t + 1)) + Ψ}

]
,

where Ψ has the following form,

Ψ = Ψ1 + Ψ2 + Ψm + Ψλ,
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with Ψ1, Ψ2, Ψm, and Ψλ:

Ψ1 = φ1

√
h1(t + 1)Z∗

1 (t + 1) + a1B1(t + 1)(Z∗
1 (t + 1) − (c1 + λ1)

√
h1(t + 1))2,

Ψ2 = φ2

√
h2(t + 1)Z∗

2 (t + 1) + a2B2(t + 1)(Z∗
2 (t + 1) − (c2 + λ2)

√
h2(t + 1))2,

Ψm = (φ1β1 + φ2β2)
√

hm(t + 1)Z∗
m(t + 1) + amB3(t + 1)(Z∗

m(t + 1) − (cm + λm)
√

hm(t + 1))2

+ aλB4(t + 1)(Z∗
m(t + 1))2,

Ψλ = cλB4(t + 1)Z2
λ(t + 1).

Now we calculate E
Q
t

[
exp{Ψ1 + Ψ2 + Ψm + Ψλ}

]
in order to yield the solution of f(t). Firstly,

E
Q
t [exp{Ψ1}]

= E
Q
t

[
exp

{
a1B1(t + 1)(Z∗

1 (t + 1) −
(

c1 + λ1 − φ1

2a1B1(t + 1)

)√
h1(t + 1))2

+ a1B1(t + 1)

(
(c1 + λ1)

2 −
(

c1 + λ1 − φ1

2a1B1(t + 1)

)2
)

h1(t + 1)

}]

= exp

{
a1B1(t + 1)

(
(c1 + λ1)

2 −
(

c1 + λ1 − φ1

2a1B1(t + 1)

)2
)

h1(t + 1)

}

× exp

⎧⎪⎪⎨
⎪⎪⎩−1

2
ln(1 − 2a1B1(t + 1)) +

a1B1(t + 1)(c1 + λ1 − ((φ1)/

(2a1B1(t + 1))))2h1(t + 1)

1 − 2a1B1(t + 1)

⎫⎪⎪⎬
⎪⎪⎭ ,

where the fact that Eea(Z+b)2 = e−(1/2) ln(1−2a)+((ab2)/(1−2a)) (Z is a standard normal variable)
has been used in the last equality. Rearranging the above terms we get that

E
Q
t [exp{Ψ1}] = exp

{
−1

2
ln(1 − 2a1B1(t + 1))

+

(
φ1(c1 + λ1) − 1

2
(c1 + λ1)

2 +
(1/2)(φ1 − (c1 + λ1))

2

1 − 2a1B1(t + 1)

)
h1(t + 1)

}
.

In a similar way, we can obtain

E
Q
t [exp{Ψ2}] = exp

{
−1

2
ln(1 − 2a2B2(t + 1))

+

(
φ2(c2 + λ2) − 1

2
(c2 + λ2)

2 +
(1/2)(φ2 − (c2 + λ2))

2

1 − 2a2B2(t + 1)

)
h2(t + 1)

}
,

E
Q
t [exp{Ψm}] = exp

{
−1

2
ln[1 − 2(amB3(t + 1) + aλB4(t + 1))] +

[
amB3(t + 1)(cm + λm)2

+
(φ1β1 + φ2β2 − 2amB3(t + 1)(cm + λm))2

2(1 − 2(amB3(t + 1) + aλB4(t + 1)))

]
hm(t + 1)

}
,

E
Q
t [exp{Ψλ}] = exp

{
−1

2
ln(1 − 2cλB4(t + 1))

}
.
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Therefore, A(t), B1(t), B2(t), B3(t), and B4(t) can be obtained in the follows,

A(t) = (φ1 + φ2)r + A(t + 1) + w1B1(t + 1) + w2B2(t + 1) + wmB3(t + 1) + wλB4(t + 1)

− 1

2
ln(1 − 2a1B1(t + 1)) − 1

2
ln(1 − 2a2B2(t + 1))

− 1

2
ln(1 − 2(amB3(t + 1) + aλB4(t + 1))) − 1

2
ln(1 − 2cλB4(t + 1)),

B1(t) = b1B1(t + 1) − 1

2
φ1 + φ1(c1 + λ1) − 1

2
(c1 + λ1)

2 +
(1/2)(φ1 − (c1 + λ1))

2

1 − 2a1B1(t + 1)
,

B2(t) = b2B2(t + 1) − 1

2
φ2 + φ2(c2 + λ2) − 1

2
(c2 + λ2)

2 +
(1/2)(φ2 − (c2 + λ2))

2

1 − 2a2B2(t + 1)
,

B3(t) = bmB3(t + 1) − 1

2
φ1β2

1 − 1

2
φ2β2

2 + amB3(t + 1)(cm + λm)2

+
(φ1β1 + φ2β2 − 2amB3(t + 1)(cm + λm))2

2(1 − 2(amB3(t + 1) + aλB4(t + 1)))
,

B4(t) = φ3 + bλB4(t + 1).

�

Proof of Proposition 2.4: In order to give the proof, first we define a new measure Q̃ as follows,

Q̃(A) :=
E

Q[Sφ1
1 (T )Sφ2

2 (T )I(A)]

EQ[Sφ1
1 (T )Sφ2

2 (T )]
,

for any events A ∈ FT and I(·) is an indicator function. The expression Λ̃(t) means the process
Λ(t) under the new measure Q̃. Then we have the following result,

E
Q[Sφ1

1 (T )Sφ2
2 (T )I(τ > T )] = E

Q[Sφ1
1 (T )Sφ2

2 (T )]EQ̃[I(τ > T )],

= E
Q[Sφ1

1 (T )Sφ2
2 (T )]EQ̃[e−

∑T
s=1 Λ̃(s)],

= E
Q[Sφ1

1 (T )Sφ2
2 (T )]

E
Q[Sφ1

1 (T )Sφ2
2 (T )e−

∑T
s=1 Λ(s)]

EQ[Sφ1
1 (T )Sφ2

2 (T )]
,

= E
Q[eφ1x1(T )+φ2x2(T )−∑T

s=1 Λ(s)] = f(0; T, φ1, φ2,−1). (A.3)

Recall that C∗ = (1 − α)e−rT I1 + αe−rT I2 with I1 in (10) and I2 in (11). Simple calculation
to I1 yields

I1 = μ1E
Q
[
I(τ > T )Sα1

1 (T )I

(
Sα1

1 (T )

Sα2
2 (T )

� μ2

μ1

)]
− μ2E

Q
[
I(τ > T )Sα2

2 (T )I

(
Sα1

1 (T )

Sα2
2 (T )

� μ2

μ1

)]

:= μ1Π1(0; T ) − μ2Π2(0; T ). (A.4)

For term Π1(0; T ) in (A.4), we define a new probability measure Q1,

Q1(A) :=
E

Q[I(A)Sα1
1 (T )I(τ > T )]

EQ[Sα1
1 (T )I(τ > T )]

,

for any events A ∈ FT and I(·) is an indicator function. In other way, we have

E
Q1 [I(A)] =

E
Q[I(A)Sα1

1 (T )I(τ > T )]

EQ[Sα1
1 (T )I(τ > T )]

.
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Then with the definition of Q1, one gets that

f1(0; T, iφ1) := E
Q1 [eiφ1(α1x1(T )−α2x2(T ))],

=
E

Q[eiφ1(α1x1(T )−α2x2(T ))Sα1
1 (T )I(τ > T )]

EQ[Sα1
1 (T )I(τ > T )]

,

=
E

Q[e(iφ1α1+α1)x1(T )−iφ1α2x2(T )I(τ > T )]

EQ[Sα1
1 (T )I(τ > T )]

,

=
f(0; T, iφ1α1 + α1,−iφ1α2,−1)

f(0; T, α1, 0,−1)
,

where the last equation is deuced from Eq. (A.3), and the explicit form of f(0; T, φ1, φ2, φ3)
can be found in Proposition 2.3. Standard probability theory (see, e.g., Kendall and Stuart
[19] and Shephard [24]) implies that the distribution F1(α1x1(T ) − α2x2(T ); x) := Q1(α1x1(T ) −
α2x2(T ) � x) with respect to the characteristic function f1(0; T, iφ1) is,

F1(α1x1(T ) − α2x2(T ); x) =
1

2
− 1

π

∫ ∞

0
Re

[
e−iφ1xf1(0; T, iφ1)

iφ1

]
dφ1,

where Re[·] denotes the real part of a complex number. Therefore, we have that

Π1(0; T ) = Q1

(
Sα1

1 (T )

Sα2
2 (T )

� μ2

μ1

)
E

Q[Sα1
1 (T )I(τ > T )]

=

(
1 − F1

(
α1x1(T ) − α2x2(T ); ln

μ2

μ1

))
∗ f(0; T, α1, 0,−1)

=
1

2
f(0; T, α1, 0,−1) +

1

π

∫ ∞

0
Re

×
[

e−iφ1 ln((μ2)/(μ1))f(0; T, iφ1α1 + α1,−iφ1α2,−1)

iφ1

]
dφ1, (A.5)

where we have used the expression of f1(0; T, iφ1) in the last equality.
In the similar way, we can obtain the expression of Π2(0; T ) by defining a new measure Q2,

Q2(A) :=
E

Q[I(A)Sα2
2 (T )I(τ > T )]

EQ[Sα2
2 (T )I(τ > T )]

,

for any events A ∈ FT . Under Q2, one gets that

f2(0; T, iφ1) := E
Q2 [eiφ1(α1x1(T )−α2x2(T ))],

=
E

Q[eiφ1(α1x1(T )−α2x2(T ))Sα2
2 (T )I(τ > T )]

EQ[Sα2
2 (T )I(τ > T )]

,

=
f(0; T, iφ1α1,−iφ1α2 + α2,−1)

f(0; T, 0, α2,−1)
.

Therefore, it holds that

Π2(0; T ) = Q2

(
Sα1

1 (T )

Sα2
2 (T )

� μ2

μ1

)
E

Q[Sα2
2 (T )I(τ > T )]

=
1

2
f(0; T, 0, α2,−1) +

1

π

∫ ∞

0
Re

×
[

e−iφ1 ln((μ2)/(μ1))f(0; T, iφ1α1,−iφ1α2 + α2,−1)

iφ1

]
dφ1. (A.6)
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As for I2, we have that

I2 = μ1Π3(0; T ) − μ2Π4(0; T ),

where

Π3(0; T ) =
1

2
f(0; T, α1, 0, 0) +

1

π

∫ ∞

0
Re

[
e−iφ1 ln((μ2)/(μ1))f(0; T, iφ1α1 + α1,−iφ1α2, 0)

iφ1

]
dφ1,

(A.7)

and

Π4(0; T ) =
1

2
f(0; T, 0, α2, 0) +

1

π

∫ ∞

0
Re

[
e−iφ1 ln((μ2)/(μ1))f(0; T, iφ1α1,−iφ1α2 + α2, 0)

iφ1

]
dφ1.

(A.8)

Therefore, the price of power exchange options is given by

C∗ =(1 − α)e−rT (μ1Π1(0; T ) − μ2Π2(0; T )) + αe−rT (μ1Π3(0; T ) − μ2Π4(0; T )),

with Πi(0; T ), i = 1, 2, 3, 4 defined in Eqs. (A.5)–(A.8). �
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