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For a model of a driven interface in an elastic medium with random obstacles we
prove the existence of a stationary positive supersolution at non-vanishing driving
force. This shows the emergence of a rate-independent hysteresis through the
interaction of the interface with the obstacles despite a linear (force = velocity)
microscopic kinetic relation. We also prove a percolation result, namely, the
possibility to embed the graph of an only logarithmically growing function in a
next-nearest neighbour site percolation cluster at a non-trivial percolation threshold.

1. Introduction and the main result

In this paper we consider a model for the propagation of one-dimensional fronts
immersed in an elastic medium subject to an external driving force and randomly
distributed obstacles. The goal is to understand the overall macroscopic behaviour
of such fronts and its dependence on the external forcing. Here we prove existence of
stationary solutions at positive driving force, and thus the emergence of hysteresis.

In order to precisely state our model, let (Ω, B,P) be a probability space, let ω ∈
Ω and fix s ∈ (0, 1). The random front at time t is given as the graph (x, u(x, t, ω))
of a function u : R × (0,∞) × Ω → R solving the semilinear fractional diffusion
problem

ut(x, t, ω) = −(−Δ)su(x, t, ω) − f(x, u(x, t, ω), ω) + F,

u(x, 0, ω) = 0.

}
(1.1)

The function f(x, y, ω) � 0 is assumed to be locally smooth in x and y for any ω
and of the form of localized obstacles of identical shape and random positions with
uniform density, i.e. the obstacle centres are given by a two-dimensional Poisson
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Figure 1. Pulling sandpaper out of water.

process. (See assumption 1.1 for a precise statement.) The constant term F is an
external loading and the fractional Laplacian models the interaction of the front
with the elastic medium in which it is immersed.

Evolution problems of this kind arise in a large number of physical systems; in
particular, the case s = 1/2 is relevant in applications. A simple example is that
of pulling sandpaper out of a glass of water. As illustrated in figure 1, we model
the evolution of the wetting line of the water surface on a rough plate as the plate
gets pulled out of the water. Equation (1.1) can here be formally derived as follows,
the derivation in other physical systems (for, example, crack fronts) being similar.
We assume the motion of the wetting line u : R → R to be slow compared to the
relaxation time of the water surface U : R×R

+ → R. The system contains an energy
term stemming from the water’s surface energy, which is given (after removing the
constant term from a completely flat surface) as∫

R×R+
−1 +

√
|∇U |2 + 1 dx.

Linearizing this energy around a nearly flat state and cancelling the constant term,
we approximate this as ∫

R×R+

1
2 |∇U |2 dx.

It is well known that the infimum of this energy subject to the condition that U = u
on the boundary of the domain is given by 1

2 [u]2
H1/2 , i.e. the H1/2-norm squared
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of the function setting the boundary condition. The variation of the H1/2-norm
squared yields the term containing the square root of the Laplacian in (1.1). The
constant term F models the constant force with which the rough surface is pulled
out of the water. The roughness of the surface itself acts as an obstacle to the
evolution of the wetting line: it locally requires an additional amount of force to
overcome a grain in the sandpaper. This is modelled by the heterogeneous force
term f , yielding (1.1) as the viscous flow with respect to the involved force terms.
An experimental example of this kind of system can be found in [13]. They use a
similar model, which is also proposed in [7,12]. The non-local term in these papers
is a mean-field version of our term.

Another important application in which a model of the above kind arises is that
of a crack front propagating in a rough medium. Experiments and some modelling
can be found in the work of Schmittbuhl et al . [14]. The derivation of the stress
intensity factor for a non-flat crack front (resulting in the fractional Laplacian)
was first given by Gao and Rice [9]; for simulations using the model and for more
experimental references see, for example, [15]. Non-local operators that model the
interaction with elastic media also arise in models for dislocations [1, 8].

In this paper, we consider a specific form of the function f , which is that of
localized smooth obstacles.

Assumption 1.1 (the random field). Fix r1, r2 > 0 such that r2 >
√

2r1. Let
{(xk(ω), yk(ω))}k∈K be a two-dimensional Poisson process on R × [r1,∞) with
intensity λ > 0 and consider the random set

O(ω) =
⋃

k∈K

B(
√

2r1+r2)/2(xk, yk).

For q > 0, we take f to be of the form

f(x, y, ω) = qη(r2−
√

2r1)/2 ∗ χO(ω),

where ηδ is a standard mollifier of radius δ and χO is the characteristic function of
the set O.

Remark 1.2. Given assumption 1.1, it is clear that (1.1) admits a unique viscosity
solution. See, for example, [6], noting that the right-hand side in our equation is
uniformly Lipschitz.

Under these conditions we can state the main theorem of this paper.

Theorem 1.3 (pinning of interfaces). Assume that the function f is chosen ac-
cording to assumption 1.1. There then exist a deterministic F ∗ > 0 and a con-
tinuous random function u : R × Ω → [0,∞) with the property that the function
ū(x, t, ω) := min(F ∗t, u(x)) is a supersolution, according to definition 1.4, to the
evolution problem (1.1) for F � F ∗ and for almost every ω ∈ Ω.

Furthermore, we can choose u such that there exist constants C > 0 and q > 0
so that for any x ∈ R we have P{u(x) > h} � Ce−qh, i.e. the height of the pinned
interface admits an exponential tail in its distribution. In particular, for any x ∈ R,
the expected value of the height of the pinned interface satisfies E(u(x)) < β for
some fixed β < ∞, depending only on the deterministic parameters of the obstacle
distribution and on s.
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In this theorem we use the definition of a supersolution to a fractional diffusion
equation as found, for example, in [6]. In the following, we write the fractional
Laplacian as A := −(−Δ)s. Since s ∈ (0, 1) can be taken as a constant throughout
the paper, we do not explicitly denote the dependence of A on s. We repeat the
definition, adapted to our setting, for the reader’s convenience.

Definition 1.4. Fix T > 0. A bounded lower semi-continuous function u : R ×
[0, T ) → R is a viscosity supersolution to (1.1) if u(·, 0) � 0 and if, for all (x, t) ∈
R × (0, T ) and all (α, p) ∈ R × R such that there exists σ > 0 and r > 0 satisfying

u(y, s) � u(x, t) + α(τ − t) + p(y − x) − σ|y − x|2 + o(τ − t)

for y ∈ Br(x) and τ ∈ [0, T ), we have

α � A u(x, t) − f(x, u(x, t)) + F.

Remark 1.5. By the comparison principle, of course any random field that can be
bounded from below for almost every ω by a field of the type of assumption 1.1
yields the same pinning result. Theorem 1.3 is thus valid for a whole class of models,
as long as a viscosity solution to the model exists.

Remark 1.6. We will equivalently refer to the stationary function u as the super-
solution, since ū is bounded by u from above for all times.

The physical interpretation of our result is thus the following. Theorem 1.3 states
that there is a non-trivial pinning threshold in our model, since by the comparison
principle (see, for example, [11, theorem 2]), any solution of the fractional diffusion
problem (1.1) with F � F ∗ and zero initial condition must remain below the non-
negative supersolution u for all times. Note that assumption 1.1 ensures that an
identically zero function is a stationary subsolution to the evolution problem (1.1)
for any F � 0. Thus, for 0 � F � F ∗, the interface becomes trapped and reaches,
at least asymptotically, a stationary state. The estimate on the expectation of u
(together with ergodicity) shows that the area (per unit length) swept out by the
interface is bounded.

The paper is organized as follows. In § 2 we show the existence of a non-trivial
threshold for the existence of infinite percolation clusters that contain the graph
of a function that only grows logarithmically. This is a generalization of Lipschitz
percolation [4] and the proof for our result is inspired by [10]. In § 3, using the
percolation result, the supersolution is constructed. In contrast to [5], due to the
non-local nature of the problem, a simple piecewise construction is no longer suffi-
cient. Finally, in § 4 we present some conclusions and open problems.

2. Flat percolation clusters

In this section, let ‖ · ‖ denote the l1-norm on Z
n and denote the ith canonical unit

vector in Z
n+1 by ei (1 � i � n + 1). The non-negative integers are denoted by N0.

We will also use the notation for multinomial coefficients(
m

k1, k2, . . . , kr

)
=

m!
k1!k2! · · · kr!

with
r∑

i=1

ki = m.
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Theorem 2.1. Consider site percolation on Z
n+1 with n � 1: let (Ω̄, B̄, P̄) be a

probability space and assume that for given p ∈ [0, 1] the {0, 1}-valued random
variables Xz, z ∈ Z

n+1 are independent and identically distributed with P̄{Xz =
1} = p. We say that site z ∈ Z

n+1 is open if Xz(ω) = 1, otherwise it is closed. For
each non-decreasing function H : N0 → N0 satisfying:

(i) H(0) = 0,

(ii) H(1) � 1,

(iii) lim inf
k→∞

H(k)
log k

> 0,

there exists some pH = pH(n) ∈ (0, 1) such that for each p ∈ (pH , 1) there exists a
set Ω̄0 ⊆ Ω̄ of full measure such that there exists a function Λ : Ω̄ × Z

n → N that
satisfies the following statements.

(a) For all x, y ∈ Z
n and ω ∈ Ω̄0, we have that |Λ(ω, x) − Λ(ω, y)| � H(‖x − y‖).

(b) For every x ∈ Z
n and ω ∈ Ω̄0 we have that (x, Λ(ω, x)) is open.

Proof. It suffices to prove the theorem for the case in which H(k + 1) � H(k) +
1 for all k ∈ N0 (which implies that H(1) = 1). Furthermore, we can and will
assume without loss of generality that for all positive integers k1, . . . , km, we have
H(

∑
jkj) �

∑
jH(kj).

For j ∈ N define
R(j) := sup{k ∈ N : H(k) = j}.

Now we explain what we mean by an admissible path. Let u, v ∈ Z
n+1. We

define a blocking-path from u to v to be any finite sequence of distinct sites u =
u0, u1, . . . , uk = v in Z

n+1 such that for each i = 1, . . . , k the difference ui − ui−1
takes either the value en+1 or (y, −H(‖y‖)) for some y ∈ Z

n\{0}. For a given
ω ∈ Ω̄, a blocking-path is called admissible if, in addition, for each i = 1, . . . , k we
have that if ui − ui−1 = en+1, then ui is closed, i.e. Xui(ω) = 0. The relevance of
such admissible blocking paths in the sense of theorem 2.1 is the following. If for
given ω ∈ Ω̄ there exists an admissible blocking path from any site (y, 0), y ∈ Z

n,
to a site (x, h), then every function Λ satisfying (a) and (b) from theorem 2.1
must necessarily lie above the admissible path. In the following, however, we will
show that if the reachable set of such admissible blocking paths has finite height
everywhere, then our function Λ is indeed found.

Thus, for x ∈ Z
n, ω ∈ Ω̄, define

Λ(ω, x) := 1 + sup{h ∈ N0 : there exist y ∈ Z
n and

an admissible blocking path from (y, 0) to (x, h)}.

If Λ(ω, x) is finite for some x ∈ Z
n, then Λ(ω, x + ei) � Λ(ω, x) + H(1) for each i ∈

{1, . . . , n} since otherwise there would exist an admissible blocking path starting at
some (y, 0), going through (x+ei, h) for some h � Λ(ω, x)+H(1) and continuing to
(and ending at) (x, h−H(1)), thus contradicting the definition of Λ(ω, x). Therefore,
Λ(ω, x) < ∞ for some x ∈ Z

n in fact implies that Λ(ω, x) < ∞ for all x ∈ Z
n. The
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same argument shows that the function x 
→ Λ(ω, x) satisfies claim (a) in the
statement of the theorem for each ω for which Λ(ω, 0) < ∞.

Clearly, if Λ(ω, x) is finite for some x ∈ Z
n, then (x, Λ(ω, x)) is also open. All

that remains to be shown is that there exists a set Ω̄0 of full measure such that
Λ(ω, 0) < ∞ for all ω ∈ Ω̄0.

By assumption, there exist C > 0 and γ > 0 such that R(i) � Ceγi for all
i ∈ N. Observe that there exists some K such that the number of sites in Z

n with
l1-norm at most k is bounded by Kkn for all k ∈ N. Fix N ∈ N0, h ∈ N and
q := 1 − p ∈ (0, 1). For x ∈ Z

n with ‖x‖ = N we estimate the expected value of the
number of admissible blocking paths from (x, 0) to (0, h) as follows.

For a given such admissible blocking path, let ki be the number of steps of the
path containing a down-jump of size i ∈ N. Then the expected number of such
admissible blocking paths (uj)k

j=0 that contain exactly D ∈ N0 down-steps (in the
sense that

∑k
i=1(en+1 · (ui − ui−1))− = D) and therefore D + h up-steps is at most

∑ (
k1 + · · · + kD + D + h

k1, . . . , kD, D + h

)
qD+h

D∏
i=1

(KR(i)n)ki

� qD+heγnD
∑ (

k1 + · · · + kD + D + h

k1, . . . , kD, D + h

)
(KCn)k1+···+kD

� qD+heγnD
D∑

m=0

(KCn)m
∑ (

m + D + h

k1, . . . , kD, D + h

)

= qD+heγnD
D∑

m=0

(KCn)m

(
m + D + h

D + h

) ∑ (
m

k1, . . . , kD

)

� qD+heγnD
D∑

m=0

(KCn)m2m+D+h2D

(
m + D − 1

m

)

� qD+heγnD22D+h((2KCn) ∨ 1)D
D∑

m=0

(
m + D − 1

m

)

= qD+heγnD22D+h((2KCn) ∨ 1)D

(
2D

D

)
� qD+heγnD22D+h((2KCn) ∨ 1)D22D,

where the first two sums are extended over all k1, . . . , kD ∈ N0 satisfying
∑D

i=1 iki =
D and the fourth and sixth sums extend over all k1, . . . , kD ∈ N0, which in addition
satisfy

∑D
i=1 ki = m. Let

β := 16eγn((2KCn) ∨ 1).

Summing over D from H(N) to ∞, we see that for qβ < 1 the expected num-
ber of admissible blocking paths from a given point (x, 0) to (0, h) is at most
(2q)h(qβ)H(N)(1 − qβ)−1. The total expected number of admissible blocking paths
starting from any point (y, 0), y ∈ Z

n, and ending at (0, h) is thus bounded by

(2q)h(1 − qβ)−1
∞∑

N=0

(((K̃Nn−1) ∨ 1)(qβ)H(N)). (2.1)
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Here, K̃ is a constant chosen such that the number of y ∈ Z
n such that ‖y‖ = N

is bounded by K̃Nn−1 for all N ∈ N. The sum is clearly finite provided that q > 0
is sufficiently small. Now, the first Borel–Cantelli lemma implies that the largest
h for which there exists an admissible blocking path from some (y, 0) and ending
at (0, h) is finite almost surely (i.e. is finite on a set Ω̄0 ⊂ Ω̄ of full measure), and
therefore the assertion is proved.

Remark 2.2. The theorem is sharp in the sense that it becomes wrong if in (iii)
‘inf’ is dropped and ‘>’ is replaced by ‘=’ since in this case the second Borel–
Cantelli lemma shows that for each m ∈ N the number of sites x ∈ Z

n for which
all sites (x, h), h ∈ {0, . . . , H(x) + m}, are closed is almost surely infinite (and
hence strictly positive). This implies that for every m ∈ N, the set of all ω ∈ Ω̄ for
which there exists a function Λ : Z

n → N satisfying Λ(0) � m and (a) and (b) in
theorem 2.1 has measure zero. Hence, the set of all ω ∈ Ω̄ for which there exists a
function Λ : Z

n → N satisfying (a) and (b) in theorem 2.1 has measure zero.

Remark 2.3. Define pH(n) as in the proof of theorem 2.1, i.e. pH(n) is the supre-
mum over all p such that (1−p)β < 1 and the sum in (2.1) converges. Let p > pH(n)
and let Λ : Z

n → N be the smallest function satisfying (a) and (b) of theorem 2.1.
For notational convenience we drop the dependence on ω here. Furthermore, denote
the factor behind (2q)h in (2.1) by Cn,p,H . We then get for m ∈ N0 and q := 1 − p,

P̄{Λ(0) > m} =
∞∑

h=m

P̄{Λ(0) = h + 1} � Cn,p,H

∞∑
h=m

(2q)h

= Cn,p,H(2(1 − p))m 1
1 − 2q

,

so Λ(0) has exponential tails. Note that the exponential decay rate does not go to
zero as p approaches pH(n) (but Cn,p,H blows up).

3. Construction of the supersolution

The construction of the supersolution is performed in a series of steps. We first split
up R

2 into boxes large enough that boxes that contain an obstacle of a minimum
strength percolate in the sense of § 2. All obstacles not necessary for the percolation
cluster are then disregarded. In each column of boxes we now have one obstacle at
position (xi, y(xi)). Starting from a periodic supersolution (assuming obstacles at
y = 0 and at periodic distance in x with period larger than the box size), we
construct a supersolution for obstacles centred at (xi, 0) by cutting out one period
and using this function locally around obstacle sites. Finally, we can add a smooth
function with less than linear growth (given by the percolation cluster) in order to
obtain a supersolution that passes through the original obstacle sites.

In this section, we make frequent use of the equivalence of the integral repre-
sentation and the Fourier representation of the fractional Laplacian. Furthermore,
we use the symmetry of the fractional Laplace operator and the weak form of it
by switching between applying it to a test function and the function itself. Fur-
ther information can be found in [3]. The extension problem related to fractional
Laplacians has been treated in [2].
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Figure 2. The function g.

Definition 3.1. For parameters a, ρ, F2 > 0 with a > 2ρ (which will be fixed later)
let F1 := ρF2/(a − ρ). We then define

g(x) :=

{
F2 for x ∈ [−ρ, ρ],
−F1 for x ∈ [−a, a] \ [−ρ, ρ],

while g is extended 2a-periodically to R.

Note that the average of g vanishes. We now construct a periodic supersolution.

Definition 3.2. Let v be the (modulo some constant) unique periodic solution of

A v = g.

To render the solution unique we choose the constant such that the average of v
vanishes.

From the eigenvalue representation of A on periodic functions, we can compute
the Fourier series representation of v, which is then used to compute L∞-bounds
and some symmetry properties for v.

Lemma 3.3. The Fourier series representation of v is given by

v(x) = −2a2s

( ∞∑
k=1

F1 + F2

π1+2s
sin

(
k

π

a
ρ

)
cos(kπx/a)

k1+2s

)
.

Proof. As g is an even function, it suffices to consider only the even eigenfunctions of
−Δ on the interval (−a, a) with periodic boundary condition. We thus take ϕk(x) =
(1/

√
a) cos(kπx/a) with associated eigenvalues λk = k2π2/a2 of the Laplacian.

A simple calculation shows that the representation of g as a Fourier series is given
by

g(x) = 2
∞∑

k=1

F1 + F2

kπ

√
a sin

(
k

π

a
ρ

)
ϕk.
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Let v =
∑∞

k=0βkϕk be the Fourier series representation of v and denote the Fourier
coefficients of g by αk, k = 1, . . . ,∞. We then have

A v(x) = −
∞∑

k=1

λs
kαkϕk(x) = g(x),

and so by comparing coefficients we get

βk = − 1
λs

k

αk

= − 1
(k2π2/a2)s

(
2
F1 + F2

kπ

√
a sin

(
k

π

a
ρ

))

= − 2
k2s

(
a

π

)2s(
F1 + F2

kπ

√
a sin

(
k

π

a
ρ

))
.

This yields (modulo the constant average of v that we assumed to be zero)

v(x) = −2
(

a

π

)2s ∞∑
k=1

1
k2s

(
F1 + F2

kπ

√
a sin

(
k

π

a
ρ

))

= −2a2s
∞∑

k=1

F1 + F2

π1+2s
sin

(
k

π

a
ρ

)
cos(kπx/a)

k1+2s
.

Remark 3.4. Note that by the Fourier characterization of H2s
per(Y ) with Y =

(−a, a), we have v ∈ H2s
per(Y ).

As mentioned before, we can now prove some properties of v.

Lemma 3.5. We have the following:

(i) v(−x) = v(x) for all x ∈ R, v is periodic with period 2a and continuous;

(ii) ‖v‖L∞ � 2(F1 + F2)
π2s

ζ(2s)a2s−1ρ for s > 1/2;

(iii) ‖v‖L∞ � 2(F1 + F2)
π

ρ(2 + log(a) − log(πρ)) for s = 1/2;

(iv) ‖v‖L∞ � F1 + F2

s(1 − 2s)π
ρ2s for s < 1/2.

Here, ζ denotes the Riemann zeta function.

Proof. (i) The symmetry and periodicity properties follow directly from the corre-
sponding properties of cos(·). The continuity of v follows from the uniform conver-
gence of its Fourier series.
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(ii) Using the representation

v(x) = −2a2s
∞∑

k=1

F1 + F2

π1+2s
sin

(
k

π

a
ρ

)
cos(kπx/a)

k1+2s

from lemma 3.3 together with
∣∣∣∣ sin

(
k

π

a
ρ

)∣∣∣∣ � k
π

a
ρ and

∣∣∣∣ cos
(

k
π

a
x

)∣∣∣∣ � 1,

as kπb/a � 0, we get

∣∣∣∣
∞∑

k=1

F1 + F2

π1+2s
sin

(
k

π

a
ρ

)
cos(kπx/a)

k1+2s

∣∣∣∣ �
∞∑

k=1

F1 + F2

π1+2s

kπρ

a

1
k1+2s

=
F1 + F2

π2s

ρ

a

∞∑
k=1

1
k2s

=
F1 + F2

π2s

ρ

a
ζ(2s).

Finally, this gives

‖v‖L∞ � 2a2s

(
F1 + F2

π2s

ρ

a
ζ(2s)

)
= 2

F1 + F2

π2s
ζ(2s)a2s−1ρ.

(iii) For s = 1/2 we have

|v| =
∣∣∣∣−2a

∞∑
k=1

F1 + F2

π2 sin
(

k
π

a
ρ

)
cos(kπx/a)

k2

∣∣∣∣
=

2(F1 + F2)
π2 a

∣∣∣∣
∞∑

k=1

sin(kπρ/a) cos(kπx/a)
k2

∣∣∣∣.
With | sin(kπρ/a)| � kπρ/a, | cos(kπx/a)| � 1 and | sin(kπρ/a)| � 1, by splitting
the sum into two parts and using an integral estimate for each part one gets

|v(x)| � 2(F1 + F2)
π2 a

(
π

a
ρ +

∫ a/πρ

1

π

a
ρ
1
k

dk +
∫ ∞

a/πρ

1
k2 dk

)

=
2(F1 + F2)

π2

(
πρ

(
1 + log

(
a

πρ

))
+

a

a/πρ

)

=
2(F1 + F2)

π2 (πρ(2 + log(a) − log(πρ)))

=
2(F1 + F2)

π
ρ(2 + log(a) − log(πρ)).
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(iv) Similarly, for s < 1/2 we have

|v| � 2
F1 + F2

π1+2s
a2s

(
π

a
ρ +

∫ a/πρ

1

π

a
ρ

1
k2s

dk +
∫ ∞

a/πρ

1
k1+2s

dk

)

= 2
F1 + F2

π1+2s
a2s

(
π

a
ρ +

πρ

a(1 − 2s)

((
a

πρ

)1−2s

− 1
)

+
1
2s

(
a

πρ

)−2s)

= 2
F1 + F2

π1+2s

(
πρ

a1−2s

(
1 − 1

1 − 2s

)
+

(πρ)2s

1 − 2s
+

(πρ)2s

2s

)

= 2
F1 + F2

π1+2s

(
πρ

a1−2s

(
1 − 1

1 − 2s

)
+ (πρ)2s

(
1

1 − 2s
+

1
2s

))

= 2
F1 + F2

π1+2s

(
− 2s

1 − 2s

πρ

a1−2s
+

(πρ)2s

2s(1 − 2s)

)

� 1
s(1 − 2s)π

ρ2s(F1 + F2).

For the last inequality we used −(2s/(1 − 2s))(πρ/a1−2s) � 0 as s < 1/2.

Remark 3.6. We assumed that a/πρ > 1 in the proof above as it turns out later
(when the parameters are fixed) that ρ < a/18.

Next we will show some monotonicity properties of v.

Lemma 3.7. The function v strictly increases on [0, a] (and thus, by symmetry,
strictly decreases on [−a, 0]).

We denote by E+ :=
⋃∞

k=−∞(2ka − ρ, 2ka + ρ) the set where g is positive and
by E− := R \ Ē+ the set where g is negative. With this notation we obtain the
following proposition.

Proposition 3.8. (−Δ)pg(x) (given by the integral representation) exists and is
continuous on E+ ∪ E− for any p ∈ (0, 1), and one furthermore has

(−Δ)pg(x)

{
> 0, x ∈ E+,

< 0, x ∈ E−.

Proof. The existence and continuity are obvious as g is piecewise constant and we
exclude the points where g jumps. For the positivity, respectively, negativity, take
x ∈ E+. One then has

(−Δ)pg(x) = Cp PV
∫

R

g(x) − g(y)
|x − y|1+2p

dy = Cp PV
∫

R

F1 + F2

|x − y|1+2p
χE−(y) dy > 0,

where χE+ is the characteristic function of E+ and ‘PV’ denotes the principal value
of the integral. For x ∈ E− the same calculation gives

(−Δ)pg(x) = Cp PV
∫

R

g(x) − g(y)
|x − y|1+2p

dy = −Cp PV
∫

R

F1 + F2

|x − y|1+2p
χE+(y) dy < 0.
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xa

y

0τ τ τ–a

0

/2 – a /2

Figure 3. Intersection of periodic functions with special monotonicity properties.

Using the previous proposition, we can give the proof.

Proof of lemma 3.7. It is clear that v′′ exists on E+ ∪ E− and is, due to propo-
sition 3.8, strictly positive on E+ and strictly negative on E−. Furthermore, by
the symmetry properties of v one has v′(0) = 0 = v′(a). We thus obtain for
x ∈ (0, a) \ {ρ},

v′(x) =

⎧⎪⎪⎨
⎪⎪⎩

∫ x

0
(−Δ)1−sg(y) dy for x ∈ (0, ρ),

−
∫ a

x

(−Δ)1−sg(y) dy for x ∈ (ρ, a),

> 0,

where in the last step proposition 3.8 was used. Together with the continuity of v,
the assertion follows.

The above monotonicity result yields certain elementary properties for the inter-
section points of shifted copies of the function v.

Proposition 3.9. For any translations τ1, τ2 ∈ R and on any interval of the form
(β, β + 2a], the functions v(· − τ1) and v(· − τ2) either intersect each other exactly
twice or they are identical, while in the first case the points of intersection have
distance a.

Proof. Due to periodicity we can assume, without loss of generality, that τ1 = 0,
β = −a and τ2 ∈ (0, a]. We denote by w1(·) := v(· − τ1) = v(·), w2 := v(· − τ2) and
τ := τ2. Assuming now that τ2 − τ1 = τ is not an integer multiple of 2a and using
the symmetry of v, we get

w1( 1
2τ) = v( 1

2τ) = v(− 1
2τ) = v( 1

2τ − τ2) = w2( 1
2τ).
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x

y

0 d

h

l – 2r1

l

Figure 4. Split-up of the plane R × [0, ∞) into boxes.

Furthermore, using additionally the periodicity of v, we obtain

w1( 1
2τ − a) = v( 1

2τ − a) = v(a − 1
2τ) = v(−a − 1

2τ)

= v(−a + 1
2τ − τ)

= w2( 1
2τ − a).

Noting that τ/2, τ/2−a ∈ (−a, a], we see that there are at least two points of inter-
section within (−a, a] and they have distance a. Due to the monotonicity properties
of v there cannot be any other intersections in (−a, a] (see figure 3 for an illustra-
tion).

Now we have collected all the properties of v that we will need, so we continue
constructing the stationary supersolution. Therefore, we split R

2 into boxes with
volume large enough that the probability of finding an obstacle centre in each box
is larger than the critical probability pH(1) from theorem 2.1. We can then apply
the percolation result stated there.

Definition 3.10. For k ∈ Z, j ∈ N and l, d, h > 0, l > 2r1, we define

Qk := [k(l + d) − 1
2 l, k(l + d) + 1

2 l],

Q̃k := [k(l + d) − 1
2 l + r1, k(l + d) + 1

2 l − r1],

Q̃k,j := Q̃k × [(j − 1)h, jh].

As a direct result of theorem 2.1 and assumption 1.1, we obtain the following
proposition.

Proposition 3.11. Let 0 < α < 1, H(k) := �kα� (i.e. the integer floor of kα) and
let V := (l − 2r1)h > 0 such that

1 − exp{−λV } > pH(1)
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from theorem 2.1.1 Then, almost surely, there exist a function Λ : Z → N with
|Λ(x) − Λ(y)| � H(|x − y|) for all x, y ∈ Z and a mapping I : Z → K with

(xI(k), yI(k)) ∈ Q̃k,Λ(k)

for all k ∈ Z.

Note that for notational convenience we have dropped the dependence of Λ on
ω ∈ Ω. In the following we denote by I the set I(Z).

We now define a flat version of the aspired supersolution by projecting the obsta-
cles, chosen by the proposition above, onto the real line and, locally around them,
taking the minimum over translated versions of v. Explicitly, this is given by the
following definition.

Definition 3.12. Now let d � l, 2a � d + 2l and define for i ∈ I,

ui(x) :=

{
v(x − xi) for x ∈ [xi − l − 1

2d, xi + l + 1
2d],

+∞ otherwise,

vi(x) := v(x − xi),

uflat(x) := min
i∈I

ui(x).

Proposition 3.13. With the definitions above, we have that:

(i) uflat is well defined, bounded and continuous;

(ii) given i ∈ I and k ∈ N such that xi ∈ Q̃k, we have uflat(x) = vi(x) for all
x ∈ Qk.

Proof. (i) For every x ∈ R there are only finitely many ui having a finite value
in x. Furthermore, for k ∈ N and i, j ∈ I with xi ∈ Q̃k and xj ∈ Q̃k+1, due to
proposition 3.9, the functions ui and uj intersect and are both finite in (xi +xj)/2.
Thus, uflat is well defined as well as bounded and continuous, as v is bounded and
continuous.

(ii) It suffices to show that two functions ui �≡ uj , i, j ∈ I, have no intersection
(with the exception of ∞) inside Qk. For xi ∈ Qm and xj ∈ Qn with |m − n| � 2
this is clear by the definitions of ui and uj . Let xi ∈ Qk and xj ∈ Qk+1. It is then
enough to show that ui and uj intersect neither inside Qk nor inside Qk+1. From the
periodicity one knows that ui and uj intersect in xi+|xj −xi|/2 = xj −|xj −xi|/2 =
(xi + xj)/2, where xj > xi, due to the fact that xi ∈ Qk, xj ∈ Qk+1. This property
together with the definition of Qk and Qk+1 also gives

k(l + d) − 1
2 l + r1 � xi � k(l + d) + 1

2 l − r1

(k + 1)(l + d) − 1
2 l + r1 � xj � (k + 1)(l + d) + 1

2 l − r1.

1We take pH(1) to be the value from the proof of the theorem in order to be able to apply
remark 2.3.
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Adding the two inequalities and dividing by 2 gives

K(l + d) +
l + d

2
− l

2
+ r1 � xi + xj

2

� k(l + d) +
l + d

2
+

l

2
− r1

= (k + 1)(l + d) − l

2
+

l

2
− d

2
− r1.

Now using that r1 > 0 and l � d, one gets

k(l + d) +
l

2
< k(l + d) +

l + d

2
− l

2
+ r1

� xi + xj

2

� (k + 1)(l + d) − l

2
− d − l

2
− r1

< (k + 1)(l + d) − l

2
.

Then (xi +xj)/2 /∈ Qk, Qk+1 by the definition of Qk and Qk+1. As the next point of
intersection has distance a to (xi + xj)/2 and a � d + l/2 this shows the claim.

We next prove that uflat is a supersolution to a modified equation where the
obstacles are projected to the real line, meaning that for the moment we neglect
the y direction. This will be done by estimating the effect of the fractional Laplacian
for any fixed ξ ∈ R. In order to perform such an estimate, we first need to fix some
notation.

Definition 3.14. Let ξ ∈ R and i0 ∈ I be such that uflat(ξ) = ui0(ξ) = vi0(ξ). If
ui(ξ) = uj(ξ) = uflat(ξ), we take i0 = max{i, j}. Furthermore, we recursively define
the points of (proper) intersection of the periodic function vi0 with uflat. Let

a1 := min
{

y � 0: ∃κ > 0 with
vi0 > uflat on (ξ − y − κ, ξ − y)
vi0 � uflat on (ξ − y, ξ − y + κ)

}
,

b1 := min
{

y � a1 : ∃κ > 0 with
vi0 < uflat on (ξ − y − κ, ξ − y)
vi0 > uflat on (ξ − y, ξ − y + κ)

}
,

ak+1 := min
{

y � bk : ∃κ > 0 with
vi0 > uflat on (ξ − y − κ, ξ − y)
vi0 < uflat on (ξ − y, ξ − y + κ)

}
,

bk+1 := min
{

y � ak+1 : ∃κ > 0 with
vi0 < uflat on (ξ − y − κ, ξ − y)
vi0 > uflat on (ξ − y, ξ − y + κ)

}
.

Define ãk and b̃k in the same way by substituting +y for −y.

With this definition we can state the main ingredient for the following estimates.

Lemma 3.15. We have

bk − ak � a and ak+1 − bk � a

for all k ∈ N.
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ξ – a3

ξ – b2

ξ – a2

ξ – b1

ξ – a1

ξ
ξ + a1

~ ξ + a2
~

ξ + b1
~

y

x

0
vi0

ui3

ui2

ui1

ui0

Figure 5. Illustration for the definition of and distance between intersection points of
local supersolutions with the periodic supersolution vi0 .

Proof. Take k ∈ N arbitrarily and i1, i2 ∈ I such that ui1(ξ − ak) = uflat(ξ − ak)
and ui2(ξ−bk) = uflat(ξ−bk) (it is clear by construction that i1 and i2 are unique).

Because of proposition 3.9 and the construction of uflat, one has

uflat � vi1 on [ξ − ak − a, ξ − ak].

The definition of ak and proposition 3.9 yield

vi0(ξ − ak) = vi1(ξ − ak) and vi0(x) > vi1(x) for x ∈ (ξ − ak − a, ξ − ak).

Altogether one has

vi0(x) > vi1(x) � uflat(x) for all x ∈ (ξ − ak − a, ξ − ak).

Furthermore,
uflat � vi0 on [ξ − bk, ξ − ak]

and by the choice of ak and bk there exists no larger interval J ⊇ [ξ − bk, ξ − ak]
with uflat � vi0 on J . Using this, one obtains

(ξ − ak − a, ξ − ak) ⊂ [ξ − bk, ξ − ak],

and therefore
bk − ak � a.

The other inequality is shown by an explicit calculation. We define r := 2(xi2 −
(ξ − bk)) and z0 := xi2 − r. Then, by the periodicity property of vi0 and vi2 , it is
clear that z0 is a minimum of vi0 . Furthermore, let i3 ∈ I be such that xi3 is the
next minimum of uflat to the left of xi2 . By construction of uflat, it is obvious that
one has ui3(ξ − ak+1) = uflat(ξ − ak+1). Furthermore, one has xi3 < z0 < xi2 . From
the proof of proposition 3.13 one then knows that vi0 and ui3 intersect in

ξ − ak+1 =
xi3 + z0

2
.
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ui3

xi3 ξ – ak+1
z0 ξ – bk

ui2

xi2

vi0

y

x

ξ , x0
(xi3 

+ xi2
)/2

r

0

Figure 6. Illustration to estimate the distance between intersection points of
local supersolutions and the periodic supersolution vi0 .

The same argument also shows for the intersection of vi0 and ui2 ,

ξ − bk =
xi2 + z0

2
.

By the choice of the Qn, it follows that |xi2 − xi3 | = xi2 − xi3 � d + 2l − 2r1 and
therefore |xi2 − xi3 |/2 � d/2 + l − r1 < a. Putting everything together, one gets

ak+1 − bk = (ξ − bk) − (ξ − ak+1) =
xi2 + z0

2
− xi3 + z0

2
=

xi2 − xi3

2
< a.

See figure 6 for an illustration.

Remark 3.16. In the same way it follows that

b̃k − ãk � a and ãk+1 − b̃k � a.

For the case in which ξ is a point where uflat is smooth, there is no issue applying
the integral representation directly in order to show that uflat is a supersolution
to our modified problem. However, at points where uflat is only continuous, in
particular, where the representing ui changes or where g admits a jump, we have
to be slightly more careful (at least for the case in which s � 1/2).

Definition 3.17. We define the set D of points where uflat is not smooth (i.e. C2)
consisting of the set

D1 := {zk ± ρ : k ∈ Z}

of points where the (shifted copy of the) function g admits a jump and the set

D2 :=
{

zk + zk+1

2
: k ∈ Z

}

https://doi.org/10.1017/S0308210512001291 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210512001291


498 P. W. Dondl, M. Scheutzow and S. Throm

of points where the functions vi representing uflat change. We use here the following
notation: for every k ∈ Z we define zk to be the unique point xi ∈ Q̃k with i ∈ I.
We then have D = D1 ∪ D2.

For ξ /∈ D we now can prove the following estimate.

Lemma 3.18. For ξ /∈ D (for s < 1/2 we only need ξ /∈ D1) we have

PV
∫

R

uflat(y) − uflat(ξ)
|y − ξ|1+2s

dy � PV
∫

R

vi0(y) − vi0(ξ)
|y − ξ|1+2s

dy.

Remark 3.19. The idea behind the following proof is that we compare the area
between the graphs of uflat and vi0 , while this area is weighted by the kernel of the
integral representation of (−Δ)s. In this situation the intervals where uflat < vi0

give some negative contribution, while the intervals with uflat > vi0 give some
positive contribution. Using lemma 3.15 it is possible to show that the total sum of
all these ‘weighted signed areas’ is negative.

Proof of lemma 3.18. The explicit calculation is done only for the part to the left
of ξ. The estimate for the other part follows analogously. Using the same notation
as in lemma 3.15, one has uflat � vi0 on [ξ − bk, ξ −ak], and so the definition of uflat
together with lemma 3.15 yields∫ ξ−ak

ξ−bk

uflat(y) − vi0(y) dy

� min
{ ∫ ξ−bk+a

ξ−bk

vi2(y) − vi0(y) dy,

∫ ξ−ak

ξ−ak−a

vi1(y) − vi0(y) dy

}

�
∫ ξ−bk+a

ξ−bk

vi2(y) − vi0(y) dy

� 0.

In the same way, using vi0 � uflat on [ξ − ak+1, ξ − bk], we get

0 �
∫ ξ−bk

ξ−ak+1

uflat(y) − vi0(y) dy

� min
{ ∫ ξ−ak+1+a

ξ−ak+1

vi3(y) − vi0(y) dy,

∫ ξ−bk

ξ−bk−a

vi2(y) − vi0(y) dy

}

�
∫ ξ−bk

ξ−bk−a

vi2(y) − vi0(y) dy.

Using this, we can split up ∫ ξ−ak

ξ−ak+1

uflat(y) − vi0(y)
|y − ξ|1+2s

dy

into the two parts where the integrand is negative and positive, respectively (see
figure 7 for an illustration). Noticing that 1/|y−ξ|1+2s � 1/b1+2s

k on [ξ−ak+1, ξ−bk]
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and 1/b1+2s
k � 1/|y − ξ|1+2s on [ξ − bk, ξ − ak], we obtain∫ ξ−ak

ξ−ak+1

uflat(y) − vi0(y)
|y − ξ|1+2s

dy

� 1
b1+2s
k

∫ ξ−bk

ξ−ak+1

uflat(y) − vi0(y) dy +
1

b1+2s
k

∫ ξ−ak

ξ−bk

uflat(y) − vi0(y) dy

� 1
b1+2s
k

∫ ξ−bk+a

ξ−bk−a

vi2(y) − vi0(y) dy

= 0,

where in the last step we used that the average of vi0 and vi2 vanishes. Inserting a
zero of the form −vi0(ξ) + vi0(ξ), we obtain

0 �
∫ ξ−ak

ξ−ak+1

uflat(y) − vi0(ξ)
|y − ξ|1+2s

dy −
∫ ξ−ak

ξ−ak+1

vi0(y) − vi0(ξ)
|y − ξ|1+2s

dy.

Now using vi0(ξ) = uflat(ξ) and summing up for all k in N, it follows that∫ ξ−a1

−∞

uflat(y) − uflat(ξ)
|y − ξ|1+2s

dy �
∫ ξ−a1

−∞

vi0(y) − vi0(ξ)
|y − ξ|1+2s

dy.

Furthermore, an analogous calculation shows that∫ ∞

ξ+ã1

uflat(y) − uflat(ξ)
|y − ξ|1+2s

dy �
∫ ∞

ξ+ã1

vi0(y) − vi0(ξ)
|y − ξ|1+2s

dy,

which, together with uflat = vi0 on (ξ − a1, ξ + ã1), yields

PV
∫

R

uflat(y) − uflat(ξ)
|y − ξ|1+2s

dy � PV
∫

R

vi0(y) − vi0(ξ)
|y − ξ|1+2s

dy.

Definition 3.20. Let ρ < r0 and F2 < q. We then define

gflat(x) :=

⎧⎪⎪⎨
⎪⎪⎩

q for x ∈
⋃
i∈I

[xi − r0, xi + r0],

0 for x /∈
⋃
i∈I

[xi − r0, xi + r0].

Proposition 3.21. Under the conditions from definition 3.20 we have

A uflat − gflat + F � 0

for every F � min{q − F2, F1}.

Proof. For x /∈ D this is already clear from lemma 3.18 and the definition of gflat.
Furthermore, for x ∈ D1 we know from the construction of v that limy→x− A uflat(y)
and limy→x+ A uflat(y) exist and from lemma 3.18 it is clear that

lim
y→x±

A uflat(y) � lim
y→x±

A vi(x)(y).

From the construction of gflat we see that limy→x± A vi(x)(y) + F � gflat(x).
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ξ – ak+1

ξ – bk

ξ – ak ξ

x0

ui2

y

x

0

ui3 ui1
ui0

vi0

Figure 7. Illustration to estimate and compare the area between
the graphs of uflat and vi0 .

For s < 1/2 the case x ∈ D2 is already proven in lemma 3.18. Let s � 1/2 and
x ∈ D2. Since the derivative of uflat makes a downward jump at x, we have that
A uflat(x) = −∞ and therefore we also have A uflat(x) + F � gflat(x).

We are now prepared to perform the last step in constructing our supersolution
u. That is, we will lift usmooth locally to the obstacles chosen for the percolation
cluster. Technically this will be done by just adding a smoothed piecewise constant
function for which we first collect some properties.

Proposition 3.22. Let h > 0, d > 0, l > 0, s ∈ (0, 1). For Λ : Z → R such that
|Λ(z1) − Λ(z2)| � 2h|z1 − z2|α with 0 < α < 2s there exist a smooth function
ulift : R → R and constants C0, C1 and C2 that only depend on s and α such that:

(i) ulift(x) = Λ(k) for any x ∈ Qk, k ∈ Z;

(ii) ‖∂2
xulift‖L∞ � C0

h

d2 ;

(iii) |(−Δ)sulift(x)| � C1
(d/2 + l/2)2−2s

d2 h + C2
h

(d/2 + l/2)2s
.

Proof. Parts (i) and (ii) follow immediately if we define ulift := ũlift ∗ ηd/2, where
ũlift is defined as the piecewise constant function

ũlift(x) := Λ(k) for x ∈ (k(l + d) − 1
2 l − 1

2d, k(l + d) + 1
2 l + 1

2d].

To see part (iii), we assume without loss of generality that

x ∈ [− 1
2d − 1

2 l, 1
2d + 1

2 l].
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Let Π := (−3(d/2 + l/2), 3(d/2 + l/2)). We then have, from the assumptions on
Λ and from (i), for all y ∈ R \ Π,

|ulift(x) − ulift(y)| � 6h
|x − y|α
(l + d)α

(3.1)

because

|ulift(x) − ulift(y)| � 2h
|x − y|α
(l + d)α

+ 4h

and for y ∈ R\Π one has |x−y|α/(l+d)α � 1 and therefore 4h � 4h|x−y|α/(l+d)α.
Using that ulift is smooth and grows less than linearly, (−Δ)sulift can be repre-

sented by its integral form as

(−Δ)sulift(x) = −C

2

∫
R

ulift(x − y) + ulift(x + y) − 2ulift(x)
|y|1+2s

dy.

By applying some standard estimates [3] we get

|(−Δ)sulift(x)| =
C

2

∣∣∣∣
∫

R

ulift(x − y) + ulift(x + y) − 2ulift(x)
|y|1+2s

dy

∣∣∣∣
� C

‖∂2
xulift‖L∞

2

∫
Π

1
|y|2s−1 dy

+
C

2

∫
R\Π

|ulift(x − y) − ulift(x)| + |ulift(x + y) − ulift(x)|
|y|1+2s

dy.

Putting in (3.1) for ulift and calculating the resulting integrals, it follows that

|(−Δ)sulift(x)|

� C‖∂2
xulift‖L∞

∫ 3(d/2+l/2)

0

1
y2s−1 dy + C

6h

(l + d)α

∫
R\Π

1
|y|1+2s−α

dy

� C
‖∂2

xulift‖L∞

2 − 2s
32−2s

(
d

2
+

l

2

)2−2s

+ C
12h

(l + d)α

∫ ∞

3(d/2+l/2)
y−1−2s+α dy

� C
‖∂2

xulift‖L∞

2 − 2s
32−2s

(
d

2
+

l

2

)2−2s

+ C
12h

2s − α
3α−2s (d/2 + l/2)−2s+α

(d + l)α

� C
32−2s

2 − 2s
C0

h

d2

(
d

2
+

l

2

)2−2s

+ C
12

2s − α

3α−2s

2α
h

(
d

2
+

l

2

)−2s

,

where in the last step ‖∂2
xulift‖L∞ � C0h/d2 was used. For

C1 = C
32−2s

2 − 2s
C0 and C2 = C

12
2s − α

3α−2s

2α

we obtain the estimate.

Remark 3.23. Note that in item (iii) the restriction α < 2s for the case in which
s > 1/2 gives α � 1, and thus it suffices if Λ is Lipschitz continuous and therefore
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x

y

0 d

h

l – 2r1

l

Figure 8. Illustration for the construction of ulift; the first step.

x

y

0 d

h

l – 2r1

l

ulift

Figure 9. Illustration for the construction of ulift; the second step.

we could use Lipschitz percolation from [4]. But for s � 1/2, in order to make the
integral finite, the stronger percolation result in theorem 2.1 is necessary.

We next summarize the scaling properties that we will need to finally prove our
main theorem for the case in which 1/2 < s < 1.

Lemma 3.24. Let 1/2 < s < 1 and take C∞ := (2/π2s)ζ(2s) and Ca > 5.
Take q > 0 and V > 0 as in proposition 3.11. Choose 0 < F2 < q and take F1 > 0

as in definition 3.1. Now choose l > 0 such that

l > max
{

4r1,

(
(C1 + C2)V
r1(q − F2)

)1/(2s)

, (12(C1 + C2)V r0)1/(2s),

1
(C∞( 3

2 )2s−1F2)1/(2s−1)
,
1 + 2F2r0r1 + 12F2(C1 + C2)V C∞C2s

a

F2r0

}
.
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Take d = l, 3l/2 = d/2+l � a � Cal, ρ = ar0/3(C∞F2a
2s+r0) and h = V/(l−2r1).

Then we have:

(i) ρ <
r0

3
<

a

18
,

(ii) (C1 + C2)V
1
l2s

1
l − 2r1

<
q − F2

2
,

(iii) (C1 + C2)V
1
l2s

1
l − 2r1

<
1
12

r0

(C∞C2s
a F2l2s + r0)

,

(iv) ‖v‖L∞ <
r0

2
,

(v) −F1 � −1
6

r0F2

(C∞C2s
a F2l2s + r0)

.

Proof. (i) The choice of b, δ, a and l yields

ρ =
1
3

ar0

C∞F2a2s + r0
<

1
3

r0

C∞F2a2s−1 � 1
3

r0

C∞F2( 3
2 )2s−1l2s−1

<
r0

3
1

C∞F2( 3
2 )2s−1(1/C∞F2( 3

2 )2s−1)

=
r0

3
.

From the conditions on r0, r1 and the choice of l, one also gets

r0

3
<

r1

3
<

l

12
� 2

3
a

12
=

a

18
.

(ii) From the conditions on l we get

l >

(
2(C1 + C2)V
2r1(q − F2)

)1/2s

,

l2s >
2(C1 + C2)V
2r1(q − F2)

,

l2s(l − 2r1) > 2r1l
2s

>
2(C1 + C2)V

q − F2
,

where in the last step l > 4r1 was used. This gives

q − F2

2
> (C1 + C2)V

1
l2s

1
l − 2r1

.

(iii) From the condition

l >
1 + 2F2r0r1 + 12F2(C1 + C2)V C∞C2s

a

F2r0
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on l we get

r0F2l − 2F2r0r1 − 12F2(C1 + C2)V C∞C2s
a > 1. (3.2)

By rearranging some terms, we get from the condition

(12(C1 + C2)V r0)1/2s < l

on l that

12(C1 + C2)V r0 < l2s

(3.2)
< l2s(r0F2l − 2F2r0r1 − 12F2(C1 + C2)V C∞C2s

a )

= r0F2l
1+2s − 2F2(r0r1 + 6(C1 + C2)V C∞C2s

a )l2s

l1+2sr0F2 − 2r0r1F2l
2s < 12(C1 + C2)V C∞F2C

2s
a l2s + 12(C1 + C2)V r0

(C1 + C2)V
1
l2s

1
l − 2r1

<
1
12

r0F2

(C∞C2s
a F2l2s + r0)

.

(iv) From definition 3.1 we know that

F1 + F2 =
(

ρ

a − ρ
+ 1

)
F2 =

a

a − ρ
F2.

Furthermore, from lemma 3.5 we have

‖v‖L∞ � 2(F1 + F2)
π2s

ζ(2s)a2s−1ρ.

Putting these together and using (i), we obtain

‖v‖L∞ � C∞
a

a − ρ
F2a

2s−1ρ < C∞
a

17
18a

F2a
2s−1ρ

=
18
17

C∞F2a
2s−1ρ

=
18
17

C∞F2a
2s−1 1

3
ar0

(C∞F2a2s + r0)

<
18
17

C∞F2a
2s−1 ar0

3C∞F2a2s

=
6
17

r0

<
r0

2
.

(v) Because F1 is as in definition 3.1 we have

−F1 = − ρ

a − ρ
F2 < −ρ

a
F2 < −ρ/2

a
F2 = −1

a

r0a

6(C∞F2a2s + r0)
F2

� −1
6

r0

(C∞C2s
a F2l2s + r0)

F2.
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Now take u := uflat + ulift. Choose the parameters as in lemma 3.24 and

F ∗ :=
1
2

min
{

q − F2,
r0

6(C∞C2s
a F2l2s + r0)

F2

}
.

One then has u � 0, as just seen (note that ulift � r1 and |uflat| � ‖v‖L∞), and we
can now give the proof of theorem 1.3 for 1/2 < s < 1.

Proof of theorem 1.3 for 1/2 < s < 1. Let the parameters be as in lemma 3.24 and
take ulift(xi) = yi for all i ∈ I, which, due to propositions 3.11 and 3.22, is (almost
surely) possible. From the choice of gflat we have

−f(x, uflat(x) + ulift(x)) � −gflat(x).

Using this we have for F < F ∗,

A u(x) − f(x, u(x, ω), ω) + F � A uflat(x) − gflat(x) + F + A ulift(x).

With the results of proposition 3.21 and proposition 3.22 it follows that

A u(x) − f(x, u(x, ω), ω) + F

� −min{q − F2, F1} + F + C1
(d/2 + l/2)2−2s

d2 h + C2
h

(d/2 + l/2)2s

� −min{q − F2, F1} + F + (C1 + C2)
h

l2s
,

where in the last step d = l was used. Now applying the estimates of lemma 3.24
and using h = V/(l − 2r1), we obtain

A u(x) − f(x, u(x, ω), ω) + F � −min
{

q − F2,
r0

6(C∞C2s
a F2l2s + r0)

F2

}

+ F + (C1 + C2)V
1
l2s

1
l − 2r1

< −1
2

min
{

q − F2,
r0

6(C∞C2s
a F2l2s + r0)

F2

}
+ F ∗

= 0. (3.3)

Now picking ū as in the theorem, we see immediately that the requirements in
definition 1.4 are fulfilled: at a point x where ū(x, t) is already stationary, α must
be chosen to be greater than or equal to 0 and the inequality in the definition
follows from (3.3). At a point where ū(x, t) is propagating with velocity F ∗, the
parameter α must be chosen to be greater than or equal to F ∗. Note that such
a point is necessarily a maximum of ū, so the right-hand side in the definition is
bounded from above by F ∗. This concludes the proof that ū is a supersolution. The
estimate on the expected value and the tail distribution of u(x) follows immediately
from remark 2.3 and the choice of pH(1) in proposition 3.11.

For the case in which s = 1/2 some changes in the choice of parameters have to
be performed due to the worse L∞-estimate on v in lemma 3.5.
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Lemma 3.25. Let Cρ = 1
2

√
πr3

0/48e2(36F2/17π)3C3
a and choose Ca > 5. Take

q > 0 and V > 0 as in proposition 3.11. Let 0 < F2 < q and choose F1 > 0 as
in definition 3.1. Now choose l > 0 such that

l > max
{(

(C1 + C2)V
r1(q − F2)

)
,

(
2V (C1 + C2)

F2Cρ

)2

+ 4r1, 12
(C1 + C2)Ca

r0
V + 2r1

}
.

Take d = l and 3
2 l = 1

2d + l � a � Cal,

ρ = min
{√

πr3
0

48e2(36F2/17π)3
1√
a
,
r0

3

}

and h = V/(l − 2r1). We then have:

(i) l > 4r1;

(ii) ρ <
r0

3
<

a

18
;

(iii) (C1 + C2)V
1
l

1
l − 2r1

<
q − F2

2
;

(iv) (C1 + C2)V
1
l

1
l − 2r1

<
1
2
F2 min

{
1
2

√
πr3

0

48e2(36F2/17π)3C3
a

1
l3/2 ,

r0

6Cal

}
;

(v) ‖v‖L∞ <
r0

2
;

(vi) −F1 � −F2 min
{

1
2

√
πr3

0

48e2(36F2/17π)3C3
a

,
1

l3/2 ,
r0

6Cal

}
.

Proof. (i) Given that l > (2V (C1+C2)/F2Cρ)2+4r1 and (2V (C1+C2)/F2Cρ)2 � 0,
this is clear.

(ii) From the choice of ρ it is clear that ρ � r0/3. From the conditions on r0, r1
and the choice of l, we furthermore have

r0

3
<

r1

3
<

l

12
� 2

3
a

12
=

a

18
.

(iii) From the condition on l (using item (i)) some calculation gives

l >
2(C1 + C2)V
2r1(q − F2)

,

l(l − 2r1) > 2r1l >
2(C1 + C2)V

q − F2
,

q − F2

2
> (C1 + C2)V

1
l

1
l − 2r1

.

(iv) From the condition

l >

(
2V (C1 + C2)

F2Cρ

)2

+ 4r1
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on l one obtains(
2V (C1 + C2)

F2Cρ

)2

< l − 4r1 < l − 4r1 +
4r1

l
=

l2 − 4r1l + 4r2
1

l

=
(l − 2r1)2

l
.

Therefore, taking the square root, one obtains

2V (C1 + C2)
F2Cρ

<
l − 2r1

l1/2 =
l(l − 2r1)

l3/2 ,

which finally, after rearranging and putting in Cρ, yields

(C1 + C2)V
1
l

1
l − 2r1

<
1
2
F2Cρ

1
l3/2 =

1
2
F2

1
2

√
πr3

0/48e2(36F2/17π)3C3
a

1
l3/2 .

The second part simply follows by rearranging the condition

l > 12
(C1 + C2)Ca

r0
V + 2r1

on l such that

l − 2r1 > 12
(C1 + C2)Ca

r0
V

and finally

(C1 + C2)V
1
l

1
l − 2r1

<
1
2

r0

6Ca

1
l
.

(v) From lemma 3.5 we have

‖v‖L∞ � 2
F1 + F2

π
ρ(2 + log(a) − log(πρ)).

The choice of F1 from definition 3.1 together with item (ii) yields

F1 + F2 =
(

ρ

a − ρ
+ 1

)
F2 =

a

a − ρ
F2 � a

17
18a

F2 = 18
17F2.

Taking both together one gets

‖v‖L∞ �
(

36F2

17π

)
ρ(2 + log(a) − log(πρ)).

From the choice of ρ, we furthermore obtain

ρ � min
{√

πr3
0

48e2(36F2/17π)3
1√
a
,
r0

3

}

and therefore, by squaring,

ρ2 � min
{

πr3
0

48e2(36F2/17π)3
1
a
,
r2
0

9

}
,
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so in particular,

ρ2 � πr3
0

48e2(36F2/17π)3
1
a
.

Using this, by rearranging and adding additional terms we get

ae2

π
� 1

48
r3
0

(36F2/17π)3ρ2

< ρ

(
1 +

r0

2(36F2/17π)ρ
+

1
2

(
r0

2(36F2/17π)ρ

)2

+
1
6

(
r0

2(36F2/17π)ρ

)3)

< ρ exp
(

r0

2(36F2/17π)ρ

)
.

In the last step the standard estimate for the series of the exponential function was
applied. This shows that we have

ae2 < πρ exp
(

r0

2(36F2/17π)ρ

)
.

Applying the logarithm gives

2 + log(a) < log(πρ) +
r0

2(36F2/17π)ρ

and this finally yields (
36F2

17π

)
ρ(2 + log(a) − log(πρ)) <

r0

2
.

(vi) The choice of F1 from definition 3.1 and the definition of ρ give

−F1 = − ρ

a − ρ
F2 < −ρ/2

a
F2 = −1

2
F2

a
min

{√
πr3

0

48e2(36F2/17π)3
1√
a
,
r0

3

}

= −F2

2
min

{√
πr3

0

48e2(36F2/17π)3
1

a3/2 ,
r0

3a

}
.

As a � Cal we have −1/a � −1/Cal and therefore

−F1 < −1
2

F2

a
min

{√
πr3

0

48e2(36F2/17π)3
1√
a
,
r0

3

}

� −F2

2
min

{√
πr3

0

48e2(36F2/17π)3C3
a

1
l3/2 ,

r0

3Cal

}
.

Now we have everything together to prove the claim for s = 1/2.
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Proof of theorem 1.3 for s = 1/2. Choose the parameters as in lemma 3.25 and
define u := uflat + ulift with ulift(xi) = yi for all i ∈ I, which, due to proposi-
tions 3.11 and 3.22, is (almost surely) possible. Lemma 3.25 then shows that u � 0
(as ulift � r1 and |uflat| � ‖v‖L∞) and for

F ∗ =
1
2

min
{

q − F2, F2 min
{

1
2

√
πr3

0

48e2(36F2/17π)3C3
a

1
l3/2 ,

r0

6Cal

}}
,

using the estimates of proposition 3.21, proposition 3.22 and lemma 3.25, we can
show, analogously to the proof of the case in which 1/2 < s < 1, that

A u(x) − f(x, u(x, ω), ω) + F � 0

for all F < F ∗. The further conclusion also follows as in the case of 1/2 < s < 1.

Again due to the different L∞-estimate on v for the case in which s < 1/2, the
parameters have to be chosen slightly differently.

Lemma 3.26. Let 0 < α < 1 such that 0 < 2s − α and Ca > 5 fixed.
Choose, furthermore, q > 0 and V > 0 as in proposition 3.11. Let 0 < F2 < q

be fixed and let F1 > 0 as in definition 3.1 as well as Cρ = ((17π/54 · 22sF2)s(1 −
2s)r0)1/2s. Choose l > 0 such that

l > max
{

4r1,

(
(C1 + C2)V
r1(q − F2)

)1/2s

,

(
(4r1)2s

2
+

2V (C1 + C2)Ca

F2 min{Cρ, r0/6}

)1/2s}
.

Choose d = l, as well as 3
2 l = 1

2d + l � a � Cal, ρ = 2 min{Cρ, r0/6} and h =
V/(l − 2r1). Then one has:

(i) l > 4r1;

(ii) ρ <
r0

3
<

a

18
;

(iii) (C1 + C2)V
1
l2s

1
l − 2r1

<
q − F2

2
;

(iv) (C1 + C2)V
1
l2s

1
l − 2r1

<
F2

2Ca
min

{
Cρ,

r0

6

}
1
l
;

(v) ‖v‖∞ <
r0

2
;

(vi) −F1 � − F2

Ca
min

{
Cρ,

r0

6

}
1
l
.

Proof. (i) This is clear by assumption.

(ii) From the choice of ρ we have ρ � r0/3. From the assumptions on r0, r1 and the
choice of l we have, furthermore,

r0

3
<

r1

3
<

l

12
� 2

3
a

12
=

a

18
.
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(iii) From the choice of l it follows that

l >

(
(C1 + C2)V
r1(q − F2)

)1/2s

.

As l > 4r1, we furthermore have

2(C1 + C2)V
q − F2

< l2s2r1 < l2s(l − 2r1),

and therefore, finally,

(C1 + C2)V
1
l2s

1
l − 2r1

<
q − F2

2
.

(iv) From the choice of l we have

l >

(
(4r1)2s

2
+

2V (C1 + C2)Ca

F2 min{Cρ, r0/6}

)1/2s

,

l2s >
(4r1)2s

2
+

2V (C1 + C2)Ca

F2 min{Cρ, r0/6} .

Furthermore, we can calculate

l2s − (4r1)2s

2
= l2s − 2r1

4r1
(4r1)2s = l2s − 2r1

(4r1)1−2s
< l2s − 2r1

l1−2s
,

while in the last step l > 4r1 was used. Together, these yield

2V (C1 + C2)Ca

F2 min{Cρ, r0/6} < l2s − (4r1)2s

2
< l2s − 2r1

l1−2s
= l2s(l − 2r1)

1
l
,

and therefore

(C1 + C2)V
1
l2s

1
l − 2r1

<
F2

2Ca
min

{
Cρ,

r0

6

}
1
l
.

(v) From lemma 3.5 we have the estimate

‖v‖L∞ � 1
s(1 − 2s)π

ρ2s(F1 + F2).

From definition 3.1 we have

F1 + F2 =
a

a − ρ
F2 <

a
17
18a

F2 =
18
17

F2,

where item (ii) was used. Together these yield

‖v‖L∞ � 1
s(1 − 2s)π

ρ2s(F1 + F2) � 18F2

17π

ρ2s

s(1 − 2s)

=
18

17πs(1 − 2s)
F2ρ

2s.
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Together with the definition of ρ we have

‖v‖L∞ � 18F2

17πs(1 − 2s)
ρ2s � 18F2

17πs(1 − 2s)
22s

(
17π

54 × 22sF2
s(1 − 2s)r0

)

=
r0

3
<

r0

2
.

(vi) From definition 3.1 we have

−F1 = − ρ

a − ρ
F2 < −ρ/2

a
F2 = −F2

a
min

{
Cρ,

r0

6

}
= −F2 min

{
Cρ,

r0

6

}
1
a

� − F2

Ca
min

{
Cρ,

r0

6

}
1
l
.

Finally, this enables us to give the proof for the case in which s < 1/2.

Proof of theorem 1.3 for s < 1/2. Choose the parameters as in lemma 3.26 and
define u := uflat + ulift with ulift(xi) = yi for all i ∈ I, which, due to proposi-
tions 3.11 and 3.22, is (almost surely) possible. Lemma 3.25 then shows that u � 0
(as ulift � r1 and |uflat| � ‖v‖L∞) and for

F ∗ =
1
2

min
{

q − F2,
F2

Ca
min

{
Cρ,

r0

6

}
1
l

}
,

using the estimates of proposition 3.21, proposition 3.22 and lemma 3.26, we can
show, analogously to the proof of the cases in which s = 1/2 and 1/2 < s < 1, that

A u(x) − f(x, u(x, ω), ω) + F � 0

for all F < F ∗. Again here, the final conclusion follows as in the case of 1/2 < s < 1.

4. Conclusions

In this paper we have shown the existence of a non-trivial pinning threshold for
interfaces in elastic media with local obstacles. Models of the kind discussed fre-
quently arise in physics, for example in the propagation of crack fronts in hetero-
geneous media. Assuming free propagation of such an interface for large enough
driving force (which is trivial to obtain under some conditions on the hetero-
geneity), we have shown the transition of a microscopically viscous kinetic rela-
tion (force = velocity) for interfaces in elastic media with random obstacles to a
stick–slip behaviour on larger scales. The construction of the supersolution has been
constrained to the 1+1 dimensional case, i.e. that of a one-dimensional interface
propagating in a two-dimensional plane. In many cases, this is the physically rel-
evant situation. The n-dimensional case is still open due to technical difficulties
mostly concerning the compensation of errors arising from modifying a periodic
solution.

https://doi.org/10.1017/S0308210512001291 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210512001291


512 P. W. Dondl, M. Scheutzow and S. Throm

Furthermore, we have shown a percolation result, namely, a non-trivial percola-
tion threshold for the existence of an infinite cluster in next-nearest neighbour site
percolation that is the graph of an only logarithmically growing function.
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