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Buckling of a thin-layer Couette flow
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We analyse the buckling stability of a thin, viscous sheet when subject to simple
shear, providing conditions for the onset of the dominant out-of-plane modes using
two models: (i) an asymptotic theory for the dynamics of a viscous plate, and (ii) the
full Stokes equations. In either case, the plate is stabilized by a combination of
viscous resistance, surface tension and buoyancy relative to an underlying denser
fluid. In the limit of vanishing thickness, plates buckle at a shear rate γ /(µd)
independent of buoyancy, where 2d is the plate thickness, γ is the average surface
tension between the upper and lower surfaces, and µ is the fluid viscosity. For thicker
plates stabilized by an equal surface tension at the upper and lower surfaces, at and
above onset, the most unstable mode has moderate wavelength, is stationary in the
frame of the centreline, spans the width of the plate with crests and troughs aligned
at approximately 45◦ to the walls, and closely resembles elastic shear modes. The
thickest plates that can buckle have an aspect ratio (thickness/width) of approximately
0.6 and are stabilized only by internal viscous resistance. We show that the viscous
plate model can only accurately describe the onset of buckling for vanishingly thin
plates but provides an excellent description of the most unstable mode above onset.
Finally, we show that, by modifying the plate model to incorporate advection and
make the model material-frame-invariant, it is possible to extend its predictive power
to describe relatively short, travelling waves.

Key words: low-Reynolds-number flows, materials processing flows, thin films

1. Introduction
Folding, buckling and coiling are phenomena frequently associated with thin elastic

solids. However, they also occur in very viscous films and filaments whenever
compression is faster than can be accommodated by film or filament thickening.
Viscous buckling has been studied in a variety of contexts over the last half-century.
A primary motivation for some of the earliest work was understanding the buckling
of layered geological strata modelled as very viscous fluid layers (with viscosities that
range from 1016 to 1021 Pa s). This work was pioneered by Biot (e.g. Biot 1961), who
examined the two-dimensional, small-deformation folding of viscous layers embedded
in a less viscous medium and subjected to layer-parallel compression. He used the
Stokes–Rayleigh analogy relating viscous creeping flows with their elastic counterparts
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6 A. C. Slim, J. Teichman and L. Mahadevan

(Rayleigh 1945) and the concomitant similarity between elastic and viscous governing
equations to develop expressions for the critical load and wavelength of the instability.
Many subsequent studies (e.g. Ramberg 1963; Chapple 1968) added further physical
effects (a summary is given by Johnson & Fletcher 1994). Viscous buckling is also
encountered in more familiar contexts: the folding of cake batter pouring into a pan,
the wrinkling of a layer of cream on hot milk, and the coiling of a stream of honey
falling from a spoon. Each of these examples also has industrial analogues in the
spinning of polymeric fibres and in the shaping and blowing of glass sheets and shells.
This second set of applications has provided a new impetus to the study of these
problems using a combination of approaches.

At a theoretical level, a systematic asymptotic reduction of the full governing
equations to the thin geometry of interest was carried out by Buckmaster, Nachman &
Ting (1975), who investigated the large-amplitude deformation of a filament. Building
on their scaling relations, Howell (1994, 1996) developed asymptotic equations
governing the evolution of thin filaments and sheets in a variety of scenarios. In
particular he derived equations for small deformations of viscous sheets equivalent to
the Föppl–von Kármán equations for elastic plates – a linearized version thereof had
been stated by analogy by Benjamin & Mullin (1988). Subsequently, a number of
bending, stretching and buckling phenomena involving viscous filaments and planar
deformations of viscous sheets have been explained: Yarin & Tchavdarov (1996)
considered the onset of buckling in a filament impinging on a wall; Teichman &
Mahadevan (2003) considered the viscous catenary using a combination of scaling,
asymptotic and numerical approaches; Mahadevan, Ryu & Samuel (1998) and
Skorobogatiy & Mahadevan (2000) provided a simple physical picture for the different
regimes of coiling and folding of filaments on impact with a stationary surface;
and Chiu-Webster & Lister (2006) considered the complex ‘stitching’ patterns of a
filament impacting a moving surface. Somewhat fewer studies have investigated three-
dimensional deformation of sheets: Silveira, Chaieb & Mahadevan (2000) considered
the wrinkling of a ruptured viscous bubble collapsing under its own weight; Teichman
(2002) considered the buckling of sheared viscous sheets in both a rectilinear and
Couette geometry; Ribe (2001) derived asymptotic equations for sheets of high
curvature and analysed aspects of geophysical problems such as trench rollback; Slim
et al. (2009) briefly considered buckling of a thin viscous sheet by an underlying, less
viscous fluid flow; and Mahadevan, Bendick & Liang (2010) analysed the form of
tectonic subduction zones. This summary is by no means comprehensive but highlights
the evolution of, and recent interest in, viscous buckling problems, especially involving
two-dimensional deformation of a viscous plate or shell.

Here we study the shearing of a thin, very viscous sheet in a plane Couette
geometry. Specifically, we consider an initially uniform, thin layer of viscous
Newtonian fluid of finite width and infinite length sheared by the constant-velocity
motion of bounding walls. The layer floats on a deep lower fluid, which contributes
interfacial tension and a gravitational restoring force. The upper surface is open to
the atmosphere and only experiences surface tension. Contrary to the situation for
an infinitely thick sheet, which is linearly stable to shear for all values of the shear
rate, the thin sheet can and does respond by buckling when sheared. We present the
conditions for the onset of this linear instability, as well as growth rates and mode
profiles above onset, expanding on the work of Teichman (2002).

The elastic counterpart to this problem was first studied by Southwell & Skan
(1924) using the linearized Föppl–von Kármán equations. The behaviour at the onset
of buckling has to some degree been verified experimentally, and the linear and
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Buckling of a thin-layer Couette flow 7

nonlinear behaviour above onset described using this model is also in reasonable
agreement with experiments (see Balmforth, Craster & Slim 2008, and references
therein). In contrast, there has been little previous work on the viscous problem,
with the only detailed theoretical study due to Benjamin & Mullin (1988), who
analysed a linear viscous plate model in a planar rectilinear geometry with a base state
corresponding to simple shear. This led to a prediction that the onset of the instability
arose at infinitesimal wavelengths relative to the plate width. Arguing that this is
inconsistent, they present conditions for the onset of instability using an approximate
short-wave, linear analysis of the full Stokes equations ignoring sidewall boundary
conditions. On the experimental side, all studies have been in annular configurations
(Taylor 1969; Suleiman & Munson 1981; Benjamin & Mullin 1988; Teichman 2002),
a geometry that is fundamentally different from the rectangular one because the
annular radius provides an additional length scale. In this case, the viscous plate
model predicts the onset of buckling at moderate wavelength, in good agreement with
experiments (see Teichman 2002).

Here we use both the full Stokes equations and the viscous plate model to
investigate growth rates of infinitesimal perturbations to the simply sheared planar base
state. Using the former, we show numerically that the thickest plate that can buckle
has an aspect ratio of approximately 0.6 and is stabilized by internal viscous resistance
alone. For thinner sheets with surface tension but no buoyancy, we establish the
dependence of the critical wall speed on the plate width, thickness and surface tension
coefficients. The viscous plate model is unable to reproduce these onset conditions
except in the limit of vanishing plate thickness (where infinitesimal wavelengths
are permissible). Nevertheless, for plates of aspect ratio up to around 0.04, given
the system parameters at onset, the most unstable mode for this model accurately
reproduces the mode profile and wavelength predicted using the full Stokes equations.
Above onset, the most unstable mode has moderate wavelength, is stationary in the
frame of the centreline, has crests and troughs aligned at approximately 45◦ to the
sidewalls, and closely resembles the modes of the elastic analogue problem. Waves
shorter than order the plate thickness are suppressed by internal viscous resistance.
The shortest unstable modes form a pair of travelling waves, each concentrated in
one half of the plate and propagating at a fraction of the corresponding wall speed.
These modes cannot be captured by the asymptotic viscous plate model, which does
not contain the advection term responsible for symmetry breaking. By modifying
the model to include this term, we show that we can accurately recover the critical
wavenumber and associated growth rates, propagation speeds and mode profiles.

In § 2 we describe the geometry and the relevant non-dimensional parameters. In
§ 3 we formulate the low-dimensional viscous plate model. Using this model in
§ 4, we briefly describe details of pure compression to set the scene for the shear
instability, and present a parameter space investigation of the onset of shear-induced
buckling, as well as the growth rates and mode profiles. In § 5, we turn to the
full Stokes description. We present the linearized perturbation equations about the
simple uniformly sheared base state, analyse its stability as a function of the problem
parameters, and compare our results to those of the low-dimensional plate model,
that model incorporating advection and the short-wavelength approximation due to
Benjamin & Mullin (1988). In § 6 we summarize our results as a function of the
parameter space, before presenting our conclusions in § 7.
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FIGURE 1. Viscous plate sheared by the motion of bounding walls.

2. Geometry
We start with a description of the geometry and the fundamental non-dimensional

parameters. The configuration is sketched in figure 1: a thin layer (‘plate’) of very
viscous, Newtonian, incompressible fluid of viscosity µ and density ρ floats on a deep
layer of fluid with density ρ− > ρ. We assume that inertia in the plate and viscosity
in the underlying fluid are both negligible (Reynolds numbers in the plate are of the
order 10−3 and viscosity ratios between the underlying fluid and the plate are of the
order 10−5 in typical experiments). The upper surface is open to the atmosphere. The
viscous plate has initially uniform thickness 2d, width 2L and infinite length. We
use Cartesian coordinates to describe the system, with the origin on the undeformed
centreline, x̂ axis directed along its length, ŷ axis its width and ẑ axis perpendicular
to its undeformed centre-plane. Throughout, we shall use variables with hats to denote
dimensional quantities and variables without hats to denote dimensionless ones. Along
the lateral edges ŷ = ±L, the plate is clamped to and sheared by the bounding walls,
which move parallel to their length with velocity ±U.

Three non-dimensional parameters naturally arise in the problem: the aspect ratio of
the plate,

α = d/L; (2.1)

the scaled, inverse capillary numbers for the upper and lower surfaces and their mean,

Γ ± = γ ±/(αµU), Γ = (Γ + + Γ −)/2, (2.2)

where γ ± are the coefficients of surface tension at the two surfaces; and the gravity
numbers,

G= ρgL2/(αµU), G− = ρ−gL2/(αµU), (2.3)
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Buckling of a thin-layer Couette flow 9

where g is gravity. These measure the importance of gravity on the plate and on the
underlying fluid, respectively, relative to viscous shear in the plate. The appearance of
the aspect ratio in the inverse capillary and gravity numbers ensures that the stabilizing
effects of surface tension and gravity scale in the same way as the destabilizing effect
of shear with variations in the plate thickness.

3. Low-dimensional viscous plate theory: formulation
The viscous plate equations are valid for small deflections of a very viscous fluid

sheet whose thickness is much smaller than any extrinsic horizontal length scale such
as the channel width or intrinsic length scale such as the wrinkle wavelength. For such
sheets, out-of-plane sinuous deformations occur much quicker than varicose thickening
and thinning (Howell 1996), and only the former are captured by the model. Thus
the sheet thickness remains constant at 2d, and the dynamics are best described in
terms of the mid-plane displacement Ĥ from ẑ= 0. A physically motivated asymptotic
derivation of the governing equations is given in appendix A; here we provide a
summary.

Balance of forces in the plane of the sheet leads to (see (A 10))

∇̂ · Σ̂ = 0, (3.1)

where the gradient operator involves only the in-plane components (x̂, ŷ) (this will be
our convention throughout, unless explicitly stated otherwise). Here Σ̂ is the tensor of
in-plane stresses acting on a cross-section of the sheet given by (see (A 8))

Σ̂ = 4µd[Ê + tr(Ê)I], (3.2)

where I is the two-dimensional identity and Ê is the in-plane deformation rate tensor
given by (see (A 9))

Ê = 1
2(∇̂
ˆ̄uh + ∇̂ ˆ̄uT

h )+ 1
2(∇̂Ĥ∇̂ŵ+ ∇̂ŵ∇̂Ĥ), (3.3)

where superscript T denotes transpose, ˆ̄uh is the in-plane velocity field in the mid-
surface of the plate and ŵ is the out-of-plane velocity, given by

ŵ= ∂ Ĥ

∂ t̂
. (3.4)

We note that the pressure appears indirectly in the expression (3.2) via a Trouton
ratio (of 4 in two dimensions) and the trace of the deformation rate tensor. In (3.3),
the first two terms are due to in-plane velocity gradients, while the last two describe
the stretching rate of the mid-surface due to out-of-plane deformation and arise from

differentiating the term (∇̂Ĥ)
2
. Equation (3.4) couples the centre-plane deflection

directly to the fluid velocity perpendicular to the sheet (see (A 7)).
The vertical force balance equation yields (see (A 12))

8
3µd3∇̂4ŵ= ∇̂ · (Σ̂ · ∇̂Ĥ)+ (γ + + γ −)∇̂2Ĥ − ρ−gĤ. (3.5)

Here the left-hand side is the Laplacian of the rate of change of mean curvature,
describing the time-dependent viscous resistance to bending. In conjunction with (3.4),
it can be shown that this term, whose effect is largest for short waves, regulates growth
or decay rates of out-of-plane modes, but does not control whether the system is stable
or unstable.
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10 A. C. Slim, J. Teichman and L. Mahadevan

The first term on the right-hand side of (3.5) is the projection of the in-plane
stresses in the out-of-plane direction; it is stabilizing if the principal in-plane stresses
are tensile, and destabilizing if they are compressive. The second term on the right-
hand side characterizes the role of surface tension and is stabilizing. It is useful to
emphasize that both of these terms appear as Laplace pressures, coupling in-plane
compression and tension with out-of-plane displacements, with the former potentially
anisotropic and compressive, while the latter is always isotropic and tensile. Thus if in-
plane flow-induced compressive stresses overwhelm surface tension at any wavelength,
then they will do so for all wavelengths, and surface tension cannot provide a
short-wavelength cutoff in this model. The final term on the right-hand side is a
consequence of buoyancy and also plays a stabilizing role. Thus, while all terms on
the right-hand side are active at all length scales, the first two are most prominent at
short wavelengths while the last is most significant at long wavelengths.

We note that the model ignores contributions due to advection, an omission that has
two significant implications. First, the model is not material-frame-invariant relative
to translations and rotations in the plane. This is asymptotically correct in the limit
α→ 0, provided we use a frame of reference in which the advection of perturbations
into a region is insignificant compared to the generation of perturbations by the out-of-
plane velocity. Second, we shall see in § 5 that the advective terms are fundamental for
describing certain qualitative features at moderately short wavelengths. Reincorporating
the advective terms at leading order replaces the standard expression (3.4) with

ŵ= ∂ Ĥ

∂ t̂
+ ˆ̄uh · ∇̂Ĥ. (3.6)

This eliminates the apparent inconsistency associated with frame indifference and
extends the predictive power of the model. However, it requires the incorporation of
higher-order terms into the leading-order model in a non-asymptotic fashion. In this
section and § 4, we shall use (3.4); in subsequent sections we shall also present results
using (3.6), and refer to that model as the advection-augmented plate.

Along the lateral boundaries

ˆ̄uh = (±U, 0), ŵ= ∂ ŵ/∂ ŷ = 0, on ŷ=±L. (3.7a,b,c)

3.1. Scaled equations
We scale using the sheet half-width L as a length and the wall speed U as a velocity,
and include factors of the aspect ratio appropriate for a thin sheet (see appendix A)
using hats to denote dimensional variables. Thus we set

ˆ̄uh = Uūh, ŵ= (U/α)w, (x̂, ŷ)= L(x, y), Ĥ = αLH, (3.8)

Ê = (U/L)E, Σ̂ = αµUΣ , t̂ = α2(L/U)t, (3.9)

reducing the system (3.1)–(3.5) and (3.7) to

∇ ·Σ = 0,
8
3
∇4w=∇ · (Σ ·∇H)+ 2Γ∇2H − G−H,

∂H

∂t
= w,

(3.10a,b,c)

Σ = 4[E + tr(E)I], E = 1
2
(∇ūh +∇ūT

h +∇H∇w+∇w∇H), (3.10d,e)

with boundary conditions

ūh = (±1, 0), w= ∂w/∂y = 0 on y=±1, (3.10f,g,h)
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Buckling of a thin-layer Couette flow 11

where the non-dimensional surface tension and buoyancy parameters Γ and G− are as
defined in § 2.

These governing equations for the dynamics of thin viscous sheets are similar to
those for thin elastic sheets via the Stokes–Rayleigh analogy; we clarify the connection
in appendix B.

4. Low-dimensional viscous plate theory: buckling analysis
We begin with a brief discussion of a viscous plate subject to pure compression (see

Biot 1961; Ramberg 1963) to clarify the role of surface tension and gravity. In this
case the bounding walls move perpendicular rather than parallel to their length, but the
same governing framework applies.

4.1. Pure compression
The flat base state subject to compression is given by

ūhb = (0,−y), Hb = wb = 0, (4.1)

with compressive in-plane stresses

Σb =
(
−4 0
0 −8

)
, (4.2)

where subscript b denotes base. Onset of the instability can be gleaned from the
evolution equations for the out-of-plane displacement (3.10b,c), which become

8
3
∂5H

∂y4∂t
=−2(Γ − 4)

∂2H

∂y2
− G−H, (4.3)

for infinitesimal perturbations. We look for short-wavelength solutions and thus ignore
lateral boundary conditions and set H(y, t) = eσ t cos ky. Then the growth rate σ is
given by

8
3σ = 2(Γ − 4)/k2 − G−/k4, (4.4)

for wavenumber k. If Γ > 4, then perturbations of all wavenumbers decay. Conversely,
if Γ < 4, then wavenumbers k >

√
G−/2(4− Γ ) are unstable, with longer waves

suppressed by buoyancy. The most unstable wavenumber is k = √G−/(4− Γ ).
Because onset is predicted to occur at infinitesimal wavelengths, the condition Γ = 4
may only be accurate for arbitrarily thin plates. However, for G−/(4−Γ ) not too large,
the model is more generally valid, and so the structure and wavelength of the most
unstable mode should be captured correctly.

4.2. Simple shear
Shear is associated with motion parallel to the boundary and implies that we must now
consider the evolution of infinitesimal perturbations to the flat base state,

ūhb = (y, 0), Hb = wb = 0, (4.5a,b,c)

having in-plane stresses

Σb =
(

0 2
2 0

)
. (4.5d)
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12 A. C. Slim, J. Teichman and L. Mahadevan

Introducing normal mode perturbations δf̃ (y) eikx+σ t to each variable f (x, y, t), where
σ is the growth rate, k the wavenumber and δ � 1 the amplitude, substituting into
the governing equations (3.10) and linearizing about the base state, we obtain the
eigenvalue problem

8
3

(
∂4

∂y4
− 2k2 ∂

2

∂y2
+ k4

)
w̃= 4ik

∂ H̃

∂y
+ 2Γ

(
∂2H̃

∂y2
− k2H̃

)
− G−H̃, w̃= σ H̃,

(4.6a,b)

subject to the boundary conditions H̃ = ∂ H̃/∂y = 0 on y = ±1. To find σ for a given
k, we discretize the above equation in y using a Chebyshev pseudo-spectral method
(Trefethen 2000) and solve the resulting generalized eigenvalue problem using the eig
routine of MATLAB.

It can be shown that (4.6) is self-adjoint (e.g. following an analysis similar to
that of Southwell & Skan (1924) for the elastic problem), and thus σ ∈ R and
all modes are stationary. However, as noted earlier, the viscous plate model does
not preserve material frame invariance and modes would also appear stationary in
reference frames fixed with either wall. Again, the reason is that in-plane advection of
wrinkles contributes negligibly to the evolution of the centre-plane deflection compared
to the out-of-plane velocity. Physically we expect that modes spanning the width of the
plate cannot be biased by either bounding wall and thus are stationary in the frame
of the centreline. This is captured by reintroducing advection at leading order and is
shown to be correct in the full Stokes calculations described in § 5.

4.2.1. G− = Γ = 0
The only stabilizing mechanisms in the viscous plate model are due to surface

tension and buoyancy; without them the sheet buckles at any shear rate and all
wavenumbers are unstable as shown in figure 2(a). Shear preferentially couples to
the shortest wavelengths, but these waves are also most inhibited by the stabilizing
influence of the dynamic bending resistance. Thus there is a most unstable mode at
an intermediate wavelength, λ = 2π/k = 3.32. This mode spans the width of the plate
and has crests and troughs aligned at roughly 45◦ (figure 2b), corresponding to the
direction of principal compression for a simple shear flow. There is also a cascade
of subdominant modes having smaller growth rates. These differ from the dominant
mode by having multiple crests and troughs across the width of the plate, as shown in
figure 2(c).

In contrast to a viscous plate, an elastic plate is stable to out-of-plane buckling
when the shear is less than a finite threshold (Southwell & Skan 1924). However,
given the Stokes–Rayleigh analogy, we expect there to be a close relationship between
the instabilities in the two cases; in appendix B.1 we show that the structure and
wavelength of the fastest growing viscous mode are identical to those of the elastic
mode observed at onset.

4.2.2. G−, Γ 6= 0
As shown in figure 3, surface tension and buoyancy both stabilize long waves,

but neither provides a short-wave cutoff. This somewhat counter-intuitive role of
surface tension may be explained by noting that, in the viscous plate model, surface
tension cannot provide a short-wave cutoff if it is exceeded by in-plane flow-induced
compression. Conversely, since long waves are only weakly aligned with the direction
of shear-induced compression, even the small effect of surface tension at such
wavelengths is sufficient to suppress them.
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FIGURE 2. (a) Growth rates for the four most unstable modes for the viscous plate
model (4.6) with Γ = G− = 0. Contours of centre-plane displacements are shown in (b)
and (c) for the two dominant modes’ most unstable wavenumber. Grey/black curves indicate
deflections of opposite sign. Perturbations are normalized to have a maximum amplitude of
unity and contours are equally spaced at intervals of 0.2.

G–
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FIGURE 3. Most unstable wavenumber (solid curves) and smallest unstable wavenumber
(dashed curves) for varying surface tension Γ for the plate model (4.6). Curves are shown for
gravity numbers G− increasing in the direction of the arrow from 0 to 5 in intervals of unity.
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14 A. C. Slim, J. Teichman and L. Mahadevan

As Γ and G− increase, the long-wave cutoff shifts to increasingly short waves and,
in the limit Γ ↑ 1, only the shortest waves remain unstable. As for pure compression,
this is inaccurate for all but the thinnest plates because the viscous plate model is
generally not applicable in the short-wave limit. However, above the onset of the
buckling instability, the most unstable mode has moderate wavelength and thus should
be faithfully reproduced.

5. Stokes formulation and buckling analysis
To find onset conditions for non-vanishingly thin sheets, to investigate the behaviour

of short waves and to verify the predictions of the asymptotic viscous plate theory
of the previous sections, we turn to a linear stability analysis for the full Stokes
equations.

5.1. Governing equations
The equations for conservation of mass and momentum in an incompressible fluid are
given by

∇̂ · û= 0, 0= ∇̂ · σ̂ − ρgez, (5.1a,b)

where the gradient operator is now three-dimensional, û = (û, v̂, ŵ) is the full three-
dimensional velocity and σ̂ is the Cauchy stress given by

σ̂ =−p̂I + µ(∇̂û+ ∇̂ûT), (5.2)

where p̂ is pressure, superscript T denotes transpose and the gradient operator is again
three-dimensional.

On the solid bounding walls, we prescribe no-slip and no-penetration conditions,

û= (±U, 0, 0) on ŷ=±L, (5.3)

while on the free surfaces at ẑ= ζ̂±(x̂, ŷ, t̂), we apply traction boundary conditions. On
the upper surface, the plate is subject only to surface tension and

σ̂ ·n+ =−γ +κ̂+n+ on ẑ= ζ̂+, (5.4)

with normal n+ = (−∂ ζ̂+/∂ x̂,−∂ ζ̂+/∂ ŷ, 1) and curvature κ̂+ = ∇̂ · n+ (to simplify
the presentation, we do not use unit surface normals; this is permissible because we
only consider infinitesimal deformations). On the lower surface, the plate experiences a
pressure from the underlying fluid in addition to surface tension, so that

σ̂ ·n− = γ −κ̂−n− − p̂−n− on ẑ= ζ̂−, (5.5)

with variables defined as above. In the underlying fluid, we neglect inertial and viscous
contributions. Thus the pressure is hydrostatic and follows the relation

− p̂− =−2ρgd + ρ−g(d + ζ̂−). (5.6)

We additionally have the kinematic conditions

∂ ζ̂±

∂ t̂
+ û

∂ ζ̂±

∂ x̂
+ v̂ ∂ ζ̂

±

∂ ŷ
= ŵ on ẑ= ζ̂±, (5.7)

where t̂ is time.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

43
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.437


Buckling of a thin-layer Couette flow 15

5.1.1. Scaled equations
To aid comparison with results from the low-dimensional viscous plate model, we

scale the basic variables following (3.9) and appendix A (the appendix also gives a
discussion of the choice of scalings), and thus set

û= U(u, v,w/α), x̂= L(x, y, αz), t̂ = (α2L/U)t, ζ̂± = αLζ±, p̂= (µU/L)p,

(5.8)
(σ̂xx, σ̂xy, σ̂yy, σ̂xz, σ̂yz, σ̂zz)= (µU/L)(σxx, σxy, σyy, ασxz, ασyz, α

2σzz). (5.9)

The governing equations then become

0= ∂u

∂x
+ ∂v
∂y
+ 1
α2

∂w

∂z
, (5.10a)

0=∇ · σ − Gez, (5.10b)

σ =


−p+ 2

∂u

∂x

∂u

∂y
+ ∂v
∂x

1
α2

(
∂u

∂z
+ ∂w

∂x

)
∂u

∂y
+ ∂v
∂x

−p+ 2
∂v

∂y

1
α2

(
∂v

∂z
+ ∂w

∂y

)
1
α2

(
∂u

∂z
+ ∂w

∂x

)
1
α2

(
∂v

∂z
+ ∂w

∂y

)
− 1
α2

p+ 2
1
α4

∂w

∂z

 , (5.10c)

with free-surface boundary conditions

σ ·n+ =−Γ +κ+ň+ on z= ζ+, (5.10d)
σ ·n− = Γ −κ−ň− − [2G− (1+ ζ−)G−]ň− on z= ζ−, (5.10e)

w= ∂ζ
±

∂t
+ α2

(
u
∂ζ±

∂x
+ v ∂ζ

±

∂y

)
on z= ζ±, (5.10f )

and boundary conditions on the wall

u= (±1, 0, 0) on y=±1, (5.10g)

where n± = (−∂ζ±/∂x,−∂ζ±/∂y, 1), ň± = (−α2∂ζ±/∂x,−α2∂ζ±/∂y, 1), κ± =
−∇2ζ± and the parameters are as defined in § 2.

5.2. Base state and perturbation equations

We again assume a flat base state with a unidirectional, steady velocity profile and
hydrostatic pressure:

ζ±b =±1, ub = (y, 0, 0), −pb = α2G(z− 1). (5.11)

To consider the evolution of infinitesimal perturbations to this base state, we assume
a normal mode decomposition, with each dependent variable f (x, y, z, t) perturbed by
an amount δf̃ (y, z) eikx+σ t, where k is a wavenumber, σ the growth rate and δ � 1
the amplitude. Making the appropriate substitutions into the governing equations (5.10)
and linearizing about the base state, we obtain the eigenvalue problem for σ :

ikũ+ ∂ ṽ
∂y
+ 1
α2

∂ w̃

∂z
= 0, −ikp̃+L ũ=−∂ p̃

∂y
+L ṽ =−∂ p̃

∂z
+L w̃= 0,

(5.12a–d)
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16 A. C. Slim, J. Teichman and L. Mahadevan

where L =−k2 + ∂2/∂y2 + (1/α2)∂2/∂z2, subject to

∂ ũ

∂z
+ ikw̃= α2 ∂ ζ̃

±

∂y
on z=±1, (5.12e)

∂ ṽ

∂z
+ ∂ w̃

∂y
= α2ikζ̃± on z=±1, (5.12f )

− 1
α2

p̃+ 2
1
α4

∂ w̃

∂z
= Γ +

(
−k2 + ∂2

∂y2

)
ζ̃+ − Gζ̃+ on z= 1, (5.12g)

− 1
α2

p̃+ 2
1
α4

∂ w̃

∂z
=−Γ −

(
−k2 + ∂2

∂y2

)
ζ̃− + (G− − G)ζ̃− on z=−1, (5.12h)

σ ζ̃± + α2ikyζ̃± = w̃, on z=±1, (5.12i)

and

ũ= ṽ = w̃= ζ̃± = 0 on y=±1. (5.12j–m)

We note that as α→ 0 this system at leading order is identical to the eigenvalue
problem (4.6) for the low-dimensional viscous plate theory. In other words, the
perturbation expansion and the asymptotic analysis commute. This can be shown
most readily by starting with the system above in a stress formulation and following
an equivalent asymptotic analysis to that given in appendix A.

5.2.1. Numerical method and spectrum
We find the eigenvalues and eigenmodes of the system (5.12) numerically, using

a Chebyshev pseudo-spectral discretization in y and z and solving the resulting
generalized linear eigenvalue problem using the eig routine of MATLAB (Trefethen
2000). Since the pressure and velocity are collocated on the same grid points, to
have sufficient equations we augment the boundary conditions on the free surfaces
using the continuity equation, and the boundary conditions on the walls using the
normal component of the momentum equation (cf. Gresho 1991; Canuto, Hussaini &
Quarteroni 2007). We treat the corners as part of the walls (see appendix C for a
discussion of these choices and convergence of the algorithm).

A sample spectrum for a particular set of parameters is shown in figure 4. It consists
of both a discrete part (indicated by diamonds) and a continuous part (indicated by
circles), as expected for shear instabilities (Schmid & Henningson 2001). The discrete
part is further broken up into purely real eigenvalues and complex-conjugate pairs. The
former correspond to stationary, sheet-spanning modes; example displacement profiles
are shown in figure 5(c,d,i–iii). The latter correspond to a pair of travelling modes
symmetric to one another under a 180◦ rotation about the vertical axis; example
displacement profiles are shown in figure 5(c,d,iv,v). The continuous part of the
spectrum corresponds to perturbations localized at a given cross-stream location y and
travelling at the local base-state velocity. These modes are stable (although, for weak
stabilization, only just so). A ‘balloon’ of incompletely resolved modes surrounds this
continuous spectrum (progressively collapsing onto it with increasing resolution) and
causes some numerical difficulties finding cutoffs where the continuous spectrum is
just stable.

All solutions are presented for 28 grid points in y and 14 points in z (unless
otherwise stated). We calculated all eigenvalues and mode structures at this resolution
and verified them by comparison with their counterparts at a resolution of 40× 20.
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Im ×103

Re ×103

2

–2

–2 0 2–4–6–8–10–12

FIGURE 4. Eigenvalue spectrum for the Stokes equations (5.12) with k = 8, α = 0.02,
Γ + = Γ − = 0.5 and G = G− = 0. Diamonds are resolved modes in the discrete spectrum,
circles are modes in the continuous spectrum and crosses are incompletely resolved modes
(they still move perceptibly with increasing resolution). Resolution: 32 grid points in y and 16
in z.

5.3. Dispersion relations

To make the investigation of parameter space more manageable, we present results
for plates stabilized only by an equal surface tension on the upper and lower
surfaces, setting G = G− = 0 and Γ + = Γ −. Representative dispersion relations for
the four most unstable modes are shown in figure 5, together with selected mid-plane
displacement profiles. The structure of the dispersion relation is generally similar to
the viscous plate prediction: shear couples most strongly to the shortest waves, but
such modes are also most damped by viscous resistance, and thus the system is
most unstable at intermediate wavenumber. Both long-wave and short-wave cutoffs
exist. The longest waves are stabilized by surface tension, while the shortest are
stabilized by an internal viscous resistance induced by shear deformations through the
thickness. This is not accounted for in the low-dimensional plate model, which only
has extensional deformations through the thickness.

For small and moderate wavenumbers, the four most unstable modes are stationary
(Im σ = 0 in figure 5a). However, at a critical wavenumber kcrit ≈ 7.5, the two most
unstable modes have equal growth rates, and for larger k they form a pair of travelling
modes with complex conjugate growth rates. At a larger wavenumber still, the third
and fourth modes undergo a similar bifurcation. The evolution of the mode structures
with k reflects this changing behaviour: for small and moderate wavenumbers, the
dominant mode has a single crest or trough that spans the width of the sheet and is
aligned at approximately 45◦ (figure 5c,i–iii). The first sub-dominant mode initially has
two extrema across the sheet with a weakly deformed centreline (figure 5d,i,ii). As k
increases, the mid-surface deformation also increases, and eventually the mode consists
of a single, somewhat sinuous crest or trough spanning the sheet (figure 5d,iii). At
kcrit , the first two modes become identical, and when k > kcrit , they are related to one
another by a 180◦ rotation about the z axis (figure 5c,d,iv,v). With increasing k, they
become increasingly concentrated on one side of the plate and travel with a fraction of
the corresponding wall speed (figure 5a).

We see that, for small and moderate wavenumbers, the viscous plate model
approximates the growth rate and mode structures of the full Stokes equations very
well (thick grey curves in figure 5b, and final pair of rows of profiles, figures 5g,h).
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FIGURE 5. Perturbation properties for capillary numbers Γ + = Γ − = 0.3, gravity numbers
G = G− = 0 and aspect ratio α = 0.02. (a) Phase speed and (b) growth rate for the four most
unstable modes: black solid curves are the full numerical solutions of the Stokes equations
(5.12); thick grey curves are the viscous plate prediction; black short-dashed curves are the
advection-augmented plate model; and black long-dashed curves are the maximum possible
growth rates and phase speeds using the short-wave approximation. Curves are truncated
where they become unreliable. Note that the phase speed is zero for the Stokes and augmented
plate models for wavenumbers less than a critical value and for the viscous plate model for
all wavenumbers. (c–h) Out-of-plane displacement contours at the indicated wavenumbers:
(c,d) full solutions, (e,f ) advection-augmented plate and (g,h) viscous plate; (c,e,g) dominant
mode and (d,f,h) next most unstable. Note that for the Stokes and augmented plate models,
above the critical wavenumber these two modes have equal growth rate and are related
to one another by a 180◦ rotation. Grey/black curves indicate deflections of opposite sign.
Perturbations are normalized to have maximum amplitude of unity and contours are equally
spaced in intervals of 0.25 (the 0 contour is omitted for |y|> 0.6 in (c,d,v)).
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Buckling of a thin-layer Couette flow 19

However, the transition from stationary to travelling waves at kcrit is not captured, and
indeed cannot be captured by a regular asymptotic expansion of any order in α.

To capture this transition requires a reintroduction of advection in the low-
dimensional viscous plate theory. We do this by replacing (4.6b) with the full
kinematic condition from (3.6), which in the dimensionless, spectral setting reads

w̃= σ H̃ + α2ikyH̃. (5.13)

Predictions using this modification are included in figure 5 with short-dashed curves
and form the central pair of rows of profiles. They provide an accurate approximation
of the behaviour at and around the critical wavenumber as well as improving the
approximation at smaller k. Unfortunately, this modified model also does not appear to
have a short-wave cutoff. However, the spectrum has a neutrally stable continuous part,
and so it is difficult to state this definitively.

Just as the low-dimensional plate theory allows us to describe moderate- to long-
wavelength deformations (relative to the thickness), one can ask if there is another
asymptotic approximation that allows us to consider short-wave behaviour (relative
to the thickness). The analysis of Benjamin & Mullin (1988) provides such a
route and is summarized in appendix D. However, the predictions provide only a
fair approximation to the short-wave behaviour (see figure 5b); the discrepancy is
presumably because the dominant mode begins to concentrate near the outer walls and
so lateral boundary conditions remain important.

5.4. Comparing the Stokes and asymptotic theories: dependence on aspect ratio α
To understand how well/poorly the low-dimensional viscous plate theory does in
describing the buckling instability, we show a comparison of growth rates for the
dominant mode at various aspect ratios in figure 6. The growth rates of the longest
and most unstable wavelengths remain identical for aspect ratios up to 0.04 and are
well described by the plate model (grey curve). The advection-augmented plate model
(dashed curves) somewhat over-predicts the maximum growth rates for α > 0.04, but
accurately predicts kcrit and improves the estimate of the most unstable wavenumber.
We can estimate how kcrit scales with α by balancing the bending-resistance-modulated
advection term of order k5α2 in the advection-augmented model with the shear term of
order k. The resulting prediction k2

crit = O(1/α) is in good agreement with numerical
solutions (inset of figure 6). Physically this results from progressively thinner plates
buckling quicker, and thus only advection of increasingly short waves influencing
mode structure. Short waves are cut off for kcut = O(1/α), when wavelengths approach
the plate thickness (inset of figure 6).

6. Stability diagrams for the onset of shear-induced buckling
With the analysis of the different regimes at hand, we can now present the stability

diagrams for the buckling instability of a sheared plate in terms of the dimensionless
parameters that characterize the forcing: the scaled surface tension relative to shear
rate Γ and the geometrical aspect ratio α. Figure 7 shows the principal features of the
instability for different Γ and α. Instability is possible for sheets of surprisingly
large aspect ratio, up to ∼0.6 (figure 7c). In general, the long-wave cutoff and
most unstable wavelength are well approximated by the low-dimensional plate model,
even for reasonably thick plates, and the transition to travelling waves is captured
by the advection-augmented version of the model. The short-wave cutoff is not
well described by any of the approximations and appears to require full numerical
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FIGURE 6. Growth rates for various aspect ratios α = 0.08, 0.05, 0.04, 0.02 and 0.01 (in
direction of arrow) for Γ + = Γ − = 0.6, G = G− = 0. Black solid curves are the full
numerical solutions of the Stokes equations (5.12), the thick grey curve is the viscous plate
prediction and black dashed curves are the advection-augmented plate model. Inset shows the
critical wavenumber kcrit and short-wave cutoff as functions of the aspect ratio.

calculation. However, portions of the short-wave cutoff cannot be adequately resolved
even with the full numerics once the most unstable mode becomes localized to the
outer wall. Most likely, the reason is that very short waves for thin plates require
very high resolution to resolve both the apparent pressure singularity at the walls
(see appendix C) and the wave itself. This is particularly true when the continuous
spectrum is just stable (Γ small or zero), but we do not pursue this aspect further.

7. Discussion and conclusions
We have presented conditions for the linear, shear-induced buckling of a viscous

plate stabilized by internal viscous resistance, surface tension and buoyancy. In the
limit of a vanishingly thin plate, a low-dimensional asymptotic theory of the dynamics
yields the result that the onset of instability occurs at a scaled inverse shear rate Γ = 1
independent of buoyancy. For plates with a finite thickness stabilized only by an
equal surface tension at the upper and lower surfaces, our numerical solutions of the
eigenvalue problem based on the Stokes equations show that the most unstable mode
has moderate wavelength: shear couples primarily to the shortest waves, but these are
also most strongly suppressed by viscous resistance to bending and surface tension.
This mode is stationary in the frame of the centreline of the plate, spans the width of
the plate, has crests aligned at approximately 45◦ and is closely related to elastic shear
modes that have been well known for more than 85 years.

We have compared results using the full Stokes equations and its two limiting
theories, the long-wavelength viscous plate model and the short-wave approximation of
Benjamin & Mullin (1988). The plate model predicts onset at Γ = 1 with infinitesimal
wavelengths, which is only consistent and accurate for arbitrarily thin plates. However,
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FIGURE 7. Instability region for the Stokes equations (5.12) (bounded by solid black curves)
as functions of Γ for (a) α = 0.01 and (b) 0.08 with G = G− = 0 and Γ + = Γ −. Unstable
stationary and travelling modes are distinguished by labelling and are separated by a solid
black curve indicating the critical wavenumber. The most unstable wavenumber is shown by a
dotted black curve. Thick grey curves give the corresponding viscous plate predictions, black
short-dashed curves are the advection-augmented plate model and black long-dashed are the
short-wave approximation for the short-wave cutoff. In (a), the advection-augmented plate
predictions for the long-wave cutoff and most unstable wavenumber are indistinguishable
from the viscous plate predictions. The viscous plate model is unable to predict the transition
to travelling waves; neither plate description can capture the short-wave cutoff. (c) Maximum
Γ for instability as a function of α.

for plates up to α ≈ 0.04, given onset parameter values, the model accurately
reproduces both the modal structure and the most unstable mode above onset. The
short-wave model is somewhat inaccurate for both onset (Γ = 1 independent of α
at an inconsistent, infinite wavelength) and growth rates, at least in the absence of
buoyancy.

Thus we see that the viscous plate model is quite useful, even outside its range of
validity. However, it has two shortcomings. The first is that it is not material-frame-
invariant. This can be remedied by including advection at leading order, a modification
that also extends the model’s predictive power to reliably capture travelling waves
that appear at moderately short wavelengths, even if this is not strictly correct in
an asymptotic setting. The second shortcoming is that amplitude-saturated modes
cannot be described because the equations become linear when the flow is steady,
and thus the amplitude is indeterminate. This suggests that saturated modes have larger
amplitude than assumed in the derivation of the governing equations, and moderate
or large curvature descriptions (Howell 1994, 1996; Ribe 2001) may be necessary to
describe their structure.

Perhaps surprisingly, there are no experiments in this rectangular Couette geometry,
even though it is similar to many industrial flow settings associated with the float-
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glass and polymer manufacturing industries. As alluded to in the introduction, the
annular geometry has been studied but that problem is fundamentally different owing
to the presence of an additional length scale. A few of the experiments by Suleiman
& Munson (1981) do approach the rectangular limit and the observed modes are
qualitatively consistent with our theory: they fill the width of the annulus, are
stationary with respect to the centreline of the sheet, aligned at 45◦ to the bounding
walls, and closely resemble elastic modes. Unfortunately, there are no reported data for
the parameter values associated with the onset of the instability, so that the next step
is clearly an experimental study of the onset of buckling in a long, rectangular Couette
geometry.

Acknowledgement
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Appendix A. Long-wavelength approximation for a viscous plate
Several derivations exist of the viscous plate model, from the analogy with the

elastic plate by Benjamin & Mullin (1988) to the formal asymptotic expansion of
Howell (1994, 1996). Our attempt is to provide more physical motivation for Howell’s
asymptotic derivation.

To avoid repetition, we begin with the governing Stokes equations given in
(5.1)–(5.7) and non-dimensionalize them according to (5.8)–(5.9). We justify the
scalings inherent in (5.8)–(5.9) for the limit of the aspect ratio α→ 0 as follows.
First, in-plane stresses σ̂ h (where subscript h denotes in-plane components x̂ and
ŷ) are driven by boundary motions and scale as µU/L. Then, for small deflections
of the plate of order α, these in-plane stresses generate out-of-plane stresses on a
cross-section σ̂xz and σ̂yz of order αµU/L courtesy of the in-plane components of the
force balance equations and the traction conditions. These components in turn generate
an out-of-plane stress on the surface σ̂zz of order α2µU/L courtesy of the out-of-plane
component of the force balance equations and the traction. Second, there must be
internal viscous resistance to deformation; specifically, elongation on outer surfaces of
wrinkles is resisted, as is compression on inner surfaces, thus ∂ û/∂ ẑ ∼ ∂ ŵ/∂ x̂ and
∂ v̂/∂ ẑ ∼ ∂ ŵ/∂ ŷ in the shear stresses σ̂xz and σ̂yz. In consequence, the out-of-plane
velocity ŵ appears of order 1/α larger than the in-plane, reflecting the fact that
out-of-plane deformation is much easier than in-plane for a thin geometry. Thus we
again arrive at the non-dimensional equations (5.10). (We note that these scalings are
for the most general scenario for a fluid layer of aspect ratio α� 1 that is almost flat.
For the particular shear base state considered in this paper, the pressure in fact scales
as α2µU/L rather than µU/L. The pressure perturbation scales as µU/Lδ, where δ is
the perturbation amplitude, rather than α2µU/Lδ.)

We now proceed to a regular asymptotic analysis, expanding each variable f as
f0 + α2f2 +O(α4), substituting these into the governing equations and equating terms at
each order in α.

For the scalings to be adhered to in the continuity equation (5.10a) and the
expression in (5.10c) for σzz, we immediately find that the out-of-plane velocity is
uniform across the plate

∂w0

∂z
= 0. (A 1)
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From the same two expressions at next order, we also obtain ∂u0/∂x + ∂v0/∂y +
∂w2/∂z= 0 and −p0 + 2∂w2/∂z= 0. Combining, these imply

−p0 = 2
(
∂u0

∂x
+ ∂v0

∂y

)
. (A 2)

Then at leading order the in-plane stresses σxx, σxy and σyy in (5.10c) become

σ h0 = 2[e + tr(e)I], (A 3)

with e = (∇uh0 + ∇uT
h0)/2, the in-plane part of the strain rate. The expressions for

stresses σxz and σyz imply ∂u0/∂z+ ∂w0/∂x= 0 and ∂v0/∂z+ ∂w0/∂y= 0, respectively,
from which we infer

uh0 =−z∇w0 + ūh(x, y), (A 4)

where ūh is the velocity on the centre-plane. The kinematic conditions (5.10f ) on the
free surfaces furnish

∂ζ+0
∂t
= ∂ζ

−
0

∂t
= w0. (A 5)

Thus the plate retains uniform thickness

ζ+0 − ζ−0 = 2 (A 6)

and

∂H0

∂t
= w0, (A 7)

where H0 = (ζ+0 + ζ−0 )/2.
Now evaluating forces on a cross-section, we find

Σ =
∫ ζ+0

ζ−0
σ h0 dz= 4[E + tr(E)I], (A 8)

with

E = 1
2(∇uh +∇uT

h +∇H∇w+∇w∇H), (A 9)

the in-plane deformation rate averaged across the thickness of the plate. Integrating
the in-plane momentum equations (the x and y components of (5.10b)) across the
cross-section and applying the traction conditions (the x and y components of (5.10d)
and (5.10e)), we obtain the in-plane balance of forces

∇ ·Σ = 0. (A 10)

Similarly evaluating moments, we find

M =
∫ ζ+0

ζ−0
zσ h0 dz=−4

3
[∇∇w0 + tr(∇∇w0)I] + H0Σ . (A 11)

Integrating the out-of-plane momentum equation (the z component of (5.10b)) by
parts across the cross-section and applying boundary conditions (the z components of
(5.10d) and (5.10e)), we obtain the out-of-plane evolution equation

∇∇ :M + 2Γ∇2H0 − G−H0 = 0, (A 12)

where the term ∇∇ :M expands to −(8/3)∇4w0 +∇ · (Σ ·∇H0).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

43
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.437


24 A. C. Slim, J. Teichman and L. Mahadevan

The system (A 7)–(A 12) provides the non-dimensional viscous plate equations
(3.10a,b,c). The lateral boundary conditions are obtained on setting the velocity at
bounding walls to the prescribed value; thus ūh0 and w0 take prescribed values and the
normal component of ∇w0 vanishes.

With some algebra, the next-order correction to the governing equations can be
readily derived, although the boundary conditions at the walls become more complex.
In particular, the next-order velocity components become higher-order polynomials in z
across the plate thickness, so that, for example,

w2(x, y, z)= w̄2(x, y)+ 1
2 z2∇2w0. (A 13)

Thus directly imposing no slip at y = ±1 would imply an additional, and over-
specifying, condition on w0. This suggests that there is a boundary layer at the
two walls, of thickness comparable to the thickness of the plate. We do not pursue this
further, but note that similar boundary layers exist for elastic plates (e.g. Friedrichs &
Dressler 1961).

Appendix B. Elastic versus viscous plate models
Consistent with the Stokes–Rayleigh analogy (Rayleigh 1945), there is a close

connection between the governing equations for elastic and viscous plates as well as
between the associated buckling instabilities. For an incompressible elastic material
with Young’s modulus Y , the governing Föppl–von Kármán equations are given by
(e.g. Timoshenko & Woinowsky-Krieger 1959)

∇̂ · Σ̂ = 0, 8
9 Yd3
∇̂

4
Ĥ = ∇̂ · (Σ̂ · ∇̂Ĥ)+ T0∇̂

2
Ĥ − ρ−gĤ, (B 1)

Σ̂ = 4
3 dY[Ê + tr(Ê)I], Ê = 1

2(∇̂
ˆ̄uh + ∇̂ ˆ̄uT

h + ∇̂Ĥ∇̂Ĥ), (B 2)

where we associate Ê with the in-plane deformation tensor and ˆ̄uh with the in-plane
displacement of the centre-plane. To complete the analogy with the viscous plate, we
have included T0, an isotropic background tension (T0 > 0) or compression (T0 < 0),
and a buoyant restoring force. This system becomes identical to the viscous plate
model on identifying µ∂/∂ t̂ with Y/3 and T0 with γ + + γ −. Boundary conditions (3.7)
translate into clamped edges,

ˆ̄uh = (±U, 0), Ĥ = ∂ Ĥ/∂ ŷ = 0 on ŷ=±L. (B 3)

Scaling these equations according to (3.9) with µ∂/∂ t̂ replaced by Y/3, we arrive at

∇ ·Σ = 0,
8
3

1
S
∇

4H =∇ · (Σ ·∇H)+ 2Γ∇2H − G−H, (B 4)

Σ = 4 [E + tr(E)I] , E = 1
2

(
∇ūh +∇ūT

h +
2
S
∇H∇H

)
, (B 5)

where S = U/(α2L) is the dimensionless applied shear strain. Comparing these
equations with those in § 3 makes the analogy between the elastic and viscous plate
descriptions transparent.

B.1. Shear instability
It is useful to compare the buckling of a sheared viscous plate as described in § 4.2
with the classical calculation by Southwell & Skan (1924) for the buckling of a
sheared elastic plate. The flat base state for an elastic plate remains the same as (4.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

43
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.437


Buckling of a thin-layer Couette flow 25

1.0

0.5

0
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 10 2

40
0 

× 
Im

400 × Re

0.4 0.6 0.8

0

–1

1

0 1 0 1

1

y y

1

2

20
p

z

(a)

(b) (c)

FIGURE 8. (a) The spectrum for α = 0.05, k = 1, Γ + = Γ − = 0.5 and G = G− = 0 using
the method described in § 5.2.1. (One very stable stationary mode is omitted to ensure the
structure of the continuous spectrum is visible.) The inset highlights convergence for the most
unstable mode. Resolutions M × N are 6 × 6 (�), 16 × 10 (O), 32 × 12 (×) and 60 × 20
(+). The inset also has (grey circles) 10× 6, 24× 10, 40× 12 and 80× 12. (b) Out-of-plane
displacement and (c) surface pressure profile for the most unstable mode at the four different
resolutions.

(modulo the interpretation that, for the elastic case, we consider displacements rather
than velocities, and strains rather than strain rates). In contrast to the viscous plate,
this state is stable below a non-zero threshold shear. At the onset of buckling, any
infinitesimal out-of-plane deflection proportional to H̃(y)eikx satisfies

8
3

1
S

(
∂4H̃

∂y4
− 2k2 ∂

2H̃

∂y2
+ k4H̃

)
= 4ik

∂ H̃

∂y
,

with H̃ = ∂ H̃/∂y = 0 at y = ±1, yielding an eigenvalue problem for the critical shear
strain. This equation is identical to that for the viscous plate on equating the reciprocal
shear 1/S with σ . As a consequence, the elastic mode observed at smallest S is
identical in structure and wavelength to the fastest-growing viscous mode.

Appendix C. Numerical method for the Stokes eigenvalue problem
Solving (5.12) numerically is complicated by the boundary conditions at the corners

where the vertical walls and free surfaces meet. To validate the method used, we
show convergence plots with increasing grid resolutions and provide a discussion of
the impact of augmented free-surface boundary conditions and the choice of corner
behaviour.

Figure 8 shows convergence of the eigenvalue spectrum with increasing resolution
for the augmented boundary conditions used in §§ 5 and 6, together with profiles of
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FIGURE 9. As for figure 8 with k = 8, α = 0.02, Γ + = Γ − = 0.5 and G = G− = 0.
Augmented free-surface conditions are: normal component of momentum with corners part of
the walls (+); continuity with corners part of the free surface (�); and continuity with corners
free (×). All are at 20×10 resolution. Inverted triangles show (v,w) formulation with corners
free (pressure plot omitted) at 12× 12.

the out-of-plane displacement profile and the pressure on the upper free surface. We
note that an apparent pressure singularity appears with increasing resolution.

On solid walls, the appropriate augmented boundary condition is established to be
the normal component of the momentum equation (Gresho 1991). However, the choice
on the free surface seems less clear. We present results for both the z component
of momentum and the continuity condition in figure 9 for the particular set of
parameter values of figure 4. We also show results for the corner taken as part of
the wall or part of the free surface. The different approaches agree well for the
most unstable modes and the most stable modes (i.e. modes far from the continuous
spectrum), despite the fairly coarse resolution. With increasing numbers of grid points
in each direction, the discrete spectra visually converge to the same values for all
choices, and profiles for the pressure, velocity field and out-of-plane displacements
all agree. Similarly, using the reduced governing equations obtained by eliminating ũ
and p̃ from (5.12) also yields the same discrete spectrum (although condition number
growth prohibited comparison at significantly higher resolution than shown in figure 9).
Nevertheless, details of the solutions and spectra at a given resolution are impacted by
the choice of discretization procedure on the boundaries. In particular, how well the
apparent singularity at the walls is resolved depends on whether the corner is taken
to be part of the wall or the free surface. The remaining grid points’ values visually
appear unaffected. The continuous spectrum is also somewhat sensitive to the choice
of augmented boundary conditions: specifically the size of the balloon varies. This
balloon appears to be slightly closer to the continuous spectrum at a given resolution
for the augmented boundary conditions that we used, motivating our choice.
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Appendix D. Short-wavelength approximation for a viscous slab
In the short-wave approximation for the Stokes eigenvalue problem due to Benjamin

& Mullin (1988), we assume that it is reasonable to ignore the lateral boundary

conditions and thus we Fourier-decompose in y as f̃ (y, z) = ˜̃f (z) eimy for cross-sheet
wavenumber m. Then the eigenvalue problem (5.12) reduces to

( σ
α2
+ iky

)( ˜̃H
˜̃h

)
= A

( ˜̃H
˜̃h

)
, (D 1)

where ˜̃H = ( ˜̃ζ+ + ˜̃ζ−)/2 is the centre-plane deformation, ˜̃h = ( ˜̃ζ+ − ˜̃ζ−)/2 is the
thickness variation and

A=

 −α 4km+ c2(G− + 2K2Γ )

4K(sc− αK)
−αc2 2G− G− + K2(Γ + − Γ −)

4K(sc− αK)

−αs2 2G− G− + K2(Γ + − Γ −)
4K(sc+ αK)

α
4km− s2(G− + 2K2Γ )

4K(sc+ αK)

 , (D 2)

where K = √k2 + m2, s = sinh(αK) and c = cosh(αK). (These are equivalent to
equations (27) and (28) of Benjamin & Mullin (1988).) For our example in figure 5,
this translates into sinuous modes having maximum growth rate

Re σ =−α3 max
m

2km+ c2K2Γ

2K(sc− αK)
, (D 3)

and varicose modes, which are much less unstable (none of our modes shown in
figure 5 are varicose), having maximum growth rate

Re σ =−α3 max
m

−2km+ s2K2Γ

2K(sc+ αK)
. (D 4)

The former have crests aligning with the shear, at roughly 45◦, while the latter are
anti-aligned.

We include predictions using this approximation in figures 5 and 7.
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Vincenti), pp. 321–330. Springer.

TEICHMAN, J. A. 2002 Wrinkling and sagging of viscous sheets. PhD thesis, MIT.
TEICHMAN, J. & MAHADEVAN, L. 2003 The viscous catenary. J. Fluid Mech. 478, 71–80.
TIMOSHENKO, S. P. & WOINOWSKY-KRIEGER, S. 1959 Theory of Plates and Shells. McGraw-

Hill.
TREFETHEN, L. 2000 Spectral Methods in MATLAB. SIAM.
YARIN, A. L. & TCHAVDAROV, B. M. 1996 Onset of folding in plane liquid films. J. Fluid Mech.

307, 85–99.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

43
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.437

	Buckling of a thin-layer Couette flow
	Introduction
	Geometry
	Low-dimensional viscous plate theory: formulation
	Scaled equations

	Low-dimensional viscous plate theory: buckling analysis
	Pure compression
	Simple shear
	G-  = Γ = 0
	G-  , Γ not = 0


	Stokes formulation and buckling analysis
	Governing equations
	Scaled equations

	Base state and perturbation equations
	Numerical method and spectrum

	Dispersion relations
	Comparing the Stokes and asymptotic theories: dependence on aspect ratio α 

	Stability diagrams for the onset of shear-induced buckling
	Discussion and conclusions
	Acknowledgement
	Appendix A. Long-wavelength approximation for a viscous plate
	Appendix B. Elastic versus viscous plate models
	Shear instability

	Appendix C. Numerical method for the Stokes eigenvalue problem
	Appendix D. Short-wavelength approximation for a viscous slab
	References




