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We numerically investigated the opposing-buoyancy mixed convection through and around
square arrays of 10 × 10 heated circular cylinders with the solid fraction (φ) ranging from
0.0079 to 0.66 and the Richardson number (Ri) varying from 0 to 1 at a fixed Reynolds
number (Re) of 100. Our simulations revealed that the large mean recirculation in the
far wake can be detached from or connected with the vortex pair in the near wake for
different combinations of Ri and φ. Also, it was found that the array with relatively
small φ can significantly promote flow instability even at moderate Ri. The instability,
which is closely related to the fluctuating heat flux, develops from the lateral sides to
the downstream side of the array and gives rise to the large mean recirculation in the far
wake. The power spectra density of the array-scale force coefficients demonstrates that the
flow undergoes different bifurcation behaviours under various parameter combinations,
which reflects the interaction between the near-wake and far-wake vortexes. Interestingly,
the Strouhal–Richardson number curves can be collapsed onto the same curve when Ri is
increased by a φ-dependent factor. Also, for φ � 0.22, both the mean drag coefficient and
the mean Nusselt number of the array were found to decrease linearly with Ri since the
buoyancy within the array becomes prominent in this range of φ.
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1. Introduction

Mixed convection around and through a group of bodies or a porous medium is of great
significance for various engineering applications such as electronics cooling, micro heat
exchangers and fuel cells. As a combination of forced and free convection, the mixed
convection has received increasing attention in the past several decades, especially under
the effects of aiding, cross and opposing-buoyancy forces, which are respectively in the
same, perpendicular and opposite directions with the approaching forced flow. In each of
the configurations, the flow and heat transfer are governed by the Richardson number (Ri),
Reynolds number (Re) and Prandtl number (Pr).

The influences of the buoyancy force on the flow and heat transfer characteristics
are significant. Under the action of aiding thermal buoyancy, vortex shedding can be
suppressed and the mean Nusselt number (Nu) increases with Ri (Salimipour 2019).
Differently, cross-buoyancy promotes the initiation of vortex shedding at a much smaller
Re (Chatterjee & Mondal 2011). For unsteady flow, cross-buoyancy significantly alters
the flow field in the downstream as well as the upstream regions by injecting fluids into
the near-wake region (Mahir & Altaç 2019). Opposing buoyancy is also known to trigger
vortex shedding at relatively low Re. However, compared with aiding and cross-buoyancy,
much fewer investigations have been conducted on the effects of opposing buoyancy in the
unsteady regime.

Most of the previous relevant studies focused on flow around a single solid bluff body.
Chang & Sa (1990) numerically studied the phenomenon of vortex shedding from a
heated/cooled circular cylinder at Re = 100. It was found that the pattern of the ordinary
vortex streets can be severely altered by the buoyancy force concerning the structure and
size of the vortexes. With opposing buoyancy, the strength of the shear layer increases and
the roll-up process is more activated. The non-dimensional parameters of Strouhal number
(St), Nu and mean drag coefficient (CD) were all reported to decrease with an increment
of the opposing-buoyancy force. Patnaik, Narayana & Seetharamu (1999) studied the
influences of buoyancy opposed convection on flow past a circular cylinder at relatively
low Reynolds number and found that vortex shedding can be triggered at Re ∈ [20, 40],
where there are only twin vortexes without buoyancy. Gandikota et al. (2010) studied the
effects of opposing buoyancy on the flow around a circular cylinder at Pr = 0.7 and Re
from 50 to 150 for blocking ratios of 0.25 and 0.02. Both St and Nu were found to be larger
for higher blockage.

Hu & Koochesfahani (2011) experimentally studied the thermal effects on wake
flow behind a heated circular cylinder at Re = 135 and Pr = 7. It was found that the
wake vortex structure varies significantly with Ri. The alternate shedding of ‘Kármán’
vortexes is replaced by the formation of smaller wake vortexes that are generated almost
concurrently at two sides of the heated cylinder for Ri > 0.72. The wake closure length and
CD initially decrease slightly and then increase monotonically with increasing Ri; also,
Nu decreases almost linearly with Ri. The variation trends of St and Nu with Ri agreed
well with those of Chang & Sa (1990). Guillén, Treviño & Martínez-Suástegui (2014)
experimentally studied flow past a cylinder in a confined water channel with opposing
buoyancy at Pr = 7 and Re = 170. The flow pattern was found to be characterized by the
presences of the stagnant zone (with almost zero velocity/vorticity at the cylinder rear)
and the recirculation zone developed further downstream. The length and width of the
recirculation zone both increase with Ri. Also, the measured St is higher than that for an
unconfined cylinder.

Apart from circular cylinders, bluff bodies with different cross-sections were also
considered. Sharma & Eswaran (2004) numerically studied the influence of opposing
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buoyancy on the flow around the more bluff square cylinder at Re = 100 and Pr = 0.7. The
qualitative behaviours of St, CD and Nu were consistent with those of circular cylinders.
However, the variation trend that the wake closure length decreases with Ri is opposite to
the trend reported by Hu & Koochesfahani (2011) and Guillén et al. (2014). The reason
is that different types of vortexes were detected, which were not differentiated in these
studies and will be discussed more in the following sections. Sharma & Eswaran (2005)
also studied the effects of channel confinement under similar flow configurations. The
enhancements of heat transfer were observed to increase with increasing blockage ratio but
decrease with increasing Ri. Sarkar, Ganguly & Dalal (2013) studied the flow of nanofluids
past a square cylinder under opposing buoyancy with Pr = 6.9 and Re = 100. The vortex
shedding process is initiated when the nanofluid solid volume fraction is increased. It was
demonstrated that Nu increases as the nanofluid solid volume fraction increases. Chatterjee
& Ray (2014) studied mixed convection with opposing buoyancy over a triangular surface
for Re < 30 and Pr = 50. It was found that St decreases slightly with Ri, similar to those
reported in the above-mentioned studies. However, Nu was found to increase with Ri,
which is opposite to the trends presented by Hu & Koochesfahani (2011) and Sharma
& Eswaran (2004).

There are also several studies on flow and heat transfer around and through arrays of
a small number of cylinders (N < 10) with the effects of opposing buoyancy. Salcedo
et al. (2017) investigated mixed convection flow from two circular cylinders arranged
in tandem and confined in a channel at Re = 200 (for an individual cylinder) and
Pr = 7. The results showed five distinct flow patterns in the parameters space of gap
width and opposed buoyancy strength: (1) steady-state flow, (2) time-periodic oscillatory
state, (3) quasi-periodic oscillatory flow, (4) bistable flow and (5) chaotic motion. Also,
the recirculation zones that form within the gap can exhibit both symmetrical and
asymmetrical patterns. It was found that Nu of the upstream cylinder decreases with Ri
while Nu of the downstream cylinder increases with Ri. Fornarelli, Lippolis & Oresta
(2017) studied the effects of thermal buoyancy on the flow around an array of six circular
cylinders at Re = 100 and Pr = 0.7. For cases with opposing buoyancy, the spacing affects
heavily the oscillation amplitude of the force and heat exchange coefficients. For relatively
large spacing, the standard deviation of the performance coefficients increases with Ri;
while for smaller spacing, the flow can rearrange itself in a more ordered wake pattern
configuration, limiting the oscillation amplitude of the performance coefficients. It was
also shown that Nu of the array increases with Ri, which is opposite to the trend of flow
around a single cylinder.

As the number of cylinders increases to a certain value, the array begins to resemble
a porous medium since the overall effects of the array on the ambient fluid can be
represented in terms of a macroscopic drag force (Nicolle & Eames 2011). The approach
is widely used (e.g. Zong & Nepf 2012; Taddei, Manes & Ganapathisubramani 2016;
Zargartalebi & Azaiez 2019; Chakkingal et al. 2020; Liu et al. 2020). Nevertheless, the
studies on mixed convection around and through a porous body or a group of constituent
elements are fairly limited. Vijaybabu, Anirudh & Dhinakaran (2017, 2018) studied steady
mixed convection around and through the permeable square and triangular cylinders
with aiding buoyancy. Yu, Yu & Tang (2018) considered the effects of both aiding and
opposing-buoyancy mixed convection on steady flow past a permeable circular cylinder.
Both CD and Nu were observed to decrease with Ri.

The present study aims to understand the expectantly more unstable flow and heat
transfer characteristics for mixed convection around and through an array of heated
cylinders under opposing buoyancy. It is mainly motivated by the findings of the previous

949 A8-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.740


T. Tang, Z. Li, S. Yu, J. Li and P. Yu

studies (Anirudh & Dhinakaran 2018; Tang et al. 2020) that the critical Reynolds number
for the onset of vortex shedding behind a permeable body or a group of bodies decreases
with decreasing solid fraction (φ) in the investigated range of φ, which seems contradictory
to the common sense as well as the findings that porous media help to stabilize the flow
(Ledda et al. 2019). Tang et al. (2020) concluded that the increased overall instability at
relatively small φ is mainly caused by the intensified interaction of inertial and viscous
forces among individual cylinders in the array. Since the opposing-buoyancy-induced flow
interacts with the downward inertial flow within the array, it is expected to further increase
the overall instability in the group of bodies. The current work aims to investigate this
hypothesis. Besides, the existing limited studies on opposing-buoyancy mixed convection
around and through a permeable body mainly considered flow in the steady regime, which
may not be plausible since the vortex shedding is easily triggered by the opposed buoyancy
force.

The rest of the paper is structured as follows. In § 2 the problem under consideration
and the numerical method are described. In § 3 the numerical results are provided in
terms of the mean recirculation regions, the force coefficients and the mean heat transfer
coefficients. Finally, the summary and conclusions are given in § 4.

2. Numerical method

2.1. Problem definition
The present study considers two-dimensional flow through and around a square array of
multiple circular cylinders with various φ. Each cylinder is assumed to be connected to a
hot source and the thermal resistance between the hot source and the cylinder is assumed
to be very small, therefore, the surfaces of the cylinders remain at a hot temperature Th.
The geometry of the computational domain is shown schematically in figure 1(a). The
cylinder array with a side length of D is placed at the zero attack angle to the incoming
cold flow with uniform velocity (U∞) and ambient temperature (Tc). The direction of the
gravity is parallel to that of the incoming flow, therefore, the buoyancy is opposed to the
forced flow direction. Sufficiently large distances are used between the cylinder array and
domain boundaries to minimize the effects of the boundaries on the flow. The distances
from the array to the left, bottom, right and top boundaries are denoted as NL, NB, NR and
NT , respectively, with NL, NR, NT = 20D and NB = 60D. The blockage ratios of all cases
are no greater than 0.0244, which are comparable with those used for flow around a solid
square cylinder (Sen, Mittal & Biswas 2011).

The geometries of the cylinder arrays employed in the present simulations are shown in
figure 1(b). Each array is composed of 10 × 10 circular cylinders with an equal diameter
(d) and a uniform spacing (s) (see figure 1a). The constituent element is selected to be a
circular cylinder as the flow past it has been extensively studied (Zdravkovich 1997). The
boundaries of each array (dashed lines) form a square enclosure. The side length of the
square enclosure can thus be calculated as D = (9r + 10)d, where the spacing-to-diameter
ratio (r) is defined as s/d. The solid fraction of the array (φ), which is defined as the ratio of
the volume of the solid cylinders to the total volume of the square enclosure, is calculated
from φ = 25π(d/D)2. The investigated range of φ is from 0.00785 to 0.66, corresponding
to r decreasing from 10 to 0.1. Each array with the same number of constituent elements
can be considered as a porous square cylinder with the same side length. The geometry
with φ = 1 represents a single solid square cylinder with a side length of D. The current
geometry configuration easily guarantees that the Re of the whole array is the same for all
cases.
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(b)(a)

Figure 1. (a) Sketch of the flow problem and the computational domain. (b) Geometric configuration of the
array investigated in the present study.

2.2. Governing equations
For incompressible Newtonian fluid flow through and around the cylinder array under
the Boussinesq approximation, the governing equations of mass, momentum and energy
conservations are expressed as

∇ · u = 0, (2.1a)

∂u
∂t

+ u · ∇u = − 1
ρ0

∇p + ν�u − gβ(T − Tc), (2.1b)

∂T
∂t

+ u · ∇T = k/(ρ0c)�T, (2.1c)

where (x, t) = (x, y, t) represents the spatial and time coordinates, u = (u, v) the velocity
vector, ρ0 the reference density, p the pressure, ν the kinematic viscosity, g = (gx, 0)
the gravity, β the thermal expansion coefficient, T the temperature, k the thermal
conductivity and c the specific heat capacity. The mathematical symbols of ∇·, ∇ and
Δ are, respectively, the divergence, gradient and Laplace operators in the particular
coordinate system being used. The Boussinesq approximation is justified if δρ = βδT =
β(T − Tc) � 0.1 (Chang & Sa 1990), which is satisfied for all cases in the present study.

For the current flow configuration, the no-slip zero velocity and constant hot temperature
(Th) boundary conditions are applied to the rigid surfaces of the cylinders. The shear-free
and adiabatic conditions are applied to the vertical channel walls. The coolant with
temperature Tc < Th flows from the inlet face of the channel with a uniform velocity
(U∞, 0). The outlet face of the channel is assumed to be an open boundary with zero
velocity and temperature gradients. The pressure is prescribed to be zero at the outlet and
zero gradients at the other boundaries.
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Using the variables

u∗ = u
U∞

, x∗ = x
D
, y∗ = y

D
, t∗ = tU∞

D
, p∗ = p

ρU2∞
, T∗ = T − Tc

Th − Tc
,

(2.2a–f )

equations (2.1) can be expressed in dimensionless forms as

∇ · u∗ = 0, (2.3a)

∂u∗

∂t∗
+ u∗ · ∇u∗ = −∇P∗ + 1

Re
�u∗ + Ri θ, (2.3b)

∂v∗

∂t∗
+ u∗ · ∇v∗ = −∇P∗ + 1

Re
�v∗, (2.3c)

∂θ

∂t∗
+ u∗ · ∇θ = 1

RePr
�θ. (2.3d)

The supscript ∗ of the non-dimensional variables is omitted for simplicity for the rest of
the paper. Equations (2.3) show that the governing parameters are Ri, Re and Pr, which
are defined as

Re = U∞D
ν

, Ri = gβ(Th − Tc)D
U2∞

, Pr = μc
k
, (2.4a–c)

respectively. In the present study, the investigated range of Ri is from 0 to 1 to observe
the gradual variation of behaviours with increasing buoyancy from forced convection. The
upper limit of Ri = 1 is used because it can present large effects of buoyancy for flow
around a solid cylinder (Hu & Koochesfahani 2011). Here Re is fixed at 100 since it is a
typical value for laminar flow around a solid cylinder with vortex shedding; Pr is fixed at
7 for water.

Due to the unsteady nature of the velocity and temperature fields, it is useful to analyse
the mean flow and heat transfer characteristics. The time averaged, fluctuating and root
mean square (r.m.s.) of the variable ψ are defined as

ψ̄ = 1
t∗2 − t∗1

∫ t∗2

t∗1
ψ dt, ψ ′ = ψ − ψ̄, ψ ′

rms =
√√√√ 1

t∗2 − t∗1

∫ t∗2

t∗1
(ψ − ψ̄)2 dt, (2.5a–c)

respectively. The (t∗2 − t∗1) is the time duration of the flow in the saturated (fully developed)
state. For flow within the array, the Eulerian-averaged variable is calculated as

〈ψ̄〉 = 1
Va(1 − φ)

∫
Va(1−φ)

ψ̄ dV, (2.6)

where Va is the volume/cross-sectional area of any arbitrary representative area of the
array.

For force analyses, the total drag and lift coefficients (CD and CL) of the array are
calculated from the sum of the forces exerted on the individual circular cylinder as

CD =

N∑
i, j=1

Fij · x̂

1/2ρU2∞D
, CL =

N∑
i, j=1

Fij · ŷ

1/2ρU2∞D
, (2.7a,b)

where i, j are the labels of each cylinder in the x and y directions, respectively; x̂ and ŷ
are the unit vector in the horizontal and vertical directions, respectively. The force on the
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cylinder (i, j) is expressed as Fij = ∫
Sc,ij
( pI − τ ) · n̂ dSc, where τ is the stress tensor, I

the identity matrix, Sc,ij the surface of the cylinder (i, j) and n̂ the unit surface normal
vector of the cylinder. Both CD and CL can be decomposed into the pressure and viscous
force contributions. The drag coefficient of an individual cylinder is calculated as Cdij =
Fij · x̂. The mean drag coefficient of an individual cylinder (Cdij), the mean drag coefficient
of the array (CD) and the r.m.s. lift coefficient (CL

′
rms) for the array are calculated from

(2.5a–c). The Strouhal number (St) is calculated as fD/U∞ with f the frequency of the
global fluctuating flow including the vortex shedding behind the array.

For heat transfer analyses, the Nusselt number of the array is calculated from the sum of
the local Nusselt number of an individual cylinder as

Nu =
N∑

i=1

(Nudij) =
N∑

i=1

[∫
Sc,ij

(
−∂T∗

∂n

)
dSc

]
, (2.8)

where ∂/∂n is the gradient in the direction normal to the surface. The local Nusselt number
(Nud) is calculated from −(∂T∗/∂n), which is derived from the equation k∂T/∂n =
h(Th − Tc) with h being the local heat transfer coefficient. The mean local Nusselt number
(Nud), the mean Nusset number of an individual cylinder (Nudij) and the mean Nusselt
number of the array (Nu) are calculated from (2.5a–c).

In the present study, the pressure implicit with splitting of operators scheme (Issa
1986) is used to treat the pressure-velocity coupling in the numerical framework of the
finite-volume method. The convection and diffusion terms in both momentum and energy
equations are discretized by the second-order upwind method. The time derivative is
discretized by a second-order method. All calculations are carried out in parallel with
the message passing interface method. Verification and validation tests are performed for
both an individual circular cylinder and an array of cylinders (including φ = 1), the details
of which are presented in the Appendix section.

3. Numerical results

The numerical results are obtained for flow in the recurrent or stationary stage. A recurrent
behaviour in a dynamical system characterizes the fact that the system will repeatedly
(recurrently) return to any, and all, states of a stationary configuration with an infinity of
such occurrences (Frisch & Kolmogorov 1995). Here, the required physical time to reach
the recurrent stage largely increases with an increment in Ri and/or a decrement in φ.

3.1. The mean recirculation regions
The recirculation behaviours are more complicated than those of the previous studies
(e.g. Sharma & Eswaran 2004; Hu & Koochesfahani 2011) on opposing-buoyancy mixed
convection around a solid cylinder due to the geometrical effects of cylinder arrays. Based
on the existence of different types of mean recirculation, six flow patterns (from P-1 to
P-6) are identified, as indicated in figure 2.

Pattern P-1 represents symmetric flow with one vortex pair in the near wake. A typical
case of P-1 is shown in figure 3(a,g,m). A region with negative velocity is shown behind
the rear of the array, indicating the existence of the alternating vortex with a similar size
to that of the region. Figure 2(a) shows that, for Ri = 0, all cases with different geometric
configurations present the P-1 pattern. As Ri increases, the symmetry only remains for
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0

0.2

0.4

0.6
Ri

0.8

1.0

φ

10010–110–2

P-1
P-2

P-3
P-4

P-5
P-6 Lateral vortex (LV)

Near-wake vortex (NV)

Far-wake vortex (FV)
LC

LB

LT

(b)(a)

Figure 2. (a) Flow patterns based on mean recirculation regions in the parameter space of Ri and φ: P-1
represents symmetric flow (SF) with near-wake vortexes (NV); P-2 represents unsymmetric flow (UF) with
NV; P-3 represents UF with NV and lateral vortexes (LV); P-4 represents UF with NV, LV, and detached
far-wake vortexes (FV); P-5 represents UF with NV, LV and connected FV; P-6 represents UF with NV, LV,
connected FV, and a small vortex pair between LV and NV. (b) Sketch of P-4.

larger φ cases, which indicates that the wake flow is less affected by the buoyancy force
for larger φ.

The corresponding temperature contours are presented in figure 4(a,g). The heat is
carried away from the array via hot ‘blobs’ shedding from the two sides of the array,
demonstrating ‘Kármán’ vortical structures. When the inertial flow penetrates into the
array, the fluid is slowed down due to the blockage effect of the cylinders and part of it
is redirected out the array from the lateral sides. If Ri > 0, the upward buoyancy-induced
flow further slows down the inertial flow and more fluid bleeds from the lateral sides. Note
that the fluid is heated up when it moves in the array. Meanwhile, the surrounding flow is
also heated up when it moves along the heated ‘porous wall’. The heated lateral bleeding
flow, together with the heated surrounding flow, forms the thermal layer (TL) on the lateral
sides of the array. In figure 4(g) the heat is almost locked by the compact cylinders within
the array and the TLs develop along the lateral sides of the array, similar to that of a solid
square cylinder.

Pattern P-2 indicates the onset of unsymmetrical flows. Specifically, P-2 presents an
unsymmetrical flow with one vortex pair, as shown in figure 3(h,n), which only appears
when both φ and Ri are small. The P-2 pattern indicates that the flow in the far wake begins
to be disturbed due to the pore effects even though the buoyancy is small. The wake behind
the array becomes wider with decreasing φ. The widened wake is accompanied by more
intense fluctuations further downstream, as demonstrated by the more curved streamlines.
The streamlines in the far wake deviate from symmetry, where a region with almost zero
velocity appears. Part of the fluid bleeds from the rear of the array, which is called the
based bleed. The near-wake vortex pair is detached from the rear of the array due to the
base bleed. The wake length becomes shorter, indicating that the alternating vortex rolls
closer to the cylinder.

For P-2 (figure 4b), more heat is transported downstream compared with P-1 (figure 4a),
indicating a larger overall heat transfer rate. The alternating shedding of hot ‘blobs’
also spans a wider space in the far wake, which contributes to the flow with more
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1.000.870.740.610.480.350.220.09–0.04–0.17

P-1 P-2 P-3 P-4 P-5 P-6

Ri = 0.25
φ = 0.66

Ri = 0.25
φ = 0.026

Ri = 0.75
φ = 0.66

Ri = 0.75
φ = 0.22

Ri = 0.75
φ = 0.26

Ri = 0.75
φ = 0.0079

–0.30

(e)(b)(a) (c) (d ) ( f )

(k)(h)(g) (i) ( j) (l)

(q)(n)(m) (o) ( p) (r)

Figure 3. Plots of u-component velocity contours and streamlines for the (a–f ) instantaneous flow field, (g–l)
time-averaged flow field and (m–r) the near-wake region. Left to right: representative cases for patterns 1–6.
The arrows in (q) and (r) indicate the local mean flow direction.
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Figure 4. Temperature contours for the (a–f ) instantaneous flow and (g–l) time-averaged flow in the
near-wake regions. Left to right: representative cases for patterns 1–6.

intense fluctuations. Figure 4(h) shows that the inertial flow promotes heat transfer in
the upstream side of the array. A fairly large amount of heat is still locked in the array
because of the blockage of cylinders and the buoyancy. The TLs on the lateral sides are
much thicker than those of P-1 due to the enhanced interaction between the inertial flow
and the buoyancy-induced reverse flow. The fluid, which is squeezed out from the lateral
sides, seems to increase the effective frontal area of the bluff body. This expanded effective
frontal area sheds light on the wider wake flow and lower shedding frequency.

Pattern P-3, as shown in figure 3(i,o), also indicates the onset of unsymmetrical flows
when both φ and Ri are relatively large. The lateral vortex pair is formed due to the
relatively stronger reverse flow driven by upward buoyancy at larger Ri. Different from
P-2, the asymmetry of P-3 is mainly caused by a large buoyancy force. For relatively large
Ri = 0.75 and φ = 0.66, the flow slightly deviates from symmetry with one vortex pair in
the near wake, similar to that shown in figure 3(h). Patterns P-2 and P-3 indicate that the
unsymmetrical region with almost zero velocity in the far wake can be caused by either
large opposing buoyancy or porous effects. For relatively large Ri = 0.75, an additional
vortex pair appears on the lateral sides of the array due to stronger buoyancy-induced
reverse flow. Besides, the similar flow patterns shown in figure 3(b,c) indicate that either
a larger Ri or a smaller φ gives rise to a wider wake.
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At Ri = 0.75, the shedding pattern of a compact array (figure 4c) is fairly similar to that
of figure 4(b) except that the temperature of vortexes in figure 4(c) is much lower, implying
a smaller heat transfer rate from the array. This also corresponds to a similar streamline
pattern but somewhat less unsymmetric flow for φ = 0.66 (figure 3i) compared with
figure 3(h). Based on the heat transported downstream, the heat transfer rates indicated in
figure 4(a,c) are expected to be similar. Note that P-2 and P-3 form a qualitative bifurcation
region dividing the symmetric and strongly unsymmetrical flows. The corresponding Ri
of the bifurcation region increases with φ. Comparing P-1 and P-3, the larger buoyancy
promotes a stronger reversed flow on the lateral sides of the array, forming the lateral
vortex that thickens the TLs and prevents the heat from transferring downstream to some
extent. Comparing P-2 and P-3, the alternating vortexes shedding from the array have
similar width, but less heat is transferred downstream for P-3 since the lateral squeezing
fluid is hindered by the higher resistance of the dense array in P-3.

Pattern P-4 represents an unsymmetrical flow with two vortex pairs and a detached
recirculation region further downstream, a typical case of which is demonstrated in
figure 3(d,j,p). The P-4 pattern also appears at φ = 1 and Ri = 1 for a solid square cylinder
(figure 2a). The discontinuity from a very compact array to the solid square cylinder results
from the difference between the shape of the two bodies, which was also observed in the
previous study (Tang et al. 2020, 2019). Similarly, at fixed Ri = 0.75 (figure 3c–f ) the
streamlines become more curved and the wake becomes increasingly wide as φ decreases
from 0.66 to 0.0079. The instantaneous velocity contours show that the near-wake negative
velocity region of P-4 is shorter compared with P-3; also, a small vortex begins to appear in
the far wake. Figure 3(o,p) also shows that the near-wake mean closure length decreases as
φ decreases. The temperature contours of P-4 in figure 4(d) show a wider distance between
alternating shedding vortexes and a higher temperature of the hot ‘blobs’ compared with
P-3. The TLs are thicker owing to more heated flow exiting the array from the lateral sides.

We note that the present results are consistent with the previous experimental results.
For a solid circular cylinder under opposing buoyancy at relatively large Ri � 0.72, the
experiments of Hu & Koochesfahani (2011) showed that small ‘Kelvin–Helmholtz’ (KH)
vortexes concurrently shed in the near wake of the heated cylinder, which would merge
to form larger vortex structures further downstream. Here, the small vortexes are not
observed, instead, the large vortex sheds alternately at the two lateral sides of the heated
square cylinder or cylinder array for all Ri. This is because the flow shown here is in the
recurrent stage, and the experimental results (Hu & Koochesfahani 2011) are obtained at
an earlier stage of the flow evolution, showing KH instability. Although the KH vortexes
are not apparent in the recurrent stage, the instability indicated in the early stage of the
evolution should be the same instability that causes the fluctuating velocity downstream, as
will be discussed later for figure 7. As φ decreases, this instability increases and, therefore,
results in a larger velocity deficit in the far wake.

Pattern P-5 is an unsymmetrical flow with connected near-wake and far-wake vortexes,
which occurs at small φ under large Ri, as observed in figure 3(e,k,q). The superposition
of pore effects and buoyancy gives rise to a more disturbed flow. The instantaneous
streamlines (figure 3e) show that the near-wake negative velocity region is much larger
than that of a larger φ case. An enlarged vortex is closely attached to the rear of the
near-wake vortex with a different rotating direction. Also, the size and number of the
vortexes in the far wake increase due to more complex flow interactions. The time-averaged
streamlines (figure 3k) show that the near-wake vortexes are ‘engulfed’ into the large
recirculation downstream. It is clearly seen in the near wake (figure 3q) that the lateral
vortexes penetrate the more sparse array.
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Figure 4(e,k) presents the corresponding temperature contours for P-5. The width of
the vortex shedding is evidently larger and the frequency of vortex shedding is smaller
than those of patterns 1–4, consistent with the instantaneous velocity contours shown in
figure 3. The mechanism of this phenomenon lies in the interaction of buoyancy-induced
flow and inertial flow. With a smaller φ, the permeability of the array is larger. Thus,
the downward inertial flow and the upward buoyancy-induced flow can easily penetrate
the array and squeeze more hot flow out of the lateral sides, forming thicker TLs. The
thickened TLs expand the effective frontal area, which causes the decrease of the shedding
frequency and enlargement of the width of the wake.

Pattern P-6 is similar to P-5 except that another vortex pair appears between the lateral
and the near-wake vortexes, as seen in figure 3(l,r). The small vortex pair is mainly
caused by the compromise between the bleeding flow from the array and the much
larger surrounding (lateral and the near-wake) vortexes. Similar small vortexes were also
observed by Sharma & Eswaran (2004) at Ri = 0.5 and Pr = 0.7, which are attached to the
rear side of the array due to the interaction of the buoyancy-induced flow and the vortexes
behind the cylinder. The size of the connected near-wake and far-wake vortexes becomes
smaller than that presented in figure 3(k) due to the smaller strength of the fluctuation in
the far wake, as will be discussed for figure 7. The temperature contours in figure 4( f,l)
show that more heat is convected downwards for P-6. For relatively small φ, the frequency
of vortex shedding at higher Ri is smaller.

Note that patterns of P-4, P-5, P-6 on the upper side of the bifurcation region all present
large recirculation further downstream, showing strong unsymmetrical behaviours. The
interaction of the inertial flow and the buoyancy-induced reverse flow occurs within the
array as well as on the lateral surfaces of the array. The interaction inside the array
squeezes the fluid toward the lateral sides and thickens the TLs. The interaction on the
lateral surfaces induces instability of the squeezed flow, which is transported downstream,
forming detached vortices. The lateral bleeding flow becomes stronger with increasing Ri
and decreasing φ. Meanwhile, the heat transfer rate from the bottom row of the cylinder
array increases, also due to the enhanced buoyancy-induced reverse flow with increasing
Ri and decreasing φ.

Figure 2(b) shows a sketch of the typical averaged flow structure, using P-4 as an
example. Here LB is the distance between the rear of the array and the rear stagnation
point of the near-wake vortexes; LC is the distance between the rear side and the farthest
stagnation point on the centreline no matter if the near wake is connected with the far wake
or not. For cases without vortexes in the far wake, LC is taken to be the same as LB. The
distance between the rear of the array and the first saddle point in the centreline is denoted
as LT .

The flow structure is mainly determined by the interaction among the inertial flow, the
buoyancy-induced reverse flow and the cylinder array. If the buoyancy-induced reverse
flow and the block effect of the cylinder array are weak, part of the inertial flow passes
through the array and then reaches a stagnation point downstream of the array. However,
this stagnation point may be located within the array when φ and Ri are relatively large.
Thus, the penetration depth LP = D + LT , which reflects the location of the stagnation
point, can be defined to quantitatively describe this interaction. The penetration depth is
largely dependent on the strength of the penetrating inertial flow and the buoyancy-induced
reverse flow at various Ri and φ. The tendency of variation of penetration depth with Ri is
similar to that shown by Goldman & Jaluria (1986) for negatively buoyant flows.

Figure 5 shows the summary of the length of the vortex in the centreline. As shown in
figure 5(a), LC can be very large for relatively high Ri and/or low φ. For the solid square

949 A8-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.740


Opposing-buoyancy mixed convection through cylinder arrays

0

5

10

15

20

25

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0 0.2 0.4
Ri Ri

0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
Ri

0 0.2 0.4 0.6 0.8 1.0

(c)(b)(a)

LC
LB LT

φ = 1
φ = 0.42 
φ = 0.22 
φ = 0.063 
φ = 0.026 
φ = 0.0079 

φ = 1
φ = 0.66
φ = 0.22
φ = 0.063
φ = 0.026
φ = 0.0079

φ  = 0.66
φ  = 0.22
φ  = 0.063
φ  = 0.026
φ  = 0.0079

Figure 5. Variations of (a) LC, (b) LB and (c) LT with Ri for different φ.

cylinder, LC first decreases slightly and then increases to around 10.5D, the tendency of
which is consistent with the previous experimental results (Hu & Koochesfahani 2011) for
a solid circular cylinder. The LC at φ = 0.42 is fairly similar to that of the solid case, as
indicated earlier in figure 2. It is observed that the LC at Ri = 1 increases as φ decreases
from 0.22 to 0.026. However, the LC at Ri = 1 decreases when φ further decreases to
0.0079. The largest LC is ∼25D for φ = 0.026 and Ri = 1, which is more than twice as
large as that of flow around a solid counterpart.

Figure 5(b) shows the variation of LB with Ri. For φ � 0.22, LB first increases and then
decreases with Ri. The decreasing trend is consistent with that of Sharma & Eswaran
(2004). The LB at φ = 0.66 is quite similar to that of the solid case, while the LB at
φ = 0.22 is evidently smaller than those of the compact array cases. For small φ � 0.063,
LB is obtained only at relatively small Ri when the near-wake and far-wake vortexes
are separated. The LB at φ = 0.026 follows the trend of the larger φ cases though it is
noticeably smaller. Unexpectedly, the variation trend of LB at φ = 0.063 is opposite to
those at φ � 0.22, but is consistent with that of φ = 0.0079. This is actually due to the
balanced effects of the base bleed and the fluctuating intensity of the flow since the base
bleed distance is included in LB. For φ = 0.063 and 0.0079, the base bleed is much larger
than those of the compact array cases, resulting in larger LB. For φ = 0.026, although
the base bleed is also large, the mean vortex is much shorter due to the faster shedding
of vortexes. Overall, LB for small φ does not vary much with Ri, which ranges from
approximately 2 to 2.4.

Figure 5(c) shows the variation of LT with Ri. For large φ = 0.66, the magnitude of
LT increases monotonically with Ri and LP decreases correspondingly since the buoyancy
force is comparably larger than the inertial flow within the compact array. For φ = 0.22,
LT slightly deviates from those of larger φ cases. The LT at φ � 0.063 is positive for small
Ri since the array allows more inertial flow to go through it; LT is negative at larger Ri since
the reverse flow becomes strong, which penetrates through the array from the bottom.

Figure 6 shows a summary of the length of the lateral vortex pair, which is mainly
formed by the interaction of upward buoyancy and downward inertial flow. In the present
work, the lateral vortex pair only occurs for Ri � 0.5. This indicates that the large
reverse flow induced by buoyancy is the main factor promoting the formation of the
lateral vortexes. Also, the lateral vortex pair occurs at a smaller Ri when φ is smaller,
demonstrating that a certain pore structure of the array can promote the formation of the
lateral vortexes. Figure 6 demonstrates variations of the relative positions of the lateral
vortex core (CX,CY ) and the saddle point (SX, SY ) with φ at different Ri. Figure 6(a)
shows that the absolute values of CY increase with Ri, indicating that the vortex core moves
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Figure 6. Variations of (a) CY , SY and (b) CX , SX with φ. (c) Illustration of the lateral and near-wake
vortexes.

upward along with increasing buoyancy. For fixed Ri, CY first decreases, then increases and
finally decreases with an increment of φ, which is due to the competence of the inertial
flow and the buoyancy-induced flow under porous effects. On the other hand, SY does not
change much across the range of φ for different Ri, which is ∼0.2.

Contrastingly, figure 6(b) shows that CX does not change much with φ and Ri, which
is approximately 0.75, while SX differs much with both parameters, especially at small
φ. The variation of SX with φ shows a fluctuating trend due to the more complicated
wake behaviours, e.g. the appearance of an additional vortex pair between the lateral and
near-wake vortexes. Overall, SX at smaller φ is shorter, which implies that the vortex size
is larger. In addition, the lateral vortexes are largely related to the TLs on the two sides of
the array, as demonstrated by the mean temperature in figure 4. The forced inertial flow
develops a downward viscous layer on the array surface, which comes across the upward
viscous layer formed by the buoyancy-induced reverse flow, resulting in an enclosed zone
with heat kept inside and a recirculation formed beneath it. The enclosed zone is wider for
smaller φ because of the lateral bleeding of the heated flow.

We next present more analyses on the transition behaviours between different flow
patterns. The transition between P-1 and P-2 mainly occurs at relatively small 0.0079 <
φ < 0.1 and 0 < Ri < 0.25 since the evident upward buoyancy within the array causes a
small instability in the far wake. For relatively large 0.1 < φ < 1 and 0.25 < Ri < 0.5,
the flow pattern transits from P-1 to P-3 due to the buoyancy-induced flow separation
on the lateral sides of the array. The transition from P-3 to P-4 occurs at relatively large
0.1 < φ < 0.56 and 0.5 < Ri � 1 since the instability in the far wake increases, forming
vortexes, with increasing buoyancy effects. The flow can also transit directly from P-2 to
P-4 at 0.026 < φ < 0.1 and 0.25 < Ri < 0.5, indicating that a porous medium promotes
instability even at moderate buoyancy force. The flow transits from P-4 to P-5 at 0.026 <
φ < 0.1 and 0.5 < Ri � 1 because the area with strong instability further increases in the
far wake, causing connection of the near- and far-wake vortexes. Note that at φ = 0.0079,
P-2 directly transits to P-5 due to the large pore effects on the instability downstream. The
mechanism that leads to the far wake is related to the fluctuations. The fluctuations are
caused by the instability triggered by the upward buoyancy-induced reverse flow and the
downward inertial flow. With the increments of the countercurrent flow, more unsteady
structures are formulated on the lateral surfaces, which move downstream and form larger
detached vortices behind the array.

As indicated above, the fluctuations caused by the instability play an important role in
the far-wake behaviour. Therefore, a detailed discussion on the instability indicated by the
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Figure 7. Distributions of the mean velocity deficit (MVD) (a–f ) and the fluctuating kinetic energy (FKE)
(g–l) for different Ri and φ as indicated.

fluctuating kinetic energy (FKE) and the fluctuating heat flux (FHF) is provided below.
Here, FKE is calculated from 0.5 × [(u′

rms)
2 + (v′

rms)
2]. Figure 7 shows distributions of

mean velocity deficit (MVD) (a–f ) and FKE (g–l) at various Ri and φ. Here, MVD is
calculated as (U∞ − ū)/U∞. The flow pattern based on figure 2 is indicated on the left
corner of each MVD figure. The distance between the rear of the array and the bottom
boundary of the figure is 23D and 47D for MVD and FKE, respectively.

For relatively large φ = 0.22 (figure 7a–c,g–i), the region with MVD � 0.2 becomes
larger with an increment in Ri. Correspondingly, the region with FKE � 0.044 also
enlarges evidently with increasing Ri. At Ri = 0 (figure 7a,g), the region with high MVD
values mainly exists right behind the rear of the array, where a vortex pair is formed. It
is seen that FKE in the region of the near-wake vortex is very small. The largest FKE
appears behind the vortex region. At Ri = 0.5 (figure 7b,h), two local maximums of MVD
appear at the near-wake and far-wake regions, respectively, though no vortex is actually
formed in the far wake (P-3 pattern). The FKE in the region of the near-wake vortex
is also very small, which increases and reaches a local maximum at approximately 23D
downstream of the array. The local maximums of MVD and FKE appear in roughly the
same area. At Ri = 1 (figure 7c,i), the local maximums of MVD move further upstream.
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The distance between the local maximums is also smaller. Pattern P-4 indicates that the
large recirculation is formed in the far wake, which is detached from the near-wake vortex.
In this case, a local maximum of FKE occurs in the region between the near- and far-wake
vortexes, indicating that the locally strongest fluctuation occurs when the flanks of the two
contra-rotating vortexes clash with each other. Also, a local maximum of FKE appears
further downstream due to the energy cascade from the detached vortexes.

For relatively small φ (figure 7d–f,j–l), the region with large MVD is evidently larger,
especially for mixed convection. The fluctuations are also much more intense, especially
for Ri = 1. The local maximum of FKE also moves further downstream for smaller φ.
Overall, the large recirculation zone in the far wake is well correlated with FKE. For
moderate fluctuating intensity, the recirculation region is detached from the near-wake
vortex. As FKE increases, the recirculation region becomes larger. Once the recirculation
enlarges to a certain size, it comes across the near-wake vortex and connects as well as
develops with it. This also indicates that the formation mechanisms of the near-wake and
far-wake vortexes are different. The near-wake vortex mainly results from flow separation
from the extended shear layer formed by the bleeding flow from the rear of the array and
the surrounding fluid flow on the lateral sides of the array, while the far-wake vortexes are
somewhat related to the fluctuations from the instabilities developed from the interaction
of the opposing buoyancy with the inertial flow, which is intensified by the porous matrix
of the array.

The variations of MVD and FKE with the streamwise distance along the centreline are
also presented in figure 8. The region with MVD greater than 1 indicates the formation
of vortexes. Figure 8(a) shows that, under forced convection, MVDs are almost the same
for all the presented cases for x/D � 3, which is the length of the near-wake vortex. The
decreasing rate of φ = 0.0079 is relatively small. Correspondingly, FKE is larger as φ
decreases though FKE does not differ much among all φ cases.

As Ri increases to 0.5 (figure 8b), the difference among various φ is obvious. For φ =
0.66, MVD is similar to that of forced convection except that MVD in the far wake is still
much larger than that of Ri = 0. The maximum value of FKE occurs at approximately
x/D = 9. For φ = 0.22, a secondary velocity deficit (bump) occurs at x/D ∼ 11, but the
vortex is not literally formed since the maximum value of the second bump is ∼1. The
variation trend of the corresponding FKE is also similar to that under forced convection
but the value of FKE is much larger. For smaller φ � 0.026, MVD is presented with
two local maximums (two bumps), both of which are noticeably larger than 1, indicating
the formation of vortexes. The FKE also shows two bumps in these cases. Overall, the
present results are consistent with those of the previous study (Hu & Koochesfahani 2011)
since both studies indicate a large MVD region behind the body at large Ri. However, the
current results show that the velocity can recover up to around 0.1 before the secondary
deficit while the velocity reported by Hu & Koochesfahani (2011) is almost zero. Also,
the present study shows that the velocity deficit does not always indicate a recirculation
downstream. The differences partially come from the different stages of flow investigated
in the two studies.

For Ri = 1, the decreasing rates of MVD with x/D are much smaller compared with
smaller Ri cases. At φ = 0.66, MVD shows two bumps with the second one below 1,
therefore, no vortex appears. The FKE also only has one peak. At φ = 0.22, the second
velocity deficit region is much larger than the first one. The FKE shows two bumps with
similar peak values. At smaller φ = 0.026, the recirculation in the far wake becomes
much larger. It is observed that the local maximum of FKE for the second bump is the
highest among all φ cases, which corresponds to the smallest decreasing rate of MVD.
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Figure 8. Variations of (a–c) MVD and (d–f ) FKE with x/D for (a,d) Ri = 0, (b,e) Ri = 0.5 and (c, f )
Ri = 1.

For φ = 0.0079, both FKE and MVD are noticeably smaller than the cases of φ = 0.026.
Also, for φ = 0.026 and 0.0079, only one peak is shown for MVD due to the connection
of the near-wake and far-wake vortexes. However, FKE still shows two bumps, indicating
that it is actually two types of vortexes.

Apart from this, the FHF is also calculated since the intense FKE in the far wake is
considered to be transported from the lateral sides of the array, where FHF is strong. The

FHF is calculated as
√
(u′T ′)2 + (v′T ′)2, where the fluctuating velocity and temperature

are obtained at the same time. Figure 9 shows the distributions of FHF for various Ri and
φ. For φ = 0.22 and Ri = 0, two regional pairs with local maximums of FHF are shown
in the near wake of the array. The smaller regional pair is on the lateral sides of the larger
regional pair. As Ri increases, the regional pair on the lateral sides moves upstream and
becomes much larger, while the regional pair in the middle becomes noticeably smaller.
The distance between each pair of regions is also larger. The trend is more obvious at
Ri = 1, where the local maximum of FHF in the lateral regional pair is much higher
than those of smaller Ri cases. The instability caused by FHF mainly develops on the
lateral sides of the array and accumulates as the fluid flows downstream. For relatively
small FHF, the instability transported downstream is not sufficiently strong to form a
large recirculation (figure 9b). For larger FHF, the accumulated instability promotes the
formation of large recirculation in the far wake. If the accumulation takes a much longer
distance than the length of the near-wake vortexes, the large recirculation would be
detached from the near-wake vortexes, which is the situation for figure 9(c).

For relatively small φ = 0.026, the distributions of FHF undergo similar changes with
an increment of Ri, except that the regional pairs are much larger compared with the
case of φ = 0.22. Also, an additional regional pair is presented behind the array for
Ri = 0.5 due to the pore effects of the array, which promotes the formation of detached
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Figure 9. Distribution of FHF for different Ri and φ as indicated.

recirculation downstream. For Ri = 1, the lateral instability caused by large FHF is also
large, which requires less distance for accumulation, so the large recirculation can be
formed more upstream of the array. This also indicates that the large recirculation is easier
to interact with the near-wake vortexes within such a short distance. The analyses are also
consistent with the observations made by Hu & Koochesfahani (2011), where the KH-like
small vortex structures shed on the two sides of the circular cylinder, which would merge
to form larger vortex structures further downstream. The merging process was found to
be similar to the ‘pairing’ process of ‘KH’ vortex structures in a free shear layer. As
already indicated in the last section, the phenomenon observed by Hu & Koochesfahani
(2011) might be from an earlier stage of the flow. Here, although KH vortexes were not
observed, their effects are still accumulated and would contribute to the formation of the
large recirculation further downstream.

The mean flow on the lateral sides of the array is closely related to FHF. Figure 10 shows
the mean u-component velocity and the corresponding FHF profiles with respect to y/D
at fixed x = D. The lateral surface of the array is at y/D = 0. For Ri = 0 (figure 10a,d),
drastic changes of both ū and FHF occur at y/D � 0.6. For the presented φ, ū first increases
to a maximum value and then decreases gradually to the free-stream velocity with y/D,
similar to that of flow around a solid cylinder. For fixed y/D, ū decreases as φ decreases
though the difference among the presented φ is small. In the range of y/D � 0.6, FHF first
increases rapidly to a maximum value and then decreases sharply to zero. The maximum
value of FHF as well as the range of y/D with non-zero FHF increase with decreasing
φ. This indicates that the porous lateral surface with flow injection promotes fluctuating
intensity. Overall, FHF does not have large effects on ū since FHF is relatively small with
O(10−3).

The mean u-component velocity profiles at very small Ri are also similar to those
presented in figure 10(a). For these cases, the boundary layer thickness is much smaller
than the side length of the array; therefore, the flow behaviour is expected to be similar to
that of flow over a flat plate and the flow can be described by the simplified equations of
the boundary layer flow (BLF) as

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 − gβ(T − Tc), (3.1a)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 , (3.1b)
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Figure 10. Variations of (a–c) the mean velocity and (d–f ) the FHF with y/D at fixed x = D for (a,d) Ri = 0,
(b,e) Ri = 0.5 and (c, f ) Ri = 1. The BLE solutions are obtained at φ = 0.0079.

with the divergence condition. The equations were demonstrated to be applicable for forced
convection as well as mixed convection with aiding buoyancy (Makinde & Olanrewaju
2010). Equations (3.1) can be transferred to the simpler ordinary differential equation
(ODE) by using the similarity variable method. The coupled ODE can then be solved
by using the shooting method. Preliminary calculations for forced and mixed convection
with very small opposing buoyancy are performed. The BLE velocity profile at Ri = 0.25
and φ = 0.0079 is presented in figure 10(a), which is similar to the numerical results
under forced convection, except for the velocity far away from the lateral surface due to
the difference between a real flat plate and a bluff body.

With the effects of larger opposing buoyancy (figure 10b,e), the differences in the ū and
FHF profiles among various φ are much larger. In the region close to the lateral surface
(inner region), ū either increases with a much smaller rate or varies non-monotonically
with y/D compared with that under forced convection due to the diffusion caused by the
reverse flow and the lateral vortex. The FHF in the inner region is relatively small (�0.01).
In the region further away from the lateral surface (outer region), ū increases drastically
with y/D. The corresponding FHF also varies tremendously with y/D. It is seen that ū
decreases with decreasing φ for φ � 0.026, but then increases as φ further decreases to
0.0079. This is also reflected in figure 10(e), where the maximum FHF is observed for φ =
0.026. The value of FHF also becomes much larger with opposing buoyancy. For small φ,
the maximum ū is no greater than the free-stream velocity since part of the fluid flows
through the array. The range of y/D with non-zero FHF also extends to approximately 1.5.

For even larger Ri = 1 (figure 10c, f ), the variation trends observed at Ri = 0.5 are more
obvious. The inner region becomes larger due to the growing size of the diffusing vortex.
The corresponding FHF is also small in this region. In the outer region the maximum ū for
all φ becomes even smaller since more fluid flows through the array, which also indicates
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that the resistance of the array is smaller for larger Ri. The region with the largest variation
of ū and non-zero FHF also extends to y/D = 3 for φ = 0.0079. Overall, the enhanced
buoyancy and the porous matrix intensify the fluctuations.

Obviously, (3.1) cannot be directly applied to flow with relatively large opposing
buoyancy due to the formation of lateral vortexes. However, the equations still produce
reasonable results if the viscosity is modified with an appropriate value. For relatively
large Ri, the whole domain can be divided into the inner region close to the boundary and
the outer region for the rest of the domain. The variable at the interface is assumed to be
known from the direct numerical simulation. The modified viscosity (νe) in each region is
determined from trial and error. It is seen in figure 3.1(b,c) that the BLF solutions agree
well with the numerical results when νe is applied. For Ri = 0.5, νe/ν = 8 and 1.6 for inner
and outer regions, respectively; for Ri = 1, νe/ν = 70 and 4 for inner and outer regions,
respectively. In the trial and error process, νe is found to increase with increasing Ri and/or
decreasing φ. Also, a more accurate estimation of νe is expected to follow the variation
trend of FHF with y/D (see figure 10e, f ), i.e. νe first increases and then decreases with
y/D, indicating that νe is highly related to the fluctuations. The modified viscosity mainly
adds artificial dissipation to the flow, which is quite similar to the concept of eddy viscosity
in turbulence modelling.

3.2. The force coefficients
The fluctuating force coefficients exerted on the whole array are considered in this section.
Figure 11 shows the representative phase portraits of CD and CL at φ = 0.0079 and
Ri � 0.5. The corresponding power spectra density (PSD) obtained from the time series of
CL is also presented. At Ri = 0.5 (figure 11a,d), the phase portrait presents a very narrow
band of orbits similar to the limit cycles. The PSD shows a single sharp peak at St = 0.092,
indicating that it is still a periodic (P) flow. The St for the peak amplitude depicts the
frequency of vortex shedding of the near-wake vortexes. For Ri = 0.75 (figure 11b,e),
the phase portrait becomes more complicated with wide bands of cycling orbits. The
corresponding PSD also shows some noisy power spectra surrounding the peak, presenting
periodic (P*) behaviours that are different from those in figure 11(a,d). The phase portrait
is even more complex for Ri = 1 (figure 11c), presenting direct orbits from one ‘wing’ to
the other. The PSD (figure 11f ) shows distinctly three peaks with comparable amplitudes,
which is denoted as quasi-periodic (QP).

The dynamic behaviours are closely related to the vortexes formed behind the rear side
and on the lateral sides of the array. A summary of the flow behaviours is also provided
in figure 12 for Ri � 0.5 and φ � 0.22, along with the indications of flow patterns in
the presented range of parameters. The dynamic behaviours for P-1, P-2 and P-3 are
all periodic since the near-wake vortex shedding is the major cause of fluctuation. The
behaviours in the P-4 region are also periodic because the large recirculation is detached
from the near-wake vortex without influencing the dynamic behaviour of the integrated
forces.

In P-5 and P-6 regions, different types of behaviours are shown. For either smaller
Ri or larger φ, the periodic behaviours are observed because the large recirculation is
only weakly connected with the near-wake vortex and, therefore, has negligible effects
on the periodicity (e.g. figure 11a,d). For larger Ri � 0.75, the P* behaviour occurs
(e.g. figure 11b,e). This is because the large recirculation is moderately connected with
the near-wake vortex, affecting the original vortex shedding mode to some extent. For
Ri = 1 at relatively small φ, behaviours of noisy subharmonic and quasi-periodic appear.
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Figure 11. Phase portrait (a–c) and PSD (d–f ) at fixed φ = 0.0079 for (a,d) Ri = 0.5, (b,e) Ri = 0.75, (c, f )
Ri = 1.
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Figure 12. Power spectra density behaviours of the array-scale force coefficients, all other points are periodic.

In this circumference, the large recirculation is strongly connected with the near-wake
vortexes, which affects the integrated force with a different frequency. Also, large parts
of the lateral vortexes penetrate the array, which gives rise to a third distinct peak of the
PSD. Here, the difference between quasi-periodic and noisy subharmonic is due to the
relative amplitudes of the three peaks. For noisy subharmonic, the subharmonic peaks due
to the large recirculation and the lateral vortexes are evidently smaller than that of the
fundamental peak; while for quasi-periodic, the subharmonic peaks are comparable to the
fundamental peak.

As indicated above, the case with φ = 0.0079 and Ri = 1 shows the most noisy
behaviours for the investigated range of parameters. The observations also support the
results and analyses in the previous study (Tang et al. 2020) that the critical Re for
the transition from steady to unsteady flow past a cylinder array is the smallest for
φ = 0.0079, which is due to the interactions of inertial and viscous forces within the array.
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Figure 13. Variations of CL
′
rms with (a) Ri and (b) φ.

Here, the opposing buoyancy intensifies the interactions of forces between cylinders,
which is expected to further decrease the critical Re. Although the noisy behaviour
contributes to the triggering of unsteadiness, it does not necessarily result in large
fluctuations as well as the large mean recirculation in the far wake. This is consistent
with the observation that the largest recirculation downstream occurs at φ = 0.026 rather
than φ = 0.0079 (figure 5a). The large recirculation in the far wake mainly results from a
combined effect of the complexity and the amplitudes of the fluctuations.

Figure 13(a) shows the variation of CL
′
rms with Ri at different φ. For φ = 1, CL

′
rms

increases with Ri, consistent with the previous study (Sharma & Eswaran 2004). The CL
′
rms

of φ = 0.66 are noticeably smaller than that of other φ for the investigated range of Ri. For
an array with φ = 0.22, CL

′
rms also increases monotonically with increasing Ri but with

much larger values. This is because the interacting forces in the array become more active,
resulting in more intense fluctuations than the solid square cylinder. For φ = 0.0079,
CL

′
rms also increases with Ri, but with a trivial increment for larger Ri. The increasing

rate declines when Ri is larger. The variation trends are also similar to those of CL
′
rms with

Re in the previous study (Tang et al. 2020). The variation trend of the fluctuation of CD
with Ri is also similar to that of CL, thus not repeated here.

The variations of CL
′
rms with φ at fixed Ri are presented in figure 13(b). For all Ri,

CL
′
rms decreases as φ decreases from 1 to 0.66, which implies that the compact array of

circular cylinders with round corners could decline the intense fluctuations brought about
by the sharp corners of the square cylinder. The discontinuity is also revealed in figure 2,
where P-4 presents for both φ = 1 and 0.42 while P-3 presents for both φ = 0.56 and
0.66. For φ � 0.063, CL

′
rms decreases with decreasing φ, showing a peak value of CL

′
rms

in the investigated range of φ. This results from the changes in interacting force among the
cylinders. As the distance between the cylinders becomes larger, the interaction changes
from the viscous-force-dominated interaction to the inertial-force-dominated interaction,
which decreases the coherent forces within the array.

The Strouhal number for the array-scale vortex shedding (Stv) is also investigated. For
most cases, the flow is periodic so that the shedding frequency of vortexes is easy to detect.
For certain cases with noisy behaviours (e.g. figure 11f ), the frequency of the highest
power is obtained. Figure 14(a) shows variations of Stv with Ri at different φ. For φ = 1,
Stv decreases monotonically with increasing Ri, the trend of which is consistent with
the previous studies (Chang & Sa 1990; Sharma & Eswaran 2004; Hu & Koochesfahani
2011). It is also observed that Stv does not vary much among cases with φ � 0.22. As φ
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Figure 14. Plot of Stv varying with (a) Ri and (b) Rieff for different φ as indicated.

decreases, the decreasing rate of Stv with Ri becomes larger. The minimum Stv � 0.065 is
obtained at φ = 0.0079 and Ri = 1. The decreasing trend of Stv with either increasing Ri
or decreasing φ can also be observed from the instantaneous temperature fields (figure 4).

Figure 14(b) shows that the Stv-Rieff curves of all cases are almost collapsed into the
same curve when Ri is modified as the effective Richardson number (Rieff ). For mixed
convection around the solid cylinder, Ri accounts for the buoyancy force induced by
heat transfer from the cylinder surface. However, for the cylinder array, the effective
Ri should be considered due to the combined effects of the upward buoyancy-induced
reverse flow within the array and the blockage effect of the array. Thus, the Rieff can be
regarded as the multiplication of a shape factor rs and Ri, with rs closely related to the
φ of the array. For compact arrays with a large φ, the combined effects are fairly small,
i.e. Rieff � Ri. The permeability of the array increases as φ decreases. Thus, for the array
with a relatively small φ or larger permeability, the upward buoyancy-induced reverse flow
becomes stronger and the combined effects are much larger, i.e. Rieff > Ri. Here, the shape
factor rs is estimated somewhat empirically. For φ � 1, rs � 1. For smaller φ, rs > 1. In
the range of the investigated Ri and φ, the rs is found to satisfy a linear relationship,

rs = Rieff /Ri = −Ae
√
φ + Be for φ � 0.22, (3.2)

with the coefficients of Ae and Be being 3.69 and 3.02, respectively. The collapsed curve
can be fitted into a polynomial relationship of Stv = AtRi2eff − BtRieff + Ct, where the
coefficients of At, Bt and Ct are 0.0077, 0.0498 and 0.143, respectively. Besides, the
collapsed curves with respect to Rieff are only observed for Stv rather than CD and CL

′
rms.

This is because Stv is mainly dependent on the geometry while other parameters are not
only dependent on the geometry but also the recirculating wake.

The mean drag coefficients exerted on the array of cylinders also carry important
information on flow through the array under the effects of opposing buoyancy. Locally,
the integrated drag coefficient of an individual cylinder (Cdij) can be calculated for each
element. Since the variation of Cdij in the x direction is much larger than that in the
y direction, Cdij of the cylinders in the fixed row (j = 6) are calculated and presented
in figure 15. In general, the variation trends of Cdij with i are the same for different
combinations of Ri and φ, i.e. Cdij decreases monotonically as the position of the cylinder
approaches the rear of the array. This is due to the decreased velocity of the inertial flow as
it penetrates deeper into the array and comes into the reverse buoyant flow. Also, for both
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Figure 15. Variation of the drag coefficient of an individual cylinder (left y axis) and the Eulerian-averaged
velocity (right y axis) with fixed j = 6 for (a) φ = 0.564 and (b) φ = 0.00785.

φ, Cdij at a smaller Ri is larger than that at a larger Ri, demonstrating that the opposing
buoyancy within the array weakens the drag of each cylinder. The Cdij of cylinders close to
the rear of the array can be negative since the buoyancy dominates over the inertial force.
It is also seen that Cdij at φ = 0.0079 (figure 15b) is much larger than that at φ = 0.56
(figure 15a) for fixed Ri. This seems contradictory to the observation that more fluid flows
through the array for smaller φ. Nevertheless, it is reasonable because the viscous force
exerted on an individual cylinder largely increases as its size decreases and the fluid is
mainly convected through the array in an inertially dominated region outside of the viscous
dominated region.

Besides, figure 15 also presents the Eulerian-averaged velocity (〈ū〉) in a small square
region defined by the centre of each cylinder and a side length of d + s. The small
square region can be considered as a representative elementary volume (REV) from a
macroscopic perspective of the porous body (the array). The variation trends of 〈ū〉 with
increasing i are similar to those of Cdij for different φ and Ri. For both φ, 〈ū〉 is smaller
for larger Ri due to the reverse flow. For small φ, the velocity within the array is still small
since fluid mainly flows around the array due to the non-trivial drag. It is also seen that the
absolute value of 〈ū〉 at φ = 0.56 is ∼O(102) times smaller than that at φ = 0.0079, while
the absolute value of Cdij at φ = 0.56 is � O(10) times smaller than that of φ = 0.0079.
This can be explained by the different permeabilities of the two arrays.

Considering the array of heated cylinders as a porous medium, the flow through the
array in the x direction is described by the following equation based on Darcy’s law:

ufφv = K
μ

[
−βg(Th − Tf )− ∂pf

∂x

]
. (3.3)

Here the subscript f denotes the intrinsic quantity that is averaged over the fluid phase area
of the porous medium in a REV based on the averaging volume theory (e.g. Whitaker 1967;
Travkin & Catton 2001); φv is porosity that satisfies φv + φ = 1 and K is permeability.
Since uf is mainly affected by the drag force of the porous medium in the x direction,
the variation of uf in the y direction is much smaller than that in the x direction. It is
noted that (3.3) is based on the averaged flow within the array, so the unsteady term is
not included. The Darcy law is considered valid since the mean flow velocity within the
array is quite small, resulting in a small pore Reynolds number (Rep) no greater than ∼2
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Opposing-buoyancy mixed convection through cylinder arrays

for all the investigated cases (Nield & Bejan 2006). Consider uf = 〈ū〉, K can be estimated
for each REV. The estimated K does not vary much with x. Note that K can be both
positive and negative due to the signs of the drag coefficient and the velocity. For φ =
0.56, the averaged Darcy numbers (〈Da〉 = 〈K〉/D2) are approximately 2.8 × 10−5 and
1.3 × 10−5 for Ri = 0.25 and Ri = 0.75, respectively; for φ = 0.0079, the averaged 〈Da〉
are approximately 2.2 × 10−3 and 2.5 × 10−3 for Ri = 0.25 and Ri = 0.75, respectively.
The same order of magnitude of the 〈Da〉 indicates that Ri does not have large effects on
the overall permeability of the array.

This can also be demonstrated by using the semi-empirical formula (Tang et al. 2019)
based on Darcy’s law for calculating the constant permeability of the array

K = D2

Ndπ(k0 − k1
√

Rd + k2Rd)
, (3.4)

where N is the number of constituent elements; Rd is the Reynolds number of an
individual cylinder calculated from Rd = 〈Ū〉d/ν with 〈Ū〉 being the Eulerian-averaged
velocity (under forced convection) within the array. The geometry coefficients k0, k1, k2
can be estimated from the k0-φ, k1-φ, k2-φ relationships (Tang et al. 2019) via linear
interpolation. The reasons for choosing this formula are that it was obtained from the drag
force exerted on arrays of cylinders similar to the current geometry configuration and it
was demonstrated to be more applicable to porous media with very small φ compared
with the Carman–Kozeny equation. The estimated Da = 〈Da〉 ranges from 3.6 × 10−5 to
2.4 × 10−3 for φ decreasing from 0.56 to 0.0079, which is very similar to those obtained
from averaging the local K.

We next investigate the integral parameters of force coefficients for the whole array.
Figure 16(a) shows variations of CD with Ri at representative fixed φ. For a solid square
cylinder (φ = 1), CD initially decreases slightly and then increases with increasing Ri.
This trend qualitatively matches that of flow around a solid circular or square cylinder
under opposing buoyancy in the previous studies (Sharma & Eswaran 2004; Hu &
Koochesfahani 2011), though different Re and Pr were considered. This trend mainly
results from the combined effects of the viscous drag coefficient (CDv) and pressure drag
coefficient (CDp). As shown in figure 17(a), CDv decreases with Ri due to the stronger
reverse flow; while CDp increases with Ri since the flow separation occurs more upstream
of the solid cylinder, forming a larger pair of vortexes. For flow around a solid bluff body
at Re = 100, the total drag is mainly dominated by the pressure drag, therefore, the total
drag tends to increase with Ri, except at very small Ri.

Contrastingly, for φ = 0.66, CD decreases quadratically with increasing Ri. This is
because part of the pressure drag decreases with increasing Ri as the fluid flows through
the array. For larger Ri, the flow separation occurs more upstream of the array so that part
of the pressure drag still increases. The competence effects of the decreased and increased
pressure drag give rise to the ultimate value. Also, the viscous drag for the compact array
decreases more evidently than that of the solid square cylinder because of the larger surface
area as well as the reverse flow within the array.

As φ further decreases, CD decreases almost linearly with Ri. The fitting line with linear
regression can be expressed as

CD = AdRi + Bd for φ � 0.22, (3.5)

where the constant Ad decreases and Bd increases with decreasing φ. The constants Ad and
Bd are approximately −1.5 and 1.8, respectively, for φ � 0.026. The quality of the linear
regression fit is assessed by the coefficient of determination R2, which is no less than 0.99
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Figure 16. Variations of CD with (a) Ri and (b) φ.
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Figure 17. Pressure and viscous drag coefficients for (a) φ = 0.66, 1 and (b) φ = 0.22, 0.00785.

for the range of φ. Since CDv decreases almost linearly with Ri, the linear relationship of
(3.5) indicates that the buoyancy within the array, rather than the vortex, has a major
effect on CDp. The reason might be that the large recirculation can be detached from
the array for φ � 0.22. As the effect of the recirculating wake on the pressure drag is
trivial, the pressure drag is mainly associated with the pressure difference between the
front and rear surfaces of the array. An illustrative plot is also presented in figure 16(a),
where the pressure difference without buoyancy force is (p1 − p2) and with buoyancy
force is (p1 − p4). The magnitude of buoyancy (|B|) can be expressed as |B| = p3 − p4.
Considering p2 = p3, we have ( p1 − p4) = ( p1 − p2)− ( p4 − p3) = ( p1 − p2)− |B|,
which demonstrates that ( p1 − p4) is linear to |B|. As |B| or Ri increases, (p1 − p4)
decreases, resulting in decreased pressure drag. Figure 17(b) also shows that CDp becomes
comparable to CDv as φ decreases. Both CDp and CDv decrease linearly with Ri.

Figure 16(b) shows the variation of CD with φ at fixed Ri. For all Ri, a decrease in CD is
observed as φ decreases from 1 to 0.66, which is mainly owing to the different peripheral
shapes between a compact square array and a solid square cylinder (see figure 1b). For
Ri = 0, CD increases with decreasing φ when φ � 0.66, which is due to the increasingly
strong viscous force as the Reynolds number of an individual cylinder decreases. For φ
smaller than a threshold value, the viscous drag can be dominant over the pressure drag,
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Figure 18. The variation of the local Nusselt number on the surface of an individual cylinder for (a) φ = 0.56
and (b) φ = 0.00785.

therefore, the total drag increases though the pressure drag still decreases with decreasing
φ. Note that, for φ smaller than the low limit investigated here, CD is expected to decrease
with decreasing φ since CD → 0 as φ → 0. This would result in a peak CD in a wider
range of φ, similar to those observed in the previous studies on flow through and around a
permeable bluff body (Noymer, Glicksman & Devendran 1998; Tang et al. 2019).

For Ri = 0.5, CD first decreases and then slightly increases with decreasing φ. The
firstly decreased drag is mainly due to the decreased pressure drag brought about by the
opposing buoyancy. As φ further decreases, the viscous drag largely increases due to the
reason stated above. The combined effects of the decreased pressure drag and the increased
viscous drag give rise to the essentially unchanged CD at relatively small φ.

The trend of variation is more apparent for Ri = 1. It is observed that the valley CD
occurs at a much smaller φ compared with the Ri = 0.5 case. The reason is that the
pressure drag decreases to a greater extent as the buoyancy force gets stronger. Although
the viscous drag increases with decreasing φ, its value largely decreases due to the stronger
reverse flow in the array. Thus, the contribution from the viscous drag to the total drag is
very small unless the pressure drag drops to a similar value, which usually occurs at very
small φ while the upward buoyancy-induced reverse flow is stronger. Apart from this, the
peak CD is also expected to be observed at a very small φ for the larger Ri cases.

3.3. The mean heat transfer coefficients
The mean heat transfer coefficients are also investigated. Figure 18 shows the variations of
the local Nusselt number Nud with angle γ (degree) on the rigid surfaces of two cylinders
labelled as (i, j) = (1, 6) and (i, j) = (10, 6) for different φ and Ri (zero angle is on top
of each cylinder). Only half of the Nud distribution is shown since the flow around each
cylinder in the column j = 6 is almost symmetric about the centreline of the array.

For relatively large φ (figure 18a), Nud of the first cylinder (i = 1) decreases
monotonically for γ < 90, and is approximately zero for γ � 90. On the contrary, Nud
of the tenth cylinder (i = 10) is around zero for γ < 90, and increases monotonically
for γ � 90. This is because of the different directions of the incoming flow for the two
cylinders. The fluid actually flows upward around the tenth cylinder due to buoyancy.
Also, the flow velocity within the array is so small that convection hardly occurs. It is also
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Figure 19. Variation of the Nusselt number of an individual cylinder (left y axis) and the Eulerian-averaged
temperature (right y axis) with fixed j = 6 for (a) φ = 0.564 and (b) φ = 0.00785.

observed that Nud of the first cylinder at Ri = 0.25 is slightly larger than that at Ri = 0.75,
while the opposite trend is seen for the tenth cylinder. This demonstrates that the opposing
buoyancy would decrease the heat transfer rate of the first cylinder and increase the heat
transfer rate of the tenth cylinder. The Nud of the first cylinder is twice larger than that
of the tenth cylinder since the inertial flow is stronger than that of the buoyancy-induced
reverse flow.

For small φ = 0.00785 (figure 18b), the effects of buoyancy on the heat transfer rate are
much larger. This is expected as discussed in § 3.1. At a smaller φ, the buoyancy-induced
flow becomes stronger due to the lower blockage effect of the array, which thus has an
enhanced effect on the heat transfer rate. For the first cylinder, Nud decreases with γ .
At Ri = 0.25, Nud is noticeably larger than that at Ri = 0.75 for the whole range of γ .
Compared with the compact array case, Nud at γ = 0 is smaller, but Nud at γ � 90 is
much larger due to stronger convection. For the tenth cylinder, Nud also shows the opposite
variation trend with γ , i.e. Nud increases with γ . At Ri = 0.75, Nud is much higher than
that at Ri = 0.25 because the buoyancy induced is stronger at the rear of the array for larger
Ri. Overall, Nud of the first cylinder is four times larger than that of the tenth cylinder due
to the combined effects of the penetrating inertial flow and the buoyancy-induced reverse
flow within the array.

The integrated Nusselt number over the surface of an individual cylinder can better
reflect the overall trend of the heat transfer rate through the array. Figure 19(a) shows the
variations of the Nusselt number for an individual cylinder Nudij with i in the fixed column
of i = 6. It is seen that Nudij of the first and tenth cylinders are much larger than Nudij

of the other cylinders. The Nudij of cylinders in the middle of the array are almost zero
(∼5.25 × 10−3), which indicates that conduction is dominant over convection within the
array. As also indicated in figure 18, Nudij of the first cylinder is much larger than that of
the tenth cylinder. The corresponding REV-averaged temperature 〈T̄〉 first increases, then
remains at high values for 2 � i � 9, and finally slightly decreases due to the penetrating
vortex at the rear of the array. Overall, both Nudij and 〈T̄〉 vary little among different Ri,
implying that the heat is almost trapped within the compact array and is not affected by
the buoyancy or the inertial forced flow.
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Figure 19(b) shows Nudij at a very small φ. The effects of Ri on both Nudij and 〈T̄〉
are much larger compared with the compact array case. For Ri = 0.25, Nudij continually
decreases with i. Correspondingly, 〈T̄〉 increases with i, implying that less heat is
transferred from the cylinder to the fluid within the array. For Ri = 0.75, Nudij first
decreases with i and then increases at the end of the array. Correspondingly, 〈T̄〉 first
increases with i and then decreases at the end of the array. The sudden increase in Nudij
and decrease in 〈T̄〉 is mainly owing to the entrainment of cold fluid at the rear surface of
the array. In general, Nudij for the small φ case is larger than that for the compact array
case. Also, it is observed that Nudij at Ri = 0.25 is larger than those at Ri = 0.75 for i � 9,
while the opposite trend occurs for i > 9. This is because the inertial force is retarded
as fluid flows through the array and the buoyancy is dominant over the inertial force for
cylinders adjacent to the rear surface of the array.

Moreover, the corresponding variation trends between Nudij and 〈T̄〉 indicate a
theoretical relation between them. Considering the array of cylinders as a porous medium,
the energy equation based on local thermal non-equilibrium can be expressed as (Nield &
Bejan 2006)

ρc
(

uf
∂Tf

∂x
+ vf

∂Tf

∂y

)
= k

(
∂2Tf

∂x2 + ∂2Tf

∂y2

)
+ hf (Th − Tf ), (3.6)

where the subscript f is previously introduced in (3.3). The intrinsic-averaged temperature
Tf in (3.6) is considered to be equal to the REV-averaged temperature 〈T̄〉 from the direct
numerical simulation. The local heat transfer coefficient hf characterizes the heat transfer
from the solid cylinders to the fluid phase in the porous medium. For the present flow
configuration, Tf is largely influenced by advection related to uf and the variation of Tf in
the x direction is much larger than that in the y direction; thus, the energy equation can be
simplified to

ρc
(

uf
dTf

dx

)
= kf

d2Tf

dx2 + hf (Th − Tf ). (3.7)

In order to simplify the analysis, uf is assumed to be known and can be obtained from the
direct numerical simulation. Thus, the general solution of (3.7) can be written as

Tf = c1er1x + c2er2x + c/b, (3.8)

where r1 = 0.5(−a + √
a2 − 4b), r2 = 0.5(−a − √

a2 − 4b) with a = −ufρcp/k, b =
−hf /k and c = −hf Th/k. The coefficients of c1 and c2 are obtained from the boundary
conditions as

c1 = Ti − Th − c2, c2 = To − Th + Ther1D − Tier1D

er2D − er1D . (3.9a,b)

Here, the temperature at the inlet boundary (Ti) and the outlet boundary (To) can also be
obtained from the direct numerical simulation. It is seen that the relationship between hf
and Tf is very complicated with the effects of uf .

We next investigate the mean Nusselt number (Nu) of the whole array. From (2.8), we
know that the Nusselt number definitions for the individual cylinder and the whole array
are actually the integrals of the local Nusselt number over the individual cylinder surface
and all the cylinder surfaces, respectively. For ease of comparison, the mean Nusselt
number averaged over the enclosure surface area of an array or a solid square cylinder
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Figure 20. Variations of Nua with (a) Ri and (b) φ. Here H & K (2011) is short for Hu & Koochesfahani
(2011).

is calculated as Nua = Nu/(4D) for all cases. Figure 20(a) shows the variation of Nua
with Ri at different φ. For φ = 1, Nua is approximately 10 for the range of Ri, which
does not differ much from the experimental result for mixed convection around a solid
circular cylinder (Hu & Koochesfahani 2011). For smaller φ � 0.22, Nua is noticeably
larger for the investigated range of Ri. It is observed that Nua decreases monotonically with
increasing Ri. This seems contradictory to the expectation that more intense fluctuations at
smaller φ would promote the overall heat transfer. However, the fluctuations mainly exist
on the lateral sides and the wake region of the array instead of being around the individual
cylinder surfaces in the array. The overall heat transfer rate is therefore significantly
affected by the opposing buoyancy. Besides, larger opposing buoyancy also gives rise to
a smaller frequency of the alternating flow behind the array, which takes less heat away
from the array, as can be observed by comparing figure 4(b,e).

Also, it is found that Nua decreases almost linearly with Ri for φ � 0.22. The linear
regression fit can be expressed as

Nua = −AnRi + Bn for φ � 0.22. (3.10)

The expression is similar to that of CD, except that the coefficients An and Bn here are
largely dependent on φ. The corresponding coefficient of determinant R2 is no less than
0.98 for φ � 0.22, which increases with decreasing φ. The overall heat transfer of mixed
convection can be decomposed of heat transfer from forced (positive effect) and buoyant
convection (negative effect). As the buoyant convection increases, heat transfer of mixed
convection decreases. Also, since the averaged temperature within the array increases, the
heat transfer coefficient must decrease.

Figure 20(b) shows Nua as a function of φ. For fixed Ri, Nua is observed to increase
with decreasing φ. The larger Nua at smaller φ is mainly because of more fluid flowing
through the array and convecting heat away from individual cylinders. Also, the interaction
within the array is more intense, resulting in the transport of FHF further downstream.
The increasing rate with decreasing φ however decreases at larger Ri since the opposing
buoyancy has an opposite effect on heat transfer. It is also observed that, for larger φ, Nua
is almost the same for different Ri. This is because the heat exchange mainly occurs on
the outer boundaries of the array and fluid hardly flows into the array. The inertial flow
and opposing thermal buoyancy within the array do not have much influence on the heat
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Figure 21. Variations of rn with (a) Ri and (b) φ.

transfer rate. The averaged temperature also indicates that the heat transfer rate is much
larger at small φ, but would decrease with increasing Ri.

Define the ratio rn = Nua/Nuaf , with Nuaf being the averaged mean Nusselt number for
forced convection. Figure 21(a) presents variation of rn with Ri. For φ = 1, as Ri increases,
rn first decreases and then recovers at Ri = 1. Similar variation trends are also observed
for relatively large φ � 0.42, in which cases most of the fluid flows around the array. The
decreased rn is mainly owing to the decreased heat transfer rate on the lateral sides of
the array. The increased rn at relatively large Ri is mainly because of more ambient fluid
being entrained into the wake region with an alternating separating and attaching flow,
which promotes stronger heat exchange on the rear surface of the array. The increasing
trend of Nua with Ri can also be observed for flow over a triangular surface at large Pr =
50 (Chatterjee & Ray 2014) as well as for flow past two circular cylinders at a specific
pitch-to-diameter (Salcedo et al. 2017). The monotonically decreasing trend of Nua with
Ri was also reported at larger Re = 135 (Hu & Koochesfahani 2011). It is noted that the
decreasing trend easily exists for smaller Pr due to stronger heat conduction compared with
heat convection, as demonstrated in the previous studies (e.g. Morgan 1975; Chang & Sa
1990; Sharma & Eswaran 2004) on flow around a heated solid square cylinder. However,
one can also find the exception of Fornarelli et al. (2017) that the global Nusselt number
increases with Ri at Pr = 0.7 for flow past an array of in-line cylinders, which is on account
of the increased fluctuating intensity.

For φ � 0.22, rn decreases almost linearly with increasing Ri and is smaller than those
of compact arrays or the solid square cylinder. The linear fitting can be obtained as

Nua
/

Nuaf = 1 − (Arφ + Br)Ri for φ � 0.22, (3.11)

with R2 no less than 0.98. The constant coefficients Ar and Br are −1.175 and 0.4694,
respectively. Considering that Ri = Gr/Re2, (3.11) is similar to the Morgen model
expressed as rn = (1 − AGrm/n/Re)n. The constants A, m/n and n were set as 0.548,
0.531 and 0.471, respectively, as suggested by Morgan (1975). The results from the
Morgen model are different from those of Chang & Sa (1990) and the present result.
The limitation of the Morgen model for contra flows comes from the complex secondary
flows, which significantly affects the predicted results. However, the Morgen model seems
to well predict rn for φ � 0.22 with the same A and m/n but adjusted values of n, as
presented in figure 21(a). The percent error is no greater than 5 % by using the least
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square fitting. A linear relationship is also found for the coefficient n in the Morgen model
as n = −0.722

√
φ + 0.543 for φ � 0.22.

Figure 21(b) presents variation of rn with φ at four fixed Ri. Contrary to the variation
trend of Nua (figure 20b), rn decreases with decreasing φ for each Ri. This is because
the increasing Nua is largely dependent on the increasing Nuaf with decreasing φ. As
the effects of Nuaf are removed, the decreasing φ promotes to larger opposing buoyancy
although Ri is fixed. The four lines in figure 21(b) also reveal a crossover point (φc = 0.38,
rnc = 0.92) that when φ � φc, rn increases with Ri and the difference among the presented
Ri is evidently large; for φ > φc, rn decreases with Ri and the difference among various Ri
is much smaller. This also applies to Nua presented in figure 20(b). Also, the crossover
point clarifies the observations in figure 21(a). When φ � φc, the linear relationship
between rn and Ri approximately applies, and rn can be roughly estimated by (3.11). For
φ > φc, the trend is nonlinear. The critical φc also somewhat corresponds to the change
point of the variation trends for CD (figure 16).

4. Summary and conclusions

A series of numerical simulations are performed for unsteady mixed convection through
and around arrays of 10 × 10 heated circular cylinders. The instantaneous flow and
heat transfer characteristics are found to be significantly modified by φ and Ri. In the
investigated ranges of φ and Ri, six flow patterns are identified based on the mean
recirculation regions, i.e. P-1: symmetric flow with near-wake vortexes; P-2: unsymmetric
flow with near-wake vortexes; P-3: unsymmetric flow with near-wake vortexes and lateral
vortexes; P-4: unsymmetric flow with near-wake vortexes, lateral vortexes and detached
far-wake vortexes; P-5: unsymmetric flow with near-wake vortexes, lateral vortexes and
connected far-wake vortexes (with near-wake vortexes); P-6: unsymmetric flow with
near-wake vortexes, lateral vortexes, connected far-wake vortexes and a small vortex pair
between lateral vortexes and near-wake vortexes. The first three patterns mainly appear at
relatively small Ri and/or large φ, which were also observed in the previous studies (see
§ 1) for flow around a solid cylinder. The last three patterns mainly exist at relatively large
Ri and/or small φ. Although previous experiments (Hu & Koochesfahani 2011; Guillén
et al. 2014) showed the appearance of large recirculation behind a solid cylinder at large
Ri, patterns P-4 to P-6 were not previously reported.

The formation of the large recirculation in patterns P-4 to P-6 is found to be correlated
with the instability of the fluctuating flow, which is largely affected by the FHF on the
lateral sides of the array. This is different from the near-wake vortex pair, which is mainly
formed by the flow separation from the rigid surface of the solid square cylinder or the
extended shear layer behind the array. For relatively small φ, the instability develops from
the lateral sides of the array, which is accumulated and transported to the far wake to
form a large recirculation that is detached from the near-wake vortexes. As φ further
decreases, the large recirculation is connected with the near-wake vortexes due to larger
flow instability.

Behaviours of the fluctuating force coefficients of the whole array are also found to
be closely related to the mean recirculation. The phase portrait of CD and CL shows that
the flow becomes more noisy as Ri increases as well as φ decreases. The PSD shows the
flow transition from periodic to quasi-periodic or noisy subharmonic as Ri increases (φ
decreases) for fixed φ (Ri). The amplitude of CL increases monotonically with Ri for fixed
φ and varies non-monotonically with φ for fixed Ri. It is found that Stv decreases with
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increasing Ri. Considering the effective Richardson number (Rieff ) based on the geometry
of the array, the Stv–Rieff curves of all cases are almost collapsed into the same curve.

The mean drag and mean heat transfer coefficients are also analysed. Both the local
drag coefficient and the REV-averaged velocity are found to decrease monotonically with
the streamwise distance. The permeability is estimated from the local drag and averaged
velocity, which does not vary much for fixed φ. The corresponding relation between
the local Nusselt number and the REV-averaged temperature is also revealed. Over the
investigated ranges of Ri and φ, the global CD is found to decrease greatly with increasing
Ri, the decreasing rate of which increases as φ becomes smaller. Also, the global Nua,
at large φ, initially decreases and then increases with Ri, while at small φ � 0.22, Nua
decreases almost linearly with Ri, similar to CD.

Finally, it is noted that the geometry configuration in the current study is somewhat
specific due to the in-line arrangement as well as the circular shape of the constituent
elements. A preliminary study on the effects of different arrangements is also conducted.
It is found that, for relatively large φ, the characteristics of flow and heat transfer through
and around a staggered array of cylinders are similar to those of flow past an in-line array
of cylinders, as expected since the fluid mainly flows around the array. For smaller φ, the
effect of staggered arrangements on the flow becomes more prominent since it alters the
path as well as the permeability of the flow through the array. Besides, the flow is expected
to present three-dimensional behaviours at relatively small φ as well as relatively large Ri
due to the fluctuations with different amplitudes. Therefore, the transition behaviour of
three-dimensional flow with respect to Ri for more complicated arrangements of cylinder
arrays (e.g. staggered and random) as well as other shapes of constituent elements will be
considered in the future.
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Appendix A

A.1. Mesh, time step and domain independence tests
Figure 22 shows a typical mesh for the present calculations. Region I represents the area
of the array with 10 × 10 circular cylinders, as shown by the zoom-in plot. Each circular
cylinder resides at the centre of a small square patch where O-type mesh is used. The mesh
size stretches from the cylinder surface to the small patch boundary. Region II is the area
outside of the array with the vertical distance 41D from the inlet to the downstream side.
The mesh size stretches from the array enclosure surface to the computational boundaries.
Region III is the area in the far wake with a vertical length of 40D from the right boundary
of region II to the outlet boundary. The hyperbolic tangent function is used for stretching
cell sizes between limits.
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Region I

Region II

Region III40D

41D

Figure 22. Illustration of the computational grid for φ = 0.22.

Case Grids (I) Grids (II) Grids (III) CD CL
′
rms St Nu

1 80 × 560 134 × 560 89 × 140 1.196 0.2718 0.1345 8.506
2* 80 × 760 179 × 760 119 × 190 1.195 0.2715 0.1345 8.500
3 80 × 960 224 × 960 149 × 240 1.194 0.2712 0.1344 8.499

Table 1. Comparisons of the variables for different grid sizes. Grids (I), grids (II) and grids (III) denote the
number of grids in regions I, II and III shown in figure 22.

The mesh, time step and domain independence tests are performed under a typical
unsteady mixed convection condition of Re = 100, Pr = 7, s/d = 0.2, Ri = 0.25. The
independence tests for other Pr, s/d and Ri show similar results. Table 1 shows the grid
independence study for a fixed time step of 0.0005 and a fixed domain with NL = NR =
NT = 20D and NB = 60D. Different sets of grids are used in each region as indicated. The
percent differences between the first and second and between the second and third sets of
grids are no greater than 0.11 % for all variables, which demonstrates that all meshes are
sufficiently fine for the current problem. The overall difference for all variables between
second and third meshes is slightly smaller, thus, the mesh in case 2∗ is adopted.

The independence test for the time step is shown in table 2. Three dimensionless time
steps which successively decrease by half are used. The differences between cases 1 and 2∗
and between cases 2∗ and 3 are no greater than 0.2 % and 0.1 %, respectively. The results
show that the time discretization step of case 2∗ is sufficiently small for accuracy as well
as saving computational resources.
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Case δt∗ CD CL
′
rms St Nu

1 0.001 1.195 0.2719 0.1348 8.501
2* 0.0005 1.195 0.2715 0.1345 8.500
3 0.00025 1.195 0.2712 0.1342 8.498

Table 2. Comparisons of the variables for different time-step sizes.

Case NL NB CD CL
′
rms St Nu

1 10D 60D 1.230 0.2759 0.1373 8.560
2* 20D 60D 1.195 0.2715 0.1345 8.500
3 30D 60D 1.195 0.2737 0.1341 8.495
4 20D 50D 1.195 0.2735 0.1347 8.495
5 20D 70D 1.195 0.2714 0.1344 8.497

Table 3. Comparisons of the variables for different domain sizes.

For the domain independence test, calculations are performed with five sets of domains,
as indicated in table 3. From cases 1 to 3, the lateral length (NL) increases from 10D to
30D while the downstream length (NB) is fixed at 60D. All variables decrease with NL with
a larger successive discrepancy between cases 1 and 2∗. The percent difference between
cases 2∗ and 3 is no greater than 0.8 % for all variables, demonstrating that NL = 20D is
sufficiently large. For fixed NL, cases 4, 2∗, 5 show NB increasing from 50D to 70D. The
differences between cases 2∗ and 4 are no greater than 0.8 % and the differences between
2∗ and 5 are no greater than 0.1 %. Therefore, the domain of case 2∗ can be used for the
present study.

A.2. Validation
The validation is firstly performed for the steady flow around a circular cylinder under
forced convection. The steady regime is chosen here because the Reynolds number of an
individual cylinder (Red = U∞d/ν) within the array ranges from 1 to 9.2 corresponding to
fixed Re = 100 and varying φ. The Red is even smaller if the averaged velocity within the
array is used as the reference velocity scale. Table 4 shows the CD and Nua at various Re
for the present study as well as several previous studies. For the CD, the percent errors
estimated from the literature results (Tritton 1959; Takami & Keller 1969; Dennis &
Chang 1970) range from 0 to 3.1 %, 1 % to 4.2 %, 1.1 % to 2.2 % and 0.6 % to 5 % for
Re = 10, 20, 30 and 40, respectively. For the Nua, the percent errors computed from the
previous results (Dennis, Hudson & Smith 1968; Jafroudi & Yang 1986; Bharti, Chhabra
& Eswaran 2007; Biswas & Sarkar 2009) differ from 1 % to 3.1 %, 0.4 % to 4.6 %, 0
to 1.4 % and 0 to 6.6 % for Re = 10, 20, 30 and 40, respectively. Therefore, the current
numerical scheme is considered valid and the grid resolution around each circular cylinder
is sufficiently fine for the rest of the computations.

The local Nu is then calculated for steady flow around a solid circular cylinder
considering both forced convection and mixed convection with aiding buoyancy.
Figure 23(a) shows that the present results agree well with the previous studies (Dennis
et al. 1968; Biswas & Sarkar 2009) for Re = 10. At Re = 20, the present local Nu compares
well with that of Biswas & Sarkar (2009) for the whole range of angle (γ ) but is slightly
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Re = 10 Re = 20 Re = 30 Re = 40

Drag coefficient (CD)
Present 2.78 2.02 1.70 1.51
Takami & Keller (1969) 2.78 2.00 1.72 1.52
Dennis & Chang (1970) 2.87 2.05 — 1.54
Tritton (1959) 2.79 2.11 1.74 1.59

Average Nusselt number (Nua)
Present 1.84 2.44 2.89 3.25
Biswas & Sarkar (2009) 1.86 2.45 2.89 3.25
Jafroudi & Yang (1986) 1.82 2.43 2.85 3.20
Dennis et al. (1968) 1.90 2.56 — 3.48
Bharti et al. (2007) 1.86 2.47 — 3.28

Table 4. Validation of steady flow around a circular cylinder with forced convection (Ri = 0) by comparing
results with those in the literature at Pr = 0.7.
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0 20 40 60 80 100120140160180 0 20 40 60 80 100120140160180

Re = 10 Present
Re = 10 Dennis et al. (1968)
Re = 10 Biswas & Sarkar (2009)
Re = 20 Present
Re = 20 Badr (1984)
Re = 20 Biswas & Sarkar (2009)

Ri = 0.25 Present

Ri = 0.25 Badr (1984)

Ri = 2.0 Present

Ri = 2.0 Badr (1984)

Nu

γ γ

(a) (b)

Figure 23. Validation of local Nu on the cylinder surface at Pr = 0.7 for (a) forced convection (Ri = 0) and
(b) parallel flow with aiding buoyancy at Re = 20.

smaller than that of Badr (1984) at angles from 140 to 180◦. Figure 23(b) presents that
the current results overall match well with those from Badr (1984) for different Ri at fixed
Re = 20. The present Nu for Ri = 0.25 is slightly smaller than the literature result (Badr
1984) for 160 � γ � 180 (degrees).

It is also necessary to validate the numerical method for the unsteady flow around a solid
square cylinder with side length D to capture accurately the array-scale vortex shedding.
Table 5 shows the comparisons of the present results with those from the literature for
forced convection at Pr = 0.7 and Re = 100. The CD of the present study agrees well with
the previous two-dimensional numerical results provided by Sohankar et al. (1997) and
Sen et al. (2011) as well as the three-dimensional results from Saha et al. (2003) and Mahir
& Altaç (2019) with the percent errors ranging from 1.2 % to 5.2 %. The comparison with
three-dimensional results is considered meaningful since the three-dimensional effects
are fairly small at Re = 100. The present CL

′
rms compares well with the previous results

(Sharma & Eswaran 2004; Sen et al. 2011; Mahir & Altaç 2019), the percent errors of
which are from 3.4 % to 5.2 %. The CL

′
rms of Sohankar et al. (1997) however is much

smaller than the others. The St also shows a good agreement between the current and
literature results (Okajima 1982; Sharma & Eswaran 2004; Sen et al. 2011) with the
percent errors varying from 1.4 % to 5.2 %. The Nu shows the best consistency with the

949 A8-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.740


Opposing-buoyancy mixed convection through cylinder arrays

Mean drag coefficient (CD) The r.m.s. lift coefficient (CL
′
rms)

Present 1.450 Present 0.182
Sohankar, Norbergb & Davidson (1997) 1.478 Sharma & Eswaran (2004) 0.192
Sen et al. (2011) 1.529 Sohankar et al. (1997) 0.153
Saha, Biswas & Muralidhar (2003) (3D) 1.496 Sen et al. (2011) 0.191
Mahir & Altaç (2019) (3D) 1.433 Mahir & Altaç (2019) (3D) 0.176

Strouhal number (St) Mean Nusselt number (Nu)
Present 0.144 Present 4.000
Okajima (1982) 0.142 Sharma & Eswaran (2004) 4.010
Sen et al. (2011) 0.149 Mahir & Altaç (2019) 4.020
Sharma & Eswaran (2004) 0.152 Mahir & Altaç (2019) (3D) 4.032

Table 5. Validation of unsteady flow around a square cylinder with forced convection (Ri = 0) by comparing
results with those in the literature at Pr = 0.7 and Re = 100. Here 3D is short for three dimensional.

previous results (Sharma & Eswaran 2004; Mahir & Altaç 2019) among the calculated
variables, with the percent errors between 0.25 % and 0.8 %.
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