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Abstract
This paper aims at shedding lights on two approaches that were recently proposed for the constraint wrench analysis
of robotic manipulators. Both approaches benefit from the Newton–Euler equations, screw notations, and con-
straint transformation matrices (CTM) to cope with the inverse dynamic problem of multibody systems. In the first
approach, which is called the joint-based method, the constraint transformation matrices are derived directly from
the kinematic constraints which are imposed on the rigid links by kinematic pairs. In the second approach, which
is referred to as the link-based method; however, the constraint matrices are obtained based on the wrench transfer
formula of each rigid link. In this study, by resorting to the definition of reciprocal screws, the former methodology
is further enhanced to a new version as well. Moreover, based on the proposed modified joint-based CTM, constraint
forces and moments distribution indices are introduced. The three constraint wrench analysis methodologies, two
joint-based and one link-based, result in different CTMs and set of equations as well, which will be discussed in
detail. In the end, on two case studies, a spherical four-bar linkage and a Delta parallel robot, the pros and cons of
all three constraint wrench analysis methodologies are discussed, and the proposed indices will be examined. The
numerical results reveal that, although all three methods identically compute the magnitude of the applied and con-
straint force and moment vectors, the joint-based approaches do not report the constraint components with respect
to a specific coordinate frame. Moreover, it is shown that the proposed indices can approximately predict the con-
straint forces and moments distribution at joints, which can be used as force transmission indicators in multibody
systems.

1. Introduction
Nowadays, robotic manipulators play crucial roles in the industry from the pick-and-place operation in
food companies to the spot welding and color spray in car manufacturers. Accuracy, speed, and load
capacity are important factors that lead engineers and researchers to search for innovative light and stiff
architectures. Serial robots with a large workspace and simple design have been widely known as reliable
manipulators in the industry. However, due to higher stiffness, speed, and accuracy, parallel robots have
attracted the attention of researchers and engineers in the last two decades, yet, their complex architecture
calls for more efforts to further promote the practical applications of them [1].

Generally, one of the important steps in the embodiment design stage of robotic manipulators is the
dynamic analysis, which can be inverse or forward. In the former analysis, the moving platform (MP)
trajectory is known, and commonly, the input torques and constraint wrenches (forces and moments) are
demanded; while in the latter, it is the other way around, that is, the input torques are known and the
trajectory of the MP and the constraint wrenches at the joints are asked. When the simultaneous com-
putation of input torques and constraint wrenches is important, it is sometimes referred to as constraint
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wrench or force analysis. As manipulators are usually designed for a specific task in which the MP
should follow a certain trajectory, the constraint wrench analysis seems more informative and impor-
tant. Therefore, the current study aims at shedding more light on this subject in robotic systems such as
manipulators.

In the last three decades, many researchers have targeted the dynamic modeling of robotic manipula-
tors by resorting to energy-based methods [2–8] or the Newton–Euler formulation [9–12]. Although the
energy-based methods, such as Lagrange equations or the principle of virtual work, are easier to imple-
ment, they are mostly involved with intensive mathematical derivations and manipulations. Moreover,
some of the variables, such as Lagrange multipliers or generalized speeds, which can be defined entirely
mathematical, cannot deliver physically meaningful interpretations in the complicated mechanisms. On
the opposite side, the Newton–Euler formulation is engaged with physical variables, such as velocity and
acceleration of links or constraint forces and moments. Generally, the Newton–Euler method is consid-
ered more efficient for the generation of equations [13]. However, in the Newton–Euler method, the
correct equations of motion are derived only if the dynamic behavior of each component and its inter-
action with other components of the system are understood properly. As a result, constraint forces and
moments at joints can be naturally obtained, in addition to the input torques/forces. Therefore, whenever
the input–output relation is only demanded, the energy-based methods look more efficient [7, 14–19].
Mo et al. [19] conducted a dynamic analysis on the X4 parallel robot by means of the principle of vir-
tual work. The authors, then, defined a dynamic performance index based on the obtained input–output
dynamic equations. In some cases, the energy-based methods have been used to compute the constraint
forces and moments by introducing physically meaningful kinematic constraint equations and the corre-
sponding Lagrange multipliers [20–23]. Cibicik et al. [24] introduced a systematic methodology based
on the Kane’s equations of motion to determine the reaction forces of a knuckle boom crane. However,
as it was mentioned earlier, if the constraint forces and moments are desired, researchers have often
relied on the Newton–Euler formulation [9–11, 25–28]. This point is explicitly supported by Gan et al.
[26] where a metamorphic parallel robot was studied.

Screw theory is commonly considered as a strong mathematical tool in kinematic and dynamic anal-
ysis of spatial manipulators, especially with parallel architecture. In this theory, a line in the space is
defined by a six-dimensional array of Plücker coordinates [29], of which only four are independent. In
the so-called ray coordinates, the first three components denote a unit vector parallel to the line, and
the rest are the three components of moment vector of line with respect to an origin. However, in the
axis coordinate, this order is vice versa [30]. A screw is then represented as a line array with the fifth
independent parameter, a pitch. A twist which is composed of a point velocity and an angular velocity
vector, or a wrench which is composed of resultant force and moment vectors are derived upon multipli-
cation of the screw array by an amplitude A, as a sixth parameter. Amplitude A can have units of angular
velocity, rad/sec, or of force, N, which results in twist or wrench, respectively. Combined with the prin-
ciple of virtual work, researchers have shown the merit of screw theory in dynamic analysis of spatial
manipulators [31–35]. Angeles and Lee [36] have incorporated the screw theory notations and the natu-
ral orthogonal complement method in the Newton–Euler formulation for the dynamic analysis of serial
robots. Later, Angeles extended the methodology for parallel counterparts as well [37]. However, the
proposed methodology was mainly tailored to calculate the actuator torques/forces via the input–output
Eq. (38). Although in the most dynamic analysis, only the input torques or the input–output relations
are demanded, the constraint wrenches play a critical role in understanding the dynamic behavior of a
mechanism in terms of the transmission of forces and moments between components. Moreover, in the
stress analysis of flexible parts, or the friction force computation at joints, the calculation of constraint
wrenches is inevitable. Founded on the kinematic constraint equations, which were defined in [36, 37],
Taghvaeipour et al. [39] proposed a methodology to obtain the constraint and applied forces/moments in
the inverse dynamic modeling of multibody systems, simultaneously. In this method, the authors intro-
duced the constraint transformation matrix (CTM), which was extracted from the kinematic constraint
relations exerted by kinematic pairs on the connected rigid links. As the composition of CTM relies on
the joints’ kinematic constraints, the foregoing methodology is referred to as the joint-based constraint
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wrench analysis. Later, Ghaedrahmati et al. [40] modified the foregoing methodology by introducing a
new CTM, which was simply obtained by applying the wrench transfer formula [37] on each rigid link.
Therefore, as opposed to the previous method, this approach is referred to as the link-based constraint
wrench analysis.

The results revealed that both approaches were able to determine the essential dynamics variables
such as the actuator torques and the magnitude of constraint force/moment vectors, as it was reported
in [39] and [40], respectively. However, as the methods form the CTM differently, the results can be
expected to be different, and they should be analyzed carefully. In fact, it was learnt that, due to the math-
ematical manipulations in constraints derivations, the joint-based approach cannot report the constraint
force and moment components in meaningful directions with respect to a specific coordinate frame.
Moreover, in both methodologies, the obtained CTMs are not full-rank; in other words, in the aforemen-
tioned constraint wrench analysis, kinematic constraint equations between rigid links are considered
redundantly. Therefore, the first target of the current study is to shed more lights on the differences
between the two methodologies and the obtained results, which will be clearly delivered via two case
studies. Next, the remained part of the paper is devoted to find an answer for this question that “Are
there any performance indices that can be extracted from the constraint matrix of a multibody system?”
The rank deficiency of the CTMs which are derived from the aforementioned methodologies seems a
barrier to this goal. Thus, in order to derive a full-rank CTM, the joint-based method will be modified
by resorting to the definition of reciprocal screws. Based on the obtained CTM, finally, the constraint
forces and moments distribution indices are introduced, which will be examined on the case studies as
well.

The remainder of this paper is formed as follows. Section 2 briefly describes the basics of the con-
straint wrench analysis. Section 3 elaborates the joint-based method. Section 4 introduces the modified
joint-based method, and section 5 explains the link-based counterpart. Section 6 introduces the con-
straint forces and moments distribution indices. In section 7, the three methodologies are applied on
a spherical four-bar linkage and a Delta parallel manipulator, and discussion is made on the obtained
results. Conclusions are presented in section 8.

2. Constraint wrench analysis
Complete design and analysis of a robot’s structure need the calculation of constraint wrenches which
are produced at joints during a given operation. Using the Newton–Euler method and based on the screw
theory notation, the equations of motion of the ith link can be represented as [37]

Mi ṫi + WiMiti = Awi + Gwi + Cwi (1)

where ti is the six-dimensional twist array of the ith link containing the angular velocity, ωi, and the
velocity of its center of mass, vi, namely,

ti =
[

ωi

vi

]
6×1

(2)

Also, Mi and Wi are the inertia and angular velocity tensors, respectively, which are defined as
follows:

Mi =
[

Ii O3×3

O3×3 mi13×3

]
6×6

, Wi =
[

�i O3×3

O3×3 O3×3

]
6×6

(3)

in which �i is the Cross Product Matrix (CPM) of the angular velocity vector, Ii is the inertia matrix
of the rigid link i with respect to its center of mass and O is the 3 × 3 zero matrix. Also, the mass is
denoted by mi, and Awi, Gwi, Cwi are representing the six-dimensional vectors of actuator, gravitational,
and non-working constraint wrenches acting at the link’s center of mass.
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For (n − 1) number of moving links (n is the total number of links including the ground), the
equations of motion can be cast in the following matrix format:

Mṫ + WMt = Aw + Gw + Cw (4)

where t is defined as the system twist vector [39], namely,

t =
⎡
⎢⎣

t1

...
tn−1

⎤
⎥⎦

6(n−1)×1

(5)

and M and W are the uncoupled system mass and angular velocities matrices, respectively,

M =
⎡
⎢⎣

M1 . . . O3×3

...
. . .

...
O3×3 . . . Mn−1

⎤
⎥⎦

6(n−1)×6(n−1)

, W =
⎡
⎢⎣

W1 . . . O3×3

...
. . .

...
O3×3 . . . Wn−1

⎤
⎥⎦

6(n−1)×6(n−1)

(6)

Moreover, Aw is the mapped vector of actuators’ torques/forces on the links’ center of mass via a
linear transformation, namely,

Aw = ATτ (7)

in which, AT[6(n−1)×d] is called the actuator wrench-shaping matrix and τ[d×1] is the actuator
torques/forces vector in which d is the number of active joints. The constraint wrench array,Cw, is formed
by the constraint force and moment vectors, imposed by the kinematic pairs, which are transferred to
the links’ center of mass. In fact, using a constraint transformation matrix (CTM), the constraint wrench
array Cw is obtained via transforming the constraint forces/moments at joints to the bodies’ center of
mass. This transformation can be performed in two different ways, namely,

Cw = KT
J λ or Cw = KLλ (8)

in which λ[6m×1] is the vector of joint constraint forces/moments, and m is the number of kinematic pairs.
The matrix KJ [6m×6(n−1)] is referred to as the joint-based CTM which is obtained from the kinematic
constraints of joints. However, KL[6(n−1)×6m] is called the link-based CTM which is simply obtained by
the transformations that transfer the constraint forces/moments from the joints to the links’ center of
mass. In fact, this is the main difference between the methodologies which lead to different results, and
it will be discussed in further detail in the upcoming sections.

Substituting Eqs. (7) and (8) into Eq. (1) results in the following equations of motion:

Mṫ + WMt − Gw = η

η = ATτ + Kλ (9)

where K denotes the CTM which can be the link-based, KL, or the transpose of the joint-based counter-
part, KT

J . As a joint constraint wrench does not generate any power on the connected rigid body, moved
by a twist ti = Aisi (Ai �= 0 is the amplitude and si is the unit screw vector of the ith joint), the following
relation holds [39]:

STλ = 0 (10)

where the matrix S[6m × k] is called the joint screw matrix, in which k is the total degrees of freedom (dof)
of all kinematic pairs. Now, Eqs. (9) and (10) can be cast in a closed format as below[

K AT
ST O

] [
λ

τ

]
=

[
η

0

]
(11)

In an inverse dynamic analysis, it is desired to calculate both unknown arrays λ and τ , which are
obtained by solving the above system of equations.
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Figure 1. Two links connected by a revolute joint.

3. Joint-based constraint wrench analysis
A kinematic pair connects rigid links of a multibody system by imposing kinematic constraints.
The constraint(s) between each coupled body can be expressed in terms of their twist arrays [37],
namely,

KJ
i,i−1ti−1 + KJ

i,iti = 0 (12)

in which KJ
i,i−1[6×6]

and KJ
i,i[6×6]

are obtained from the constraint equations between the twist arrays of the
connected (i − 1)

st and ith links, ti−1 and ti, respectively. For example, if a revolute joint connects two
rigid links, as it is shown in Fig. 1, then the following relations hold between the corresponding angular
and linear velocities [39]:

ωi − ωi−1 = θ̇i ei (13a)

ċi − ċi−1 + Riωi + Di−1ωi−1 = 0 (13b)
in which Ri−1 and Ri are the CPM of the vectors ri−1 and ri (Fig. 1), respectively. To express the
foregoing relations only in terms of twist arrays of the connected rigid links, the passive angular rate
θ̇i should be eliminated. As it was proposed in [37], this can be obtained by the left multiplying of
both sides of Eq. (13a) with the cross product matrix (CPM) of the unit vector ei, denoting by Ei,
namely,

Ei (ωi − ωi−1) = 0 (14)

In fact, Eqs. (13b) and (14) represent six constraint relations between the kinematic variables of the
connected rigid links, of which five are independent. These constraint equations can be readily cast in
the format of Eq. (12), which results in the constraint matrices of a revolute joint as follows [39]:

KJ
i,i−1 =

[
Ei O3×3

Ri−1 −13×3

]
6×6

, KJ
i,i =

[
Ei O3×3

Ri 13×3

]
6×6

(15)

As another example, the constraint matrices of a universal joint (Fig. 2), a kinematic pair with two
dofs, can be derived as below [39]

KJ
i,i−1 =

[−FiEi O3×3

Ri−1 −13×3

]
6×6

, KJ
i,i =

[
FiEi O3×3

Ri 13×3

]
6×6

(16)

in which Fi and Ei are the CPM of the unit vectors ei × fi and ei, respectively.
Similarly, the constraint matrices of a cylindrical joint (Fig. 3) can be derived as [39]

KJ
i,i−1 =

[ −Ei O3×3

EiRi−1 −Ei

]
6×6

, KJ
i,i =

[
Ei O3×3

EiRi Ei

]
6×6

(17)

For all other types of kinematic pairs, the constraint matrices were listed in [39]. By assembling
all the constraint equations imposed by kinematic pairs on the rigid links of a multibody system, the
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Figure 2. Two links connected by a universal joint.

Figure 3. Two links connected by a cylindrical joint.

following system of constraint equations in a matrix format is obtained:

KJt = 0 (18)

where KJ is denoting the joint-based CTM, which was introduced in Eq (8).
According to the Chebyshev–Grubler–Kutsbach criterion [41], the dof of a multibody system is

obtained as

τ = 6 (n − 1) − (6m − k) (19)

with m and n denoting the number of kinematic pairs and links, respectively, and k representing the total
number of dofs of all kinematic pairs. Therefore, in an inverse dynamic analysis in which the actuator
forces/torques and the joint constraint forces/moments are demanded, the number of unknowns equals
τ + 6m − k. On the other hand, the Newton–Euler formulation for n − 1 moving rigid links of a multi-
body system provide 6 (n − 1) equations, which is adequate to calculate all the unknowns. However,
with the aforementioned joint-based methodology, regardless of the number of independent constraint
equations, the constraint matrix KJ is always obtained as a 6m × 6 (n − 1) matrix. Based on Eq. (8), the
dependent constraint equations add k unknown joint constraint forces/moments to the system of Eq. (9).
Therefore, for a constrained multibody system, the number of unknowns adds up to τ + 6m, which leads
to an under-determined system of equations. In this regard, the zero-power relations corresponding to
k dofs of kinematic pairs (Eq. (10)) provide the required equations needed to solve the problem. It is
noteworthy to mention that, in the foregoing joint-based methodology, the influence of active kinematic
pairs are treated in the equations separately via the actuator wrench array Aw. Therefore, in the calcula-
tion of the constraint and joint screw matrices, KJ and S, respectively, all the kinematic pairs must be
considered passive.
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4. Modified joint-based constraint wrench analysis
As it was seen, the rank deficiency of the previously obtained constraint matrix will be finally resolved
down the stream by considering the zero-power relations and screw matrices. However, in this case, the
mapping of Eq. (8) cannot be efficiently used to extract indices that reflect some characteristics of a
multibody system in terms of the produced constraint wrenches at kinematic pairs.

Therefore, in this section, the joint-based CTM, KJ , is obtained by resorting to an alternative approach
in which the redundant constraint equations are eliminated. For the sake of simplicity, the method is
explained for the revolute and universal joints, and it can be readily generalized for other kinematic
pairs. Figure 1 shows two rigid links, i − 1 and i, which are connected by means of a revolute joint. By
resorting to the twist transfer formula [37], the following relations between the twist arrays ti

i−1 and ti−1

of two points on the (i − 1)
st rigid body hold:{

ωi
i−1 = ωi−1

vi
i−1 = vi−1 + ωi−1 × ri−1

⇒ ti
i−1 =

[
1 O

−Ri−1 1

]
ti−1 = Gi

i−1ti−1 (20)

where Ri−1 is the CPM of vector ri−1, and Gi
i−1 denotes the twist transfer matrix between the twist array

ti
i−1 of a point on the ith joint axis which belongs to the (i − 1)

st link and the twist array ti−1 of the (i − 1)
st

link center of mass. Likewise, the twist transfer formula can be used between the twist arrays ti
i and ti of

two points on the ith link as follows:{
ωi

i = ωi

vi
i = vi − ωi × ri

⇒ ti
i =

[
1 O
Ri 1

]
ti = Gi

iti (21)

where Ri is the CPM of vector ri, and Gi
i denotes the twist transfer matrix between the twist array ti

i of
a point on the ith joint axis which belongs to the link i and the twist array ti of the ith link center of mass.
A revolute joint permits relative rotation of the connected bodies about its axis, namely,

ti
i − ti

i−1 = θ̇isi (22)

Substituting twist arrays ti
i and ti

i−1 from Eqs. (16) and (18), respectively, into Eq. (22) yields

Gi
iti − Gi

i−1ti−1 = θ̇isi (23)

By resorting to the ray coordinates, the wrench array Aisi, in which the unit of Ai is N, is composed
of the resultant force in the first three components and the resultant moment in the second three compo-
nents. While the twist array Ajsj, in which the unit of Ai is rad/s, represents the angular velocity in the
first three components and the linear velocity in the second three components [42]. For a set of screws
that span the motion space of a multibody system, there is a set of reciprocal screws which span the
corresponding constraint space. The reciprocity condition is obtained by considering the fact that the
constraint wrenches do not produce power while the bodies move. Hence, for any screw system S there
is a reciprocal screw system Sr which is defined as [43]

Sr ≡ {
sr

j|sr
j�si = 0, ∀si ∈ S

}
, � =

[
O I
I O

]
(24)

in which I and O are the 3 × 3 identity and zero block matrices, respectively. Apparently, it can be
concluded that the screw and reciprocal screw systems, which correspond to the motion and con-
strained spaces, respectively, are orthogonal to each other. Hence, in the three-dimensional Cartesian
space, the following relation between the dimensions of a screw system and its reciprocal counterpart
holds:

dim (S) + dim (Sr) = 6 (25)

According to the permitted relative dofs between two rigid bodies which are connected by means of
a joint, a joint screw system and the corresponding reciprocal counterpart can be defined, which can be
found in the literature [44]. For example, for a revolute joint, the screw system contains only one screw
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array which can be defined with respect to a reference frame attached to the ith link on the joint axis,
namely,

s1 = Qi ×
[

0 0 1 0 0 0
]T (26)

where Qi is a 6 × 6 matrix that transforms the attached coordinate frame to the global reference frame
[45]. For the sake of simplicity, it is also assumed that the z-axis of the attached coordinate frame is
along the joint axis. The corresponding reciprocal screw system comprises five screw arrays which are
presented below [44, 46]

sr
1 = Q × [

1 0 0 0 0 0
]T

sr
2 = Q × [

0 1 0 0 0 0
]T

sr
3 = Q × [

0 0 1 0 0 0
]T

sr
4 = Q × [

0 0 0 1 0 0
]T

sr
5 = Q × [

0 0 0 0 1 0
]T (27)

Accordingly, the reciprocal joint screw matrix of a revolute joint can be defined as

Sr =
[
sr

1 sr
2 sr

3 sr
4 sr

5

]
(28)

By resorting to the definition of reciprocal screws in Eq. (27), Eq. (28) can be left multiplied by
(
ST

r �
)

to obtain the following constraint equation in terms of rigid bodies’ twist arrays:

ST
r

(
�Gi

iti − �Gi
i−1ti−1

) = 0 (29)

By comparing Eqs. (26) and (12), the constraint matrices of a revolute joint can be readily obtained
as below

KJ
i,i−1 = ST

r �Gi
i+1 , KJ

i,i = ST
r �Gi

i (30)

where the size of the above constraint matrices is 5 × 6. As a second example, the foregoing procedure
is repeated for a universal joint whose axes are initially along the Z and X axes of the global reference
frame. As examples of joints with more than one dof, the universal (U) and cylindrical (C) joint are
explained in the sequel.

A U joint permits two relative rotations between the connected bodies, namely,

ti
i − ti

i−1 = θ̇ s1 + φ̇ s2 (31)

By substitution of twist arrays ti
i−1 and ti

i from Eqs. (16) and (18), respectively, into Eq. (31) it results,

Gi
iti − Gi

i−1ti−1 = θ̇ s1 + φ̇ s2 (32)

where the screw arrays s1 and s2 which form the joint screw system is presented below

s1 = Q × [
0 0 1 0 0 0

]T

s2 = Q × [
0 1 0 0 0 0

]T (33)

Therefore, the corresponding reciprocal joint screw system has four screw arrays which are listed in
the sequel,

sr
1 = Q × [

1 0 0 0 0 0
]T

sr
2 = Q × [

0 1 0 0 0 0
]T
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sr
3 = Q × [

0 0 1 0 0 0
]T

sr
4 = Q × [

0 0 0 1 0 0
]T (34)

Accordingly, the reciprocal joint screw matrix of a universal joint is defined in the sequel,

Sr = [
sr

1 sr
2 sr

3 sr
4

]
(35)

By the same token, upon multiplication of Eq. (29) by ST
r �, a relation same as Eq. (26) is obtained,

and thereafter, the constraint matrices of the U joint can be readily determined. In this case, the size of
the constraint matrices is 4 × 6.

A cylindrical (C) joint permits relative angular and translational velocities between the connected
bodies about and along the joint axis, θ̇i and ḃi, respectively,

ti
i − ti

i−1 = θ̇s1 + ḃs2 (36)

Upon substitution of twist arrays ti
i−1 and ti

i from Eqs. (16) and (18), respectively, into Eq. (36) it
yields

Gi
iti − Gi

i−1ti−1 = θ̇s1 + ḃs2 (37)

where the screw arrays s1 and s2 are

s1 = Q × [
0 0 1 0 0 0

]T

s2 = Q × [
0 0 0 0 0 1

]T (38)

Therefore, the four corresponding reciprocal joint screws can be written as

sr
1 = Q × [

1 0 0 0 0 0
]T

sr
2 = Q × [

0 1 0 0 0 0
]T

sr
3 = Q × [

0 0 0 1 0 0
]T

sr
4 = Q × [

0 0 0 0 1 0
]T (39)

which form the reciprocal joint screw matrix similar to what was defined for the U joint in Eq. (35).
For any other type of kinematic pairs, it is only needed to replace the corresponding reciprocal joint
screw matrix in Eq. (26) and obtain the corresponding joint constraint matrices. Same as what was
explained in the previous section, the new joint-based CTM of a multibody system, KJ , can be obtained
by assembling the constraint matrices of all kinematic pairs. In contrast to the previous joint-based
method, in this approach, all the constraint equations are independent, and hence, KJ is obtained as a
(6m − k) × 6 (n − 1) full-rank matrix. Therefore, for a determined multibody system, the number of
unknowns becomes τ + 6m − k, which is equal to the number of Newton–Euler equations. In other
words, with this new formation of the joint-based CTM, KJ , the Newton–Euler equations suffice to
solve the problem, namely,

[
KT

J
AT

] [
λ

τ

]
=

[
η

0

]
(40)

Thus, in this approach, there is no need to augment the zero-power relations of kinematic pairs (Eq.
(10)) to the system of equations.
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Figure 4. A schematic of a two-node and a multi-node link in a parallel mechanism.

5. Link-based constraint wrench analysis
This methodology is somehow direct utilization of the Newton–Euler formulation, which was tailored
for the constraint wrench analysis of complex mechanisms by means of screw, twist, and wrench defini-
tions. In contrast to the joint-based approaches, this method does not resort on the kinematic constraint
equations which are imposed by the kinematic pairs of multibody system. In other words, instead of
focusing on the joints and their kinematic relations, it focuses on the links and the applied and constraint
wrenches. In this approach, for each rigid link, the constraint and applied forces/moments are simply
transferred to the center of mass by means of the wrench transfer formula [40]. Figure 4 shows a multi-
node link of a parallel manipulator, denoted by l, which is connected to a number of links by means of
a kinematic pairs which are labeled as l1, l2, . . . , la. The position vector of center of mass of the lth link
from the ith joint is represented by rli in which i = 1, 2, . . . , a. Also, f λli and mλli denote the constraint
force and moment vectors, respectively, which are imposed by the ith joint on the link l. These constraint
forces and moments are transferred to the center of mass of the link by the following relation:

Cml =
(

mλl1 + rl1 × f λl1

) + (
mλl2 + rl2 × f λl2

) + . . . + (
mλla + rla × f λla

)

Cfl = f λl1 + f λl1 + . . . + f λla (41)

in which Cfl and Cml are the transferred constraint force and moment vectors, respectively. The
six-dimensional constraint wrench array at the joints or at the center of mass of the link can be
formed as

Cwl =
[

Cml
Cfl

]
, λi =

[
mλli
f λli

]
(42)

With the definition of the constraint wrenches, Eq. (41) can be rewritten as below [40]
cwl = KL

l1λl1 + KL
l2λl2 + . . . + KL

laλla (43)
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where KL
li is called the constraint transfer matrix (CTM) of the ith joint of the link l, namely,

KL
lj =

[−1 −lRli

O 1

]
6×6

, i = 1, 2, . . . , a (44)

For a 2-node link, denoted by β, Eq. (43) is reduced to the following relation:
cwβ = KL

βiλi + KL
βjλj (45)

Upon assembling of the CTM of all rigid links, the CTM of the multibody system, KL, is simply
obtained [40], which is a 6 (n − 1) × 6m singular matrix. In fact, in the link-based constraint wrench
analysis, regardless of the type of kinematic pair, three constraint forces, f λi, and three constraint
moments, mλi, where i = 1, 2, 3, are considered at each joint. Therefore, the number of unknowns for
a determined system becomes τ + 6m, while there are only 6 (n − 1) Newton–Euler equations. Hence,
same as the joint-based method introduced in sec. 3, in order to compute the unknowns, k zero-power
relations for all kinematic pairs should be taken into account (Eq. (8)).

6. Constraints distribution indices
Engineers and researchers are always looking for performance indices to quantitatively evaluate the kine-
matical, dynamical or structural behavior of a complex system. In such systems, there are characteristic
matrices, such as Jacobian, stiffness, and mass matrices, which correspond to the aforementioned behav-
ior. Based on these characteristic matrices, researchers have tried to define proper performance indices,
such as kinematic index [40], dynamic indices [17, 41], and stiffness indices [17, 41,19, 45, 47–49]. In
the current study, the CTM was also introduced as another pivotal matrix in mechanical systems which
transfers the constraint wrenches from the joints to the center of mass of links. In another point of view,
the CTM can be seen as a mapping that distributes the applied forces/moments over the joints. A uniform
distribution of forces and moments in a mechanism is demanding as it prevents a sudden failure of a joint
or a link, and thus, extracting proper constraint wrench distribution indices, which show this uniformity
can be an achievement. The three methodologies which were explained in the previous sections provide
distinct CTMs with different properties and dimensions; however, the modified joint-based method is
the only one that can attain a full-rank CTM. Therefore, this matrix is targeted to obtain the constraint
wrench distribution indices. In this regard, first, Eq. (8) is rewritten in the following general form:

w = Kλ (46)

in which w and λ are denoting the applied and joints constraint wrench arrays, respectively. The wrench
arrays are composed of moment and force vectors, and hence, the components of the matrix K comprise
different units. To distinguish between constraint moments and forces, in the next step, the moment and
force components of each constraint wrench array are gathered into the separated arrays with subscripts
m and f , respectively, namely, [

wm

wf

]
=

[
K11 K12

K21 K22

] [
λm

λf

]
(47)

where block matrices K11 and K22 are dimensionless and K12, K21 have units of m and m−1, respectively.
The moment and force equations can then be expanded as follows:

wm = K11λm + K12 λf = wmm + wmf

wf = K21λm + K22λf = wfm + wff
(48)

In which wmm and wmf are the parts of the applied moments which are transformed to the moment
and force constraints, respectively. With the same token, wfm and wff are the parts of the applied forces
which are treated as moment and force constraints, respectively. The norm of each independent part of
Eq. (48) can be considered as a physically meaningful quadratic form [48], that is, ‖wmδ‖2 = δ

TKT
ijKijδ,

which defines an ellipsoid in the space of δ, which can be force or moment, depending on the chosen
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part. The matrix of the eigenvectors of KT
ijKij is then used as an orthogonal transformation which maps

the vector of dimensionless parameters pδ to δ, namely[50],

δ = Sδpδ (49)

As a result, there will be a linear transformation regarding the constraint moments and forces which
are produced by the applied moment array wm as [50][

λm

λf

]
=

[
Sm O
O Sf

] [
ψm

ψf

]
(50)

and another one for the constraint moments and forces which are produced by the applied force array
wf as [

λm

λf

]
=

[
Hm O
O Hf

] [
χm

χ f

]
(51)

Upon substitution of Eqs. (50) and (51) into Eq. (48), the applied moment and force arrays are
transformed into dimensionless parameter vectors via the following linear transformations [50]:

wm = Gmψ , wf = Gf χ

ψ =
[

ψm

ψf

]
, χ =

[
χm

χ f

]
(52)

where Gm and Gf are rectangular unit homogeneous coefficient matrices which are defined as

Gm = [
K11Sm K12Sf

]
Gf = [

K21Hm K22Hf

] (53)

The eigenvalues of GT
mGm and GT

f Gf characterize the distortion of the unit hyperspheres of ‖wm‖2 = 1
and ‖wf ‖2 = 1, respectively. With μi and ξi denoting the eigenvalues of GT

mGm and GT
f Gf , respectively,

the ratios of the maximum to the minimum eigenvalues, which is referred to as the Condition number,
are defined as


m = max(μi)

min(μi)
, 
f = max(ξi)

min(ξi)
(54)

where φm and φf are referred to as the constraint moments and forces distribution indices, respectively.
It is expected that an ideal distribution of constraint moments and forces happens when these indices
approach unity, and unbalanced distribution of constraint moments and forces occurs as much as the
indices attain values greater than one. The claim will be investigated numerically in the following case
studies.

7. Case study A: A spherical four-bar linkage
To explain the key steps of the proposed approaches, here, the constraint wrench analysis of a spherical
four bars linkage is conducted. The mechanism is considered as RCCC, in which R and C are denoting
the revolute and cylindrical joint, respectively. In fact, the aforementioned kinematic chain is an isocon-
strained version of the mechanism which is kinematically similar to the RRRR counterpart yet without
redundant constraints. The schematic of the mechanism including the global reference frame, and joints
axes (ei) are shown in Fig. 5. In this case, when an input joint motion, is known, the angular rates of
other joints can be readily calculated via the kinematic Eq. (51). Therefore, with the known kinematic
variables and physical and geometrical properties of the rigid links, the vector η in Eq. (11) is already
available.

Based on the joint-based method, Eq. (12) needs to be written for all four joints which connect four
rigid bodies, including the ground, namely,

KR
1,0t0 + KR

1,1t1 = 0
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Figure 5. Spherical four-bar linkage.

KC
2,1t1 + KC

2,2t2 = 0

KC
3,2t2 + KC

3,3t3 = 0

KC
4,3t3 + KC

4,4t4 = 0 (55)

in which KR
i,j are the CTMs of the revolute joint, which is defined based on Eq. (15). As t0 belongs to

the ground and equals zero, only KR
1,1 needs to be quantified,

KR
1,1 =

[
E1 O
D1 1

]
6×6

(56)

The CTMs of the cylindrical joints are denoted by KC
i,j which were defined in Eq. (17), namely,

KC
i,i−1 =

[ −Ei O
EiRi−1 −Ei

]
6×6

and KC
i,i =

[
Ei O

EiDi Ei

]
6×6

for i = 2, 3

KC
4,3 =

[
E4 O

E4R3 −E4

]
6×6

(57)

In the abovementioned relations, Ei is denoting the CPM of the joints axis ei, and Di and Ri are the
CPM of the position vectors of the joints to the links’ center of mass, ρi and γi, respectively, as it is
shown in Fig. 6. Considering that t0 = t4 = 0, the system twist vector is defined as t = [

tT
1 tT

2 tT
3

]T ,
and thus, the joint-based CTM of the mechanism KJ is readily obtained as

KJ =

⎡
⎢⎢⎣

KR
1,1 O O

KC
2,1 KC

2,2 O
O KC

3,2 KC
3,3

O O KC
4,3

⎤
⎥⎥⎦

24×18

(58)

A similar procedure can be adopted to obtain the modified joint-based CTM of the mechanism.
According to Eqs. (20) and (21), Gi

j of the rigid bodies can be established as below

G1
1 =

[
1 O

D1 1

]
6×6

, (59)
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Figure 6. Position vectors of the mass center of the links.

Gi
i−1 =

[ −1 O
Ri−1 −1

]
6×6

and Gi
i =

[
1 O
Di 1

]
6×6

for i = 2, 3 ,

G3
4 =

[−1 O
R3 −1

]
6×6

Referring to Eqs. (28) and (30) and the reciprocal joint screw matrices of the revolute and cylindrical
joints, the joints modified CTMs can be calculated. Therefore, the modified joint-based CTM of the
mechanism can be written as below

KJ =

⎡
⎢⎢⎣

KJ
1,1 O O

KJ
2,1 KJ

2,2 O
O KJ

3,2 KJ
3,3

O O KJ
4,3

⎤
⎥⎥⎦

17×18

(60)

Apparently, the rank deficiency of the joint-based CTM (Eq. (18)) is now resolved in the modified
version.

In the link-based methodology, because the mechanism is only made of 2-node rigid links, the
corresponding CTMs can be simply written based on Eq. (44)., namely,

KL
i,i =

[
1 −Di

O bf 1

]
6×6

, KL
i,i+1 =

[−1 −Ri

O −1

]
6×6

for i = 1, 2, 3 (61)

Accordingly, the CTM of the mechanism can be formed as below

KL =
⎡
⎣ KL

1,1 KL
1,2 O O

O KL
2,2 KL

2,3 O
O O KL

3,3 KL
3,4

⎤
⎦

18×24

(62)

In contrast to the modified joint-based, the joint-based and the link-based methodologies need the
screw matrix S to calculate the unknowns. This matrix is composed of the joints screw matrices which
are placed in the following format [39]:

S =

⎡
⎢⎢⎣

S1 O O O
0 S2 O O
0 O S3 O
0 O O S4

⎤
⎥⎥⎦

24×7

(63)
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Figure 7. The constraint wrench moments and forces exerted at the joints.

where

S1 =
[

e1

0

]
6×1

, Si =
[

ei 0
0 ei

]
6×2

for i = 2, 3 , 4 (64)

As the only active joint in the mechanism is the revolute, the actuator wrench shaping matrix AT is
simply obtained as

TA =
[

S1

0

]
18×1

(65)

For each methodology, the constraint wrench array encompasses different dimensions and compo-
nents. These arrays, belonging to different methods, are represented below separately,

λJ =

⎡
⎢⎢⎢⎢⎣

λJ
16×1

λJ
26×1

λJ
36×1

λJ
46×1

⎤
⎥⎥⎥⎥⎦

24×1

, λMJ =

⎡
⎢⎢⎢⎢⎣

λMJ
15×1

λMJ
24×1

λMJ
34×1

λMJ
44×1

⎤
⎥⎥⎥⎥⎦

17×1

, λL =

⎡
⎢⎢⎢⎢⎣

λL
16×1

λL
26×1

λL
36×1

λL
46×1

⎤
⎥⎥⎥⎥⎦

24×1

(66)

Although the components of the above arrays have the nature of constraint moments (λm) and forces
(λf ) exerted at the joints (Fig. 7), they do not share similar meaning. This concept will be discussed in
further detail later.

To evaluate the methodologies on the spherical mechanism with known physical and geometrical
properties, a dynamic problem is proposed in which the angular value of revolute joint obeys a simple
harmonic function such as θ1 = sin (t). As it is shown in Fig. 8, the input torque plots which are obtained
by all three methods are compatible. Also, according to Fig. 9, for the third joint, the norm of constraint
force and moment vectors are the same. The remarkable point occurred in the plot of constraint com-
ponents, calculated by the three methods, which are shown in Figs.10 and 11. In fact, in the link-based
method, the constraint components are calculated with respect to the reference coordinate frame, in
other words, f λi and mλi are physically meaningful variables, which are constraint force and moment
vectors produced in the ith joint. However, in both joint-based methods, these variables do not represent
constraint force and moment vectors at joints in a known reference frame. Due to the full-rank CTM, in
the modified joint-based, the constraint forces and moments that are along the direction of joint dofs are
eliminated. As a result, in every instant, the constraint forces and moments are obtained perpendicular
to the direction of joint dof; however, these components are also not reported with respect to a certain
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Figure 8. The actuator torques of the spherical four-bar linkage.

Figure 9. The magnitude of the constraint (a) moment and (b) force vectors at the third joint (C joint).

reference frame. It is noteworthy to mention that the constraint components which are obtained by the
joint-based or the link-based methods cannot be related with a transformation because the reference
frame in which the ones of the former are defined is not known.

In the case of the spherical four-bar linkage, the modified joint-based method produces a 17×18
full-rank CTM. Therefore, Eq. (8) can be rewritten in the following form:[

wm9×1

wf9×1

]
18×1

=
[

K119×8 K129×9

K219×8 K229×9

]T [
λm8×1

λf9×1

]
17×1

(67)

Also, the constraint moments distribution index over the prescribed trajectory is plotted in Fig. 12.
In sec. 5, it was claimed that the proposed indices can represent the uniformity of the constraint forces
and moments distribution on the joints. To verify the proposed claim, the norm of constraint moment
vectors at all four joints of the spherical linkage is also shown in Fig. 12. As it is shown, where the index
attains its maximum value (at t = 3.2s), the magnitude of constraint moments is distributed over a larger
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Figure 10. The components of constraint moment of the third joint (C joint).

Figure 11. The components of the constraint force vector of the third joint (C joint).

bound. However, at the minimum value of the index (at t = 1.57s), the constraint moment magnitudes are
distributed in a more balanced state. Likewise, the foregoing statement can be repeated for the constraint
forces distribution index and the magnitude of constraint forces, as the plots are shown in Fig. 13a
and 13b.

8. Case study B: the delta parallel robot
Recently, parallel manipulators are widely used in industries due to their superior speed and accuracy
to serial counterparts. However, the complexity of parallel robots hinders engineers from simple and
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Figure 12. (a) The constraint moments distribution index and (b) magnitudes of the constraint moment
vectors for the spherical four-bar linkage.

Figure 13. (a) The constraint forces distribution index and (b) magnitudes of the constraint force vectors
for the spherical four-bar linkage.

quick evaluation of their dynamic performances. To investigate the efficiency of the proposed methods
on complex systems, here, the constraint wrench analysis of a Delta parallel manipulator (Fig. 14) is
conducted. As it is shown in Fig. 15, each leg of the robot is composed of a parallelogram, made of four
rigid links connected by four parallel-axis revolute joints. This parallelogram is connected by means of
two revolute joints to the first link and the moving platform. Here, to simplify the dynamic model, it
is assumed that the parallelogram is made of two longer links, which are connected by two universal
joints to the adjacent links (Fig. 14). In other words, the shorter links are assumed massless, which play
only a kinematical role, and hence, the kinematic chain of the robot can be considered as 3-RUU. With
the foregoing modeling, and based on the notation used in Eq. (15), for this parallel robot, it yields that
n = 8, m = 9, and k = 15, and as a result τ = 3. Therefore, the joint-based CTM, KJ , which is obtained
by the method addressed in sec. 3 [39], is a 54 × 42 rank-deficient matrix, while the one which is obtained
by the modified version is a full-rank 39 × 42 matrix. Also, the link-based CTM is obtained as a 42 × 54
rank-deficient matrix. The constraint force and moment vectors, the joints axis, and the actuator of the
ith leg are shown in Fig. 15. The robot dimensions and specifications are also presented in Table I and
Fig. 16.
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Figure 14. Delta parallel manipulator.

Figure 15. The constraint wrenches, joints axis, and the actuator for the ith leg, where i = 1, 2, 3.

Here, the constraint wrench analysis of the robot is conducted by resorting to the link-based, joint-
based, and the modified joint-based methods. In this regard, it is assumed that the robot’s MP operates
over a test trajectory which is shown in Fig. 17. The actuators torque, obtained by the three methods, is
shown in Fig. 18. Apparently, the three methods end up with the identical actuators torque. The magni-
tude of the constraint force and moment vectors at the second universal joint of the second leg is also
plotted in Fig. 19(a) and Fig. 19(b), respectively. As it can be seen in Fig. 20 and Fig. 21, in contrast to
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Table I. The specifications of the Delta’s components [45].

Components Length (mm) Mass (kg)
Li 524 1.887
li 1244 0.5
up 44 0.03
ub 164 –

Figure 16. The angles and the links dimensions for the ith leg, where i = 1, 2, 3.

Figure 17. The trajectory of the Delta robot’s MP.

the link-based method, the joint-based counterparts do not provide the components of constraint force
and moment vectors with respect to a specific coordinate frame.

The CTM of the Delta robot which is obtained by the modified joint-based is a 39 × 42 full-rank
matrix whose transpose maps the constraint forces and moments at joints to the constraint wrenches at
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Figure 18. The actuator torques of the Delta robot.

Figure 19. The magnitude of the constraint (a) moment and (b) force vectors at the second joint (U
joint) on the second leg.

the center of mass of bodies, namely,[
wm21×1

wf21×1

]
42×1

=
[

K1121×12 K1221×27

K2121×12 K2221×27

]T [
λm12×1

λf27×1

]
39×1

(68)

In the case of Delta parallel robot, the constraint moments distribution index is calculated and plotted
over the MP trajectory of Fig. 17. As an example, the magnitude of constraint moments at the second
joint (Universal) of all three legs is also presented in Fig. 22. As it is shown, at the maximum value of
distribution index, the constraint moment magnitudes are distributed over a larger bound, where the peak
values occur as well. However, at the minimum value of the index, the constraint moment magnitudes
are distributed in a more balanced state. The correspondence between the behavior of index and the
constraint force magnitudes is more visible in Fig. 23. As it is apparent, when the constraint forces
distribution index is at its minimum value (at t = 4.6s), the differences between the constraint force
magnitudes of the three joints will be less. In other words, the applied force distributed over the three
joints in a more balanced behavior.

https://doi.org/10.1017/S026357472100117X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472100117X


Robotica 1427

Figure 20. The components of the constraint moment at the second joint (U joint) on the second leg.

Figure 21. The components of the constraint force at the second joint (U joint) on the second leg.

Upon comparison of Fig. 22 and Fig. 23, it reveals that the constraint moments and forces distri-
bution indices behave in a conflicting manner. However, as it can be seen, the variation of the latter is
more significant than the former, and thus, the behavior of the constraint force index can be considered
pivotal in this case. Although it is observed that in the abovementioned cases the proposed indices can
estimate the way that the constraint forces and moments are distributed over the joints, the authors could
not conclude similar results in general cases and on all joints. Therefore, the meaning, efficiency, and
application of the proposed indices call for further investigation in the future.
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Figure 22. (a) The constraint moments distribution index and (b) magnitudes of the constraint moments
for the second joints of each leg in the Delta robot.

Figure 23. (a) The constraint forces distribution index and( b) magnitudes of the constraint forces for
the second joints of each leg in the Delta robot.

9. Conclusion
In this paper, two different approaches were evaluated in the constraint wrench analysis of robotic sys-
tems. The first approach, which was called the joint-based method, relied on the kinematic constraints
imposed by kinematic pairs on the connected bodies, while the second one, which was referred to as
the link-based method, benefited from the wrench transfer formula in rigid bodies. It was shown that
both methods need to take into account zero-power relations as well. In this study, by resorting to the
definition of reciprocal screws, an alternative joint-based approach was also proposed. The main dif-
ference between these methodologies comes from the way each of them composes the CTM. Thus, the
properties of the CTMs, which were obtained by the three methods were discussed. Next, by resort-
ing to the geometrical representation of the modified joint-based CTM, constraint forces and moments
distribution indices were introduced. The efficiency of introduced indices still needs to be investigated,
however, in a broad picture, they have been estimated to be able to reflect the uniformity of constraint
forces or moments produced at kinematic pairs in a multibody system for a certain operation.

In the end, the three approaches were evaluated on two case studies, a spherical four-bar linkage and
a Delta parallel manipulator. The numerical results revealed that although the actuator torques and the
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magnitude of the constraint moment and force vectors were obtained identically by the three methods,
the joint-based approaches do not provide meaningful components with respect to a specific coordinate
frame. In other words, if an analyst is looking for a methodology to accurately evaluate the constraint
force and moment vectors at the joints, both in magnitude and direction with respect to a specific axes,
the joint-based methods cannot be the proper candidates. Upon evaluation of the introduced indices
on the case studies, it was also concluded that the indices can approximately reflect the balanced or
unbalanced distribution of constraint moments and forces on the joints.
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