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SUMMARY
A dual-arm space robot has large potentials in on-orbit servicing. However, there exist multiple
dynamic coupling effects between the two arms, each arm, and the base, bringing great challenges
to the trajectory planning and dynamic control of the dual-arm space robotic system. In this paper,
we propose a dynamic coupling modeling and analysis method for a dual-arm space robot. Firstly,
according to the conservation principle of the linear and angular momentum, the dynamic coupling
between the base and each manipulator is deduced. The dynamic coupling factor is then defined to
evaluate the dynamic coupling degree. Secondly, the dynamic coupling equations between the two
arms, each arm, and the base are deduced, respectively. The dynamic coupling factor is suitable not
only for single-arm space robots but also for multi-arm space robot systems. Finally, the multiple
coupling effects of the dual-arm space robotic system are analyzed in detail through typical cases.
Simulation results verified the proposed method.

KEYWORDS: Dual-arm space robot; On-orbit servicing; Trajectory planning; Dynamic coupling
factor; Multiple dynamic coupling effects.

1. Introduction
With the deepening of space exploration, space debris is also increasing day by day.1–3 How to
guarantee the normal operation of on-orbit spacecraft has become a hot research topic among the
international community.4–6

The on-orbital servicing technologies based on space robots are playing important roles in space-
craft repairing and orbital debris removal. Huang et al.7 designed the dexterous tethered space robot
for geostationary orbit debris removal, and the semi-physical experiments verified the feasibility
of the system. Zhang et al.8 studied an appropriate initial condition for tethered space net robot
(TSNR) based on four releasing characters. Moreover, an enlightened second-order sliding mode
control scheme was proposed for the stability control of TSNR. Nanos and Papadopoulos et al.9, 10

proposed a novel path planning method allowing the end-effector to follow a desired path avoid-
ing any dynamic singularities, the method can be applied to any desired end-effector trajectories.
Pre-contact trajectory planning technology plays a very important role in on-orbit service. The main
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research of this paper is the trajectory planning for target pre-capturing. For example, how to reduce
the disturbance of the base by designing the configuration of the manipulator and rationally dis-
tributing the mass inertia? How to minimize the disturbance of the base by planning the motion of
the manipulator? The study of these issues will be of great significance for space robots to perform
capture operations.

For a free-floating space robot system, the movement of the end-effector causes disturbance to the
base, which is mainly reflected in the changes in the position and attitude of the base centroid. This
change in turn affects the pose of the end-effector; there is a dynamic coupling between the manip-
ulator and the base.11, 12 Based on the particle swarm optimization algorithm, Xu et al.13 introduced
a method to plan the Cartesian point-to-point path of the end-effector; meanwhile, the base attitude
can be controlled. Xu et al.14 also designed a unified multi-domain modeling and simulation system.
To effectively study the dynamic coupling theory, Xu et al. derived a dynamic coupling model for a
space robotic system15 and underactuated manipulators.16 They also proposed the coupling factor to
illustrate the motion and force dependencies, and represent the degree of the dynamic coupling.

As single-arm space robots cannot perform complex and ingenious operations, the dual-arm space
robots17 are becoming more and more flexible and reliable and are becoming the mainstay of future
on-orbit services. Papadopoulos et al.18 and Ali et al.19 proposed the two model-based and one-
transposed Jacobian control algorithms; this method implements coordinated tracking control of the
manipulators and the spacecraft. Hafez et al.20, 21 proposed a visual servoing controller based on
a task redundancy approach for a dual-arm space robot, this method achieves the coordination of
the end-effector’s motion with the spacecraft attitude. Wang et al.22 also presented the coordinated
motion planning method of a dual-arm space robot. In addition, Peng et al.23 proposed a dual-arm
coordinated capturing method based on efficient parameters estimation. But all consider simple sit-
uations. In the process of target capturing, it is necessary to avoid or minimize the influence of the
dynamic coupling; at the same time, in the process of attitude adjustment, we can use this kind of
dynamic coupling to perform rapid attitude adjustment.

This approach studies the dynamic modeling and coupling characteristics of a dual-arm space
robot system and provides a theoretical basis for a dual-arm coordination trajectory planning. The
coupling of the dual-arm space robot system is mainly divided into two types: one is the dynamic
coupling between the two arms; the other is the dynamic coupling between the base and the two arms.
Based on the conservation of momentum, we completely analyze the coupling between the base and
the manipulator and decompose the dynamic coupling relationship into the position and velocity
level. The comparison of the coupled space and the working space is then derived. Furthermore, the
multiple dynamic coupling effects of a dual-arm space robotic system are modeled and analyzed.

The remainder of this paper is organized as follows. In Section 2, the kinematic equation of a dual-
arm space robot is established. Section 3 introduces the dynamic coupling decomposition concept.
Section 4 derives the dynamic coupling of the dual-arm space robot and analyzes the correspond-
ing coupling factor. Numerical simulation is discussed in Section 5. The last section presents the
summary and conclusions.

2. Modeling of a Dual-arm Space Robotic System
A dual-arm space robotic system is composed of a robot base, an na-degrees of freedom (DOF)
serial manipulator (called Arm-a), and an nb-DOF serial manipulator (called Arm-b). The model
is shown in Fig. 1. The symbols are defined as follows: B0 denotes the satellite main body, Bk

i
(i = 1, · · · , nk; k = a or b; hereafter the same) denotes the ith link of Arm-k, and Jk

i is the ith joint of
Arm-k. Joint Jk

i connects Bk
i and Bk

i−1, where Bk
0 = B0; C0 and Ck

i are, respectively, the center of mass
(CM) of B0 and Bk

i ; r0, rk
i , and rg ∈ R3 are the position vector of C0, Ck

i , and the system’s CM; pk
e ∈ R3

is the position vector of Arm-k’s end-effector; vk
e, ωk

e ∈ R3 are the linear and angular velocities of

Arm-k’s end-effector, and they can be combined as ẋk
e =
[(

vk
e

)T
,
(
ωk

e

)T]T ∈ R6; v0, ω0 ∈ R3 are the

linear and angular velocities of B0, which can be combined as ẋ0 = [vT
0 , ωT

0

]T ∈ R6; m0 and mk
i are

the mass of B0 and Bk
i ; the total mass of the system is M = m0 +

N∑
k=1

(
nk∑

i=1
m(k)

i

)
; Θk = [θ1, · · · , θnk

]T
is the vector composed of the joint variables of Arm-k;

∑
I ,
∑

0 are the inertia frame and the
base fixed frame, respectively;

∑
Ek the Arm-k’s end-effector frame;

∑k
i (i = 1, · · · , nk) is the
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Fig. 1. A general model of a dual-arm space robot system.

body fixed frame of Bk
i ; iAj ∈ R3×3 is the rotation matrix of

∑k
j with respect to

∑k
i ; iIi ∈ R3×3

(i = 1, · · · , nk) is the inertia matrix of Bk
i with respect to its CM; kk

i ∈ R3×3(i = 1, · · · , n) is the
unit vector representing the rotation direction of Jk

i ; pk
i ∈ R3(i = 1, · · · , nk) is the position vector of

Jk
i ; ak

i , bk
i , lk

i = ak
i + bk

i ∈ R3(i = 1, · · · , nk) are the position vectors from Jk
i to Ck

i and Ck
i+1 to Jk

i+1,
respectively; vk

i , ωk
i ∈ R3 are the linear and angular velocities of Bk

i , respectively.
According to Fig. 1, the position vector of Bk

i ’s centroid is determined as follows:

rk
i = r0 + bk

0 +
i−1∑
j=1

(
ak

j + bk
j

)+ ak
i (1)

As external forces and torques acting on the system are negligible, the CM of the base is
determined by:

r0 = rg −
(

b̃
k
0 +

nk−1∑
i=1

(
ãk

i + b̃
k
i

)
+ ãk

n

)
(2)

where ãk
i =

nk∑
q=i

mq

M ak
i (i = 1, 2, · · · , nk), b̃

k
i =

nk∑
q=i+1

mq

M bk
i (i = 0, 1, · · · , nk − 1).

Thus, the position vector of the end-effector can be described as:

pk
e = rg + b̂

k

0 +
nk∑

j=1

(
âk

j + b̂
k

j

)
(3)

where âk
i =

i−1∑
q=0

mq

M ak
i , b̂

k

i =
i∑

q=0
mq

M bk
i (i = 1, 2, · · · , nk).

The general kinematics equation of Arm-k (k = a, b) is as follows:24, 25

[
ẋa

e

ẋb
e

]
=
[

Ja
b

Jb
b

]
ẋ0 +

[
Ja

m

Jb
m

] [
Θ̇

a

Θ̇
b

]
(4)
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where Jk
b =
(

E3 − p̆k
0e

O3 E3

)
∈ R6×6, pk

0e = pk
e − r0, Jk

m =
[

kk
1 × (pk

e − pk
1

)
. . . kk

n × (pk
e − pk

n

)
kk

1 . . . kk
n

]
∈ R6×n,

p̆k
0e is the skew-symmetric matrix determined by pk

0e, E3 and O3 represent the identity and zeros
matrixes of 3 rows and 3 columns, respectively.

For a free-floating space robot, the values of linear and angular momentum are constant; in order
to simplify the expression, here we think that the initial momentum of the system is zero, then:(

ME Mr̆T
0g

Mr̆0g Hw

)
ẋ0 +

[
Ja

Tw

Ha
wφ

]
Θ̇

a +
[

Jb
Tw

Hb
wφ

]
Θ̇

b = 0 (5)

where matrix E is the identity matrix, Hw = I0 +
N∑

k=1

(
nk∑

i=1

(
Ik

i + mk
i r̆k

i

(
r̆k

0i

)T
))

, rk
0i = rk

i − r0, Jk
Tw =

nk∑
i=1

(
mk

i Jk
Ti

)∈ R3×nk , Hk
ωφ =

nk∑
i=1

(
Ik

i Jk
Ri + mk

i r̆k
i Jk

Ti

)
, Jk

Ri =
{[

zk
1, · · · , zk

i , 0, · · · , 0
]
, rotational joint

[0, · · · , 0, 0, · · · , 0] , translational joint
,

r0g = rg − r0, Jk
Ti =
{[

zk
1 × (rk

i − pk
1

)
, · · · , zk

i × (rk
i − pk

i

)
, 0, · · · , 0

] ∈ R3×nk , rotational joint[
zk

1, · · · , zk
i , 0, · · · , 0

] ∈ R3×nk , translational joint
.

By combining (4) with (5), we obtain

ẋab
e =
[

ẋa
e

ẋb
e

]
=
[

J∗
aa J∗

ab

J∗
ba J∗

bb

] [
Θ̇

a

Θ̇
b

]
= Jg

[
Θ̇

a

Θ̇
b

]
(6)

where Jg =
[

J∗
aa J∗

ab

J∗
ba J∗

bb

]
∈ R12×(na+nb), J∗

aa = −Ja
bH−1

0 Ha
0m + Ja

m, J∗
ab = −Ja

bH−1
0 Ha

0m, J∗
ba =

−Jb
bH−1

0 Ha
0m, J∗

bb = −Jb
bH−1

0 Ha
0m + Jb

m, H0 =
(

ME3 Mr̆T
0g

Mr̆0g Hw

)
∈ R6×6, Hk

0m =
[

Jk
Tw

Hk
wφ

]
∈ R6×nk .

From (5), the velocity of the base centroid is determined by:

ẋ0 = Ja
0mΘ̇

a + Jb
0mΘ̇

b = [Ja
0m Jb

0m

] [ Θ̇
a

Θ̇
b

]
= J0m

[
Θ̇

a

Θ̇
b

]
(7)

where Jk
0m =

[
Jk

0m_v

Jk
0m_ω

]
=
⎡
⎣−r̆0gH−1

0 Hk
0m − Jk

Tw
M

−H−1
0 Hk

0m

⎤
⎦, J0m = [Ja

0m, Jb
0m

]
.

Combining (7) with (6) yields

ẋ0 = J0mJ−1
g · [ẋa

e, ẋb
e

]T
(8)

3. Dynamic Coupling Decomposition Concept
Generally speaking, the concept of dynamic coupling was used to analyze the influence of the move-
ment of the end-effector to the movement of the base for a single-arm space robot, which is described
by the L2 norm ratio of the generalized velocities of the end-effector to the generalized velocities
of the base centroid. The disadvantage of it is the singular configuration is various and the com-
putational efficiency is low. The single-arm base-to-end dynamics coupling model can be further
extended to the dual-arm space robot system. As shown in Fig. 2, the dynamic coupling character-
istics of the dual-arm space robot are extremely complex and are mainly divided into the following
two categories:

(a) Dynamic coupling between two arms;
(b) Dynamic coupling between dual-arm and the base.

Since the linear momentum and angular momentum equations have their own unique charac-
teristics, they can be solved independently by different methods, which can avoid the traditional
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Table I. The comparison of VM and BCVM.

Name VM26 BCVM27

End-effector or p̂VM
e,k = rg + b̂

k

0 +
nk∑

i=1

(
âk

i + b̂
k

i

)
P̃

BCVM
e,k = b̃

k
0 +

nk−1∑
i=1

(
ãk

i + b̃
k
i

)
+ ãk

n

Virtual link

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b̂
k

i =
i∑

q=0
mq

M bk
i

âk
i =

i−1∑
q=0

mq

M ak
i

(i = 1, · · · , nk)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ãk
i =

nk∑
q=i

mq

M ak
i (i = 1, · · · , nk)

b̃
k
i =

nk∑
q=i+1

mq

M bk
i (i = 0, · · · , nk − 1)
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Fig. 2. Dynamic coupling for a dual-arm space robot.

redundant solution. Because the momentum equation is integrable, it is a conservation constraint
while the angular momentum equation is not integrable. Based on the characteristics of this con-
straint, the kinematics equations at the position and velocity level can be split, and the corresponding
equations can be solved independently. According to this decomposition idea, the dynamic coupling
of the space robot can be divided into two subsystems: one is the position-level dynamic coupling
between the maximum reachable working space (RWS) and the base centroid coupling space; the
other is the velocity-level dynamic coupling between the end-effector’s velocity and the base angular

velocity. According to (3) and (2), the vector directions of âk
i , b̂

k

i , ãk
i , b̃

k
i , and ak

i , bk
i are the same,

and the corresponding proportional constants are different in length, which becomes a “virtual link
vector.” Meanwhile, the centroid of the system is defined as virtual ground, as shown in Table I.

The pose mapping relationship between the base centroid and the end-effector is shown in Fig. 3.

In Fig. 3, P̃
BCVM
e,k , kine

(
Θk
)
, and ikine

(
Pk

e

)
represent the end-effector of base centroid virtual manip-

ulator (BCVM), the forward kinematic equation, and the inverse kinematic equation, respectively.
The maximum RWS26 of a virtual manipulator (VM) is a ball whose center is the system centroid,
and the maximum reachable coupling space (RCS)27 of a BCVM is also a ball whose center is the
system centroid; the coupling space radius RRCS and the working space radius RRWS are:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rk
RCS = max

θ k
0 ,θ k

i ∈[−π,π]

(∥∥∥∥0b̃
k
0 +

nk∑
i=1

0Ak
i

(
iãk

i + ib̃
k
i

)∥∥∥∥
)

Rk
RWS = max

θ k
0 ,θ k

i ∈[−π,π]

(∥∥∥∥0b̂
k

0 +
nk∑

i=1

0Ak
i

(
iâk

i + ib̂
k

i

)∥∥∥∥
) (9)

where 0Ak
i represents the attitude transformation matrix from the original coordinate system to the ith

coordinate system corresponding to Arm-k.
As shown in Fig. 4, a planar 2-DoF robot is used as an example to illustrate the workspace of the

VM and BCVM.27
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Fig. 4. Comparison of the coupled space and the working space.

4. Dynamic Coupling of a Dual-arm Space Robotic System
Theorem 1. Consider a non-zero matrix A, and A is an nth-order square matrix. If the eigenvalues of
the matrix A are λ1, · · · , λn (0 ≤ λ1 ≤ · · · ≤ λn), and the corresponding eigenvectors are p1, · · · , pn,

then for any non-zero vector x ∈ Rn×1, the parameter κ = xTAx
xTx is bounded between λ1 and λn.

Proof. According to the above assumption, the vector x can be expressed as:

x = c1p1 + · · · + cnpn (10)

where ci (i = 1, · · · , n) represents the coefficient of pi, and c2
1+ · · · +c2

n �= 0.
Then, the above parameter can be rewritten as:

κ = c2
1λ1+ · · · +c2

nλn

c2
1+ · · · +c2

n

= k1λ1 + · · · + knλn (11)

where ki = c2
i

c2
1+···+c2

n
(i= 1, · · · ,n),

n∑
i=1

ki = 1.

According to (11), we can conclude that κ satisfies the following inequality:

λ1(A) ≤ κ ≤ λn(A) (12)
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4.1. Dynamic coupling between two arms
Based on the kinematical modeling of the dual-arm space robot derived above, the ratio between the
velocity of Arm-a’s end-effector and the velocity of Arm-b’s end-effector is determined by:

σ ab(ẋ
a
e) =

∥∥ẋb
e

∥∥
2∥∥ẋa

e

∥∥
2

=
〈
Ca

abẋa
e, Ca

abẋa
e

〉 1/2

〈
ẋa

e, ẋa
e

〉1/2 =
√√√√(ẋa

e

)T
Aa

abẋa
e(

ẋa
e

)T
ẋa

e

(13)

where Ca
ab = [J∗

ba J∗
bb

] [
J∗

aa J∗
ab

]#
, Aa

ab = (Ca
ab

)T
Ca

ab, and the symbol [·]# denotes the generalized
inverse matrix.

Therefore, the dynamic coupling between Arm-a and Arm-b is shown in Fig. 5. Here, Ca
ab

represents the variation extent of Arm-b generated by Arm-a motion. Assuming that μ1, · · · , μn

(0 ≤ μ1 ≤ · · · ≤ μn) are the eigenvalues of the matrix Aa
ab, and γ 1, · · · , γ n are the corresponding

orthonormal eigenvectors, the dynamic coupling factor from Arm-a to Arm-b satisfies the following
inequality:

√
μ1
(
Aa

ab

)≤ σ ab ≤
√

μn
(
Aa

ab

)
(14)

The coupling matrix Ca
ab is related to the mass characteristics of the base and the manipulator,

the joint angle of the manipulator, and the attitude of the base. Through analysis, the following
conclusions can be drawn:

(1) If the mass characteristics of Arm-b are much larger than those of Arm-a, that is, the influence
of the motion from Arm-a to Arm-b is small, the dynamic coupling is negligible; conversely, the
influence of the motion from Arm-b to the base cannot be ignored, and the dynamic coupling
must be considered.

(2) By reasonably designing the installation position of the manipulator, the distribution of singular
values of the matrix Aa

ab can be changed, thereby effectively reducing the dynamic coupling
characteristics.

(3) By rationally planning the motion trajectory of the robot, the distribution of the singular val-
ues of the matrix Aa

ab can also be changed, thereby effectively reducing the dynamic coupling
characteristics.
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Fig. 6. The dynamic coupling diagram of end-to-base.

4.2. Dynamic coupling between the dual-arm and the base
Based on the derivation from Section 2, the coupling of the end-effector to the base can be
expressed as:

σ ab
e0(ẋ

ab
e ) = ‖ẋ0‖∥∥ẋab

e

∥∥ =
〈
Cab

e0 ẋab
e , Cab

e0 ẋab
e

〉 1/2

〈
ẋab

e , ẋab
e

〉1/2 =
√√√√(ẋab

e

)T
Aab

e0 ẋab
e(

ẋab
e

)T
ẋab

e

(15)

where Cab
e0 = J0m J−1

g , Aab
e0 = (Cab

e0

)T
Cab

e0 .
The coupling relationship between the end-effector’s velocity and the base velocity is shown in

Fig. 6. Here, Cab
e0 describes the variation degree of the base attitude caused by the given end-effector

motion. Assuming that λ1, · · · , λn (0 ≤ λ1 ≤ · · · ≤ λn) are the eigenvalues of the matrix Aab
e0, and

p1, · · · , pn are the corresponding orthonormal eigenvectors, the end-to-base dynamic coupling factor
satisfies the following inequality: √

λ1
(
Aab

e0

)≤ σ ab
e0 ≤
√

λn
(
Aab

e0

)
(16)

Similarly, through the above analysis, the following conclusions can be drawn:

(1) If the mass characteristics of the base are much larger than those of the manipulator, that is,
the influence of the motion of the manipulator to the base is small, the dynamic coupling is
negligible; conversely, the influence of the motion of the manipulator to the base cannot be
ignored, and the dynamic coupling must be considered.

(2) By reasonably designing the installation position of the manipulator, the distribution of the sin-
gular values of the matrix Aab

e0 can be changed, thereby effectively reducing the dynamic coupling
characteristics.

(3) By rationally planning the motion trajectory of the robot, the distribution of the singular val-
ues of the matrix Aab

e0 can also be changed, thereby effectively reducing the dynamic coupling
characteristics.

5. Multiple Coupling Effects Analysis of a Practical Space Robotics System

5.1. Dynamic coupling simulation analysis
5.1.1. A dual-arm space robotic system. In order to better demonstrate the dynamic coupling charac-
teristics between dual-arm space robot systems, we use a planar 2-DoF dual-arm space robot system
as an example. Assuming that ϕa, ϕb are the rotation angles of the x-axis of the base body frame 0 to
vector ba

0, bb
0, respectively, the mass property of the dual-arm robot is shown in Table II.
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Table II. The mass parameters of a planar 2-DoF dual-arm robot system.

Parameter Base B1a B2a B1b B2b

Mass (kg) 400 20 20 20 20
iai(m) – 0.5 0.5 0.5 0.5

– 0 0 0 0
ibi(m) 0.5 –0.5 0.5 0.5 0.5 0.5

0.5 0.5 0 0 0 0
Ii (kg.m2) 48 2.4 2.4 2.4 2.4

Fig. 7. The coupling map varies with the joint angle of Arm-a in 3D form with mL = 0.

Fig. 8. The coupling map varies with the joint angle of Arm-a in 2D form with mL = 0.

5.1.2. Dynamic coupling between two arms. The 3D, 2D, and the contour line of the coupling factor
of Arm-a to Arm-b that varies with the joint angle of Arm-a are shown in Figs. 7, 8, and 9, respec-
tively. The coupling factor that varies with Arm-b is shown in Fig. 10, and the contour line that varies
with the joint angle of Arm-a is shown in Fig. 11. When the payload of Arm-a is mL = 100 kg, the
coupling factor of Arm-a to Arm-b that varies with the joint angle of Arm-a and Arm-b is shown in
Figs. 11 and 12, respectively.

In addition, the dynamic coupling factor from Arm-a to Arm-b that varies with the dual-arm
installation angle is shown in Fig. 13, and the corresponding contour lines are shown in Fig. 14.
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Fig. 9. The contour line varies with the joint angle of Arm-a with mL = 0.

Fig. 10. The contour line varies with the joint angle of Arm-b with mL = 0.

Fig. 11. The contour line varies with the joint angle of Arm-a with mL = 100 kg.
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Fig. 12. The contour line varies with the joint angle of Arm-b with mL = 100 kg.

Fig. 13. Coupling factor varies with the installation pose in 3D form.

Fig. 14. The contour line varies with the installation pose.

5.1.3. Dynamic coupling between the dual-arm and the base. Similarly, the contour line of the cou-
pling factor of end-to-base that varies with the joint angle of Arm-a and Arm-b is shown in Figs. 15
and 16, respectively. When the payload of Arm-a is mL = 100 kg, the coupling factor that varies with
the joint angle of Arm-a and Arm-b is shown in Figs. 17 and 18, respectively.

In addition, the dynamic coupling factor from the dual-arm to the base that varies with the dual-
arm installation angle is shown in Fig. 19, and the corresponding contour lines are shown in Fig. 20.
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Fig. 15. The contour line varies with the joint angle of Arm-a with mL = 0.

Fig. 16. The contour line varies with the joint angle of Arm-b with mL = 0.

5.2. Dynamic coupling application analysis
5.2.1. Multiple coupling effects analysis. From the above analysis, we can get the following
properties of the dynamic coupling factor:

(1) If the mass characteristics (i.e. mk
i and Ik

i ) of Arm-a are much larger than those of Arm-b, that
is, the coupling effects from Arm-a to Arm-b are small, the dynamic coupling is negligible;
conversely, the dynamic coupling must be considered.

(2) If the mass characteristics of the base are much larger than those of the two arms, that is, the cou-
pling effects of the two arms to the base are small, the dynamic coupling is negligible; conversely,
the dynamic coupling must be considered.

(3) By reasonably designing the installation angle (i.e. ϕk) of the two arms, the distribution of sin-
gular matrix can be changed, thereby effectively reducing the dynamic coupling characteristics.

(3) By rationally planning the motion trajectory of the dual-arm space robot, the distribution of
the singular matrix can also be changed, thereby effectively reducing the dynamic coupling
characteristics.
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Fig. 17. The contour line varies with Arm-a with mL = 100 kg.

Fig. 18. The contour line varies with Arm-b with mL = 100 kg.

Fig. 19. Coupling factor varies with the installation pose in 3D form.

5.2.2. A 2D case simulation. As shown in Fig. 21, we developed the Matlab/Simulink co-simulation
platform,28 which includes the dual-arm dynamic model, the dual-arm kinematical and dynamic
coupling module, the dual-arm controller, and the real-time data display module. The iteration time
period of each step of the co-simulation system is dt = 0.25 s; the algorithm was controlled by
a 64-bit computer, with a 3.7 GHz Core i3-4170 processor and 8 GB ram. As a typical situation,
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Fig. 20. The contour line varies with the installation pose.

Fig. 21. Matlab/Simulink model of the numerical simulation.

assuming that the payload of Arm-a is mL = 100 kg, the initial joint angles of the dual-arms are
Θa = [−45, 90](◦), Θb = [45, −90](◦), and the initial installation angles of the manipulator are 45◦
and 135◦, respectively.

As shown in Figs. 22 and 23, at the final state, the joint angles of the manipulator are Θa =
[4, 69.5](◦) and Θb = [36.7, −97.3] (), respectively. In the process of the dual-arm coordinated
movement, the traditional point-to-point capture method29, 30 and the base perturbation optimiza-
tion method based on the dynamic coupling factors between the two arms and the base were used to
develop the simulation system, as shown in Fig. 24. The simulation results shown that the dynamic
coupling factors between the two arms and the base can be used to reduce the disturbance of the base.

5.2.3. A 3D case simulation. In order to better reflect the advantages of dynamic coupling modeling,
here, a 3D simulation model of a dual-arm space robot system is established.32, 33 It is composed of
a robot base and two sets of 7-DOF serial manipulators. The model of the dual-arm space robot is
shown in Fig. 25. Frames OI − XIYIZI , Ob − XbYbZb, and Ok

t − Xk
t Yk

t Zk
t are the inertial system, the

base coordinate system, and the target coordinate system, respectively. The symbols Pk
t and ϕk

t are the
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(a) (b)

Fig. 22. Matlab/SimMechanical simulation model ((a) and (b) represent the initial and final state of the dual-
arm, respectively).

Fig. 23. The schematic diagram of simulation initial state and termination state in 3D coordinate system (the
direction perpendicular to the screen is the Z-direction, and Z = 0).

Fig. 24. Disturbance curve of the pose of the base centroid (considering the dynamic coupling).

position vector and rotation transformation matrix from frame OI − XIYIZI to frame Ok
t − Xk

t Yk
t Zk

t ,
respectively.

The D-H coordinate systems of the manipulator are shown in Fig. 26. The centroid position, mass,
and inertia of each link are listed in Table III.
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Table III. The mass properties of the dual-arm space robotic system.

Parameter B0 B1 B2 B3 B4 B5 B6 B7

Mass (kg) 2000 11 12 18 10 18 12 11
iai(m) 1.20 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0.10 0 0.90 0.15 0.90 0 0.10

ibi(m) 0.90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0.75 0.10 0 0.90 0.15 0.90 0 0.10

Ii (kg.m2) Ixx 800 0.05 0.05 4.89 0.22 4.89 0.06 0.05
Iyy 600 0.05 0.05 4.89 0.22 4.89 0.06 0.05
Izz 700 0.03 0.03 0.04 0.03 0.04 0.03 0.03
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Fig. 26. The D-H coordinate system of the dual-arm space robotic system.

The initial conditions for the simulation are as follows:

(1) Joint angles of Arm-a and Arm-b:

Θb = Θa = [0, 45, 0, − 45, − 90, − 45, 0]T
(

o
)

(17)

(2) The centroid position and attitude of the base are:

ro = [−0.08, −0.12, 0 ]T (m) (18)

ϕo = [0 0 0]T (19)
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Fig. 27. The deviation of the centroid position and attitude of the base (“old” represents the traditional point-to-
point trajectory planning method, “new” represents the new trajectory planning method based on the dynamic
coupling factor).

Fig. 28. The curves of the joint angles of Arm-a.

The variation curves of the centroid position and attitude of the base are shown in Fig. 27. The
simulation results shown that the dynamic coupling factors between the two arms and the base can
be used to reduce the disturbance of the base.

The planned trajectories of the joint angles of Arm-a and Arm-b are shown in Figs. 28 and 29,
respectively. The relative pose deviation is shown in Fig. 30. According to the simulation results, the
3D state of the dual-arm space robot corresponding to different times is shown in Fig. 31.

According to the above 2D and 3D simulation results, the disturbance comparison results of the
base (including the traditional planning method and the proposed planning method) are shown in
Table IV under the same initial conditions.
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Fig. 29. The curves of the joint angles of Arm-b.

Fig. 30. The relative pose deviation ((a) and (c) represent the relative position deviation of Arm-a and Arm-b,
respectively; (b) and (d) represent the relative attitude deviation of Arm-a and Arm-b, respectively).

Fig. 31. The 3D state of the dual-arm space robot.
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Table IV. Performance comparisons of the two methods.

Deviation of the centroid position/m Deviation of the centroid attitude/◦

Parameter The old method The new method The old method The new method

Case: 2D 0.0409 0.0211 7.2113 5.1215
Case: 3D 0.1398 0.1203 90.1388 30.1332

6. Conclusion
In the process of dual-arm cooperative capturing, due to the dynamic coupling between the two
arms and between the arm and the base, the trajectory planning and control of the dual-arm coor-
dination become very difficult. In this paper, a dynamic coupling modeling, characteristic analysis,
and evaluation method for a dual-arm space robot are proposed. According to the constraints of the
angular momentum and the linear momentum of the dual-arm space robot system, the corresponding
dynamical coupling equations are deduced, and the dynamic coupling factor is defined to evaluate
the multiple dynamic coupling effects. Furthermore, the multiple dynamic coupling effects between
two arms and the base are analyzed. The simulation results show the effectiveness of the proposed
method. This work is very useful for practical applications; the evaluation function of the capture
time and minimizing disturbance of the base are the problems that need to be solved in the future.

In the future, we will further study the dynamic modeling method and the coordination control
method of the dual-arm space robot for target post-capturing.
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