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There is a family of models with physical and human capital and R&D for which
convergence properties have been discussed [Lutz G. Arnold, European Economic Review
44, 1599–1605 (2000); Manuel Gómez, Studies in Nonlinear Dynamics and Econometrics
9(1), Article 5 (2005)]. However, spillovers in R&D have been ignored in this context. We
introduce spillovers in this model and derive the steady-state and stability properties. This
new feature implies that the model is characterized by a system of four differential
equations. A unique balanced growth path, along with a two-dimensional stable manifold,
is obtained under simple and reasonable conditions. Transition is oscillatory toward the
steady state for plausible values of parameters. We discovered that these features are due
to the presence of the R&D spillovers externality in the decentralized equilibrium.
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1. INTRODUCTION

Arnold (1998, 2000a) introduced a model with physical capital, human capital,
and R&D and studied its convergence properties, without considering spillovers in
the R&D technology. Funke and Strulik (2000) integrated three models as different
stages of economic development and presented a model with physical capital, hu-
man capital, and R&D similar to that in Arnold (1998) as a developed country stage.
Gómez (2005) showed that the convergence features of this model change dra-
matically when the predetermination of r is accounted for and fully characterized
the model convergence properties and derived stability conditions. In particular,
the model converges through a two-dimensional stable manifold with oscillatory
dynamics. Before these contributions, human capital–based growth models and
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R&D-based growth models were studied separately. Benhabib and Perli (1994)
showed that an endogenous-growth model with externalities in human-capital
accumulation yields indeterminacy of equilibria. Ladrón-de-Guevara et al. (1997)
studied the equilibrium dynamics of two extensions of the Uzawa–Lucas frame-
work, in which they discovered multiple equilibrium in a model with leisure,
but without externalities. Arnold (2000b, 2000c) demonstrated that the steady
state of the Romer (1990) model of R&D is globally saddlepoint stable. Eicher
and Turnovsky (2001) showed that a two-sector R&D-based nonscale growth
model is represented by a two-dimensional stable saddlepath with oscillatory
transitional dynamics. Arnold (2006) studied the stability properties of the Jones
(1995) model and concluded that there was a unique balanced growth path on a
two-dimensional stable manifold that showed monotonic transition for a broad
range of parameters. These last two articles demonstrated that the system of
differential equations to be analyzed in nonscale R&D growth models is of order
four.

We add spillovers in R&D to the Arnold (2000a) model and derive the equi-
librium and stability properties of the decentralized equilibrium of this model.
It is worth noting that the existence and high magnitude of spillovers have been
empirically proved by recent literature [e.g., Grilliches (1992); Porter and Stern
(2000)]. Engelbrecht (1997) and Barrio-Castro (2002) concluded that there were
statistically significant R&D spillovers in empirical specifications that included
human capital, but models that jointly consider human–capital accumulation and
R&D so far have not taken them into account. Additionally, we numerically
solve our model for the transition path to derive the steady state and its stability
properties.

The consideration of spillovers in the model provides a unique balanced growth
path. We also compare the decentralized equilibrium transition path with the opti-
mal one. In doing this we demonstrate that the spillovers’ externality is the crucial
feature driving the new properties described above. The system that describes the
optimal growth path is simpler than the system that describes the decentralized
equilibrium. However, it is also a stable equilibrium for reasonable values for the
parameters.

In comparison with the Arnold (1998, 2000a) model, whose stability properties
were studied in Gómez (2005), the consideration of spillovers increases the order
of the differential equations system to four (as in the nonscale R&D growth
models). Because of this, this article also constitutes an example of the analysis
of high-dimensional systems of ODEs in economics and of the possible technical
tools to use. In terms of results, it maintains the oscillatory convergence for typical
calibrations. It is also shown that this model allows a lower and more reasonable
value for the markup to fulfill the stability conditions in comparison to what is
found in Gómez (2005).

In comparison with Jones’s model, whose stability properties of the decen-
tralized equilibrium have been studied in Arnold (2006), the introduction of the
accumulation of human capital maintains the unique trajectory to the steady state.
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In contrast to what occurred in the Jones model, we show that this model presents
oscillatory convergence for typical and broad parameters’ values.

In Section 2 we present the model. In Section 3 we present the balanced growth
equilibrium and the stability analysis of the steady state. In Section 4 we calibrate
the model, give some examples, and solve the model numerically. At the end of this
section, we discuss the results and compare them with those from the transition
path for the social planner equilibrium. In Section 5 we conclude.

2. THE MODEL

This section rebuilds the Arnold (1998, 2000a) model by accounting for the
existence of spillovers in R&D.

2.1. Setup of the Model

Consider a closed economy inhabited by a constant population, normalized to
one, of identical infinitely lived households that maximize the intertemporal utility
function

∫ ∞
0

C1−θ

1−θ
e−ρtdt, ρ > 0, θ > 0, where C denotes consumption, ρ is the

time-discount rate, and θ is the relative–risk aversion coefficient, subject to the
budget constraint and the knowledge accumulation technology. Human capital,
H , can be devoted to production (HY ), education (HH ), and R&D (Hn) and
is calculated according to Ḣ = ξHH . The accumulation of human capital is
a nonmarket activity. R&D technology is the same as in Jones (1995), with no
duplication effects in human capital, given by ṅ = εHnn

φ, where 0 < φ < 1 is the
parameter that governs spillovers and n is the number of available varieties. φ > 0
implies that to some extent the development of new varieties depends on the stock
of previous available varieties: the “stand on the shoulders” effect. With φ = 0,
this would be the Arnold model described in Gómez (2005). The budget constraint
faced by the household is Ẇ = rW + w(H − HH) − C, where r is the return
per unit of aggregate wealth, W , and w the wage per unit of employed human
capital, H − HH . Let gz = ż

z
denote the growth rate of any variable z. The first-

order conditions for maximization of utility, using human capital accumulation
and household restrictions, give

gC = (r − ρ)/θ, (1)

gw = r − ξ. (2)

A single homogeneous final good Y is produced with Cobb–Douglas technology
Y = KβDηH

1−β−η

Y , with β > 0, η > 0, and β + η < 1. K is physical capital
and D is an index of differentiated goods given by D = [

∫ n

0 xα
i di]1/α , with

0 < α < 1, where xi is the amount used for each one of the n intermediate goods
and α governs the substitutability between varieties. The market for the final good
is perfectly competitive and its price is normalized to one. Profit maximization
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gives the inverse factor demands

r = βY

K
, (3)

w = (1 − β − η)Y

HY

(4)

and the inverse demand for intermediate goods

P(i) = ηY

nxα
x(i)α−1. (5)

Each firm in the differentiated-goods sector owns a patent for selling its variety
xi . Researchers are granted infinitely lived patents (v). Free entry into R&D
is assumed, so that w/ε = vnφ when innovations occur. Finally, no-arbitrage
requires that the capital gain (from the patent) plus profits is equal to investing
resources in the riskless asset v̇ +π = rv ⇔ v̇/v = r −π/v. Producers act under
monopolistic competition and maximization of operating profits πi = (pxi

− 1)xi

gives pxi
= 1/α and π = (1 − α)ηY/n.

Insertion of the differenced-goods equation into the resource constraint K̇ =
Y − ∫ n

0 xidi − C simplifies it to

K̇ = (1 − αη)Y − C, (6)

and subsquently the final-good production function may also be simplified to

Y 1−η = (αη)ηKβnη 1−α
α (u1H)1−β−η, (7)

where u1 = HY /H is the proportion of human capital employed in the final-good
production. Similarly, we also denote u2 = Hn/H as the share of human capital
allocated to research and u3 = HH/H as the share of human capital allocated to
human-capital accumulation.

2.2. The Dynamics of the Economy

The economy is characterized by the presence of physical-capital accumulation
(K̇ > 0), human-capital accumulation (Ḣ > 0), and R&D (ṅ > 0). We now
derive the system that describes the dynamics of the economy. From (1) and (6)
and then using (3), we obtain

gχ =
(

1

θ
− 1 − αη

β

)
r + χ − ρ

θ
, (8)

where χ = C/K . Departing from the growth rates versions of (7) and using (3),
(4) and then replacing gw by (2), we obtain

gr = −1 − β − η

β
(r − ξ) + η

β

1 − α

α
gn (9)
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Using (2), (4), and the free-entry condition and inserting the expression for
profits into the nonarbitrage condition, we obtain

u1 = (1 − β − η)(ξ + φgn)

ε(1 − α)ηψ
, (10)

where the term φgn measures the R&D spillovers externality. Using this last equa-
tion, the human capital accumulation function, and the definition ψ = H/n1−φ

(noting that u1 + u2 + u3 = 1), we obtain the growth rate of ψ :

gψ = ξ

{
1 −

[
(1 − β − η)(ξ + φgn)

(1 − α)η
+ gn

]
1

εψ

}
− (1 − φ)gn. (11)

We note that gn is no longer given as a function of χ and r , which would
be directly substituted into previous equations, as in previous contributions [e.g.,
Gómez (2005, p. 5)]. From (10), gu1 = (1 − φ)gn − gH + φġn/(ξ + φgn). Then
we note from (4) that gu1 = gY − gw − gH . If φ = 0 then gu1 = gn − gH ,
as in Arnold (2000a), and one could write gn = gr + 1−αη

β
r − χ − (r − ξ),

which would be substituted into (9) and (11). This would mean that the locus
ġn = 0 was independent of other variables in the model, and Arnold (2000) could
study convergence using two separate phase diagrams. However, with φ > 0, this
separability is lost. In this case, using (3), gK from (6), and (2), we obtain the
equation that describes the evolution of gn:

ġn = ξ + φgn

φ

[
gr + 1 − αη

β
r − χ − (r − ξ) − (1 − φ)gn

]
. (12)

The system composed of equations (8), (9), (11), and (12) describes the evolution
of the economy. We can further simplify equation (12), replacing gr from (9):

ġn = ξ + φgn

φ

{
(1 − α)η

β
r − χ + 1 − η

β
ξ +

[
η

β

1 − α

α
− (1 − φ)

]
gn

}
. (13)

This is the differential equation that enters the system, when the model is
compared to that in Arnold (2000).

3. BALANCED GROWTH EQUILIBRIUM

In this section, we first derive equations that describe the steady state and then
study the convergence properties around the steady state.

3.1. The Steady State: Existence

In this section, we present the equations that describe the steady state of the model
and demonstrate its existence.

https://doi.org/10.1017/S1365100509991155 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509991155


228 TIAGO NEVES SEQUEIRA

THEOREM 1. Let ξ > ρ and θ > 1. There is one unique positive steady state
of the model given by (r∗, χ∗, ψ∗, g∗

n), as follows:

r∗ =
θ

[
(1−β−η)

η
α

1−α
(1 − φ) + 1

]
ξ − ρ

θ
[

(1−β−η)

η
α

1−α
(1 − φ)

]
+ (θ − 1)

, (14)

χ∗ =
(

1 − αη

β
− 1

θ

)
r∗ + ρ

θ
, (15)

ψ∗ = ξ
[
g∗

n(1 − α)η + (1 − β − η)(ξ + φg∗
n)

]
(1 − α)ηε[ξ − (1 − φ)g∗

n]
, (16)

g∗
n = r∗(1 − θ) + θξ − ρ

θ(1 − φ)
. (17)

Proof. The shares of human capital to different sectors must be constant for an
interior steady-state solution. In particular, the fact that the share in human-capital
accumulation u∗

3 is constant implies by the human capital–accumulation function
that g∗

H is constant. With u∗
1 and u∗

3 constant, g∗
n and ψ∗ must be constant, by the

R&D function and (10). Thus g∗
H = (1 − φ)g∗

n. From constancy of ψ∗ and u∗
1

we can say that g∗
Y = g∗

K. This equality, the growth rates version of equation (7),
and the constancy of g∗

n, g∗
H , and u∗

1 imply that r∗, g∗
Y , and g∗

K are constant. Thus
χ∗ = (C/K)∗ is constant [to see this divide (6) by K]. We now derive necessary
and sufficient conditions for positivity. For r∗ > 0 we reach (A1 + 1)θξ > ρ

and θA1 + (θ − 1) > 0, where A1 = 1−β−η

η
α

1−α
(1 − φ). For χ∗ > 0, we have

(A1 +1)θξ > A2ρ [where A2 = θ(
1−αη

β
−1)−(θ(A1+1)−1)

(θ
1−αη

β
−1)

], which (if θ ≥ 1) is always

verified for r∗ > 0.1 For ψ∗ > 0 we reach (θ − 1)(A1 + 1)θξ + A1θρ > 0, using
that r∗ > 0. Finally g∗

n > 0 implies ξ > ρ if r∗ > 0. This condition together
with θ ≥ 1 simultaneously imply r∗ > 0, ψ∗ > 0 and χ∗ > 0. These two simple
conditions are sufficient for a feasible steady state.

Positiveness of ψ∗ is directly implied by the transversality condition on H. The
transversality condition on human capital may be written as

lim
t→∞ e−ρtλ2(t)H(t) = 0 (18)

(λ2 is the co-state of H ), which converts to (−ρ + λ̇2/λ2 + gH ) < 0. As λ̇2/λ2 =
ρ − ξ and g∗

H = (1 − φ)g∗
n, the transversality condition is equivalent to ξ −

(1 − φ)g∗
n > 0, which is equivalent to (θ − 1)(A1 + 1)θξ + A1θρ > 0, stated

above.

3.2. Stability

We will now analyze the dynamics of the model in the neighborhood of the steady
state.
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The analysis of the linearized system around the steady state will establish
that for most reasonable values, the system has two eigenvalues with negative
real parts. We also show that initial state conditions K(0), H(0), and n(0) are
sufficient to determine the initial point in the two-dimensional stable manifold;
thus the balanced growth path is uniquely determined. However, as in Eicher and
Turnovsky (2001, p. 95), because of the complexity of the model, we cannot rule
out the case of instability.

Linearizing the system (8), (9), (11), and (12) around its steady state
(r∗, χ∗, ψ∗, g∗

n) gives the following fourth-order system:

⎛
⎜⎜⎝

ṙ

χ̇

ψ̇

ġn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 1−β−η

β
r∗ 0 0 η

β
1−α
α

r∗(
1
θ

− 1−αη

β

)
χ∗ χ∗ 0 0

0 0 ξ − (1 − φ)g∗
n −B1 − (1 − φ)ψ∗

ξ+φg∗
n

φ

(1−α)η

β
− ξ+φg∗

n

φ
0 B2g

∗
n − B3

ξ

φg∗
n

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎝

r − r∗

χ − χ∗

ψ − ψ∗

gn − g∗
n

⎞
⎟⎟⎠ , (19)

where

B1 = ξφ
(1 − β − η)

(1 − α)η

1

ε
+ ξ

ε
;

B2 =
[

η

β

1 − α

α
− (1 − φ)

]
;

B3 =
[
(1 − α)η

β
r∗ − χ∗ + 1 − η

β
ξ

]
,

or Ẋ = J(X − X∗), where J is the Jacobian in (19). To demonstrate the conditions
under which the system is completely stable and unstable we state the following
theorem.

THEOREM 2. If a feasible steady state exists, there are two possible trajectory
solutions: there exists a unique steady state to which a unique path converges, or
the steady state is unstable.

The proof is found in four lemmas. The first two demonstrate that there are zero
or two stable roots; i.e., the stable manifold is two-dimensional or it is unstable.
The third presents a sufficient condition under which the solution is the first: two
stable roots. The fourth demonstrates that, when there are two stable roots, the
balanced growth path is uniquely determined by the state variables in the model.
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LEMMA 1. There are an even number of stable roots, zero (instability), two
(stability), or four (indeterminacy).

Proof. This is implied by the fact that, for a feasible steady state, the determinant
of (19) is positive. That is,

−
[
B2g

∗
n − B3

ξ

φg∗
n

]
1 − β − η

β
− η

β

1 − α

α

[
1

θ
− 1 − η

β

]
ξ + φg∗

n

φ
> 0. (20)

We provide a proof. Using the fact that, by (13), in the steady state B3 =
−B2g

∗
n, and by simplifying terms, the expression (20) turns out to be equal to the

denominator of r∗, for a positive steady state (r∗ > 0, χ∗ > 0, ψ∗ > 0, g∗
n > 0):

θ

[
(1 − β − η)

η

α

1 − α
(1 − φ)

]
+ (θ − 1) > 0, (21)

which implies θ > 1 as a sufficient condition. Thus, the system has an even
number of stable roots, zero, two, or four, under the same conditions for a positive
steady state.

LEMMA 2. There are not four stable roots.

Proof. We can rule out indeterminacy, as there is always a positive root, elimi-
nating the possibility of having four roots with negative real parts. The case with
four negative roots is excluded, as there is a root e3:

e3 = ξ − (1 − φ)g∗
n. (22)

It was shown above that ξ − (1 − φ)g∗
n > 0 by the transversality condition on

human capital accumulation (see the Proof of Theorem 1).

LEMMA 3. A sufficient condition to rule out the instability outcome is 1/α <

1 + (1 − β − η)/η.

Proof. As by Lemmas 1 and 2 we remain with the possibility of zero or two
stable roots, we need only to discover a sufficient condition for the existence of
one stable root. By Lemmas 1 and 2, this is also a sufficient condition to obtain
two stable roots, which guarantees stability. We use the Gershgorin Disc Theorem
[e.g., Horn and Johnson (1985)] to determine this sufficient condition. Applying
Corollary 1 of the Disc Theorem to matrix J in (19), we can see that for any
positive real numbers d1, d2, d3, d4 the eigenvalues of J e1, . . . , e4 are contained
in the discs: ∣∣∣∣z −

(
−1 − β − η

β
r∗

)∣∣∣∣ ≤ d4

d1

∣∣∣∣ ηβ 1 − α

α
r∗

∣∣∣∣, (23)

|z − χ∗| ≤ d1

d2

∣∣∣∣
(

1

θ
− 1 − αη

β

)
χ∗

∣∣∣∣, (24)
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∣∣z − (
ξ − (1 − φ)g∗

n

)∣∣ ≤ d4

d3

∣∣−B1 − (1 − φ)ψ∗∣∣, (25)

∣∣∣∣z −
(

B2g
∗
n − B3

ξ

φg∗
n

)∣∣∣∣ ≤ d1

d4

∣∣∣∣ξ + φg∗
n

φ

(1 − α)η

β

∣∣∣∣ + d2

d4

∣∣∣∣−ξ + φg∗
n

φ

∣∣∣∣, (26)

where |·| denotes the absolute value. Let d1 = d2 = d4 = 1.2 To obtain a sufficient
condition for stability, we need only to look at the first disc with center in − 1−β−η

β
r∗

and radius η

β
1−α
α

r∗ and prove that it is all contained in the left half of the complex
plane, so that there exists a negative eigenvalue within that circle. Signing the
terms in (23), we obtain the sufficient condition,

−1 − β − η

β
+ η

β

1 − α

α
< 0, (27)

which is easily converted into the meaningful expression in the lemmas.3

The conditions stated in Theorem 2 and in its lemmas are verified for a broad
range of parameters, and particularly for sufficiently low markups, as indicated by
(27).

LEMMA 4. If the system of four differential equations has two stable roots, the
state variables K(0), H(0), and n(0) uniquely determine the starting point in the
stable manifold.

Proof. The initial values X(0) satisfy

X(0) − X∗ =
2∑

i=1

ibi , (28)

where bi are the eigenvectors corresponding to the two stable eigenvalues, and i

are constants that can be determined. The system (28) comprises four equations
into five unknowns (C/K(0), r(0), gn(0),1(0),2(0)). Equations (3), ( 7), and
(10) may be rewritten as

r(0) =
(αη)

η

1−η

{
(1 − β − η)[ξ + φgn(0)]

ε(1 − α)η

} 1−β−η

1−η

n(0)
(1−φ)(1−β−η)+η( 1−α

α )
1−η

K(0)
1−β−η

1−η

. (29)

With this additional equation, we reach a system with five equations into five
unknowns. This means that the stable variables select a specific starting point in
the transition path.

This theorem establishes that there is a unique transition path to the steady
state, under some reasonable conditions. This is a result similar to that in Eicher
and Turnovsky (2001) and Arnold (2006), but in a model with human capital
accumulation.
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4. CALIBRATION AND ADJUSTMENT PATHS

In this section, we present calibration exercises and compute an adjustment path
for a set of typical values of parameters. As in Eicher and Turnovsky (2001)
and in Arnold (2006), we use calibration exercises to show that with the usual
calibration parameters, we reach two complex conjugate stable eigenvalues and
two unstable roots, showing that with high probability the model transition path
would be uniquely determined. For the baseline calibration in Gómez (2005, p.
12), the sufficient condition for stability (27) is obtained for markups lower than
1.75 (α > 0.57), thus for very reasonable values.

Remark 1. Experimentation with numerical values shows that there are two
complex conjugate stable eigenvalues for a broad range of parameters (see Exam-
ple 1), thus predicting oscillatory convergence to the steady state. However, it is
possible to construct counterexamples (see Examples 2 and 3).

Example 1

For oscillatory transition through a stable path: with the benchmark calibration in
Gómez (2005)—β = 0.36; η = 0.36; α = 0.4; ξ = 0.05; ρ = 0.023; θ = 2;
δ = 0.1—and φ = 0.4, eigenvalues are 0.0448, 0.2487,−0.0218 + 0.0740i, and
−0.0218 − 0.0740i. For the benchmark calibration in Funke and Strulik (2000)—
β = 0.36; η = 0.36; α = 0.54; ξ = 0.05; ρ = 0.023; θ = 2; δ = 0.1—and φ =
0.4, eigenvalues are 0.049, 0.1753, −0.0345 + 0.0640i, and −0.0345 − 0.0640i.
For the benchmark calibration in Gómez (2005) and φ = 0.8, eigenvalues are
0.0477, 0.2216, −0.0171 + 0.0542i, and −0.0171 − 0.0542i.

Example 2

For monotonic transition through a stable path: with the first calibration in Example
1 but with α = 0.94, eigenvalues are 0.0374, 0.0833, −0.0651, and −0.0560.

Example 3

For an unstable steady state: with the first calibration in Example 1 but with α =
0.20, eigenvalues are 0.0474, 0.5433, 0.0006 + 0.0824, and 0.0006 − 0.0824i.

As a sensitivity analysis exercise, we have considered different values for sub-
stitutability between varieties (which also governs the markup) and for spillovers,
maintaining other parameters as in the examples. Although variations in the value
of spillovers maintain the stability and the oscillatory pattern (holding other param-
eters constant), extreme markup values make the difference regarding determinacy
and monotonticity. For very high substitutability (low markup)—α ≥ 0.94—the
balanced-growth path comes out to be determinate, but without the transition os-
cillatory pattern (two negative real roots). For very low substitutability—α ≤ 0.2
(high markup)—the steady state turns out to be unstable (the four roots come
out to be positive). No drastic rise in the substitutability parameter α from those
considered in the examples implies that there is a positive threshold for spillovers
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below which monotonics transitional dynamics arise (i.e., the stable roots are real).
For instance, for α = 0.54 the threshold is 0.02 and for α = 0.8 the threshold is
0.22.

In the next few lines we describe the adjustment path of an economy calibrated
with the first set of values presented in Example 1.4 To integrate the fourth-
order system of differential equations we use the method of backward integration
described by Brunner and Strulik (2002). Figure 1 shows adjustment paths of
the growth rate of physical capital, the interest rate, the shares of human capital
allocated to each of the sectors, the human-capital and varieties growth rates, and
the human capital–varieties ratio.5

The figures show oscillatory adjustment until the steady state is reached. Intu-
itively, the presence of spillovers increases the investment in R&D and the growth
rates of per capita output, when compared to Gómez’s (2005) results. Overall,
there is an overshooting effect at the beginning of the transition path, compared
with several oscillations as shown in Gómez (2005). Moreover, the presence of or
increase in the spillovers parameter increases the number of years the economy
takes to reach the steady state.

4.1. Transition in the Social Planner Solution

The equations that govern the transition path for the social planner solution are
presented in the Appendix. Here, we compare the results with the ones we have
presented for the decentralized equilibrium solution. For all parameters (except α),
as in the first case of Example 1, with α ≤ 0.48 (with all positive real eigenvalues)
and α ≥ 0.63 (with 2 positive real roots), the steady state turns out to be unstable.
For α = 0.54, the threshold of spillovers below which the system is stable is 0.5.
The range of instability is then greater within the social planner solution than it was
under the decentralized-equilibrium solution. For all ranges of parameters the two
possible solutions are stability with oscillatory convergence and instability. When
the equilibrium path is stable, it exhibits nonmonotonic behavior throughout the
transition, growing through damped oscillations, much more pronounced than the
oscillations presented in Figure 1.6 Thus the externality causes softer oscillations
in the decentralized equilibrium, as well as providing a wider range of parameters
for which the equilibrium is stable.

4.2. Discussion

The model presented and studied here introduces spillovers in the R&D process
into a model that already included the most studied sources of growth: physical
and human capital and the increasing number of varieties (without spillovers).
Thus, the importance of this model and its features depends crucially on the
evidence of the existence of spillovers in the R&D process. In Romer’s seminal
model of endogenous technological change [Romer (1990)], the more resources
the economy allocated to R&D, the more it would grow (the so-called scale
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FIGURE 1. Transition paths for representative variables.

effect). The evidence on the simultaneity between increasing resources in R&D
and stable TFP growth led Jones (1995) to model R&D with decreasing returns
to the stock of knowledge. This assumption of 0 < φ < 1 is now included in
a stream of literature called nonscale R&D-growth models. Some studies have

https://doi.org/10.1017/S1365100509991155 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509991155


R&D SPILLOVERS IN AN ENDOGENOUS GROWTH MODEL 235

supported the existence of high spillovers, calculating a rate of social return to
R&D higher than the private one. Jones and Williams (2000), for instance, con-
clude that optimal R&D expenditure is at least four times higher than decentralized
spending. A fruitful literature has regressed TFP growth on R&D stock and con-
cluded that significant effects occur [Coe and Helpman (1995)]. Of particular
interest for evaluating the empirical plausibility of our model with human capital
accumulation are the extensions to the Coe and Helpman regressions provided
by Engelbrecht (1997) and Barrio-Castro et al. (2002). Apart from a superior
role for human capital reported in this last article, both conclude that a signif-
icant relationship exists between TFP and the stock of knowledge, even in the
presence of human capital. Thus, the presence of spillovers in R&D not only is
at the center of recent endogenous growth theory, but also has been empirically
supported.

This model also predicts features that were not addressed by the earlier ones.
The Arnold/Gómez model predicts oscillatory convergence, but the condition
for stability implies implausibly high values for the markups. Norrbin (1993)
presented markups for sectors in the United States, all below 1.7, whereas the
condition for stability in Gómez (2005) implies a markup higher than 2. It is
worth noting that in our model, for reasonable values of markups [between 1.2
and 1.4 in Norrbin (1993)], the uniquely determined oscillatory pattern through a
two-dimensional stable manifold arises. For lower markup, the model continues
to be stable but presents a monotonous trajectory to the steady state. Whether the
evidence calls for monotonous or oscillatory convergence is an issue under dis-
cussion. Historical evidence of the stages of development of the most developed
countries seems to suggest monotonic convergence [Maddison (2001, p. 74)].
Nevertheless, if one thinks of the experience of other less developed economies
in the postwar period, one can argue that modern economies grow through cycles
[Fiaschi and Lavezzi (2003, 2007)]. Our Figure 1 (and all paths resulting from
calibration values in Example 1) resembles an initial fast-growing take-off and then
a slowdown until the steady state, similar to what was suggested by Fiaschi and
Lavezzi. The Eicher and Turnovsky (2001) model also predicts an overshooting of
final values during the transition. The Jones/Arnold model also predicts monotonic
or oscillatory convergence (but with a prevalence of monotonic convergence for
most sets of parameters) and can rule out the case of an unstable steady state.
This is not the case in Eicher and Turnovsky (2001), where instability cannot
be ruled out. Their article also presents a sufficient condition for stability. For
high markups in our model, the steady state is unstable. The dependence of our
model’s properties on the markup is interesting, given Gali’s (1994) contribution
on the crucial effects of markups in growth models. There are interesting policy
implications from the sufficient conditions stated in Lemma 3: economies with
relatively high shares of physical capital relative to the differentiated goods–sector
share (high β/η), with relatively high markup (high 1/α) and high spillovers
(high φ), tend to be unstable, thus showing diverging paths from the initial
endowments.
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5. CONCLUSION

The consideration of spillovers in a model with both R&D processes and human-
capital accumulation has not been done previously. Nevertheless, two relevant em-
pirical contributions [Engelbrecht (1997) and Barrio-Castro (2002)] have proved
that in empirical specifications that include human capital, R&D spillovers are
still high in value and present high statistical significance.

We introduce R&D spillovers into the endogenous growth model with physical
capital, human capital, and varieties due to Arnold (1998, 2000a). We study the
steady state and the convergence properties of the model. Furthermore, we solve
it numerically to obtain a transition path to the steady state.

The dynamics of the model in the decentralized equilibrium are characterized
by the behavior of a system of four differential equations. This article provides
one more example of the analysis of a system of four ODEs in economics, and of
the possible tools to implement.

The system can be either stable or unstable. Under mild conditions it proves
to be characterized by a two-dimensional stable manifold and converges through
a uniquely determined balanced growth path to the steady state. Thus, when
compared to the model without spillovers, their presence increases the order
of differential equations system to four, also providing a two-dimensional sta-
ble manifold. This model maintains the oscillatory convergence and allows for
more reasonable markup values to fulfill stability conditions. We compare the
decentralized equilibrium results with the social-planner ones and conclude that
the internalization of the spillovers externality done by the social planner sim-
plifies the dynamics of the model but also increases the range of parameters
that lead to instability results. Thus, it is exactly the spillovers’ externalities
that imply our interesting results in the decentralized-equilibrium transitional
dynamics.

When compared to a model without human capital accumulation [Jones (1995)],
the stability properties also indicate a two-dimensional stable manifold. Two dif-
ferences arise. First, we cannot rule out instability as can be done in Jones’s model.
Second, for most reasonable parameter sets, the transition to the steady state in
the model presented here is oscillatory and not monotonic, as it is in Jones’s
model.

We found a crucial effect of the markup distortion in the convergence properties
of the model. For high markups the steady state is unstable. For intermediate
values, the steady state is stable and the transition oscillatory. For low markups,
the steady state is stable and the transition monotonic.

NOTES

1. By the initial assumptions on parameters, 1 − αη > β (see equation (7)]. For θ ≥ 1, A2 < 1.
2. The eigenvalue e3 stated in Lemma 2 can be recovered using the second disc (25) and setting

d3 → ∞.
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3. Other possible sufficient conditions can be achieved. Another intuitive condition is retrieved
from disc (26) setting d1 = d4 = 1, d2 = 0 and d3 → ∞:

η
1 − α

β

(
1 + 1

α

)
− (1 − φ) < 0.

As this is a more restrictive condition than (27), we have selected this one for presentation in the main
text.

4. Results for adjustment paths that result from the different sets of parameter values presented
above are available from the author upon request.

5. These figures can be compared with Figure 4 in Gómez (2005). Simulation made use of Matlab.
6. Figures can be supplied upon request. For space reasons they are not presented.
7. A complete analysis is available upon request. However, for space reasons, we are not presenting

it in the article.
8. The reader can check that with φ = 0 this converts into the matrix in equation (4.1) in Gómez

(2005).
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Gómez, Manuel (2005) Transitional dynamics in an endogenous growth model with physical capital,
human capital and R&D. Studies in Nonlinear Dynamics and Econometrics 9(1), Article 5.

https://doi.org/10.1017/S1365100509991155 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509991155


238 TIAGO NEVES SEQUEIRA

Griliches, Zvi (1992) The search for R&D spillovers. Scandinavian Journal of Economics 94 (Supple-
ment), 29–47.

Horn, Roger and Charles Johnson (1985) Matrix Analysis. Cambridge, UK: Cambridge University
Press.

Jones, Charles (1995) R&D-based models of endogenous growth. Journal of Political Economy 103(4),
759–584.

Jones, Charles and John Williams (2000) Too much of a good thing? The economics of investment in
R&D. Journal of Economic Growth 5, 65–85.

Ladrón-de-Guevara, Antonio, Salvador Ortigueira, and Manuel Santos (1997) Equilibrium dynamics
in two-sector models of endogenous growth. Journal of Economic Dynamics and Control 21, 115–
143.

Maddison, Angus (2001) The World Economy, a Millenial Perspective. Paris: OECD Development
Center Studies.

Norrbin, Stefan (1993) The relation between price and marginal cost in U.S. industry: A contradiction.
Journal of Political Economy 101(6), 1149–1164.

Porter, Michael and Scott Stern (2000) Measuring the “Ideas” Production Function: Evidence from
International Patent Output. NBER Working Paper 7891.

Reis, Ana and Tiago N. Sequeira (2007) Human capital and overinvestment in R&D. Scandinavian
Journal of Economics 109(3), 573–591.

Romer, Paul (1990) Endogenous technological change. Journal of Political Economy 98, S1971–
2102.

APPENDIX: THE SOCIAL PLANNER’S SOLUTION

The formulation and the equilibrium solution of the social-planner problem for a similar
model have been presented by Reis and Sequeira (2007), so we refer to them. To convert
their model to ours just set δ = 0 (in their notation). We will concentrate on presenting
results for dynamics of the social planner equilibrium path and compare them with the
results for the decentralized equilibrium presented in this article.7 The externality that is
internalized by the social planner is measured by the term φgn in equation (10), which
implies that the social planner allocates more human capital to R&D and less to the final
good than does the market. It is exactly this term that determines in the decentralized
equilibrium that the system dynamics includes four differential equations, one for gn. As
in the social planner solution this term does not exist, the dynamics will be characterized
by three equations, resembling in part the analysis in Gómez (2005):

gχ =
(

1

θ
− 1 − αη

β

)
MpK + χ − ρ

θ
, (A.1)

gMpK
= −1 − β − η

β
(MpK − ξ) + η

β

1 − α

α
gn, (A.2)

gψ = ξ

{
1 −

[
(1 − β − η)ξ

(1 − α)η
+ gn

]
1

εψ

}
− (1 − φ)gn, (A.3)

where MpK is the marginal productivity of physical capital (which is equal to r as there are
no distortions in the final good market).
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The Jacobian for this system is

J =

⎛
⎜⎜⎜⎜⎜⎝

[
−1 − β − η

β
+

(
η

β

)2
(1 − α)2

α
B4

]
M∗

pK − η

β

1 − α

α
B4M

∗
pK 0(

1

θ
− 1 − αη

β

)
χ∗ χ∗ 0

0 0 ξ − (1 − φ)g∗
n

⎞
⎟⎟⎟⎟⎟⎠ ,

(A.4)

in which B4 = 1
1−φ− η

β
1−α
α

.8 Using the same argument as in Gómez (2005), the necessary

and sufficient conditions for stability (two eigenvalues with negative real parts) that are due
to a positive determinant and a negative trace of J2 are the following:

1 − α

α

η

1 − β − η

(
1

θ
− 1 − η

β

)
+ η

β

1 − α

α
< 1 − φ; (A.5)

[(
1 − 1

θ

)
+ η

1 − α

β

(
1 + η

β

1 − α

α
B4

)]
M∗

pK + ρ

θ
< 0. (A.6)
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