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We study the implications of patents in an overlapping generations model with horizontal
innovation of differentiated physical capital. We show that within this demographic
structure of finitely lived agents, weakening patent protection generates two contradicting
effects on innovation and growth. Weakening patent protection lowers the (average) price
of patented machines, thereby increasing machine utilization, output, aggregate saving,
and investment. However, a higher demand for machines shifts investment away from the
R&D activity aimed at inventing new machine varieties toward the formation of physical
capital. The growth-maximizing level of patent protection is incomplete. Shortening
patent length is more effective than loosening patent breadth in spurring growth, due to an
additional positive effect on growth, that is decreasing investment in old patents. Welfare
can be improved by weakening patent protection beyond the growth-maximizing level.
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1. INTRODUCTION

There is a relatively large literature on the role of patent policy in modern growth
theory and the implications of patent strength to R&D-based growth and welfare.
The current literature, however, is almost exclusively written about models with
infinitely lived agents. This paper utilizes an overlapping generations model to
highlight some unique implications of finite lifetimes to patent policy.

In an economy of finitely lived agents, the limited longevity sets a barrier to
growth by inducing intergenerational trade in productive assets. This point was
emphasized by Jones and Manuelli (1992) in a model of physical capital accumu-
lation, and by Chou and Shy (1993) in an endogenous growth model of variety
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expansion with no physical capital. Both studies employed the canonical over-
lapping generations (OLG) model pioneered by Samuelson (1958) and Diamond
(1965), where saving and investment are constrained by labor income.1

Jones and Manuelli (1992) showed that perpetual growth cannot prevail in the
neoclassical OLG economy2 due to the limited ability of the young to purchase
capital held by the old. One of the remedies they consider to support sustained
growth in such an economy is direct income transfers from old to young. Chou
and Shy (1993) emphasized that inter-generational trade in old patents slows
down growth as investment in old patents crowds out innovative (R&D) invest-
ment in new varieties. They showed that due to this crowding-out effect, which is
not present in infinitely-lived agent economies, shortening patent length enhances
growth.

To the best of our knowledge, Sorek (2011) is the only other work to study
the growth implications of patents in the OLG framework. However, this work
focuses on the effect of patents’ breadth and length on quality growth (i.e., verti-
cal innovation), where differentiated consumption goods are only produced with
labor [i.e., there is no physical capital as in Chou and Shy (1993)]. In Sorek’s
(2011) setup, the effect of patent policy on growth depends crucially on the
elasticity of inter-temporal substitution, through the effect of the interest rate
on life-cycle saving in the OLG model. This effect plays no role in the current
analysis (though it is considered in the Appendix).

The present work studies an OLG economy that incorporates variety expansion
of specialized machines and physical capital accumulation, to highlight a unique
mechanism through which loosening patents’ strength spurs growth. Our anal-
ysis places the variety-expansion model proposed by Rivera-Batiz and Romer
(1991)3 into the canonical OLG demographic framework of Samuelson (1958)
and Diamond (1965).

In order to isolate the main effect under study from the aforementioned
crowding-out effect,4 we first show that under infinite patent length, growth is
maximized with incomplete patent breadth. The mechanism at work behind this
result involves the trade-off between the static and dynamic effects faced by the
patents policy maker. Weakening patent breadth protection works to lower the
price of patented machines (by weakening sellers’ market power), which in turn
increases demand for machines. With more machines being utilized, output and
labor income are higher, thus increasing aggregate saving and investment. This is
the positive effect of loosening patent breadth protection on growth.5 However,
higher demand for machines shifts investment away from patents and innovation
toward physical capital. This is the negative effect of weakening patent breadth
protection on growth. The growth-maximizing patent breadth is incomplete and
depends negatively on the depreciation rate of capital.

The effect of patent policy on growth we are highlighting here is not present in
the counterpart models of infinitely lived agents, where saving is not bounded by
labor income. Previous works on Rivera-Batiz and Romer (1991) model economy
with infinitely lived agents concluded that growth is maximized with complete

https://doi.org/10.1017/S1365100519000294 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100519000294


PATENTS IN OLG ECONOMY WITH PHYSICAL CAPITAL 491

patent protection, that is, infinite patent length and complete patent breadth; see
Iwaisako and Futagami (2003), Kwan and Lai (2003), Cysne and Turchick (2012),
and Zeng et al. (2014).6,7 The growth rate in the infinitely lived agents economy is

determined by the familiar Euler condition,
·
c
c = 1

θ
(r − ρ).8 Therefore, the effect

of patent protection strength on growth works solely through its positive impact
on the returns to innovation and, thereby, the interest rate.

Next, we show that, for any positive depreciation rate on physical capital,
shortening patent length is more effective in spurring growth than loosening
patent breadth protection. Shortening patent length triggers the mechanism pre-
sented above while mitigating the crowding out effect as in Chou and Shy
(1993).9 Shortening patent length induces the same effect as loosening patent
breadth protection by lowering the average price of machine varieties. Patent
expiration over a certain specialized machine results in competition among imi-
tators of this specific variety, which brings its price down to marginal cost.
Shorter patent length increases the fraction of competitive machine-industries,
thus lowering average machines’ price. Compared with Chou and Shy (1993)
and Sorek (2011), who found that one-period patent length yields higher growth
than infinite patents protection in OLG economy with no physical capital, we
also find that one-period patent length never maximizes growth in our model
economy.

Our welfare analysis shows that loosening patent breadth protection beyond the
growth-maximizing level can benefit all generations. Our welfare results do not
differ qualitatively from the ones obtained in the counterpart studies of infinitely
lived agents, where welfare is also maximized with incomplete patent protection;
see Iwaisako and Futagami (2003), Iwaisako and Futagami (2003), Cysne and
Turchick (2012), and Zeng et al. (2014). Hence, both our OLG framework and the
infinitely lived agents models exhibit the feature that welfare maximizing patent
protection is weaker than growth-maximizing patent protection.

Finally, in the last section of the analysis, we present an implication of our
main finding for patent policy and economic development. We show that when
labor productivity increases relative to innovation cost, due to human capital
accumulation, the growth-maximizing patent breadth protection adjusts to labor
productivity. Hence, as the economy develops, the growth-maximizing patent
strength is increasing as well. This result provides a normative case for the doc-
umented positive correlation between the strength of intellectual property rights
(IPR) and economic development worldwide [see Eicher and Newiak (2013), and
Chu et al. (2014)].

Chu et al. (2014) presented the first analysis of stage-dependent optimal IPR,
based on a trade-off between imitation from foreign direct investment (FDI) and
reliance on domestic innovation. Our last result provides a complementary case
for growth-enhancing stage-dependent IPR policy for a closed economy (which is
independent of the imitation motive). In an earlier analysis of the topic, Diwakar
and Sorek (2016) provide evidence that major developing economies strongly
restrict (physical) capital inflows.
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The paper proceeds in a straightforward manner. Section 2 presents the model.
Section 3 studies the implications of alternative patent policies to growth and
welfare. Lastly, Section 4 concludes the paper.

2. MODEL

Our model incorporates the variety expansion model with lab-equipment inno-
vation technology and differentiated capital goods proposed by Rivera-Batiz and
Romer (1991), into Diamond’s [Diamond (1965)] canonical OLG demographic
structure. Each period two OLGs of measure L, the “young” and the “old”, are
economically active. Each agent is endowed with one unit of labor to be supplied
inelastically when young. Old agents retire and consume their saving.

The benchmark model presented in this section assumes full patent protection
(i.e., infinite patent duration and complete patent breadth protection), implying
that in any period innovators can charge the unconstrained monopolistic price
for their patented machines. We study the implications of incomplete patent
protection in Section 3.

2.1. Production and Innovation

The final good Y is produced by perfectly competitive firms with labor and
differentiated capital goods, to which we refer also as specialized machines:

Yt = AL1−α
Mt∫

0

Kα
i,t di , (1)

where α ∈ (0, 1), A is a productivity factor, L is the constant labor supply, Ki,t is the
utilization level of machine-variety i in period t, respectively, and Mt measures the
number of available machine-varieties.10 Machines are subject to the depreciation
rate δ ∈ (0, 1) per usage-period, and the price of the final good is normalized to
one. Under symmetric equilibrium, utilization level for all machines is the same,
i.e., Ki,t = Kt ∀ i , and thus total output is

Yt = AMtK
α
t L1−α . (1a)

The representative (perfectly-competitive) firm in the final-good production sec-
tor employs specialized machines at the rental price pi and labor at the market
wage w, in order to maximize the profit

AL1−α
Mt∫

0

Kα
i,t di

︸ ︷︷ ︸
Output/Revenue

−
Mt∫

0

pi,tKi,t di

︸ ︷︷ ︸
Capital cost

− wtL︸︷︷︸
Labor cost

.

The labor market is perfectly competitive and the equilibrium wage and aggre-
gate labor income are wt = (1 − α) AMtKα

t L−α and wtL = A(1 − α)MtKα
t L1−α ,
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respectively. The profit maximization with respect to each machine variety

yields the familiar demand function: Kd
i,t = A

1
1−α L( α

pi,t
)

1
1−α . Assuming symmetric

equilibrium prices and plugging the latter expression back into (1a) we obtain

Yt = A
1

1−α MtL

(
α

pt

) α
1−α

. (2)

We assume that innovation technology follows the “lab-equipment” specification
proposed by Rivera-Batiz and Romer (1991). The cost of a new blue print, that is
the cost of inventing a new machine variety, is η output units. This cost is borne
by the innovating firms. The innovation process takes one period, and then the
machines of the newly invented variety can be rented to the producers of the final
good under implemented patent protection policy.

Note that the “lab-equipment” innovation technology does not involve any
knowledge externalities, which are believed to be crucial to actual (real-life) inno-
vation activity and, therefore, also to the design of patent policy. Nonetheless, the
simplistic “lab-equipment” innovation technology serves well the purpose of the
current study: it enables highlighting the implications of the OLG demographic
structure to patent policy, by comparison with counterpart analyses of infinitely
lived agents models mentioned in this section, that used the same innovation
technology.11

2.2. Preferences

Lifetime utility of the representative agent born in period t is derived from
consumption (denoted by c) over two periods, based on the logarithmic
instantaneous-utility specification12

Ut = ln ct + ρ ln ct+1, (3)

where ρ ∈ (0, 1) is the subjective discount factor. Young agents allocate their labor
income between consumption and saving, denoted by s. The solution for the stan-
dard optimal saving problem is st = wt

1+ρ−1 . Hence, aggregate saving by the young

is St = wtL
1+ρ−1 , which after substituting the explicit expressions for wt becomes

St =
(1 − α)A

1
1−α MtL

(
α
p

) α
1−α

1 + ρ−1
. (4)

2.3. Equilibrium and Growth

The patent owners of each machine variety borrow raw physical capital from
savers/lenders at the net interest rate rt. They then transform each unit of raw
capital into one specialized machine, at no cost. This investment process of phys-
ical capital formation takes one period. In the following period, the specialized
machines are rented to final output producers at the rate p. Hence, given the
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demand for each machine, as previously specified, the per-period surplus from
each patented machine, denoted PS, is: PSi,t =

[
pi,t − (δ + rt)

]
Kd

i,t.
The surplus is maximized by the standard monopolistic price pi,t = δ+rt

α
. Under

infinite patent duration, all new and old varieties are priced equally and, therefore,
share the same utilization level. As long as innovation takes place, the market
value of old patents, that is patents over varieties that were invented in the past,
equals the cost of inventing a new one, η. The gross rate of return on investment in
patents is given by 1 + rt = PS+η

η
. Note that the numerator in the interest expres-

sion contains η because each and every period all patents held by old agents are
sold to the young agents, that is the intergenerational trade in old patents.

Using the explicit term for the surplus and price of the specialized machines,
we obtain the following implicit expression for the stationary equilibrium interest
rate, r∗:

∀t : 1+rt =
[
pi,t − (δ+ rt)

]
Kd

i,t + η

η
=⇒ 1 + r∗ = (δ + r∗)−

α
1−α

(
1
α
−1

)
α

2
1−α + η̂

η̂
,

(5)
where η̂≡ η

A
1

1−α L
. Equation (5) also defines the no-arbitrage condition that equal-

izes the net rate of return on investment in patents and investment in physical
capital.

LEMMA 1. There exists a unique stationary interest rate, r∗, which solves (5).
The stationary interest rate decreases with η̂ and δ, that is ∂r∗

∂η̂
, ∂r∗
∂δ
< 0.

Proof. The left-hand side of (5) is increasing linearly in r , from one (for r = 0)

to infinity. The right-hand side of (5) is decreasing in r from
δ
α

1−α
(

1
α−1

)
α

2
1−α +η̂

η̂
> 1

(for r = 0) to one (for r → ∞). Hence, by the intermediate value Theorem, there
exists a positive stationary interest rate, r∗, that solves (5). The right-hand side
of (5) is also decreasing in η̂ and δ, and thus ∂r∗

∂η̂
, ∂r∗
∂δ
< 0. �

For the case δ = 0, equation (5) yields an explicit solution for the stationary
equilibrium interest rate:

for δ= 0: r∗ = α1+α
(

1 − α

η̂

)1−α
. (5a)

Under the stationary-equilibrium interest rate, aggregate saving of the young
is allocated over investment in old and new patents, and in physical capital (i.e.,
specialized machines), where the investment in physical capital is set to meet the
demand for specialized machines.

It = Mt+1

⎡⎣η+ A
1

1−α L

(
α2

r∗ + δ

) 1
1−α

⎤⎦ . (6)
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Equation (5) implies that under the stationary interest rate, machine prices are
also stationary: ∀t, i : p∗ = δ+r∗

α
. Hence, by equation (2), the output growth rate,

denoted gY ,t+1 ≡ Yt+1
Yt

− 1, equals to the rate of machine-varieties expansion, i.e.,
gY ,t+1 = gM,t+1. Thus, to simplify the notation, we will denote both growth rates
with g. Imposing the equilibrium condition S = I, we equalize (4) and (6) to derive
the stationary rate of variety expansion, and output growth rate, g∗:

1 + g∗ =
1−α

1+ρ−1

(
α2

r∗+δ
) α

1−α

η̂+
(

α2

r∗+δ
) 1

1−α
. (7)

LEMMA 2. For sufficiently low η̂, the stationary growth rate in (7) is positive.

Proof. Re-arranging (5) yields η̂=
(

1
α−1

)
α

2
1−α

r∗(δ+r∗)
α

1−α
. Substituting this expression of

η̂, as a function of r∗, back into (7) yields:

1 + g∗ = 1 − α

α
(
1 + ρ−1

) · 1
1−α
r∗ + α

r∗+δ
. (7a)

By equation (5) and Lemma 1, the stationary interest rate is decreasing in η̂, and
as it approaches zero the stationary interest rate r∗ approaches infinity. Therefore,
the above equation implies that for sufficiently low η̂ the growth rate defined in (7)
is positive. �

Clearly, the upper bound on the value of η̂, that is required to support positive
growth depend on the remaining parameters of the model (i.e., the time discount
parameter ρ, and the factors intensity parameter α).

ASSUMPTION 1. Based on Lemma 2, we assume hereafter that η̂ is suffi-
ciently low, so that the growth rate defined in equation (7), for complete patent
protection, is positive.

Substituting the interest given in (5a), for δ = 0, into (7a) yields

1 + g∗ = αα (1 − α)2−α(
1 + ρ−1

)
η̂1−α . (7b)

For the explicit growth rate in (7b), which is a particular case of (7a), it is

easy to verify that having η̂ <
[
αα(1−α)2−α
(1+ρ−1)

] 1
1−α

guarantees positive growth. In

the next section, we will show that the latter inequality also ensures that the
growth-maximizing patent-breadth policy supports positive growth.

3. PATENTS

We are prepared now to explore the implications of patent policy for growth and
welfare. The growth implications of incomplete patent breadth protection, under
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infinite patent length, are studied first. We then demonstrate the greater effec-
tiveness of finite patent length in spurring economic growth. Lastly, we examine
welfare enhancing stage-dependent patent policies.

3.1. Patent Breadth and Growth

We model patent breadth protection with the parameter λ, which limits the ability

of patent holders to charge the unconstrained monopolistic price: p∗ (λ)= λ(δ+r∗)
α

where λ ∈ [α, 1], and thus p∗ (λ) ∈
[
δ + r∗, δ+r∗

α

]
. One can think of p∗ (λ) as the

maximal price a patent holder can set and still deter competition by imitators.
Weaker breadth protection lowers the cost of imitation, thereby imposing a lower
deterrence price on patent holders.13 When λ= 1, patent breadth protection is
complete and patent holders can charge the unconstrained monopolistic price.
With zero protection λ= α, patent holders lose their market power completely
and sell at marginal cost. Note that as patent breadth protection is weakened,
machines’ price is reduced and quantity demanded for each machine-variety
increases. Under this patent breadth policy, the equilibrium stationary interest rate
in equation (5) modifies to

1 + r∗ =
(δ + r∗)−

α
1−α

(
λ
α

− 1
) (

α2

λ

) 1
1−α + η̂

η̂
. (8)

For δ = 0 : r∗ =
[(

λ
α

− 1
)

η̂

]1−α (
α2

λ

)
. (8a)

LEMMA 3. The stationary equilibrium interest rate r∗ is increasing with
patent breadth protection and decreasing with the depreciation rate and inno-

vation cost. That is ∂r∗
∂λ
> 0 and ∂r∗

∂δ
, ∂r∗
∂η
< 0. Furthermore,

∂(r∗+δ)
∂δ

> 0.

Proof. Differentiating the right hand of (8) side for λ yields a positive deriva-
tive for any α < λ< 1. Hence, the value of r∗, which solves (8), is increasing with
patent breadth protection λ. Similarly, as the right-hand side of (8) is decreasing
with the depreciation rate and the innovation cost, so does the value of interest rate
that solves (8). Since r∗ is a decreasing function of the depreciation rate, the left-
hand side of equation (8) is decreasing in the depreciation rate. The term (r∗ + δ)

on the right-hand side of the equation must therefore be an increasing function of
the depreciation rate, as the exponent is negative. Thus, ∂(r+δ)

∂δ
> 0. �

Lemma 3 implies that loosening patent breadth protection decreases machines’
price, p∗ (λ), through capping the monopolistic markup and by decreasing the
marginal cost (of capital) on which this markup builds. Thus, loosening patent
breadth protection increases the demand for each machine variety. This increase
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in demand for machines has a positive effect on aggregate saving (4), for a given
variety span:

St =
(1 − α)A

1
1−α MtL

(
α

pt(λ)

) α
1−α

1 + ρ−1
.

This is the positive effect of loosening patent breadth protection on aggregate sav-
ing (for a given variety span Mt) and, thereby, innovation and growth. However,
for a given level of saving, the increased demand for machines works to shift
investment toward physical capital and away from patents. This is the negative
effect of loosening patent breadth protection on innovation and growth. From
equation (6) we have:

It = Mt+1

[
η+ A

1
1−α L

(
α

pt+1 (λ)

) 1
1−α

]
.

Plugging p∗ (λ)= λ(δ+r∗)
α

in the above saving and investment expressions and
imposing the aggregate constraint S = I , we obtain

1 + gy = 1 − α

1 + ρ−1

ψ
α

1−α

η̂+ψ
1

1−α
. (9)

where η̂= η

A
1

1−α L
(as before), and ψ ≡ α2

λ(δ+r∗) . Finally, we denote the growth-

maximizing patent breadth policy λ∗∗.

PROPOSITION 1. The growth-maximizing patent breadth protection policy,
λ∗∗, is given by the solution to α2

λ∗∗(δ+r∗∗) = (
α

1−α η̂
)1−α

. For any positive depreci-
ation rate it is incomplete, and it is decreasing in the depreciation rate. That is,
∀δ > 0 : α < λ∗∗ < 1 and ∂λ∗∗

∂δ
< 0.

Proof. Differentiating (9) for ψ reveals that the growth rate is increasing in ψ ,
if ψ <

(
α

1−α η̂
)1−α

, that is α2

λ(δ+r∗) <
(
α

1−α η̂
)1−α

, and is maximized for α2

λ∗∗(δ+r∗) =
α

1−α η̂
1−α . The interest rate equation (8) can be rearranged, to be written as

α
1−α η̂= (δ+r∗)

(
λ−α
1−α

)
r∗ ψ

1
1−α . Substituting the growth-maximizing condition into the

latter expression yields λ∗∗−α
1−α = r∗

r∗+δ . Therefore, under zero depreciation rate
the growth-maximizing policy is λ∗∗ = 1. And for any positive depreciation rate

α < λ∗∗ < 1. Finally, by Lemma 3 we have ∂r∗
∂δ
< 0 and

∂(r∗+δ)
∂δ

> 0. Hence, a high
depreciation rate requires a lower λ∗∗ to maintain the latter growth-maximizing
condition. �

The main mechanism behind Proposition 1 was already explained with the pre-
sentation of the aggregate saving and aggregate investment equations above. The
negative relation between the growth-maximizing patent breadth and the physical
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depreciation rate, is due to the effect of the latter on machines’ price. The lower
the depreciation rate, the lower the price of physical capital and, therefore, the
higher is the demand for physical capital. With initial lower machine prices, there
is less potential for growth enhancement through further price decrease induced
by loosening patent protection.

COROLLARY 1. The maximal growth rate, g∗∗, that corresponds to λ∗∗ is not
dependent on the depreciation rate, and is positive. Under the growth-maximizing
policy, which, by Proposition 1, satisfies ψ

∗∗ ≡ (
α

1−α η̂
)1−α

, the right-hand side
of (9) reduces to the following expression that is independent of δ, and is positive

by Assumption 1: 1 + g∗∗ = αα(1−α)2−α
(1+ρ−1)̂η1−α .

Notice that the growth rate in Corollary 1 equals to the one calculated in
equation (7b), for δ = 0 and λ= 1. That is, under infinite patents and zero phys-
ical captial depriciation, growth cannot be enhanced by loosening patent breadth
protection.

3.2. Patent Length and Growth

We turn to study the implications of patent length for growth, under complete
patent breadth protection. We study stochastic patent length, assuming that each
period a fraction 1 − π of the existing patents expire, where π ∈ [0, 1].14,15

However, once introduced (invented), all new varieties are certain to be granted
with a patent for one period, which will then expire with probability 1 − π in each
and every following period. In other words, imitation may take place only after
the new variety was used for one period. This means that, at the beginning of each
period, the expected lifetime of all patents (old and new), denoted T , is given by
E(T) = 1+ π

1−π .
Under this specification, in each and every period a measure Mm,t ≤ Mt of

machine varieties are monopolized under complete patent protection, and the
remaining machine varieties (for which patent has expired), Mc,t ≡ Mt − Mm,t ,
is sold under perfect competition.16 The number of monopolized industries is
given by the sum of the renewed existing patents and the new patents17: Mm,t =
πμm,tMt+ �Mt+1. Hence, the fraction of patented industries in period t + 1

is given by μm,t+1 = πμm,tMt+Mt+1−Mt
Mt+1

= πμM,t
1+gM,t+1

+ gM,t+1
1+gM,t+1

. The latter equation
implies that if the variety span is expanding at a stationary rate, g∗

M , the fractions
of monopolized machine industries and competitive machine industries—also
converge to the stationary levels, denoted μ∗

m, μ∗
c :

μ∗
m = g∗

M

1 + g∗
M − π

⇒μ∗
c ≡ 1 −μ∗

m = 1 − π

1 + g∗
M − π

. (10)

Patented varieties are sold for the unconstrained monopolistic price: pm = δ+r∗
α

,
and once the patent of certain machine variety expires, its unit-price drops to the
competitive (marginal cost) level: pc = δ + r∗. Therefore, the demand for each
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patented machine variety is given by Kd
m = A

1
1−α L( α2

δ+r∗ )
1

1−α , and demand in each

competitive industry is given by Kd
c = A

1
1−α L( α

δ+r∗ )
1

1−α .
Modifying the output equation (1), to incorporate monopolized and competitive

machine industries, we obtain

Yt = A
1

1−α L
[
Mm,t

(
Kd

m

)α + Mc,t
(
Kd

c

)α]
. (11)

Substituting the explicit demand expression and the shares of monopolized (and
competitive) industries—from equation (10)—into (11), we rewrite total output as
a function of the endogenous stationary variables, r∗ and g∗:

Yt = A
1

1−α MtL

[
g∗

M

1 + g∗
M − π

(
α2

δ + r∗

) α
1−α

+ 1 − π

1 + g∗
M − π

(
α

δ + r∗

) α
1−α

]
.

(11a)
Equation (11a) confirms that the stationary output growth rate equals the sta-
tionary expansion rate of the variety span, i.e., g∗

M = g∗
Y expansion rate (as it was

under infinite patent). Hence, we re-denote both growth rates g∗. Aggregate saving
is still a constant fraction of total output: St = (1−α)

1+ρ−1 Yt. Here, however, aggre-
gate investment in each period sums up to investment in patent ownership, the
formation of patented machines, and the formation of non-patented machines:

It = Mm,t+1
(
η+ Kd

m

) + Mc,t+1Kd
c . (12)

Plugging the explicit expression for machines demand and the using the shares of
patented and non-patented industries from (10), yields

It = Mt+1A
1

1−α L

⎧⎨⎩ g∗

1+g∗−π

⎡⎣η̂+ (
α2

δ + r∗

) 1
1−α

⎤⎦+ 1 − π

1 + g∗ − π

(
α

δ + r∗

) 1
1−α

⎫⎬⎭ .

(12a)
Imposing It = St yields the following implicit equation for the stationary growth
rate:

1 + g∗ =
1−α

1+ρ−1

[(
α2

δ+r∗
) α

1−α + 1−π
g∗

(
α

δ+r∗
) α

1−α
]

η̂+
(

α2

δ+r∗
) 1

1−α + 1−π
g∗

(
α

δ+r∗
) 1

1−α
=

1−α
1+ρ−1ψ

α
1−α (1 + 1−π

g∗ α
−α
1−α )

η̂+ψ
1

1−α
(

1 + 1−π
g∗ α

−1
1−α

) .

(13)
where ψ ≡ α2

δ+r , as before. Equation (13) has only one positive root, and for π = 1
it coincides with (7). The stationary interest rate under the current patent policy is
given by

1 + r∗ = (δ + r∗)−
α

1−α
(

1
α

− 1
)
α

2
1−α + πη̂

η̂
. (14)
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The stationary equilibrium interest rate that satisfies (14), r∗, is increasing with
the patent survival probability π , and thusψ is decreasing with the patent survival
probability, i.e., ∂ψ

∂π
< 0.

LEMMA 4. For π = (1 − δ) the interest rate and the growth rate in (14)
and (13) are equal to corresponding interest rate and growth rate presented in
Corollary 1. That is , for π = (1 − δ): ψ (π = 1 − δ, λ= 1)=ψ

∗∗
(π = 1, λ∗∗)≡(

α
1−α η̂

)1−α
, and 1 + g∗∗(π = 1 − δ, λ= 1) = 1 + g∗∗(π = 1, λ∗∗) ≡ αα(1−α)2−α

(1+ρ−1)̂η1−α .

Proof. The first part of the Lemma is proved by substituting π = (1 − δ)

into (14) to obtain δ + r∗ =
(

1−α
αη̂

)1−α
α, which implies ψ (π = 1 − δ, λ= 1)=(

α
1−α η̂

)1−α =ψ
∗∗
(π = 1, λ∗∗). Then, the second of the lemma part is proven

by substituting ψ =ψ∗∗ into (13), to obtain: 1 + g∗∗(π = 1 − δ, λ= 1) =
αα(1−α)2−α
(1+ρ−1)̂η1−α = 1 + g∗∗(π = 1, λ∗∗). �

Applying the implicit function theorem to (13) we obtain the following
expression for ∂g∗

∂π
:

∂g∗
∂π

=
(1−α)
1+ρ−1ψ

α

1−α

[
α|∂ψ

∂π
|(1+ 1−π

g∗ α
−α

1−α
)

(1−α)ψ + α
−α

1−α
g∗

]
−ψ

1
1−α

[ |∂ψ
∂π
|(1+ 1−π

g∗ α
−1

1−α
)

(1−α)ψ + α
−1

1−α
g∗

]
(1 + g∗)

− (1−π)ψ α
1−α α

−1
1−α

(g∗)2

[
(1−α)α
1+ρ−1 −ψ(1 + g∗)

]
− B

,

(15)

where B is the denominator in the right-hand side of (13). Substituting ψ =ψ∗∗
and g∗ = g∗∗ into (15), and simplifying, we obtain

∂g∗

∂π
|π=1−δ =

α2α

1+ρ−1

(
η̂

1−α
)2α−1 ∣∣∂ψ

∂π

∣∣ δ
g∗∗α

−1
1−α (α− 1)

−B
=

(
αη̂

1−α
)α ∣∣∂ψ

∂π

∣∣δα −1
1−α

B
.

(15a)
Inspection of equation (15a) reveals that ∀δ > 0 : ∂g∗

∂π
|π=1−δ > 0, and for δ=

0 : ∂g∗
∂π

|π=1−δ = 0. Hence, for any positive depreciation rate, growth under finite
patent length can be enhanced, beyond the maximal rate defined in Corollary 1,
by a marginal increase in expected patent length. Substituting π = 1 into (15) we
obtain

∂g∗

∂π
|π=1 =

(1−α)ψ
α

1−α
1+ρ−1

[ |∂ψ∂π |
(1−α)ψ + α

−1
1−α
g∗

] [
α− ψ

1
1−α

η̂+ψ
1

1−α

]
−B

. (15b)

Substituting (15a) into (15b) reveals that the expression in (15b) is zero for δ = 0.

As ψ decreases with δ and ψ
1

1−α

η̂+ψ
1

1−α
increases with ψ , the expression in (15b) is

negative for any positive depreciation rate.
Based on Lemma 4 and the above analyses of equations (15a)–(15b), we obtain

the following proposition.
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PROPOSITION 2. For any positive depreciation rate, the growth-maximizing
expected patent length, denoted π∗∗, is finite. This maximal growth rate achieved
by π∗∗ with complete breadth protection is higher than the maximal growth rate
that can be achieved under infinite patents and incomplete breadth protection.
For zero depreciation on physical capital growth is maximized with infinite patent
length. Formally, ∀δ > 0 : π∗∗ ∈ (1 − δ, 1), that is E(T∗∗) ∈ ( 1+ 1−δ

δ
, ∞), where

g(π∗∗, λ= 1)> g(1, λ∗∗). For δ = 0: π∗∗ = 1, that is E(T∗∗) = ∞, and g(π∗∗, λ=
1) = g(1, λ∗∗).

3.3. Patents and Welfare

This section explores some welfare implications of patent policy in our model
economy. To maintain tractability, we focus on patent breadth protection. The
definition of a social welfare function for the OLG economy is not trivial, due
to lack of a natural social discount factor.18 Hence, we follow Chou and Shy
(1993) in comparing the lifetime utility of all living generations under alternative,
stationary, patent protection degrees.19 That is, we are interested in characterizing
patent breadth protection policy that is Pareto improving for all present and future
generations. Substituting the explicit expressions for c1 and c2 (based on per-
worker saving), into the lifetime utility function (3) yields the indirect lifetime
utility of the representative consumer who was born in period t:

Ut = ln

⎡⎢⎣ (1 − α)MtA
1

1−α L
(

α
p(λ)

) α
1−α

1 + ρ

⎤⎥⎦
+ ρ ln

⎡⎢⎣ρ(1 − α)MtA
1

1−α L
(

α
p(λ)

) α
1−α

1 + ρ
(1 + r∗)

⎤⎥⎦ . (16)

Equation (16) implies that Ut = Ut−1 + (1 + ρ) ln(1 + g), and thus

Ut = U0 + t(1 + ρ) ln(1 + g), (16a)

where U0 is given by evaluating (16) for M0. Equation (16) implies that, for
every generation, loosening patent breadth protection involves a trade off between
increasing first period consumption and saving (due to increased labor income),
and a decrease in second-period consumption due to a lower interest rate (as
∂r∗
∂λ
> 0). In addition, equation (16a) implies that future generations benefit from

a positive effect of loosening patent breadth protection on the growth rate, where
this effect is stronger the more distant in the future the generation is born.

The derivative of the lifetime utility of generation t with respect to the patent
breadth protection parameter is

∂Ut

∂λ
= ∂U0

∂λ
U0 + t(1 + ρ)

(
1

1 + g

∂g

∂λ

)
. (17)
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The derivative ∂U0
∂λ

has the following expression:

∂U0

∂λ
=

[
ρ

1 + r
− α

1 − α

(1 + ρ)

(δ+ r∗)

]
∂r

∂λ
− α

1 − α

(1 + ρ)

λ
. (17a)

We are interested in verifying whether the lifetime utility of all generations can
be improved by weakening, or strengthening, patent protection further beyond the
growth-maximizing policy. For this purpose, we need to evaluate the sign of (17a)
under the growth-maximizing policy λ= λ∗∗. However, by definition, under the
growth-maximizing policy the second addend in (17a) is zero. Therefore, we need
only to determine the sign of ∂U0

∂λ
|λ=λ∗∗ .

Applying the implicit function theorem to equation (8) we obtain: ∂r∗
∂λ

=
r∗ α
λ−α 1−λ

1−α
r∗

r∗+δ
α

1−α+1
. Then, we use the growth-maximizing condition, λ∗∗−α

1−α = r∗
r∗+δ (from

Proposition 1) to evaluate ∂r∗
∂λ

for λ= λ∗∗: ∂r∗
∂λ

|λ=λ∗∗ = α(r∗+δ)(1−λ)
λα+1−2α . Substituting

the latter expression into (17a) yields the following condition ∂U0
∂λ

|λ=λ∗∗ < 0 ⇐⇒
δ+r∗
1+r <

1+ρ
ρ(1−α)

[
1 + λα+1−2α

λ(1−λ)
]
, for which the lifetime utility of all generations can

be increased by weakening patent breadth protection further beyond the growth-
maximizing level. The latter condition holds for all relevant parameter values,
as the left-hand side is never greater than one, but the right-hand side is always
greater than one. The next proposition concludes this result.

PROPOSITION 3. Weakening patent breath protection further beyond the
growth-maximizing level benefits all generations.

Recall that, by equation (16a), a generation that is born more distant in the
future would benefit more from growth enhancing policy. And, by derivation of
the result presented in Proposition 1, the patent protection policy that maximizes
the term U0 (which is independent of the growth rate), is weaker than the growth-
maximizing policy. Hence, the degree of patent protection that maximizes the
lifetime utility of each generation depends positively on their birth period t. That
is, the degree of patent protection that maximizes the lifetime utility of the gen-
eration born in period t is always lower than the one that maximizes the lifetime
utility of generation t + n (for any positive n).

Proposition 3 relies on a comparison between two alternative stationary poli-
cies. However, the direct transitional impact of loosening patent breadth policy
at a certain period will not yield Pareto improvement even if the above propo-
sition holds. At period zero, the amount of available machines is already
pre-determined, and thus decreasing their price cannot increase their utilization
level. Hence, the positive effect on aggregate saving will not prevail, and only the
negative effect on second-period consumption (due to the lower interest rate) will
be at work. Therefore, transfers from the next young generation (to be born in
period one) to the current young generation will be required to maintain Pareto
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improvement. However, the complete analysis of this issue falls beyond the scope
of the current study.

3.4. Stage-Dependent Patent Policy

Proposition 1 implies that the stationary growth-maximizing patent policy
depends positively on the value20 of η̂≡ η

A
1

1−α L
, which can be interpreted as

innovation-cost, denoted η, per effective labor supply, denoted: H ≡ A
1

1−α L.21

In this subsection, we attempt to extend this result for a transitional, non-
stationary, trajectory which corresponds an economic development phase, along
which the term η̂ is decreasing due to an increase in H. Indeed, labor productiv-
ity is typically increasing along the course of economic development through the
accumulation of human capital.

Adding the time subscript to the relevant parameters, we re-write the output
and growth equations

Yt = MtHt

[
α

pt (λt)

] α
1−α

, (18)

1 + gM,t+1 = (1 − α)

1 + ρ−1

Ht

[
α

pt(λt)

] α
1−α

η+ Ht+1

[
α

pt+1(λt+1)

] α
1−α

, (18a)

where pt (λt)= λt(δ+rt)
α

, as before, and the interest rate follows the modified no-
arbitrage condition

1 + rt+1 =
(δ + rt+1)

−α
1−α

(
λt+1
α

− 1
)
λ

−1
1−α
t+1 α

2
1−α + η̂t+1

η̂t+t
, (18b)

where η̂t+t = η

Ht+1
. Note that as all the variables in (18b) are share same time

index, Lemma 3 that characterized the properties of stationary interest rate still
applies to the intra-temporal equilibrium for each and every period. Equation (18)
implies the following growth rate of per-capita output:

1 + gy,t+1 = (
1 + gM,t+1

)
(1 + gH,t+1)(1 + gp(λ),t+1)

−α
1−α . (19)

Combining equations (19) with (18a) yields

1 + gy,t+1 = (1 − α)

1 + ρ−1

ψ
α

1−α
t+1

η̂t+1 +ψ
1

1−α
t+1

. (19a)

Note that the growth equation (19a) depends only on the patent policy expected
to prevail in period t + 1.
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PROPOSITION 4. For any positive depreciation rate, the growth-maximizing
patent breadth is increasing with effective labor supply. That is, ∀δ > 0 : ∂λ∗∗

∂H >

0. Hence, as effective labor supply increases along the phase of economic
development, the growth-maximizing patent breadth protection is tightened.

Proof. Proposition 1 implies that the growth rate in (19a) is maximized

with
α2

λt+1 (δ + rt+1)︸ ︷︷ ︸
=ψ t+1

= (
α

1−α η̂t+1

)1−α
. As effective labor supply increases, η̂t+1

decreases. Consequently, the right-hand side of the latter equation is decreas-
ing and, by Lemma 3, the left-hand side is also decreasing (due to the effect
of η̂t+1 on rt+1). Nevertheless, by the proof of Proposition 1, combining the
latter condition with the interest-rate equation (18b) yields the following rela-
tion between the growth-maximizing policy and the equilibrium interest rate
λ∗∗

t+1−α
1−α = r∗t+1

r∗t+1+δ . Hence, as η̂t+1 decreases (with the increase in effective labor

supply), the right-hand side of the latter equation increases for any positive depre-
ciation rate (due to the increasing interest rate). Therefore, an increase in λt+1,
that is tightening patent breadth protection, is required to maintain the latter
growth-maximizing-policy equation. �

4. CONCLUSION

This work proposes a contribution to the literature on patent policy and economic
growth by exploring the implications of patent policy in an OLG framework with
physical capital. We have highlighted a novel mechanism through which weak-
ening patent protection can enhance growth. This result is unique to the OLG
demographic structure of finitely lived agents, as complete patent protection max-
imizes growth in the counterpart model of infinitely lived agents. This mechanism
involves a trade-off between the effect of patent strength on aggregate saving and
investment and the allocation of total investment between patent ownership and
physical capital.

The positive effect on growth can be induced by either shortening patent length
or loosening patent breadth protection, in our framework. However, shortening
patent length also mitigates the crowding out effect of trade in old patents on R&D
investment. Hence, shortening patent length can be more effective at generating
growth than loosening patent breadth protection. These effects are not present in
similar models with infinitely lived agents. Consequently, growth in these models
is maximized with eternal patent life and complete patent breadth protection.

Finally, we have also presented an important implication of the main mecha-
nism under study to patent policy and economic development. A stage-dependent
patent policy for which patent strength is increasing over the course of economic
development may be growth maximizing. This result provides a normative case
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for the often observed positive correlation between patent strength and economic
development around the world.

NOTES

1. More generally, in economies with finitely lived agents the accumulation of assets is limited by
the agent’s consumption horizon (longevity).

2. In other words, the perpetual accumulation of physical capital per-capita.
3. Barro and Sala-i-Martin (2004) and Aghion and Howitt (2008) adopted this framework as the

textbook variety-expansion model; See chapters 6 and 3, respectively.
4. The weakening of breadth protection over all patents evenly (as considered here), does not

reduce the crowding-out effect induced by intergenerational trade in old patents.
5. Since the old are the patent owners, this effect of weakening patent breadth protection is similar

to income transfers from the old to the young considered by Jones and Manuelli (1992). Similarly,
Uhlig and Yanagawa (1996) showed that reliance on capital-income taxation can also enhance growth.

6. These studies differ mainly in their modelling approach of patent policy. All these works assume
the differentiated inputs are intermediate goods that are formed in the same period they are being
used, whereas we consider the differentiated inputs as investment goods (i.e. physical capital) that are
formed one period ahead of utilization. Nonetheless, for the infinitely lived agents this assumption
does not effect the implications of the main mechanism under study here.

7. In another related work, Iwaisako and Futagami (2013) study the implications of patent policy
for growth in a model of infinitely lived agents with physical capital. However, the role of physical
capital is completely different than in the present analysis. They use homogenous (raw) physical cap-
ital, along with labor, as an input in the production of differentiated consumption goods—to which
patent policy applies.

8. Where c is per-capita consumption, θ is the inter-temporal elasticity of substitution, ρ is the
time preference parameter and r is the interest rate. See for example equations (3),(14) and (15), in
Zeng et al. (2014).

9. This crowding-out reduction could be also achieved by weakening patent breadth protection
gradually along patents’ lifetime. Either way, the market value of an old patent will decrease, freeing
investment resources for R&D activity.

10. The elasticity of substitution between different varieties is 1
1−α .

11. The role of knowledge externalities in R&D based growth was already incorporated and empha-
sized in the seminal works of Romer (1990), Grossman and Helpman (1991) and Aghion and Howitt
(1992). The implications of knowledge spillover to patents’ design were studied in numerous works
that employed the aforementioned seminal R&D-based growth models. A recent work by Marchese
et al. (2019) highlights the policy implications of knowledge spillover in an economy where the static
inefficiency associated with patents is resolved through patents buyout.

12. It is well known that under the assumed demographic structure, the logarithmic instanta-
neous utility implies that the saving (and investment) level is independent of the interest rate. In the
Appendix, we consider the implications of the general CEIS preference form.

13. Similar modeling approach for patent breadth protection was used (among others) by Goh and
Olivier (2002), Iwaisako and Futagami (2003, 2013), Chu et al. (2016), Iwaisako (forthcoming) and
Pan et al. (2018). Zeng et al. (2014) interpret the same modeling approach as direct price regulation.

14. This formulation of patent length is equivalent to the Blanchard’s [Blanchard (1985)] formu-
lation of human longevity, in his classic “perpetual youth” model. This approach has two significant
advantages. First, greatly enhance tractability by implying that in each and every period, all patents—
old and new—have the same remaining expected lifetime. Therefore they have the same market value
(price) as well. Secondly, this formulation implies a continuous policy instrument (which allows us
using standard optimization techniques), although time in this model is discrete.
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15. Same modeling approach of patents’ strength was used by Helpman (1993), Kwan and Lai
(2003), and Cysne and Turchick (2012). Their original interpretation was that a fraction π of the
patented technologies is being imitated due to a lack of patent-protection enforcement. Ribeiro and
Turchick (2014) interpret this formulation of patent policy as stochastic patent length, and demonstrate
its equivalency to the deterministic patent length that was employed by Iwaisako and Futagami (2003)
and Zeng et al. (2014).

16. We use the lower scripts m and c to denote monopolized and competitive machine varieties (i.e.
patented and non patented varieties, respectively).

17. Where �Mt+1 ≡ Mt+1 − Mt.
18. Which determines the weight that is given to the lifetime utility of different generations in the

social objective function.
19. They, however, only compare welfare under the two extreme policies—one period and infinite

patent length. See Propositions 3–4 on page 310, there.

20. Recall that the growth-maximizing policy defined in Proposition 1 satisfies
[

α2

λ∗∗(δ+r∗∗)

] 1
1−α =

α

1−α η̂ , and, by Lemma 3, the equilibrium interest rate is also increasing with the patent breadth
protection λ.

21. If A
1

1−α is interpreted as labor augmented productivity factor we can write (1) as : Y =
MKα

(
A

1
1−α L

)1−α
.

22. See for example Hall (1988), Ogaki and Reinhart (1998), Engelhardt and Kumar (2009).
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APPENDIX: CEIS UTILITY

We turn here to consider the implication of the general CEIS instantaneous utility
to our previous result, considering the following lifetime utility form:

U = c1−θ
t

1 − θ
+ ρ

c1−θ
t+1

1 − θ
, (A.1)

where 1
θ

is the elasticity of inter-temporal substitution, and for θ = 1 equa-
tion (A.1) falls back to the logarithmic form (3). The modified solution for the
standard optimal saving problem is st = wt

1+ρ− 1
θ (1+r∗)

θ−1
θ

. Hence, aggregate saving

now is St = wtL

1+ρ− 1
θ (1+r∗)

θ−1
θ

. Substituting the explicit expressions for wt into St
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and equalizing to aggregate investment, It = Mt+1

[
η+ A

1
1−α L

(
α

p(λ)

) 1
1−α

]
, yields

the growth equation

1 + g∗ = 1 − α

1 + 1
ρ
(1 + r∗)1− 1

θ

(
α2

λ(δ+r∗)

) α
1−α

η̂+
(

α2

λ(δ+r∗)

) 1
1−α

(A.2)

As it is well known, in the standard OLG framework the effect of interest rate
on saving depends on the inter-temporal elasticity of substitution: it is positive
(negative) if θ < 1 (θ > 1). Hence, because the interest rate is increasing with
patent protection, the positive impact of decreasing patent breadth on growth is
diminishing with the inter-temporal elasticity of substitution. More specifically,
for θ < 1 all our results remain (and will hold for a larger set of parameters) as a
decrease in the interest rate by itself stimulates saving and investment (this is an
additional effect was not induced under the logarithmic utility form). However, as
θ increases beyond one, the decrease in the interest rate due to loosening patent
breadth protection will work to hinder growth, countering the positive effects that
were defined in Proposition 1. For sufficiently high value of θ this direct interest
effect may dominate the over all impact of loosening patent protection on inno-
vation and growth. Nevertheless, the empirical literature commonly suggests that
θ is lower than one, thus supporting the relevance of our main findings.22 The
welfare analysis for θ = 1 turns out being intractable.
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