
Multi-AUV Underwater Cooperative
Search Algorithm based on Biological
Inspired Neurodynamics Model and

Velocity Synthesis
Xiang Cao and Daqi Zhu

(Laboratory of Underwater Vehicles and Intelligent Systems, Shanghai Maritime
University, Shanghai, 200135, China)

(E-mail: cxeffort@126.com)

Ocean currents impose a negative effect on Autonomous Underwater Vehicle (AUV) under-
water target searches, which lengthens the search paths and consumes more energy and
team effort. To solve this problem, an integrated algorithm is proposed to realise multi-
AUV cooperative search in dynamic underwater environments with ocean currents. The pro-
posed integrated algorithm combines the Biological Inspired Neurodynamics Model (BINM)
and Velocity Synthesis (VS) method. Firstly, the BINM guides a team of AUVs to achieve
target search in underwater environments; BINM search requires no specimen learning infor-
mation and is thus easier to apply to practice, but the search path is longer because of the in-
fluence of ocean current. Next the VS algorithm offsets the effect of ocean current, and it is
applied to optimise the search path for each AUV. Lastly, to demonstrate the effectiveness
of the proposed integrated approach, simulation results are given in this paper. It is proved
that this integrated algorithm can plan shorter search paths and thus the energy consumption
is lower compared with BINM.
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1. INTRODUCTION. Autonomous Underwater Vehicles (AUV) are important
tools for marine resource exploitation and marine scientific research (Zhu et al.,
2014; Paull et al., 2014; Yang et al., 2014). Due to AUVs’ limited energy, communica-
tion range/bandwidth, and sensing range, many applications have outgrown a single
AUV’s capability. Multi-AUV systems, with high parallelism, robustness and collabor-
ation have gradually become a discrete research field (Fiorelli et al., 2006; Kulkarni
and Pompili, 2010; Millan et al., 2014).
There have been some significant achievements in the cooperative target search field

in the last 20 years. Gabriely and Ramon (2003) presented a spiral tree search method.
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Gonzalez et al. (2005) put forward a backtracking spiral algorithm. Polycarpou et al.
(2001) adopted the traversal exploration method to make a continuous linear search.
Though these methods are simple, they only suit searches in static environments rather
than dynamic ones.
Zhu et al. (2011) introduced a Particle Swarm Optimisation (PSO) -inspired search-

ing algorithm to lead multi-robot teams to find the desired targets. Since it does not
require global information, this saves storage space. However, in target searching,
targets’ locality are considered to be already known or known to move in a regular
way, and thus the fitness function is simplified only to the distance between robots
and their targets. In the presence of more complex situations, such a simple evaluation
is proved to not be competent.
For complicated environments with obstacles, Ni and Yang (2011) proposed a

search algorithm based on a bioinspired neural network model that is applied in
searching and hunting tasks for mobile robots. Although this method is capable of
planning collision-free searched paths in unknown environments and gets some
good results in the multi-robot scenario (Luo and Yang, 2008), its workspace is
totally different from the practical underwater environment.
Compared with multi-robot scenarios on land, there are two main challenges for

multi-AUV collaborative searches. One is, on account of limited energy carried by
each AUV, to complete the given assignment as fast as possible; the other is how to
avoid underwater obstacles and offset the effects of ocean current.
Yoon and Qiao (2011) proposed a cooperative rendezvous scheme called

Synchronization-Based Survey (SBS) to facilitate cooperation among a large
number of AUVs when surveying a large area. In SBS, AUVs form an intermittently
connected network (ICN) in that they periodically meet each other for data aggrega-
tion and control signal dissemination. This approach enables the work team to search
large areas even with mechanical failures of some team members. However, for its cen-
tralised control and lawn-mowing search paths, it mainly is applied to static target
search, and its search efficiency is not high (Paley et al., 2008; Yoerger et al., 2007).
Couillard et al. (2012) developed a local sequential path planning algorithm com-

bined with a global simulated annealing algorithm allowing a multi-AUV team to
search for more targets while minimising the total distance covered. However, this
method was concerned only with static targets whose positions are already known in
advance, and the effects of obstacles and ocean current for searches in practical use
were not considered (Li and Landa-Silva, 2011; Masehian and Nejad, 2010).
To solve the ocean current effect problem, Alvarez et al. (2004) proposed a Genetic

Algorithm (GA) to offset the effects of ocean current on the AUV movement. This al-
gorithm can find a safe path that takes the vehicle from its starting location to a
mission-specified destination, minimising the energy cost. This algorithm is suitable
for situations in which the vehicle has to operate energy-exhaustive missions.
Though the GA can offset the effect of ocean current, it needs an iterative process,
which not only takes a long time but may not be optimal for all applications
(Lorenzo and Glisic, 2013; Roberge et al., 2013). Zhu et al. (2013) and Huang et al.
(2014) made a combination of velocity synthesis algorithm and Self-Organising
Map (SOM) neural network algorithm for three-dimensional (3-D) workspaces sub-
jected to ocean current. This integrated algorithm can control a multi-AUV team to
reach all designated locations and guarantees low total energy consumption in the
presence of ocean current. It not only worked out the optimal search paths but also
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effectively offset the effects of ocean current. However it assumed that the underwater
workspace is ideal, and it did not take obstacles into consideration.
Considering multi-AUV actual work conditions: a dynamic underwater environ-

ment with ocean current and obstacles, this paper proposes an integrated algorithm
for multi-AUV cooperative target search by combining the Biological Inspired
Neurodynamics Model (BINM) and Velocity Synthesis algorithm (VS). It is expected
to provide shorter paths than other algorithms in underwater environments with ocean
current and obstacles. The BINM algorithm is developed to coordinate AUV cooper-
ation, and plans their search paths to avoid obstacles. The velocity synthesis algorithm
is applied to make a shorter search path to offset the effect of ocean current.
Effectiveness and applicability of the proposed integrated cooperative target search
method are proved by simulation.
The advantages of the proposed algorithm can be summarised as follows. 1) BINM

requires no specimen learning information and is thus easier to apply to practice. In
addition, the BINM algorithm is able to plan collision-free search paths. 2) By adjust-
ing AUVs’ moving directions to offset ocean current effect for optimal search paths,
the VS algorithm is adaptable to different dynamic environments.
This paper is organised as follows. In Section 2, the problem statement is given. In

Section 3, the proposed multi-AUV integrated search algorithm is presented. The
simulation experiments for various situations are given in Section 4. Concluding
remarks are given in Section 5.

2. PROBLEM STATEMENT. The fundamental problem of multi-AUV search
systems is how to control all the vehicles to search to their target along the optimised
paths cooperatively. Figure 1 shows an underwater search area with obstacles, AUVs,
ocean current and targets. In the search area, AUVs, targets and obstacles are random-
ly distributed. Each AUV is represented by a point without size. The turning radius of
the AUV is negligible compared with the underwater environment, thus the AUV is
assumed to be able to move omni-directionally. To reduce energy consumption, each
AUV should be steered to offset the effect of ocean current. AUVs navigate as short
a distance as possible to achieve maximum work efficiency. At the same time, since
there are obstacles in the area, the search paths must be collision-free. When the
target moves into any AUV’s sensing range, this target is regarded as being found
and the search task ends.

3. PROPOSED ALGORITHM. The architecture of the proposed search algo-
rithm is shown in Figure 2. It involves three phases. The first is to set the underwater
environment as a finite set of maps. Then BINM is used to plan search paths. Finally,
VS is added to offset ocean current effect on AUVs to optimise search paths.

3.1. Biological inspired neurodynamics model. In the search process, search paths
are determined by BINM. Firstly, a biological inspired neural network is built accord-
ing to the underwater environment (as shown in Figure 3).
Firstly, an AUV two-dimensional (2-D) grid coordinate map of working environ-

ment is represented by a 2-D Biological Inspired Neural Network (BINN). There is
one-to-one correspondence between each neuron in the neural network and the pos-
ition of the grid map. Secondly, the path strategy of AUV is set on the basis of the dis-
tribution of neurons’ active output value in the BINM. In Figure 3, the receptive field
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Figure 2. Architecture of the proposed algorithm.

Figure 1. The underwater search areas.

Figure 3. Schematic diagram of BINM.
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R is chosen as 2. The receptive field of the l-th neuron is represented by a circle with a
radius of R. wkl is the connection weights between neuron k and its neighbour l. Thus,
it has lateral connections only to its eight neighbouring neurons within its receptive
filed. The AUV may move to one of eight corresponding positions of the grid map
next in Figure 3. The real next position of AUV motion is determined by the neurons’
active output value of the eight neighbouring neurons within its receptive field. In this
model, each individual neuron is connected with the adjacent ones to form a network
for their transmission of activity. The dynamic characteristics of the neurons’ activity
value xk can be denoted as (Ögmen and Gagné, 1990):

dxk
dt

¼ �Axk þ ðB� xkÞSe
kðtÞ � ðDþ xkÞSi

kðtÞ ð1Þ

setting Se
k ¼ ½Ik�þ þPM

l¼1
wkl½xl�þ, Sk

i = [Ik]
−, then Equation (1) can be converted to

(Li et al., 2009):

dxk
dt

¼ �Axk þ B� xkð Þ ½Ik�þ þ
XM
l¼1

wkl ½xl�þ
 !

� Dþ xkð Þ½Ik�� ð2Þ
where xk represents the activity value of the k-th neuron, xl represents the activity value of
those connected to k, M the numbers of the neighbouring neurons, and Ik the external
signals input in k. The external input Ik to the k-th neuron is defined as

Ik ¼
E; if it is a target
�E; if it is an obstacle
0; otherwise

8<
: ð3Þ

A, B andD are positive constants, -A reflects the passive decay rate of neuron k’s activity,
B and D are upper and lower limits of xk, i.e. xk∈ [−D,B].
In Equation (2), wkl is the connection weights between neuron k and its neighbour l,

which can be defined as (Yang and Luo, 2004):

wkl ¼ f ð qk � qlj jÞ ¼ μ= qk � qlj j; 0< qk � qlj j< R
0; qk � qlj j � R

�
ð4Þ

where |qk− ql| is the Euclidean distance between vector qk and ql on the state space, μ
and R are both positive constants, and generally, 0≤wkl≤ 1. As the connections
between neurons are not directional, the connection weight coefficients are symmetric-
al, that is wkl= wlk.
From Equation (2), the neuronal excitatory input signal Sk

e includes [Ik]
+ andPM

l¼1
wkl½xl�þ. That means one part of the excitation signals comes from external input

while the other part comes from internal incremental gains of interconnecting

neurons. If Ik≤ 0, then Se
k ¼PM

l¼1
wkl ½xl �þ, which means there is not any external

input for neuron k and all its excitation signals are transmitted through the neuronal
network. In contrast, Sk

i = [Ik]
−means all the inhibitory input for signals k are external.

Therefore, the excitation signals transmit between neurons, the value of positive
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activity of neurons in a neural network has a global effect while the inhibitory signals
do not transmit and the negative activity of neurons has only a local effect.
In the search task, the AUV keeps moving toward the location with maximum

neural activity in the search area. The strategies of AUVs’ paths selection can be
denoted as follows:

Pn ( xPn ¼ maxfxl ; l ¼ 1; 2; :::;Mg ð5Þ
where Pn represents AUVs’ location at the next moment in the map.
Figure 4 shows the process of path selection. When an AUV makes a selection of its

path, it compares the activity value of the neuron of its current location with its neigh-
bours and chooses the one with the highest value as the next step. The target and obsta-
cles remain at the peak and valley of the activity landscape of the neural network,
respectively. Repeating this process, the AUV keeps moving towards the targets.
Thus, the AUV should be able to search for the target efficiently with obstacle avoid-
ance until the search task ends. By this way, the AUVs can realise cooperative searching
efficiently.
In the BINM-based path planning approach above, BINM requires no specimen

learning information and parameter adjustment, thus is relatively simple to apply in
practice. In addition, the BINM algorithm is able to plan collision-free search paths.
It does not offset for the effects of ocean current so the next step is to apply the velocity
synthesis algorithm to the optimal search path for each AUV in the ocean current
environment.

3.2. Velocity synthesis algorithm. Taking into consideration the effect of ocean
currents in a real underwater environment, AUVs may deviate from their search
paths planned by BINM, resulting in a failure of the search task, particularly in
cases where the current is opposite to AUV’s moving direction (Soulignac, 2011; Jan
et al., 2008). To solve this problem, the VS algorithm, simple but effective, is included
(Sahbani et al., 2012; Yang et al., 2011). Figure 5 shows how VS is applied to modify
the search paths.
In Figure 5, vector L represents the planned direction by BINM. The angle between

L and the x-axis is ai. Vector Vc represents the ocean current, and vector V denotes the
AUV’s velocity whose magnitude is given and can be adjusted according to different
requirements. ai2 represents the angle between V and the x-axis. The angle between
Vc and the x-axis is ai1. The goal is to control the direction of vector V to make
sure the resultant vector directly points to the desired direction. The implementation
of the velocity synthesis algorithm is based on the precondition that |Vc| < |V|. Let
|Vcn| = |Vc|cos(ai− ai1) be the ocean current component assisting motion along
vector L and |Vcd| = |Vc|sin(ai− ai1) be the ocean current component that is perpen-
dicular to the vector L. Similarly, we make |Vn| = |V|cos(ai2− ai) the AUV’s velocity
component along the vector L and |Vd| = |V|sin(ai2− ai) is the AUV’s velocity perpen-
dicular component. Staying on the planned direction requires Vd to cancel Vcd, which
can be interpreted by the following expression (Zhu et al., 2013):

Vj j sinðai2� aiÞ ¼ Vcj j sinðai � ai1Þ ð6Þ
In accordance with vector inside accumulate theorem, another equation is given as
follows:

ai2 ¼ arcsinð Vcj j sinðai � ai1Þ= Vj jÞ þ ai ð7Þ
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Summarising what we have discussed earlier and combining Equations (6) and (7), we
can easily calculate ai2.

4. SIMULATION STUDIES. To demonstrate the effectiveness and applicability
of the proposed integrated algorithm, several different cases, including searches for
dynamic targets in constant and variable current, are implemented on the software
platform MATLAB R2011a. For each simulation case, there are four AUVs, one
target and several obstacles of different size and shape. In the simulations, underwater
environments are put into a search area of 35 × 35 in all cases. The sensing range of
each AUV is 1. The velocity of each AUV is set 0·5. The parameters of the proposed
algorithm in all simulation cases are shown in Table 1.

Figure 5. Velocity synthesis algorithm.

Figure 4. Process of path selection. (a) Process of path selection in the map (b) Process of path
selection in the neural network
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4.1. Static target in constant ocean current. The first case deals with a search for a
static target in constant ocean current with fixed speed and direction. In this simula-
tion, we set the speed of the ocean current to 0·2 and an angle of ai1 = 135°.
According to the principle, the effect of ocean current is equal to neurons activity
value increased by 0·2. Since BINM follows the principle of moving towards
neurons with a higher activity value for search paths, when the ocean current
occurs, AUVs will change their direction towards the target.
Figure 6(a) clearly shows this process. At the beginning of the search task, four AUV

members all move with the ocean current at an angle of ai1= 135°, after a while, R2
and R4 are more affected by neural activity of the target rather than the ocean
current and thus gradually turn to the target. On the other hand, because R1 and
R3 are much farther from the target than R2 and R4, the target could not overcome
the effect with enough activity. Even when R2 has finally finished the search task,
R1 and R3 are still fighting against the ocean current.
In Figure 6(b), however, the assistance of the VS algorithm leads to a quite different

result. According to Equation (7), VS re-adjusts the AUV’s direction by making the
AUV’s vertical velocity component equal to the currents. In this way, the current’s
effect is counteracted. As shown in Figure 6(b), four AUVs all move smoothly
towards the target during the searching process before R4 finally finds it. Making a
comparison between Figure 6(a) and 6(b), the total length of the search paths, either
covered by each single AUV or the work team as a whole, are much shorter based
on the improved BINM algorithm. It thus realises the goal of improving work effi-
ciency and saving energy.

4.2. Static target in variable ocean current. Variable ocean current refers to
current whose speed and direction will change. In this simulation, the variable
current is first set a speed of 0·2 and an angle of ai1 = 45°, then 20 seconds later, it
changes to a speed of 0·3 and an angle of ai1=−45°. During the search process, the
working principle is similar to that in constant ocean current. The only difference is
that when there is a change in the ocean current speed and direction, the neurons
that are affected by it will also correspond. In this case, it is initially the neuron
whose θ= 45° is affected but then the one whose θ=−45°.
In Figure 7(a), it is clearly shown that AUV’s search direction swings from ai1= 45°

to ai1=−45° at Location 1 where the ocean current’s direction changes. However, in
Figure 7 (b), with the integration of BINM and VS, AUVs are rarely affected no
matter how the current changes but move straight ahead for their target.

4.3. Mobile target in constant ocean current. In a real maritime environment,
targets may not necessarily remain stationary. This will undoubtedly cause more diffi-
culties for the search task if ordinary algorithms are adopted. But the biological
inspired neural network proposed in this paper avoids this problem. This is because
according to the pre-definition, the neural activity value of the target is set as the
highest, and AUVs must keep tracking for locations of the highest activity value in
the whole dynamic search process. Real-time information about the ever-changing

Table 1. Control parameters.

Parameter A B D E μ R

Value 0·2 1 1 1 0·3 1·5

1082 XIANG CAO AND DAQI ZHU VOL. 68

https://doi.org/10.1017/S0373463315000351 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000351


locations of the mobile target can be obtained immediately by each AUV. BINM can
constantly re-plan new search paths according to changes of the target’s neural activity
value and re-assign tasks for each multi-AUV team member no matter how the target
swings around.
We set the speed of the constant ocean current to 0·3, the angle ai1 =−45°, and the

target moves along a straight line southward at a speed of 0·1. The simulation results
are presented in Figure 8. Comparing Figure 8(a) and 8(b), it can be found that due to
the effect of ocean current, BINM takes much longer search paths than the proposed

Figure 6. Search for static target in constant ocean current. (a) Search process by BINM. (b) Search
process by BINM & VS.

Figure 7. Search for static target in variable ocean current. (a) Search process by BINM. (b) Search
process by BINM & VS.
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algorithm. Particularly, R2 appears confined in a very small search area and zigzags at
random with repetitive coverage of the same area.

4.4. Comparison. In order to make a comparison between simulation cases in
dynamic underwater environments with ocean currents, Table 2 lists the search path
length for each AUV as well as for each multi-AUV team as a whole. By analysing
these figures, we can make the following conclusions:

1) In all three cases, BINM takes a much longer search path compared with BINM
and VS, which proves to be inferior in time and energy saving.

2) As to BINM, the total path lengthens from 100, 105, to 124 when searching for
static target in constant current, static target in variable current, or mobile target
in constant current. Also the increase rate widens from cases for static targets to
mobile ones. This means that BINM is susceptible to the dynamic environment
and themore complicated the ocean current is, the lower work efficiency it presents.

3) By BINM and VS, the total path length varies little from 73, 70, to 77, which
shows that velocity synthesis algorithm could effectively offset the effect of
ocean current and is more adaptable to the dynamic underwater environment.

To better illustrate this, see Figure 9. It is easy to find that the proposed BINM and
VS algorithm not only takes a shorter search path in all cases but also shows little dis-
tinction between them. Comparedwith BINM that varies greatly in amplitude, it turns
out to be more stable.

5. CONCLUSION. In this paper, an integrated algorithm combining a biological
inspired neurodynamics model and velocity synthesis algorithm is proposed to deal
with cooperative search by a multi-AUV team in dynamic underwater environments.
On the one hand, it makes full use of the advantages of BINM, i.e. no prior knowledge,

Figure 8. Search for mobile target in constant ocean current. (a) Search process by BINM. (b)
Search process by BINM & VS.
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pre-learning procedure or parameter adjustment are needed. In addition the velocity
synthesis approach could optimise the path of BINM and offset the effect of ocean
current. Despite these advantages, there are still practical problems to be further
researched. For example, the real underwater environment is three-dimensional,
while in this paper many factors are simplified into a two-dimensional simulation.
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