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Abstract

In this paper, we study the center Z of the finite W -algebra T(g, e) associated with a semi-
simple Lie algebra g over an algebraically closed field k of characteristic p � 0, and an
arbitrarily given nilpotent element e ∈ g. We obtain an analogue of Veldkamp’s theorem on
the center. For the maximal spectrum Specm(Z), we show that its Azumaya locus coincides
with its smooth locus of smooth points. The former locus reflects irreducible representations
of maximal dimension for T(g, e).

2020 Mathematics Subject Classification: Primary 17B50, Secondary 17B05 and 17B08.

Introduction

0.1. A finite W -algebra U (gC, ê) is a certain associative algebra associated to a complex
semi-simple Lie algebra gC and a nilpotent element ê ∈ gC. The study of finite W -algebras
can be traced back to Kostant’s work in the case when ê is regular [16], whose construction
was generalised to arbitrary even nilpotent elements by Lynch [18]. Premet developed the
finite W -algebras in full generality in [26]. After the proof of the celebrated Kac–Weisfeiler
conjecture for Lie algebras of reductive groups in [25], Premet first constructed a modular
version of finite W -algebras Uχ (g, e) in [26] (they will be called the reduced extended W -
algebras in this paper). By means of a complicated but natural “admissible” procedure, the
finite W -algebras over C arise from the modular version, and they are shown to be filtrated
deformations of the coordinate rings of Slodowy slices. The most important ingredient there
is the construction of the Poincaré–Birkhoff–Witt (PBW) basis of finite W -algebras (cf. [26,
section 4]).

As a counterpart of the finite W -algebra U (gC, ê), Premet introduced in [29] the finite
W -algebra T(g, e) (which is denoted by U (g, e) there) over k= Fp, and also the extended
finite W -algebra U (g, e) (denoted by Û (g, e) in [29]). In the same paper, the p-centers of
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U (g, e) are introduced. In his further work [30], the p-center of the finite W -algebra T(g, e)
is also introduced, and the relation between T(g, e) and the reduced W -algebra Tη(g, e) with
η ∈ χ +m⊥ (denoted by Uη(g, e) there) is discussed.

In the work of Premet, the k-algebra T(g, e) is obtained from the C-algebra U (gC, ê)
through “reduction modulo p”. Hence the characteristic of field k must meet the condition
that p ∈�(A) for some admissible ring A there (see Section 1.1.1 for more details), thus
sufficiently large. In our arguments, some will follow Premet’s result. So we will assume that
the characteristic p of the base field k will be big enough in the present paper. In Goodwin–
Topley [9], the authors generalised Premet’s work to the case with p = char(k) satisfying
Jantzen’s standard hypotheses (dependent on the corresponding reductive algebraic group G
of g). Roughly speaking, Goodwin–Topley’s arguments are still valid in most statements of
this paper. For simplicity, we will not judge which statements are under less restriction on p.

0.2. The main purpose of this paper is to develop the theory of centers and the associated
Azumaya property for the finite W -algebra T(g, e) in positive characteristic p � 0. Our
approach is to generalise the classical theory of the centers of the universal enveloping alge-
bra U (g) of a Lie algebra g, which was first developed by Veldkamp (see [15, 20, 38]); and
also applying Brown–Goodearl’s arguments in [3] on the Azumaya property for the alge-
bras satisfying Auslander-regular and Maculay conditions to the modular finite W -algebra
case. We will make use of Premet’s results of the centers of complex and modular finite
W -algebras in [27], [29] and [30], and then of the geometry properties of the Slodowy slices
in [26]. We introduce the paper as follows.

Let GC be a simple, simply connected algebraic group over C, and gC = Lie(GC). Let
ê be a nilpotent element in gC. Fix an sl2-triple (ê, ĥ, f̂ ) of gC, and denote by (gC)ê :=
Ker(ad ê) in gC. The linear operator ad ĥ defines a Z-grading gC =⊕

i∈Z gC(i). Let (·, ·)
be a scalar multiple of the Killing form of gC such that (ê, f̂ )= 1, and define χ ∈ g∗

C by
letting χ(x̂)= (ê, x̂) for all x̂ ∈ gC. Let lC and l′C be Lagrangian subspaces of gC(−1) with
respect to (ê, [·, ·]) such that gC(−1)= lC ⊕ l′C. Then we define a nilpotent subalgebra mC :=
l′C ⊕⊕

i�−2 gC(i) of gC. Set pC :=⊕
i�0 gC(i) and p̃C := pC ⊕ lC to be a subalgebra and a

subspace of gC, respectively.
Set the generalised Gelfand–Graev module (QC)χ := U (gC)⊗U (mC) Cχ , where Cχ :=

C1̂χ is a one-dimensional mC-module such that x̂ .1̂χ = χ(x̂)1̂χ for all x̂ ∈mC. A finite
W -algebra over C is defined to be

U (gC, ê) := (EndgC
(QC)χ )

op,

which is shown to be the quantisation of the Slodowy slice S := ê + Ker(ad f̂ ) to the adjoint
orbit Ad GC.ê (see [7] and [26]).

0.3. Let G, g, ge, m, p, p̃ and Qχ be the modular counterparts of GC, gC, (gC)ê, mC, pC, p̃C
and (QC)χ , respectively. With the aid of some admissible ring A (see Section 1.1.1), through
the procedure of “reduction modulo p” we can define the A-algebra U (gA, ê) and then the
finite W -algebra T(g, e) over k by

T(g, e) := U (gA, ê)⊗A k,

where e := ê ⊗A 1 ∈ g is an element obtained from the nilpotent element ê ∈ gC by “reduc-
tion modulo p”.
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Let M be a connected unipotent subgroup of G such that its Lie algebra is equal to m
(see Section 1.2.2 for the details). By [9, lemma 4·4 and theorem 7·3] the finite W -algebra
T(g, e) is isomorphic to the Ad M-invariant spaces QM

χ and (EndM
g Qχ)

op. Moreover, the
extended finite W -algebra over k is defined to be

U (g, e) := (EndgQχ)
op.

Let Z0(g) be the p-center of the universal enveloping algebra U (g) which is by defini-
tion a subalgebra generated by x p − x [p] for all x ∈ g. Given a subspace V ⊆ g we denote
by Z0(V ) the subalgebra of Z0(g) generated by all x p − x [p] with x ∈ V . Set a= {x ∈ p̃ |
(x,Ker(ad f ))= 0}. It follows from [29, theorem 2·1(iii)] that U (g, e)∼= T(g, e)⊗k Z0(a)
as k-algebras.

The p-centers of the (extended) finite W -algebras are defined as follow. Denote by
Z(g) the center of the universal enveloping algebra U (g). Let ϕ be the natural represen-
tation of g over Qχ , which induces a k-algebra homomorphism from Z(g) to (EndgQχ)

op

such that (ϕ(x))(1χ)= x .1χ ∈ Qχ for any x ∈ Z(g). Then we have k-algebra isomorphisms
ϕ(Z0(g))∼= ϕ(Z0(p̃))∼= Z0(p̃) (see the proof of [29, theorem 2·1]). Now we identify Z0(p̃)
with ϕ(Z0(p̃)) and ϕ(Z0(g)). Correspondingly, Z0(p̃) is naturally playing a role of the p-
centers of U (g, e) as a counterpart of the p-centers in U (g). Define its invariant subalgebra
Z0(p̃)

M under the action of Ad M as in Section 1.4.2. According to [9], Z0(p̃)
M will play a

role similar to a p-center of T(g, e). For these p-centers, refer to [9, 29, 30] for more details.

0.4. Let us turn to the case over the field C for a while. It is well known that the center of
U (gC) is equal to U (gC)

GC , the algebra of GC-invariants for the adjoint action in U (gC).
In the footnote of [27, question 5·1], Premet showed that the center of finite W -algebra
U (gC, ê) coincides with the image of U (gC)

GC in U (gC, ê) under the map ϕC, where ϕC is
of the same meaning as ϕ in Section 0.3.

We go back to the case of positive characteristic. Denote by r the rank of g. Under the
assumption that p does not divide the order of the Weyl group associated to a given root
system of g, by Veldkamp’s theorem [38] we know that Z(g) is generated by the p-center
Z0(g) and the Harish–Chandra center Z1(g) := U (g)G . Moreover, there exist algebraically
independent generators g1, . . . , gr of U (g)G such that Z(g) is a free Z0(g)-module of rank
pr with a basis consisting of all gt1

1 · · · gtr
r with 0 � tk � p − 1 for all k.

Now we consider the finite W -algebra T(g, e) in positive characteristic p. Let Z(T) be the
center of T(g, e), and denote by �k := {(i1, . . . , ik) | i j ∈ {0, 1, . . . , p − 1}} for k ∈Z+ with
1 � j � k. Write Z0(T) := Z0(p̃)

M, which is the p-center of T(g, e) as mentioned above.
Note that the image of Z1(g) under the map ϕ in Section 0.3 lies in T(g, e), and we denote
it by Z1(T). Set fi := ϕ(gi ) with 1 � i � r , which are all in Z1(T). As an analogue of the
Veldkamp’s theorem in the Lie algebra case, our first main result comes as follows:

THEOREM 0·1. Under the assumption p � 0 for k= Fp, we have the following results:

(i) the k-algebra Z(T) is generated by Z0(T) and Z1(T). More precisely, Z(T) is a
free module of rank pr over Z0(T) with a basis f t1

1 · · · f tr
r , where (t1, . . . , tr ) runs

through �r ;
(ii) The multiplication map μ : Z0(T)⊗Z0(T)∩Z1(T) Z1(T)→ Z(T) is an isomorphism of

k-algebras.
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The proof of the above theorem is dependent on Proposition 4·13 involving the normality
of the fibers of the restriction to Slodowy slices of the adjoint quotient map. The proof will
be given in Section 5·2 and Section 5·3.

0.5. We continue to consider the case over k. Let Specm(Z(T)) be the spectrum of maximal
ideals of Z(T). The corresponding Azumaya locus can be defined as

A(T(g, e)) := {m ∈ Specm(Z(T)) | T(g, e)m is Azumaya over Z(T)m},
where T(g, e)m and Z(T)m denote the localisations of T(g, e) and Z(T) at m, respectively.
Let V be an irreducible T(g, e)-module, and consider the corresponding central character
ζV : Z(T)→ k.

As we see in Sections 1·3 and 1.4.3, T(g, e) is a prime Noetherian algebra, module-finite
over its affine center, then by [3, section 3] the Azumaya locus can be described in the
representation theoretical meanings as:

A(T(g, e))= {Ker(ζV )| dim V = the maximal dimension of all irreducible T(g, e)-modules}.
The following second main result shows the coincidence of the Azumaya locus with the
smooth locus of Specm(Z(T)).

THEOREM 0·2. Let GC be a simple, simply connected algebraic group over C, and
g= Lie(G) for the counterpart G of GC over k= Fp for p � 0. Then the locus of points
in Specm(Z(T)) that occur as Z(T)-annihilators of irreducible T(g, e)-module of maximal
dimension coincides with the smooth locus consisting of smooth points in Specm(Z(T)).

The proof of the above theorem will be given in Section 4·8. This result reveals a close
connection between the geometry of the centers and representations of the maximal dimen-
sions for modular finite W -algebras. Brown–Goodearl [3] listed three major examples of
algebras: quantized enveloping algebras, quantised function algebras at a root of unity, as
well as enveloping algebras of reductive Lie algebras in positive characteristic, for which
one can parameterize irreducible representations of the maximal dimensions via the smooth
points in the spectrum of maximal ideals of the centers. By Theorem 0·2, modular finite
W -algebras provide a new example for Brown–Goodearl’s list.

0.6. The paper is organised as follows. In Section 1 some basics on complex and modular
finite W -algebras are recalled. We also introduce some new observations in Sections 1·3
and 1.5.2. In Section 2 we mainly investigate the fractional ring Q(T) of T(g, e) over the
fractional field Frac(Z(T)). In Section 3, we investigate the centers of T(g, e), making some
necessary preparation for the proof of Theorem 0·1. The complete proof of Theorem 0·1
will be postponed until Section 5·2 because it is dependent on Proposition 4·13.

Section 4 is devoted to the proof of Theorem 0·2. We will first recall some material on
Azumaya algebras, then show that T(g, e) is Auslander-regular and Macaulay, with Krull
and global dimension less than dim ge (see Proposition 4·9). This enables us to apply Brown–
Goodearl’s theorem (see Theorem 4·2) to our case. According to Slodowy’s earlier results
on transverse slices to nilpotent orbits (see Theorem 4·11), a main property which we need
to establish is on the complement of the smooth locus in the Slodowy slice, which is given
in Proposition 4·13. In Section 4·8, we finally show that the codimension of the complement
of Azumaya locus in Specm(Z(T)) is at least 2. Applying Brown–Goodearl’s theorem to
our case, we deduce Theorem 0·2.
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Section 5 is devoted to the proof of Theorem 0·1. We will first show that Specm(gr(Z̃))
is a (strict) complete intersection, where Z̃ denotes the subalgebra of Z(T) generated by
Z0(T) and Z1(T), and gr(Z̃) the graded algebra of Z̃ under the Kazhdan grading. Applying
Proposition 4·13, we further prove that it is a normal variety, and that Z̃ coincides with Z(T).
It is worth mentioning that by using the method of truncated shifted Yangians, Goodwin–
Topley also give an explicit description of the center of T(g, e) (which is denoted by U (g, e)
there) with g= glN (k) over an algebraically closed field k of characteristic p > 0, after we
finished this work; see [10, theorem 4·7] for more details.

0.7. Throughout the paper we work with the field of complex numbers C and the field k= Fp

for p � 0. The assumption arises from Premet’s original arguments on the admissible pro-
cedure with p ∈�(A) for some admissible ring A when we work with k (see Section 1.1.1;
or [7, 9, 29, 30] for more details).

Let Z+ be the set of all the non-negative integers in Z. For k ∈Z+, define

Zk
+ := {(i1, . . . , ik) | i j ∈Z+}, �k := {(i1, . . . , ik) | i j ∈ {0, 1, . . . , p − 1}}

with 1 � j � k. For any k-vector space V , the dimension of V over k is denoted by dim V .

1. Finite W -algebras

We will maintain the notations and assumptions in the introduction.

1·1. Finite W -algebras over the field of complex numbers

First we recall some facts on finite W -algebras over C.

1.1.1. Let TC be a maximal torus in GC and set hC = Lie(TC). Then hC is a Cartan subalgebra
of gC. Let � be the root system of gC relative to hC. Choose a basis of simple roots 	 in
�. Denote by �+ the corresponding positive system in �, and put �− := −�+. Let gC =
n−
C ⊕ hC ⊕ n+

C be the corresponding triangular decomposition of gC. Choose a Chevalley
basis B = {êγ | γ ∈�} ∪ {ĥα | α ∈	} of gC. Let gZ denote the Chevalley Z-form in gC and
UZ the Kostant Z-form of U (gC) associated with B. Given a Z-module V and a Z-algebra
A, we write VA := V ⊗Z A.

By the Dynkin–Kostant theory, for any given nilpotent element ê ∈ gZ we can find f̂ , ĥ ∈
gQ such that (ê, ĥ, f̂ ) is an sl2-triple in gC. Fix (·, ·) a scalar multiple of the Killing form of
gC such that the Chevalley basis B of gC takes value in Q, and (ê, f̂ )= 1. Define χ ∈ g∗

C by
letting χ(x̂)= (ê, x̂) for all x̂ ∈ gC.

As defined by Premet in [29, definition 2·1], we can choose an admissible ring A, which is
a finitely-generated Z-subalgebra of C such that (ê, f̂ ) ∈ A× and all bad primes of the root
system of gC and the determinant of the Gram matrix of (·, ·) relative to a Chevalley basis
of gC are invertible in A. Denote by Specm(A) the maximal spectrum of A, then for every
element P ∈ Specm(A), the residue field A/P is isomorphic to Fq , where q is a p-power
depending on P. Denote by �(A) the set of all primes p ∈Z+ that occur in this way. By
[29, lemma 4·4] and its proof, the set �(A) contains almost all primes in Z+. Denote by gA

the A-submodule of g generated by the Chevalley basis B.
Let gC(i)= {x̂ ∈ gC | [ĥ, x̂] = i x̂}. Then gC =⊕

i∈Z gC(i). By the sl2-theory, all subspaces
gC(i) are defined over Q. Also, ê ∈ gC(2), f̂ ∈ gC(−2) and ĥ ∈ hC ⊆ gC(0). There exists a
symplectic bilinear form 〈·, ·〉 on gC(−1) given by 〈x̂, ŷ〉 := (ê, [x̂, ŷ])= χ([x̂, ŷ]) for all
x̂, ŷ ∈ gC(−1). We can choose a basis {ẑ1, . . . , ẑ2s} of g(−1) contained in gQ such that
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〈ẑi , ẑ j 〉 = i∗δi+ j,2s+1 for 1 � i, j � 2s, where i∗ =
{−1, if 1 � i � s;

1, if s + 1 � i � 2s.
Denote by lC the

C-span of ẑ1, . . . , ẑs and l′C the C-span of ẑs+1, . . . , ẑ2s . Set pC :=⊕
i�0 gC(i), p̃C := pC ⊕

lC and mC :=⊕
i�−2 gC(i)⊕ l′C. Then χ vanishes on the derived subalgebra of mC, and

gC = p̃C ⊕mC as vector spaces.
Write (gC)ê for the centraliser of ê in gC, and denote by Ker(ad f̂ ) the centraliser of f̂ in

gC. Denote by d := dim(gC)ê. As dim gC − dim(gC)ê =∑
k�2 2 dim gC(−k)+ dim gC(−1),

we have dim mC = dim gC−dim(gC)ê

2 = dim GC.ê
2 . After enlarging A one can assume that gA =⊕

i∈Z gA(i), and each gA(i) := gA ∩ gC(i) is freely generated over A by a basis of the vec-
tor space gC(i). Then we can assume that hA := gA ∩ hC, n−

A := gA ∩ n−
C , n+

A := gA ∩ n+
C ,

lA := gA ∩ lC, pA := gA ∩ pC, p̃A := gA ∩ p̃C, mA := gA ∩mC and (gA)ê := gA ∩ (gC)ê are
free A-modules and direct summands of gA. Moreover, one can assume ê, f̂ ∈ gA after pos-
sibly enlarging A, [ê, gA(i)] and [ f̂ , gA(i)] are direct summands of gA(i + 2) and gA(i − 2)
respectively, and gA(i + 2)= [ê, gA(i)] for each i �−1 by the sl2-theory.

As in [26, Sections 4·2-4·3], we can choose a basis x̂1, . . . , x̂d, x̂d+1, . . . , x̂m ∈ pA of the
free A-module pA =⊕

i�0 gA(i) such that:

(a) x̂i ∈ gA(ni), where ni ∈Z+ with 1 � i � m;
(b) x̂1, . . . , x̂d is a basis of the A-module (gA)ê;
(c) x̂d+1, . . . , x̂m ∈ [ f̂ , gA].

1.1.2. Recall the finite W -algebra U (gC, ê) over C is by definition, equal to (EndgC
(QC)χ )

op.
Let (IC)χ denote the ideal in U (gC) generated by all x̂ − χ(x̂) with x̂ ∈mC. Then
U (gC)/(IC)χ ∼= (QC)χ as gC-modules via the gC-module map sending 1̂ + (IC)χ to 1̂χ . Since
(IC)χ is stable under the adjoint action of mC, there exists a canonical isomorphism between
U (gC, ê) and the fixed point algebra (QC)

ad mC

χ given by û �→ û(1̂χ) for any û ∈ U (gC, ê).
In what follows we will often identify (QC)χ with U (gC)/(IC)χ , and identify U (gC, ê) with
(QC)

ad mC

χ .
For k ∈Z+, define Zk

+ := {(i1, · · · , ik) | i j ∈Z+} with 1 � j � k, and set |i| := i1 + · · · +
ik . Given (a, b) ∈Zm

+ ×Zs
+, let x̂a ẑb denote the monomial x̂ a1

1 · · · x̂ am
m ẑb1

1 · · · ẑbs
s in U (gC). Set

Qχ,A := U (gA)⊗U (mA) Aχ , where Aχ = A1̂χ . By definition Qχ,A is a gA-stable A-lattice in
(QC)χ with {x̂a ẑb ⊗ 1̂χ | (a, b) ∈Zm

+ ×Zs
+} being a free basis. Given (a, b) ∈Zm

+ ×Zs
+, set

degê(x̂
a ẑb)= |(a, b)|ê :=

m∑
i=1

ai (ni + 2)+
s∑

i=1

bi = wt(x̂a ẑb)+ 2degS(x̂
a ẑb), (1·1)

where wt(x̂a ẑb) :=∑m
i=1 ai ni −∑s

i=1 bi and degS(x̂
a ẑb) := |a| + |b| are the weight and the

standard degree of x̂a ẑb, respectively. By [26, theorem 4·6], the finite W -algebra U (gC, ê) is
generated by endomorphisms ̂1, . . . , ̂d with

̂k(1̂χ)=
(

x̂k +
∑

|a, b|ê = nk + 2,
|a| + |b|� 2

λ̂k
a,b x̂a ẑb +

∑
|a,b|ê<nk+2

λ̂k
a,b x̂a ẑb

)
⊗ 1̂χ (1·2)

for 1 � k � d, where λ̂k
a,b ∈Q, and λ̂k

a,b = 0 if ad+1 = · · · = am = b1 = · · · = bs = 0.

Moreover, the monomials ̂
a1
1 · · · ̂ad

d with (a1, · · · , ad) ∈Zd
+ form a basis of the vector

space U (gC, ê). As in [28], we assume that our admissible ring A contains all λ̂k
a,b’s in (1·2).

https://doi.org/10.1017/S0305004121000414 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000414


Centers and Azumaya loci for finite W -algebras 41

For a = (a1, . . . , ad) ∈Zd
+, let U (gA, ê) be the A-span of the monomials {̂a1

1 · · · ̂ad
d | a ∈

Zd
+}, which equals (EndgA(Qχ,A))

op, an A-subalgebra of U (gC, ê) (see [29, (3)] for more
details).

Let Ŷ1, . . . , Ŷn be homogeneous elements in gC. Assume that U (gC)=⋃
i∈Z FiU (gC) is

a filtration of U (gC), where FiU (gC) is the C-span of all Ŷi1 · · · Ŷik with Ŷi1 ∈ gC( j1), . . . ,
Ŷik ∈ gC( jk) such that ( j1 + 2)+ · · · + ( jk + 2)� i . This filtration is called Kazhdan filtra-
tion. It is obvious that the Kazhdan grading of Ŷi1 · · · Ŷik in U (gC) is equal to wt(Ŷi1 · · · Ŷik )+
2degS(Ŷi1 · · · Ŷik ), where wt(Ŷi1 · · · Ŷik )= j1 + · · · + jk and degS(Ŷi1 · · · Ŷik )= k are the
weight and the standard degree of Ŷi1 · · · Ŷik respectively, which coincides with the e-degree
of the elements of (QC)χ in (1·1). The Kazhdan filtration on (QC)χ is defined by Fi (QC)χ :=
π(FiU (gC)) with π : U (gC)�U (gC)/(IC)χ being the canonical homomorphism, which
makes (QC)χ a filtered U (gC)-module. Then there is an induced Kazhdan filtration
FiU (gC, ê) on the subspace U (gC, ê)= (QC)

ad mC

χ of (QC)χ such that F jU (gC, ê)= 0 unless
j � 0.

Let S((gC)ê) denote the symmetric algebra of (gC)ê. By the sl2-theory,

p̃C = (gC)ê ⊕
⊕
i�2

[ f̂ , gC(i)] ⊕ lC, (1·3)

which gives rise to the projection p̃C � (gC)ê. Under the above settings, Premet showed in
[26] that there exists an algebra isomorphism under the Kazhdan grading, i.e.,

ψ̂ : gr(U (gC, ê))
∼−→ S((gC)ê)

gr(̂i ) �−→ x̂i
(1·4)

for 1 � i � d.

1·2. Finite W -algebras in positive characteristic

1.2.1. In the subsequent arguments, we mainly make use of the method of “reduction modulo
p” to study the counterparts of all the above over the algebraic closured field k= Fp of
positive characteristic p ∈�(A). The bilinear form (·, ·) induces a bilinear form on the Lie
algebra g∼= gA ⊗A k, which will still be denoted by (·, ·). If we denote by G the algebraic
k-group associated with the distribution algebra U = UZ ⊗Z k, then g= Lie(G) (cf. [13,
section 2·1]). For x̂ ∈ gA, set x := x̂ ⊗A 1 to be the corresponding element in g. Denote by
e = ê ⊗A 1, f = f̂ ⊗A 1 and h = ĥ ⊗A 1 in g.

Consider the p-center Z0(g) of U (g). There is a G-equivariant k-algebra isomorphism
ς : S(g)(1)

∼−→ Z0(g) determined by sending x �→ x p − x [p] for x ∈ g, where the superscript
(1) denotes the Frobenius twist. Since the Frobenius map of k is bijective, this enables us to
identify the maximal spectrum Specm(Z0(g)) of Z0(g)with (g∗)(1). For any ξ ∈ g∗ we denote
by Jξ the two-sided ideal of U (g) generated by the central elements {x p − x [p] − ξ(x)p | x ∈
g}. The quotient algebra Uξ (g) := U (g)/Jξ is called the reduced enveloping algebra with
p-character ξ .

1.2.2. For i ∈Z, set g(i) := gA(i)⊗A k and m :=mA ⊗A k. Then m is a restricted subalgebra
of g. Denote by h := hA ⊗A k, n− := n−

A ⊗A k, n+ := n+
A ⊗A k, l := lA ⊗A k, p := pA ⊗A k,

p̃ := p̃A ⊗A k and ge := (gA)ê ⊗A k as in Section 1.1.1, respectively.
By our assumptions at the end of Section 1.1.1 and the procedure of “modulo

p reduction”, the elements x1, . . . , xd form a basis of the centraliser ge of e in g.
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Set Qχ := U (g)⊗U (m) kχ , then Qχ
∼= Qχ,A ⊗A k as g-modules. Let Iχ denote the left ideal

of U (g) generated by all x − χ(x) with x ∈m. Then we further have U (g)/Iχ ∼= Qχ as
g-modules via the g-module map sending 1 + Iχ to 1χ .

Recall a finite W -algebra T(g, e) is by definition, equal to U (gA, ê)⊗A k. Clearly T(g, e)
has a k-basis consisting of all monomials 

a1
1 · · ·ad

d , where i := ̂i ⊗ 1 ∈ U (gA, ê)
⊗A k with

k(1χ)=
(

xk +
∑

|a, b|e = nk + 2,
|a| + |b|� 2

λk
a,bxazb +

∑
|a,b|e<nk+2

λk
a,bxazb

)
⊗ 1χ (1·5)

for 1 � k � d, where λk
a,b ∈ k, and λk

a,b = 0 if ad+1 = · · · = am = b1 = · · · = bs = 0. Let
gr(T(g, e)) denote the graded algebra of T(g, e) under the Kazhdan grading, and S(ge)

the symmetric algebras of ge. Let p̃� ge be the projection along the decomposition
p̃= ge ⊕⊕

i�2[ f, g(i)] ⊕ l (see (1·3)). By the same discussion as in (1·4) there also exists
an isomorphism between k-algebras

ψ̄ : gr(T(g, e))
∼−→ S(ge)

gr(i) �−→ xi
(1·6)

for 1 � i � d.
Now we introduce two more equivalent definitions of the finite W -algebra T(g, e). At

first, we describe M mentioned in the introduction, which is by definition, the connected
unipotent of G such that Ad M is generated by all linear operators exp(ad x) with x ∈m. It
follows from [9, lemma 4·1] that Iχ is stable under the adjoint action of M. Then the adjoint
action of M on Qχ given by g.(u + Iχ )= (g.u)+ Iχ for g ∈M and u ∈ U (g) descends to
an adjoint action on gr(Qχ). Moreover, the M-invariant space

QM
χ := {u + Iχ ∈ Qχ | g.u + Iχ = u + Iχ for all g ∈M}

is readily an algebra, which is introduced as the finite W -algebra over k in [9, definition
4·3]. Since Qχ is a locally finite M-module under the adjoint action, the differential of
this M-module structure coincides with the m-module structure on Qχ given by the adjoint
action. Then the invariant space Qad m

χ inherits an algebra structure from U (g) with the M-
invariants QM

χ embedded as a subalgebra (see [9, lemma 4·2] for more details). On the
other hand, the adjoint action of M on Qχ induces an action on (EndgQχ)

op by (g. f )(u +
Iχ)= g.( f (g−1.u + Iχ )) for g ∈M, f ∈ EndgQχ , u ∈ U (g), and the invariant subalgebra is
denoted by (EndM

g Qχ)
op. It follows from [9, lemma 4·4 and theorem 7·3] that

T(g, e)∼= QM
χ

∼= (EndM
g Qχ)

op (1·7)

as k-algebras. We will identify T(g, e) with QM
χ and (EndM

g Qχ)
op throughout the paper.

Recall that the extended finite W -algebra associated to χ over k is by definition, equal
to (EndgQχ )

op. By the same discussion as the case over C in Section 1.1.2, there exists a
k-algebras isomorphism (EndgQχ)

op ∼= Qad m
χ by sending u to u(1χ) for any u ∈ U (g, e).

From now on, we will identify (EndgQχ)
op with Qad m

χ . Moreover, it is notable that the
finite W -algebra T(g, e) can be naturally identified with a subalgebra of the extended finite
W -algebra U (g, e) over k by definition. The standard grading on U (g) and the Kazhdan
filtrations on T(g, e) and U (g, e) can also be defined as in Section 1.1.2.
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1·3. The ring-theoretic property of finite W -algebras

To discuss the related topics on finite W -algebras and their subalgebras, we first need the
following observation.

LEMMA 1·1. The following statements hold:

(i) both gr(U (gC, ê)) and gr(T(g, e)) are unique factorisation domains;
(ii) both U (gC, ê) and T(g, e) are Noetherian rings;

(iii) both U (gC, ê) and T(g, e) are prime rings, which do not contain any zero-divisor.

Proof. First recall the isomorphisms in (1·4) and (1·6), which show that the gradation of
U (gC, ê) and T(g, e) are isomorphic to polynomial algebras. Then the standard filtration
arguments work, as these properties hold for the associated graded algebras. The detailed
proof will be omitted here.

1·4. The p-centers of finite W -algebras and extended finite W -algebras

Let ϕ be the natural representation of g over Qχ , which induces a k-algebras homomor-
phism from Z(g) to U (g, e) such that

ϕ : Z(g) −→ U (g, e)
x �−→ lx ,

where lx(1χ)= x .1χ ∈ Qχ for any x ∈ Z(g). Recall that U (g, e)= (EndgQχ)
op which is iso-

morphic to Qad m
χ by our earlier discussion. For any x ∈ Z(g) we can also consider ϕ(x) as

the element (ϕ(x))(1χ) in Qad m
χ and do not distinguish them from now on. The map ϕ plays

a critical rule in this paper.

1.4.1. We first look at the p-center of the extended finite W -algebra U (g, e) introduced
in Section 0.3. Note that Z0(p̃)∩ Ker(ϕ)= {0} by the PBW theorem. So ϕ(Z0(g))=
ϕ(Z0(p̃))∼= Z0(p̃) as k-algebras. From now on we identify Z0(p̃) with ϕ(Z0(p̃)) and
ϕ(Z0(g)) in the paper.

1.4.2. Now we describe the p-center of the finite W -algebra T(g, e)mentioned in Section 0.3
(see [30, remark 2·1] and [9, section 8] for more details). Recall that the associated graded
algebra of Qχ under the Kazhdan grading is gr(Qχ)= S(g)/ gr(Iχ ), and by the PBW the-
orem we have that S(g)= S(p̃)⊕ gr(Iχ). As pr : S(g)→ S(p̃) is the projection along this
direct sum decomposition, this restricts to an isomorphism gr(Qχ)∼= S(p̃).

The adjoint action of M (defined in Section 1.2.2) on Qχ descends to an adjoint action
on gr(Qχ) and this gives a twisted action of M on S(p̃) defined by tw(g) · f := pr(g. f ) for
g ∈M and f ∈ S(p̃), where g. f denotes the usual adjoint action of g on f in S(g). We write
S(p̃)M for the invariants with respect to this action.

On the other hand, we can identify S(g) with the algebra k[g∗] of regular functions on
the affine variety g∗. Let m⊥ denote the set of all linear functions on g vanishing on m, i.e.,
m⊥ := { f ∈ g∗ | f (m)= 0}. Then gr(Iχ ) is the ideal of all functions in k[g∗] vanishing on
the closed subvariety χ +m⊥ of g∗. In this way, we have identified gr(Qχ)∼= k[χ +m⊥],
and then S(p̃)∼= k[χ +m⊥].

As we identify S(p̃) with k[χ +m⊥], we may regard the M-algebra Z0(p̃) as the coor-
dinate algebra of the Frobenius twist (χ +m⊥)(1) ⊆ (g∗)(1) of χ +m⊥, where the natural
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action M on (χ +m⊥)(1) is a Frobenius twist of the coadjoint action of M on χ +m⊥.
As k[χ +m⊥]M ∼= k[χ + κ(Ker(ad f ))] by [29, lemma 3·2] (where the map κ is the
Killing isomorphism from g to g∗ taking x to (x, ·)), write Z0(p̃)

M := k[(χ +m⊥)(1)]M ∼=
k[(χ + κ(Ker(ad f )))(1)], the function algebra on the Frobenius twist of κ(S) with S :=
e + Ker(ad f ) being the Slodowy slice.

Recall the isomorphism ς : S(g)(1)
∼−→ Z0(g) from Section 1.2.1. Write mχ for the

ideal of U (m) generated by all x − χ(x) with x ∈m. We write Ip := ς(m(1)
χ )Z0(g) for

ς(m(1)
χ ) := {x p − x [p] − χ(x)p | x ∈m}. Since the group M preserves the left ideal Iχ and

ς is G-equivariant, then M acts on both U (g, e)∼= Qad m
χ and Z0(g)/Ip. Let U (g, e)M and

(Z0(g)/Ip)
M denote the fixed point subspace of U (g, e) and Z0(g)/Ip under the action of

Ad M, respectively.
On the other hand, since Z0(p̃)∼= ϕ(Z0(g))∼= Z0(g)/Ip by definition, then we have

Z0(p̃)
M ∼= (Z0(g)/Ip)

M as k-algebras. We will identify Z0(p̃)
M with (Z0(g)/Ip)

M in the
paper. By virtue of (1·7), Z0(p̃)

M is a subalgebra of the finite W -algebra T(g, e)=
U (g, e)M. Moreover, in [30, remark 2·1] Premet showed that

Z0(p̃)
M = Z0(p̃)∩ T(g, e). (1·8)

Definition 1·2. The p-center of the finite W -algebra T(g, e) is defined as the invariant
subalgebra Z0(p̃)

M(∼= (Z0(g)/Ip)
M).

For any a = (a1, . . . , am) ∈Zm
+ and b = (b1, . . . , bs) ∈Zs

+, set

xazb := xa1
1 · · · xam

m zb1
1 · · · zbs

s .

Using (1·5), Goodwin–Topley obtained descriptions of PBW generators of Z0(p̃)
M in [9,

(8·2)] as

�(xk)= (ς(xk)+
∑

|a, b|e = nk + 2,
|a| + |b|� 2

λk
a,bς(x

azb)+ Ip)⊗ 1χ (1·9)

for 1 � k � d with λk
a,b ∈ k.

Keeping in mind that x [p] ∈ g(pi) whenever x ∈ g(i) for all i ∈Z. Then in the graded alge-
bra associated with the Kazhdan-filtered algebra U (g) we have dege(x

p
i − x [p]

i )= dege(x
p
i )

for 1 � i � d. So it readily follows from (1·6) and (1·9) that the following restriction of ψ̄ ,
denoted by the same notation, gives rise to an isomorphism

ψ̄ : gr(Z0(p̃)
M)

∼−→ k[x p
1 , . . . , x p

d ]. (1·10)

1.4.3. Let a := {x ∈ p̃ | (x,Ker(ad f ))= 0} be a subspace of p̃. Thanks to the projection
p̃� ge (see (1·3)), the following results can be obtained by applying [9, (8·2), (7·4) and
(8·3)].

LEMMA 1·3 ([9]). There exist isomorphisms between k-algebras:

(i) Z0(p̃)
M ∼= Z0(ge);

(ii) Z0(̃p)
M ⊗k Z0(a)∼= Z0(p̃) under the multiplication map.
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In particular, since Z0(ge) is a polynomial algebra in dim ge variables, Lemma 1·3(i) entails
that Z0(p̃)

M also has this property.
In [29, theorem 2·1] and [30, remark 2·1], Premet introduced the following transition

property between finite W -algebras and their extended counterparts.

THEOREM 1·4 ([29, 30]). The following hold.

(i) the algebra U (g, e) is generated by its subalgebras T(g, e) and Z0(p̃);
(ii) U (g, e)∼= T(g, e)⊗k Z0(a) as k-algebras;

(iii) U (g, e) is a free module over Z0(p̃) of rank pdim ge ;
(iv) T(g, e) is a free module over Z0(p̃)

M of rank pdim ge .

1·5. The reduced W -algebras

1.5.1. Given a linear function η ∈ χ +m⊥, set the g-module Qη
χ := Qχ/JηQχ , where Jη

is the ideal of U (g) generated by all {x p − x [p] − η(x)p | x ∈ g}. Evidently Qη
χ is a g-

module with p-character η, and there exists a g-module isomorphism Qη
χ

∼= Uη(g)⊗Uη(m) kχ

by [29, lemma 2·2(i)]. By definition, the restriction of η on m coincides with that of χ on m.

Definition 1·5. Define a reduced extended W -algebra Uη(g, e) associated to g with
p-character η ∈ χ +m⊥ by

Uη(g, e) := (EndgQη
χ )

op.

Next we will introduce other equivalent definitions of reduced extended W -algebras. In
[29, theorem 2·2(b)], Premet introduced the k-algebra

U ◦
η (g, e) := U (g, e)⊗Z0(p̃) kη,

where kη := k1η is a one-dimensional Z0(p̃)-module such that (x p − x [p]).1η = η(x)p1η for
all x ∈ p̃. Equivalently, if we let Hη be the ideal of U (g, e) generated all ϕ(x p − x [p] −
η(x)p) with x ∈ p̃, then

U ◦
η (g, e)= U (g, e)/Hη. (1·11)

Moreover, Premet also showed that the canonical projection Qχ → Qη
χ = Qχ/JηQχ gives

rise to an isomorphism between k-algebras

ψη : U ◦
η (g, e)∼= Uη(g, e). (1·12)

In Section 1.4.2 we have defined Z0(p̃)
M as k[(χ + κ(Ker(ad f )))(1)]. For any η ∈

χ + κ(Ker(ad f )), we write Kη for the corresponding maximal ideal of (Z0(g)/Ip)
M(∼=

Z0(p̃)
M). In [9, definition 8·5], Goodwin–Topley introduced the definition of reduced

W -algebras as follows.

Definition 1·6. The reduced W -algebra Tη(g, e) associated to g with p-character η ∈ χ +
m⊥ is defined by

Tη(g, e) := T(g, e)/T(g, e)Kη.
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It is immediate that the category of Tη(g, e)-modules can be naturally regarded as a
subcategory of T(g, e)-modules. The objects in the former are called T(g, e)-modules of
p-character η. Moreover, Goodwin–Topley proved in [9, proposition 8·7] that

Uη(g, e)∼= Tη(g, e)

as k-algebras. Therefore, we will take Tη(g, e) as the k-algebras Uη(g, e) and U ◦
η (g, e) in

the paper, and call them uniformly as the reduced W -algebras.

1.5.2. Denote by Uη(g)-mod and by Uη(g, e)-mod the categories of finite-dimensional mod-
ules over Uη(g) and over Uη(g, e), respectively. We will establish an equivalence between
them. Let Nm denote the Jacobson radical of Uη(m), which is the left ideal of codimensional
one in Uη(m) generated by all 〈x − η(x) | x ∈m〉, and write Im := Uη(g)Nm. Given a left
Uη(g)-module M , define

Mm := {v ∈ M | Im.v = 0}.
Let Uη(g)

ad m denotes the centralizer of m in Uη(g) under the adjoint action, then we have

LEMMA 1·7.

Uη(g, e)∼= (Qη
χ )

ad m ∼= Uη(g)
ad m/Uη(g)

ad m ∩ Im.

Proof. The first isomorphism in the lemma is just [29, lemma 2·2 (ii)]. For the second one,
note that η|m = χ |m by definition, and the restricted subalgebra m of g is η-admissible in the
meaning of [26, definition 2·3] (which was observed in the proof of [29, lemma 2·2]). So
[26, theorem 2·3] can be applied directly.

Therefore, any left Uη(g, e)-module can be considered as a Uη(g)
ad m-module with the

trivial action of the ideal Uη(g)
ad m ∩ Im. It follows from [32, theorem 1·3] that every finite-

dimensional Uη(g)-module is Uη(m)-free, and note that Uη(g)∼= Matpdim m(Uη(g, e)) as k-
algebras by [29, lemma 2·2 (iii)]. Combining these with the fact that the restriction of η
coincides with that of χ on m, by the same discussion as in [26, theorem 2·4] (the original
result there is for the case with η= χ) we can conclude that:

THEOREM 1·8. The functors

ϑ : Uη(g) -mod −→ Uη(g, e) -mod, M �−→ Mm,

and

θ : Uη(g, e) -mod −→ Uη(g) -mod, V �−→ Uη(g)⊗Uη(g)ad m V,

are mutually inverse category equivalences.

Moreover, from the detailed proof of [26, theorem 2·4] we see that

dim M = pdim m · dim Mm = p
dim G.e

2 · dim Mm. (1·13)

As an immediate corollary of Theorem 1·8, we have
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PROPOSITION 1·9. All irreducible modules of T(g, e) are finite-dimensional with dimension
at most p

dim g−rank g−dim G.e
2 .

Proof. Recall that all irreducible modules over g are finite-dimensional with maximal
dimension equaling M(g)= p

dim g−rank g
2 (see [21, theorem 3] or [23, theorem 4·4]), so the

dimension of any irreducible Uη(g)-module with η ∈ χ +m⊥ is at most M(g). Since
Uη(g, e)∼= Tη(g, e) as k-algebras by Section 1.5.1, it follows from Theorem 1·8 and (1·13)
that the dimension of any irreducible Tη(g, e)-module over k is at most p

dim g−rank g−dim G.e
2 .

On the other hand, since we have T(g, e)∼= QM
χ by (1·7), and Tη(g, e)=

T(g, e)/T(g, e)Kη by Definition 1·6, then any irreducible T(g, e)-module is a simple object
of the Tη(g, e)-module category for some η ∈ χ +m⊥. Now the proof is completed.

2. The fractional ring of T(g, e) over the fractional field of its center

In this section we continue to investigate the ring theoretic properties on the centers of the
finite W -algebra T(g, e), and also the ones on the extended finite W -algebra U (g, e).

Maintain the notations and assumptions as before. In particular, we list some special
important conventions as below:

(i) The finite W -algebra T(g, e) will be simply written as T sometimes. In particular,
this simplified notation will always appear in the context related to the centers as
below;

(ii) the p-center Z0(p̃)
M of T (see Definition 1·2) will be written as Z0(T) for

convenience;
(iii) the center of T will be denoted by Z(T) (Keep in mind the fact that Z(T) is an integral

domain by Lemma 1·1(3));
(iv) set F0 := Frac(Z0(T)) and F := Frac(Z(T)) the fractional field of Z0(T) and Z(T),

respectively;
(v) set the fractional ring

Q(T) := T(g, e)⊗Z(T) F;
(vi) write � := n − r − dim G.e, where n = dim g and r = rank g.

2·1. Z(T) and Z0(T)

We first have the following observation:

PROPOSITION 2·1. The following are true:

(i) the ring Z0(T) is Noetherian;
(ii) the ring Z(T) is integrally closed;

(iii) the ring extension Z(T)/Z0(T) is integral, and Z(T) is finitely-generated as a Z0(T)-
module. In particular, Z(T) is a finitely-generated commutative algebra over k;

(iv) T(g, e) is a PI ring.

Proof. (1) By Lemma 1·3(i) we know that Z0(T)∼= Z0(ge) as k-algebras, then Z0(T) is
isomorphic to a polynomial algebra in dim ge variables, which is a Noetherian ring.

(2) Generally speaking, the proof can be carried out by exploiting [36, Section 6, proposi-
tions 5·3-5·4] which contributes to the centers of Lie algebras. We give some details below
for the convenience of the readers.
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Step 1. Let x be contained in the integral closure of Z(T) in F. Then the element x satisfies
an equation

xm + km−1xm−1 + · · · + k0 = 0,

where ki ∈ Z(T) for 0 � i � m − 1. Set B :=∑m−1
i=0 T(g, e)xi . Note that x is in the center of

Q(T). So B is a sub-ring of the fraction ring Q(T) of T(g, e). Write x = r
s with r ∈ Z(T)

and s ∈ Z(T)\{0}. Then T(g, e)⊆ B ⊆ (1/z)T(g, e), where z := sm ∈ Z(T).
Step 2. Now we prove B = T(g, e). Recall that the Kazhdan filtration on T(g, e) is

defined by

F0T(g, e)⊆ F1T(g, e)⊆ · · ·
with F0T(g, e)= k. We claim that

(zB)∩ FkT(g, e)= (zT(g, e))∩ FkT(g, e) (2·1)

for k � 0 and prove it by induction on k.
As F0T(g, e)= k, it is obvious that (2·1) holds for the case with k = 0. Now let a ∈ (zB)∩

Fk+1T(g, e). For n � 1, we have an ∈ znB ⊆ zn−1T(g, e). Then there exists un ∈ T(g, e) such
that an = zn−1un . Under the Kazhdan grading we can choose ā, z̄, ūn in gr(T(g, e)) such that
gr(a)= ā, gr(z)= z̄ and gr(un)= ūn , respectively. Recall in Lemma 1·1(i) we showed that
gr(T(g, e)) is a unique factorization domain. Let q be a prime factor of z̄. Then there are
l, t ∈Z+ such that ql | z̄, ql+1 � z̄, qt | ā, qt+1 � ā. As z̄n−1 | ān , we have (n − 1)l � nt for all
n, which yields t � l. This shows that z̄ divides ā. Therefore, there exists v ∈ T(g, e) such
that ā = z̄v̄, whence a − zv ∈ FkT(g, e). Since T(g, e)⊆ B and a ∈ zB, we have a − zv ∈
FkT(g, e)∩ (zB). The induction hypothesis implies that a − zv ∈ FkT(g, e)∩ (zT(g, e)).
Hence a ∈ Fk+1T(g, e)∩ (zT(g, e)), as desired.

Step 3. It follows from (2·1) that zT(g, e)= zB. By Lemma 1·1(iii), T(g, e) has no zero
divisors, and we obtain x ∈ B ⊆ T(g, e). It follows that B = T(g, e).

(3) As Z0(T) is a Noetherian ring by Statement (1) and T(g, e) is a finitely-generated
Z0(T)-module by Theorem 1·4(iv), T(g, e) is a Noetherian Z0(T)-module. Since Z(T) is
a Z0(T)-submodule in T(g, e), Z(T) is also finitely-generated as a Z0(T)-module. Then
by a standard argument as in [1, proposition 2·4], one can easily conclude that Z(T) is
integral over Z0(T). In (1) we showed that Z0(T) is isomorphic to a polynomial algebra
in dim ge variables, and also Z(T) is finitely-generated as a Z0(T)-module, then Z(T) is a
finitely-generated commutative algebra over k.

(4) Since T(g, e) is a free module over Z0(T) by Theorem 1·4(iv), [19, corollary
13·1·13(iii)] implies that T(g, e) is a PI ring.

2·2. On the structure of Q(T)

We first have a theory for Q(T) parallel to the modular Lie algebra case (cf. [39]).

PROPOSITION 2·2. The following statements hold:

(i) Q(T)∼= T(g, e)⊗Z0(T) F0;
(ii) Q(T) is a division algebra;
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(iii) Q(T) is a finite-dimensional and central simple algebra over F;
(iv) the dimension of Q(T) over F is equal to p2m for some m ∈Z+ such that 2m � �. Here

as before �= n − r − dim G.e with n = dim g and r = rank g.

Proof. The arguments are the same in the spirit as in [39] for modular Lie algebras. We
represent them for modular finite W -algebra.

(i) Recall that Z(T)/Z0(T) is an integral extension by Proposition 2·1(iii). Let x ∈ Z(T)
satisfy an equation

xm + km−1xm−1 + · · · + k0 = 0,

where ki ∈ Z0(T) for 0 � i � m − 1. As Lemma 1·1(iii) entails that T(g, e) has no
zero divisors and Z(T)⊆ T(g, e), we may assume that k0 �= 0. Then x is invertible in
(Z0(T)\{0})−1 Z(T) with inverse x−1 = −k−1

0 (xm−1 + km−1xm−2 + · · · + k1). Since any ele-
ment in Q(T) can be written as t

s with t ∈ T(g, e) and s ∈ Z(T)\{0}, Statement (i)
follows.

(ii) Note that T(g, e) is finitely-generated over Z0(T) by Theorem 1·4(iv), and Z0(T)⊆
Z(T) by definition. Thus, T(g, e) is also finitely-generated over Z(T). By the same discus-
sion as in Proposition 2·1(iii), one can conclude that T(g, e)/Z(T) is an integral extension.
Applying the considerations noted in the proof for Statement (i), one concludes that Q(T)

is a division algebra.
(iii) As T(g, e) is finitely-generated over Z(T), it is straightforward that Q(T) is finite-

dimensional over F. By virtue of Lemma 1·1(iii) and Proposition 2·1(iv), Posner’s Theorem
[19, theorem 13·6·5] shows that Q(T) is a central simple algebra over F.

(iv) Recall that T(g, e) is a free module over Z0(T) of rank pdim ge by Theorem 1·4(iv).
Consequently, Q(T) is an F0-vector space of dimension pdim ge and we have

pdim ge = dimF0 Q(T)= dimF0 F · dimF Q(T).

This shows that dimF Q(T) is a power of p. Now we already know that Q(T) is a central
simple algebra over F, thus this power is an even number. Set dimF Q(T)= p2m for some
m ∈Z+. In the following we will show that 2m � �, and the proof is divided into a couple of
steps.

Step 1. For η ∈ χ +m⊥, there exists g ∈ G such that (g.η)(n+)= 0 (see [13, lemma
6·6]). Set η′ = g.η with Jordan–Chevalley decomposition η′ = η′

s + η′
n . Then η′

s(n
−)= 0,

η′
n(h)= 0 and the centraliser gη′

s
contains h. There is a projection π : h∗ → ([gη′

s
, gη′

s
])∩ h)∗.

Consider the baby Verma module Vη(λ) in Ug.η(g)-modules defined to be

Vη(λ)= Ug.η(g)⊗Ug.η(b) kλ,

where b is a Borel subalgebra of g associated to the root system �, and λ ∈ π−1(π(−ρ))

satisfies that ∀H ∈ h, λ(H)p − λ(H [p])= η′
s(H)p with ρ being half sum of the positive

roots �+ of g. According to [4, proposition 3·14], Vη(λ) is an irreducible Ug.η(g)-module
and whose dimension over k equals p

1
2 (dim g−rank g). Since Uη(g)∼= Ug.η(g) as k-algebras,

Vη(λ) can also be considered as a Uη(g)-module. By Theorem 1·8 there are mutually
inverse category equivalences from Uη(g)-modules to Uη(g, e)-modules. As the discussion
in Section 1.5.1 shows that Uη(g, e)∼= Tη(g, e) as k-algebras (we shall identify Tη(g, e) with
Uη(g, e) below), it follows from (1·13) that ϑ(Vη(λ)) is an irreducible Tη(g, e)-module with
dim ϑ(Vη(λ))= p

�
2 .
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Let us introduce a canonical algebra homomorphism  from T(g, e) to T(g, e)/(z −
(η,λ)(z)), where (z −(η,λ)(z)) is the ideal of T(g, e) generated by z −(η,λ)(z) with z tak-
ing all through the center Z(T) of T(g, e), and (η,λ)(z) ∈ k is defined by z.v =(η,λ)(z)v
for v ∈ ϑ(Vη(λ)). Note that the category of (T(g, e))-modules is a subcategory of Tη(g, e)-
modules (see Remark 2·3 below), and Tη(g, e) is the reduced algebra of T(g, e) by definition.
Then we can regard ϑ(Vη(λ)) as an irreducible T(g, e)-module, which will be denoted
by VT . Set � to be the corresponding map. By Jacobson’s density theorem, �(T(g, e))=
Endk(VT) (see [11, section 4·3]).

Step 2. By virtue of (ii) and (iii), Q(T) is a finite-dimensional division F-algebra. Then
for any u ∈ T(g, e) we have a subfield F(u) of Q(T), which actually coincides with F[u].
By general theory, F[u] has degree � pm over F (see e.g., [6, theorem 4·5·1]). According
to Proposition 2·1(ii), Z(T) is integrally closed. An application of [36, Section 6, lemma
5·2(2)] to F[u] entails that the minimal polynomial fu of u in F[τ ] lies in Z(T)[τ ]. Since VT

is irreducible and k is algebraically closed, we have �(Z(T))= k idVT
. Hence �(u) satisfies

a polynomial of standard degree degS( fu)� pm over k.
Step 3. We claim that dim VT � pm . In (Step 1) we showed that �(T(g, e))= Endk(VT).

So there must be an element u ∈ T(g, e) such that �(u) ∈ Endk(VT) is equal to the standard
regular nilpotent matrix ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1 · · · 0

0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 1

0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

So the degree of minimal polynomial of �(u) over k is dim VT = p
�
2 . Using (Step 2), we

finally obtain that p
�
2 � pm . Thus we have 2m � �, completing the proof of Statement (iv).

Remark 2·3. Recall that for any irreducible U (g)-module S with p-character η, there is a
central character λη(S) : Z(g)→ k. Denote by λ0

η(S) the corresponding p-central character
which is equal to λη(S)|Z0(g). Then Ker(λη(S)) and Ker(λ0

η(S)) are the maximal ideals of
Z(g) and Z0(g) respectively. The same thing happens on T(g, e).

Remark 2·4. Set Z(U (g, e)) to be the center of U (g, e). By virtue of Lemma 1·1(iii) and
theorem 1·4(ii), Z(U (g, e))⊆ U (g, e) must be an integral domain. Let Frac(Z0(p̃)) and
Frac(Z(U (g, e))) denote the fractional field of Z0(p̃) and Z(U (g, e)) respectively. Parallel
to the situation of T(g, e), we have the following fractional ring

Q(U (g, e)) := U (g, e)⊗Z(U (g,e)) Frac(Z(U (g, e))).

Then the same statements as in Propositions 2·1, 2·2 and 1·9 hold for the extended finite
W -algebra U (g, e), i.e.

(i) Z0(p̃) is a Noetherian ring;
(ii) the ring Z(U (g, e)) is integrally closed;
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(iii) Z(U (g, e)) is integral over k-algebra Z0(p̃), and Z(U (g, e)) is finitely-generated as
a Z0(p̃)-module. In particular, Z(U (g, e)) is a finitely-generated commutative algebra
over k;

(iv) U (g, e) is a PI ring;
(v) Q(U (g, e))∼= U (g, e)⊗Z0(p̃) Frac(Z0(p̃));

(vi) Q(U (g, e)) is a division algebra;
(vii) Q(U (g, e)) is a finite-dimensional central simple algebra over Frac(Z(U (g, e))) with

dimension not less than p�, where �= dim g− rank g− dim G.e;
(viii) all irreducible modules of U (g, e) are finite-dimensional with dimension less than p

�
2 .

3. Centers of finite W -algebras: preliminary lemmas

Keep the notations and assumptions as before. In particular, we have a map ϕ : Z(g)→
U (g, e) (see section 1·4), which will play a key role in the following.

3·1. Background

Let us first observe the centers of finite W -algebras over C. According to Premet’s
arguments in the footnote of [27, question 5·1], there is an isomorphism between C-algebras:

ϕC : Z(gC)∼= Z(U (gC, ê)),

where Z(gC) and Z(U (gC, ê)) denote the center of the universal enveloping algebra U (gC)
and the center of the finite W -algebra U (gC, ê) respectively, and the map ϕC is the
counterpart of ϕ.

Recall that under some mild assumption on p, Z(g) is generated by two parts: the Harish-
Chandra center Z1(g) := U (g)G of the adjoint G-action, and the p-center Z0(g). Now we
turn back to the finite W -algebra case. Let Z(T) be the center of the finite W -algebra T(g, e).
Recall that the p-center of T(g, e) is defined as Z0(T)= Z0(p̃)

M in Definition 1·2. On the
other hand, by the definition of T(g, e) we know that the image of Z1(g) under the map ϕ

in Section 1·4 falls into T(g, e), which is denoted by Z1(T). By definition, Z0(T) and Z1(T)

lie in the center of Z(T). A natural question rises:

Question 3·1. Is Z(T) generated by the k-algebras Z0(T) and Z1(T)?

First we recall some basics on the Harish–Chandra homomorphism in positive charac-
teristic (one refers to [13, Section 9·1] for more details). For the triangular decomposition
g= n− ⊕ h⊕ n+ of g, we can define a linear map

π : U (g)−→ U (h) (3·1)

as the projection with kernel n−U (g)+ U (g)n+. Clearly U (g)G is contained in the 0 weight
space of U (g) with the adjoint action of the maximal torus T , so π restricts to an algebra
homomorphism HC : U (g)G → U (h). Thanks to [13, lemma 9·1], HC is injective.

Now we will deal with Question 3·1. The following observation is fundamental.

LEMMA 3·2. There exists an isomorphism between k-algebras

ϕ|U (g)G : U (g)G ∼−→ Z1(T),

where ϕ|U (g)G denotes the restriction of the map ϕ in Section 1·4 to the subalgebra U (g)G

of Z(g).
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Proof. It follows from the same arguments as in [26, section 6·2] for the case over C.
Actually, by (1·7) we identify T(g, e) with QM

χ . For any nonzero z ∈ U (g)G ⊆ Z(g), apply
z to the canonical generator 1χ of Qχ and then express z(1χ) ∈ QM

χ via its monomial basis.
Note that the Harish–Chandra projection HC : U (g)G → U (h) is injective, and z has the
same standard filtration degree as its projection HC(z) in the polynomial ring U (h). Hence
that z(1χ) �= 0 because the terms of z other than the projection HC(z) �= 0 will either anni-
hilate 1χ (if they have on the right some elements from m on which χ vanishes), or involve
monomials supported on l⊆ g(−1), or involve monomials supported on a fixed complement
of h in g(0), or have smaller standard filtration degree (if they originally have a smaller
standard filtration degree or have on the right the element f ∈ g(−2) with χ( f )= 1). As a
result, the other terms will not be able to cancel HC(z)(1χ), which implies that z(1χ) �= 0.

To complete the proof, it remains to note that the image of U (g)G under the map ϕ|U (g)G

is just Z1(T).

3·2. Some lemmas

Let W be the (abstract) Weyl group of G associated with a given Cartan subalgebra h.
Define the dot action of W on h∗ via w � λ=w(λ+ ρ)− ρ for λ ∈ h∗ and w ∈ W , where ρ
is half-sum of all of the positive roots �+ of g. The dot action on h∗ yields also a dot action
on U (h). As h is commutative, we can identify U (h) with the symmetric algebra S(h), hence
with the algebra of polynomial functions of h∗. Considering f ∈ U (h) as a function on h∗

we define w � f for w ∈ W by (w � f )(λ)= f (w−1 � λ). Then Harish–Chandra’s theorem
in [38, proposition 2·1] shows that HC : U (g)G ∼= U (h)W � as k-algebras, where U (h)W �

is the invariant subring of U (h) under the action of W �. Moreover, [38, section 2] entails
that U (h)W � is isomorphic to a polynomial algebra k[T1, . . . , Tr ] for r = rank g. We choose
{g1, . . . , gr } as a set of algebraically independent generators in U (g)G such that HC(gi )= Ti

for 1 � i � r . We can further assume that degSgi = mi + 1 for 1 � i � r associated to the
standard grading of U (g), where m1, . . . ,mr are the exponents of the Weyl group of g. Set
fi := ϕ(gi ) with 1 � i � r . Then the fi ’s are elements in Z1(T) by definition.

Recall the notation �k = {(i1, . . . , ik) | i j ∈ {0, 1, . . . , p − 1}} for k ∈Z+ with 1 � j � k.
Then we have:

LEMMA 3·3. The elements f t1
1 · · · f tr

r with (t1, t2, . . . , tr ) running through �r generate
a free module M over Z0(T). Moreover, these elements form a Z0(T)-basis for M.

Proof. Note that we already have Z0(p̃)∩ Ker(ϕ)= {0}, and ϕ(Z0(g))∼= ϕ(Z0(p̃))∼= Z0(p̃)
by Section 1.4.1. As Z0(T)⊆ Z(T)⊆ T(g, e), it follows from (1·8) that Z0(T)= Z(T)∩
ϕ(Z0(p̃)). Especially, we have Z0(T)⊆ ϕ(Z0(p̃)). Combining this with Lemma 3·2, we can
obtain

Ker(ϕ|Z(g))⊆ Z0(mχ)
+ Z(g), (3·2)

where Z0(mχ)
+ is the ideal of Z0(m) generated by x p − x [p] − χ(x)p for x ∈m. Given t :=

(t1, t2, · · · , tr ) ∈�r , let gt := gt1
1 . . . gtr

r be the monomial in U (g)G . Denote by N := {gt | t ∈
�r }, and let A be the Z0(p̃)-module generated by all the elements in N . By Veldkamp’s
theorem ([38, theorem 3·1]) we can define a map ϕ|A :A→ ϕ(A)⊆ Z(U (g, e)).

For t = (t1, t2, . . . , tr ) ∈�r , denote ft := f t1
1 · · · f tr

r which is equal to ϕ(gt), a monomial
in Z1(T). To complete the proof of the lemma, we only need to prove that for any given
equation
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t∈�r

atft = 0 where the coefficients at ∈ Z0(T), (3·3)

these at must be zero. As Z0(T) is a subalgebra of ϕ(Z0(p̃)), we can write at = ϕ(bt) for
some bt ∈ Z0(p̃) when t ranges in �r . Then∑

t∈�r

atft =
∑
t∈�r

ϕ(bt)ϕ(gt)=
∑
t∈�r

ϕ(btgt) ∈ ϕ(A).

Due to the injectivity of the map ϕ|A (see Lemma 3·4 below), the following equation holds
in Z(g): ∑

t∈�r

btgt = 0.

By Veldkamp’s theorem, all the coefficients bt with t ∈�r must be zero, thereby all the
coefficients at in (3·3) must be zero. The proof is completed (modulo Lemma 3·4).

Before introducing Lemma 3·4, we make some preparation. For any η ∈ χ +m⊥ ⊆ g∗, we
have a canonical projection

Prη : U (g, e)−→ U ◦
η (g, e)= U (g, e)/Hη

by (1·11). Set θη := Prη ◦ ϕ : Z(g)→ U ◦
η (g, e). The image of Z0(p̃) under the map θη falls in

k. Recall that there is an isomorphism

ψη : U ◦
η (g, e)−→ Uη(g, e)= (EndgQη

χ )
op

by (1·12). We will identify Uη(g, e) with U ◦
η (g, e).

Denote by Zη(g) the image of Z(g) under the canonical homomorphism

τη : U (g)−→ Uη(g),

and define ϕη to be the homomorphism of k-algebras from Zη(g) to Uη(g, e) via x �→ lx ,
where lx(1χ )= x .1χ ∈ Qη

χ for any x ∈ Zη(g). Recall Uη(g, e)∼= (Qη
χ )

ad m by Lemma 1·7.
We then similarly define ϕη(x) in (Qη

χ )
ad m and regard it as an element of Uη(g, e).

Under the above settings, we have the following commutative diagram

Z(g)
ϕ−−−−→ U (g, e)

τη

⏐⏐� Prη

⏐⏐�
Zη(g) −−−−→

ϕη
Uη(g, e).

LEMMA 3·4. Let A be as in the proof of Lemma 3·3. Then A∩ Ker(ϕ)= {0}.
Proof. Keep the notations as above. We prove the lemma by reductio ad absurdum. Suppose
A∩ Ker(ϕ) �= {0}. Then we have ∑

t∈�r

atft = 0 (3·4)

for some at = ϕ(bt) ∈ ϕ(Z0(p̃)) which are not all zero. We proceed with the arguments in
steps.
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(i) We claim that for any η ∈ χ +m⊥, θη(gt)= Prη(ft) for all t ∈�r are linearly indepen-
dent in Uη(g, e).

Recall that the elements gt ∈ U (g)G with t ∈�r come from the Harish–Chandra homo-
morphism HC : U (g)G → U (h), and we have η|m = χ |m by definition. Denote by HCη

χ the
subspace of Uη(g) spanned by all τη(gt) with t ∈�r . By Veldkamp’s theorem Z(g) is a free
Z0(g)-module with a basis consisting of all gt with t ∈�r . Therefore, the elements τη(gt)

are linearly independent in Zη(g). By the same discussion as in the proof of Lemma 3·2, the
map ϕη|HCη

χ
is injective. The claim follows from the commutative diagram above the lemma.

(ii) Since Z0(p̃) equals the coordinate algebra of the Frobenius twist (χ +m⊥)(1) of χ +
m⊥ (see Section 1.4.2 for more details), then for the non-zero bt ∈ Z0(p̃) with t ∈�r , there
exists some η ∈ χ +m⊥ such that θη(bt) �= 0. From (3·4) we have∑

t∈�r

θη(bt)θη(gt)= 0. (3·5)

Since θη(bt) ∈ k, the left-hand side of (3·5) is a non-trivial k-span of {θη(gt) | t ∈�r } in
Uη(g, e), contradicting the claim in (i) that θη(gt) for all t ∈�r are linearly independent.

By summing up, we accomplish the arguments.

Remark 3·5. By virtue of Lemma 3·4, by careful inspection we can see that an analogue of
Lemma 3·3 given by substituting Z0(p̃) for Z0(T) is still true.

Denote by Z the free Z0(T)-module generated by all {ft | t ∈�r } as introduced in Lemma
3·3. And denote by Z̃ the subalgebra of Z(T) generated by Z0(T) and Z1(T).

LEMMA 3·6. Both Z and Z̃ coincide.

Proof. By Veldkamp’s theorem, Z(g) is generated by Z0(g) and Z1(g), and Z(g) is a free
Z0(g)-module with a basis consisting of all gt with t ∈�r . Since ϕ(Z0(g))= Z0(T) and
ϕ(gt)= ft by definition, we have ϕ(Z(g))=Z. On the other hand, we have ϕ(Z1(g))=
Z1(T) by definition, then ϕ(Z(g))= ϕ(Z0(g) · Z1(T))= Z̃. Therefore, Z and Z̃ are both
equal to the image of Z(g) under ϕ, and they coincide.

4. Azumaya locus for T(g, e)

In this section we consider the Azumaya property of the finite W -algebra T(g, e) in
characteristic p � 0.

4·1. Background

We first recall some facts on Azumaya algebras. For more details, the readers are referred
to [3, section 3].

Definition 4·1. A ring A is called an Azumaya algebra over its center Z(A) if A is pro-
jective as a module over A ⊗Z(A) Aop; or equivalently, A is a finitely-generated projective
Z(A)-module and the natural map A ⊗Z(A) Aop → EndZ(A)A is an isomorphism.

In [3], Brown–Goodearl studied the irreducible modules of maximal dimension for a
prime Noetherian algebra A which is a finite module over its affine center Z(A). When
the base field is algebraically closed, the contractions of the annihilators of these modules to
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Z(A) constitute the Azumaya locus

A(A) := {m ∈ Specm(Z(A)) | Am is Azumaya over Z(A)m}, (4·1)

where Specm(Z(A)) stands for the spectrum of maximal ideals of Z(A); Am and Z(A)m

in (4·1) denote the localization rings of A and Z(A) at m, respectively. Moreover, A(A)
is a Zariski dense subset of Specm(Z(A)). Denote by P(A) the non-regular points in
Specm(Z(A)).

THEOREM 4·2 ([3]). Let A be a prime Noetherian ring, module-finite over its center
Z(A). If A is Auslander-regular and Macaulay, and Ap is Azumaya over Z(A)p for all
height 1 prime ideals p of Z(A) (that is, Specm(Z(A))\A(A) has codimension at least 2 in
Specm(Z(A))), then A(A)= Specm(Z(A))\P(A).

By means of the above theory, Brown–Goodearl in [3] revealed the close connections
between the smooth points in the spectrum of maximal ideals of the centers and the irre-
ducible representations of maximal dimension for the quantised enveloping algebras, for the
quantised function algebras at a root of unity, as well as for classical enveloping algebras in
positive characteristic.

Recall that T(g, e) is a prime Noetherian ring, and module-finite over its center Z(T) by
Lemma 1·1 and Theorem 1·4(iv). Thanks to [3, proposition 3·1], we know that for any irre-
ducible T(g, e)-module V , the dimension of V is maximal if and only if T(g, e) is Azumaya
with respect to m = AnnT(g,e)(V )∩ Z(T) (where AnnT(g,e)(V ) denotes the annihilator of
V in T(g, e)). That is, T(g, e)m is Azumaya over Z(T)m. We shall say that m lies in the
Azumaya locus.

We shall study the following question.

Question 4·3. What is the relationship between the smooth locus and the Azumaya locus?

4·2. Filtered rings

We will start with some basics on filtrations; see [2, section 2] for more details.
A ring A with an (increasing) positive filtration {Ai | i ∈Z+} such that Ai · A j ⊆ Ai+ j is

called a positively filtered ring. If
⋂

i∈Z+ Ai = 0 we say that {Ai | i ∈Z+} is a separated fil-
tration. Then we can define a graded ring gr(A) associated to A as follows. Set A−1 = 0, and
define the additive group gr(A) :=⊕

i∈Z+ Ai/Ai−1. Given āi ∈ Ai/Ai−1 and ā j ∈ A j/A j−1,
the multiplication of āi and ā j in gr(A) is given by āi ā j := ai a j ∈ Ai+ j/Ai+ j−1.

The filtration on a ring A enables us to construct a filtered topology on A, using some
distance function d(x, y)= 2i for a pair x, y in A such that x − y belongs to Ai\Ai−1. Since⋂

i∈Z+ Ai = 0 we have d(x, y) > 0 if x �= y. We may then refer to closed subsets of A with
respect to the filtered topology, and further define the corresponding induced topology and
quotient topology as in [2, section 2].

The filtration on A satisfies the closure condition if every finitely generated left or right
ideal is a closed subset of A. The filtration satisfies the strong closure condition if the
following holds: for every finite subset x1, . . . , xn of A and integers i1, . . . , in , it fol-
lows that the subsets of A defined by Ai1 x1 + · · · + Ain xn , respectively x1 Ai1 + · · · + xn Ain

are closed. The filtration on A satisfies the weak comparison condition if the quotient
topology is equal to the induced topology for every finitely-generated left or right ideal.
The filtration on A satisfies the comparison condition if the following holds: for every
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finite set x1, . . . , xn in A there exists an integer m such that A j ∩ (Ax1 + · · · + Axn)⊆
A j+m x1 + · · · + A j+m xn resp. (x1 A + · · · + xn A)∩ A j ⊆ x1 A j+m + · · · + xn A j+m . For the
relationship of these conditions, by [2, corollary 2·8] we have:

PROPOSITION 4·4 ([2]). Assume that gr(A) is Noetherian. Then the following are equiva-
lent:

(i) Strong closure condition;
(ii) Closure and comparison conditions;

(iii) Closure and weak comparison conditions.

Definition 4·5. A filtration {Ai | i ∈Z+} on A is called Zariskian if gr(A) is Noetherian
and (1)-(3) in Proposition 4·4 hold.

Furthermore, we can construct the graded Rees ring R(A) associated to A. First define the
additive group R(A) :=⊕

i∈Z+ Ai . Set ri to be the map from the filtered space Ai onto the
i-th homogeneous space Ai of the associated graded space gri(R(A))= Ai . The product in
R(A) is defined via

ri(v)r j (w) := ri+ j (v ·w) for v ∈ Ai , w ∈ A j

for any pair (i, j) ∈Z2
+. Then the graded ring R(A) is called the associated Rees ring of A.

Let R(T) and R(U ) denote the Rees rings associated to T(g, e) and U (g, e), respectively.
Then we have

LEMMA 4·6. The following statements hold:

(i) the Rees rings R(T) and R(U ) are Noetherian rings;
(ii) the Kazhdan filtrations on T(g, e) and U (g, e) are both Zariskian.

Proof. By virtue of (1·10) and Theorem 1·4(iv), [1, proposition 7·2] entails that gr(T(g, e))
is a Noetherian ring. Taking Lemma 1·1(ii), Theorem 1·4(ii,iii) and [1, corollary 7·7] into
consideration, we see that U (g, e) and gr(U (g, e)) are also Noetherian.

Note that the Kazhdan filtrations on T(g, e) and U (g, e) are positive by Section 1.1.2,
then it follows from [2, remark 2·22] that the Kazhdan filtrations on T(g, e) and U (g, e) are
both Zariskian, and the corresponding Rees rings R(T) and R(U ) are Noetherian rings.

4·3. Auslander-regular and Maculay rings

Let A be a ring, and M an A-module. Then the grade number of M is defined by

jA(M) := min{ j ∈Z+ | Ext j
A(M, A) �= 0}.

Definition 4·7. Let A be a Noetherian ring with finite global dimension. For every finitely-
generated (right or left) A-module M , every j ∈Z+ and every submodule N of Ext j

A(M, A),
if one has jA(N )� jA(M), i.e., Exti

A(N , A)= 0 for all non-negative integer i < j , then A is
said to be Auslander-regular.

Definition 4·8. A Macaulay ring A is a ring for which the identity

K. dim M + jA(M)= K. dim A
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holds for every non-zero finitely-generated A-module M , where K. dim M denotes the Krull
dimension of M .

Now we turn to the case of finite W -algebras. In fact, we have:

PROPOSITION 4·9. The ring T(g, e) is Auslander-regular and Macaulay, with Krull and
global dimension at most dim ge.

Proof. Let us first investigate the global dimension of T(g, e), which is denoted by
gl. dim T(g, e). Recall that the Kazhdan filtration on T(g, e) is an increasing positive fil-
tration. By (1·6) we know that its graded algebra gr(T(g, e)) is isomorphic to a polynomial
algebra in dim ge variables, thus gr(T(g, e)) is a commutative Noetherian ring with global
dimension dim ge. According to [19, corollary 7·6·18], we have gl. dim T(g, e)� dim ge.

Recall that T(g, e) is a prime PI and Noetherian ring (see Lemma 1·1(ii,iii) and
Proposition 2·1(iv)), and module-finite over its center (see Theorem 1·4(iv)). Therefore,
T(g, e) is a fully bounded Notherian ring (FBN) by [8, proposition 9·1(a)]. Note that the
Kazhdan filtration on T(g, e) is Zariskian (see Lemma 4·6(ii)). Since gr(T(g, e)) is iso-
morphic to a polynomial algebra, then the ring gr(T(g, e)) is Auslander-regular. By [2,
Theorem 3·9 and remark 3·9] we see that T(g, e) is also Auslander-regular. Furthermore,
it is Macaulay by [34, corollary 4·5]. Note that in this case, the global dimension of T(g, e)
is equal to the Krull dimension (cf. [37, theorem 3·9]). The proof is completed.

4·4. Azumaya locus of T(g, e)

Let V be an irreducible T(g, e)-module, and consider the corresponding central charac-
ter (which is an algebra homomorphism) ζV : Z(T)→ k. As remarked in Section 4·1, the
Azumaya locus in (4·1) becomes

A(T(g, e))= {Ker(ζV )| dim V = the maximal dimension of all irreducible T(g, e)-modules}.
It is well known that Azumaya locus is a non-empty open subset.

To prove Theorem 0·2, we make some necessary preparations in the next subsections.

4·5. The definition of Slodowy slices

We first collect up some facts on Slodowy slices (see [14, 26, 33]).
Recall that under the assumption p � 0 the Jacobson-Marozov Theorem holds, which

says, for every nilpotent element e ∈ g there exists an sl2-triple (e, h, f ) (cf. [5, sections
5·3-5·5]). Furthermore, such an sl2-triple is unique up to the conjugation of CG(e)◦ (cf.
ibid). Then we can set S= e + k with k := Ker(ad f ), which is usually called the Slodowy
slice through the adjoint orbit of e (see [33, section 7·4]). Moreover, associated with the
nilpotent e, one can have the weighted Dynkin diagram 	(e) (cf. [5, section 5·6]), as listed
in [33, Lemma 7·3·2]. And two nilpotent elements lie in the same G-orbit if and only if they
share the same Dynkin diagram (cf. [5, section 5·6]). The technique in the arguments of [33,
sections 7·3-7·4] is valid for our case (note that in [33] there is a weaker requirement on p
which is zero or bigger than 4h − 2, where h is the Coxeter number of G). In particular, [33,
proposition 7·4·1 and corollary 7·4·1] are true for our case.

Recall that r = rank g, and we always assume that p � 0. Since the Harish–Chandra’s
theorem shows that HC : U (g)G ∼= U (h)W � as k-algebras, we continue to choose
{g1, . . . , gr } as a set of algebraically independent generators in U (g)G as in Section 3·2.
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Let grS(gi)= g̃i be the images of gi associated to the standard grading of U (g), and set κ to
be the Killing isomorphism. By [14, section 7·12], the Chevalley Restriction Theorem holds
in our situation. In particular, S(g∗)G ∼= S(h∗)W� as graded algebras under the standard grad-
ing. By virtue of [33, section 3·12], the elements κ(g̃1), . . . , κ(g̃r ) form a free generating
set for S(g∗)G .

Under above assumption, we have the adjoint quotient map:

� : g−→Ar (4·2)

which sends x ∈ g to (κ(g̃1)(x), · · · , κ(g̃r )(x)). By virtue of [33, corollary 7·4·1], we have
the following result.

LEMMA 4·10 ([33]). Under the assumption p � 0, we consider the restriction of � to
S with

�S : S−→Ar .

Then the morphism �S is faithfully flat.

Consequently, �S is surjective and all the fibers of �S have the same dimension d − r with
d = dim ge.

Let N = #�+ denote the number of positive roots of G with respect to a maximal torus T .
An element X ∈ g is called regular if the adjoint orbit Ad G(X) has the maximal dimension
which is equal to 2N . Equivalently, the dimension of gX (the centraliser of X in g) is the
smallest one which is equal to r . By classical result, the regular elements constitute an open
subset of g, which is denoted by greg. Moreover, it follows from [38, theorem 4·12] that the
complement of greg has codimension 3 in g.

4·6. Some results on Slodowy slices

Now we continue the discussion on Slodowy slices under the assumption p � 0. We have
the following result, which comes from a version over the field of complex numbers in [26,
theorem 5·4].

THEOREM 4·11 (cf. [26] and [33]). Suppose G satisfies the assumption p � 0. Let S be
as in Lemma 4·10 and

ξ = (ξ1, ξ2, . . . , ξr ) ∈Ar , �−1
S (ξ)= {X ∈ S |�S(X)= ξ}.

Then the following statements hold:

(i) the closed set �−1
S (ξ) of S is irreducible and of dimension d − r ;

(ii) the fiber �−1
S (ξ) is normal. Let Y ∈�−1

S (ξ). Then Y ∈ greg if and only if Y is a smooth
point of �−1

S (ξ).

Proof. (i) In Section 4·5, we have shown that �S is surjective and all the fibers have the
same dimension d − r . The irreducibility of �−1

S (ξ) can be shown by the same arguments
as in (3) and (4) of the proof of [26, theorem 5·4].

(ii) For the proof of the second statement, it can be accomplished by following Slodowy’s
arguments in [33, Section 5·2, lemma and remark 1].
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Remark 4·12. Set t to be the transformation

t : k ∼= S

X �→ e + X,

which is an isomorphism of affine varieties. Then one obtains a morphism

ψ :=�S ◦ t : k−→Ar , X �−→ (ψ1(X), . . . , ψr (X)). (4·3)

The morphism ψ is still faithfully flat with ψ−1(ξ)∼=�−1
S (ξ) for any ξ ∈Ar , and the fiber

ψ−1(ξ) is normal. One can describe S via k (cf. [26, section 5]).

Set Sreg := S∩ greg, which is clearly an open subset of S.

PROPOSITION 4·13. The complement of Sreg in S has codimension at least 2.

Proof. By Theorem 4·11 we know that �−1
S (ξ) for any ξ ∈Ar is normal, and the smooth

points of the fiber coincide with the regular points of g falling into this fiber. So the non-
regular points in the fiber constitute a closed subset of codimension no less than 2 (see [31,
theorem II·5·1·3]). Denote by Ssing the complement of Sreg in S. Then Ssing is a closed subset
of S. Set l to be the dimension of Ssing. We have a morphism �Ssing : Ssing →Ar . Next, we take
a maximal irreducible closed set Smax

sing in Ssing with dim Smax
sing = l. Considering the restriction

of �Ssing to Smax
sing , we have the morphism �max

Ssing
: Smax

sing →Ar . Set A to be the image of Smax
sing

under �max
Ssing

. Then A is an irreducible variety of Ar , and let a := dim A � r .
According to [31, theorem I·6·3·7], there exists a non-empty open subset U in A such

that dim(�max
Ssing

)−1(ξ)= l − a for any ξ ∈ U ⊆ A ⊆Ar . From the arguments above, we know

that (�max
Ssing

)−1(ξ) (⊆�−1
S (ξ)∩ Ssing) has codimension � 2 in �−1

S (ξ). By Theorem 4·11

again, we have dim�−1
S (ξ)= d − r . Hence (d − r)− (l − a)� 2, i.e., d − l � 2 + r − a �

2. Therefore, Ssing has codimension not less than 2 in S. The proof is completed.

4·7. Revisit of Z0(T)

Let us return to the k-algebra Z0(T)= Z0(p̃)
M, which is the p-center of the finite W -

algebra T(g, e). Recall that Z0(T)= Z(T)∩ ϕ(Z0(g)) by (1·8).
As discussed in Section 1.4.2 (also see [9, section 8·2]), Z0(T) is defined as the alge-

bra of regular functions on the Frobenius twist k[(χ + κ(k))(1)]. Thus we can identify
Specm(Z0(T)) with the spectrum of maximal ideals of the Frobenius twist k[(κ(S))(1)].

Now we are finally in a position to prove Theorem 0·2.

4·8. The Proof of Theorem 0·2
Proof. Recall that T(g, e) is a prime Noetherian ring by Lemma 1·1(ii,iii), and module-finite
over its center Z(T) by Theorem 1·4(iv). According to Theorem 4·2 and Proposition 4·9, it
suffices to verify that codim(Specm((Z(T))\A(T(g, e))))� 2. We proceed to check this by
several steps.

(a) The embedding homomorphism between k-algebras: Z0(T) ↪→ Z(T) gives rise to the
finite dominant morphism

� : Specm(Z(T))−→ Specm(Z0(T))∼= Specm(k[(κ(S))(1)]).
We will identify Specm(Z0(T)) with Specm(k[(κ(S))(1)]) in the following arguments.

https://doi.org/10.1017/S0305004121000414 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000414


60 BIN SHU AND YANG ZENG

(b) From the discussion in the proof of Proposition 1·9, we know that all irreducible
modules of maximal dimension for T(g, e) correspond to the ones of maximal dimension
for Uη(g) with η running through the set χ +m⊥.

On the other hand, the coadjoint action map

M× κ(S)−→ χ +m⊥

gives rise to an isomorphism of affine varieties (cf. [29, lemma 3·2], [7, Lemma 2·1], and
[9, lemma 5·1]), where M is a unipotent subgroup of G such that Lie(M)=m as defined
earlier. It follows that all regular elements of g∗ in χ +m⊥ come from the regular ones of g∗

in the saturation of κ(Sreg) under the M-action.
Thanks to [4, proposition 3·15], any irreducible modules of Uη(g) associated with a reg-

ular η ∈ g∗ are of the maximal dimension of irreducible U (g)-modules. Now we already
identify Specm(Z0(T)) with Specm(k[(κ(S))(1)]). Note that (κ(Sreg))

(1) = κ(Sreg) as topo-
logical spaces. Set X = {Is ∈ Specm(k[(κ(S))(1)]) | s ∈ κ(Sreg)}, where Is means the kernel
of the p-central character λ0

s : Z0(T)→ k via s ∈ κ(Sreg) in the same sense as in Remark 2·3.
Then �−1(X) is contained in the Azumaya locus of T(g, e) by the very definition.

(c) By Proposition 4·13, the open subset κ(Sreg) of κ(S) has complement of codimension
at least 2. Recall that � is a finite dominant morphism. Hence �−1(X) is an open sub-
set of Specm(Z(T)) with complement of codimension at least 2. Therefore, we have the
Azumaya locus of T(g, e) which contains �−1(X), consequently satisfies the condition that
the codimension of its complement in Specm(Z(T)) is at least 2. The proof is completed.

5. Centers of finite W -algebras revisited

Keep the notations as in the previous sections. In particular, let Z(T) denote the center of
T(g, e), and Z̃ the subalgebra of Z(T) generated by Z0(T) and Z1(T) as in Section 3.

In order to prove Theorem 0·1, we will take an analogue of Veldkamp’s strategy in the
reductive Lie algebra case (cf. [38]). We first show that both Z(T) and Z̃ have the same
fraction field and gr(Z(T)) is integral over gr(Z̃), while gr(Z̃) is integrally closed. Then we
have gr(Z̃)= gr(Z(T)) and finally obtain that Z(T)= Z̃.

5·1. A key lemma

Recall that in Section 1.1.2 we have introduced the Kazhdan filtration on U (g) and its
sub-quotients, and also their corresponding graded algebras. Write gr(Z̃) and gr(Z(T)) for
the graded algebras of Z̃ and Z(T) respectively.

Recall that {g1, . . . , gr } is a set of algebraically independent generators in U (g)G with
degree m1 + 1, . . . ,mr + 1 associated to the standard grading of U (g), and fi = ϕ(gi)

with 1 � i � r are elements in Z1(T) as in Section 3·2. Then we have the isomorphism
ψ̄ : gr(T(g, e))

∼−→ S(ge) under the Kazhdan grading (see (1·6)).

LEMMA 5·1. Specm(gr(Z̃)) is a (strict) complete intersection.

Proof. The arguments are almost the same as Veldkamp’s strategy in [38]. For the readers’
convenience, we present the details and accomplish the arguments by steps.

(a) Let x1, . . . , xd be a set of homogeneous basis of ge as defined in Section 1.1.1.
Write f̄1, . . . , f̄r for the images of f1, . . . , fr in ψ̄(gr(T(g, e))), then f̄i is a polynomial
in x1, . . . , xd for 1 � i � r . Due to (1·10), we have ψ̄ : gr(Z0(T))

∼−→ k[x p
1 , . . . , x p

d ]. The
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morphism ψ̄ finally gives rise to the following equations

ψ̄(gr(Z̃))= ψ̄(gr(Z0(T) · Z1(T)))= k[x p
i , f̄ j | 1 � i � d, 1 � j � r ]. (5·1)

So there exists a surjective homomorphism

ω : k[Y1, . . . , Yd, Z1, . . . , Zr ]/(Z p
1 − F1, . . . , Z p

r − Fr )−→ ψ̄(gr(Z̃)) (5·2)

with

ω(Yi )= x p
i (1 � i � d),

ω(Zi)= f̄i (1 � i � r).
(5·3)

Here Y1, . . . , Yd, Z1, . . . , Zr denote algebraically independent variables over k, and Fi ∈
k[Y1, . . . , Yd] satisfies

Fi(x1, . . . , xd)= f̄i . (5·4)

(b) We will further show that the map ω defined in (5·2) is injective.
Step 1. For t := (t1, t2, . . . , tr ) ∈�r , let bt(�(x1), . . . , �(xd)) be a monomial in

k[�(x1), . . . , �(xd)] (where �(xi) is defined as in (1·9)), and set

at(x
p
1 , . . . , x p

d ) := ψ̄(gr(bt(�(x1), . . . , �(xd)))),

where gr(bt(�(x1), . . . , �(xd))) means the gradation of bt(�(x1), . . . , �(xd)) under the
Kazhdan grading. Suppose that we are given an equation∑

t∈�r

at(x
p
1 , . . . , x p

d ) f̄ t1
1 · · · f̄ tr

r = 0 (5·5)

in ψ̄(gr(Z̃)). We show below that at(x
p
1 , . . . , x p

d )= 0 for all t ∈�r .
Step 2. Since x1, . . . , xd is a basis of ge, let x∗

1 , . . . , x∗
d denote the linear functions on k

defined via x∗
i (y)= (xi , y) for y ∈ k. Recall that in (4·3) we have

ψ :=�S ◦ t : k→Ar , X �→ (ψ1(X), · · · , ψr (X)).

Those ψi naturally become functions in variables x∗
i , i = 1, . . . , d. By the same arguments

as in [26, Propositon 5·2], we know that (dψ)X is surjective for X ∈ k with e + X ∈ greg (In
[26] the case is considered over C. By careful inspection, one can easily conclude that it also
goes through over the field in characteristic p � 0). Hence the Jacobian matrix(

∂ψi

∂x∗
j

)
1 � i � r
1 � j � d

has rank r in k.
In aid of the non-degenerate bilinear form (·, ·), we identify the polynomial function ring

k[k] on k with the symmetric algebra S(ge) on ge, correspondingly identify ψi with f̄i (Here
ψi and f̄i are homogeneous elements under the Kazhdan grading). Note that up to the trans-
formation t, ψi is obtained by restriction of κ(grS(gi))= κ(g̃i) on S under the standard
grading with homogeneous degree mi + 1 (see Section 4·5), and then the same ψi is still
a homogeneous element with degree 2mi + 2 under the Kazhdan grading by [26, section
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5·1]). And it is finally known that (
∂ f̄i

∂x j

)
1 � i � r
1 � j � d

has rank r . It follows that the elements f̄1, . . . , f̄r are p-independent in the quo-
tient field of k[x1, . . . , xd] (see [12, Page 180]). Therefore, at(x

p
1 , . . . , x p

d )= 0 for all
t = (t1, t2, . . . , tr ) ∈�r in (5·5).

Step 3. Let us return to the map ω in (5·2). From the definition of ω we see that the
k-algebra k[Y1, . . . , Yd, Z1, . . . , Zr ]/(Z p

1 − F1, . . . , Z p
r − Fr ) is spanned by Zt1

1 · · · Ztr
r

with t ∈�r over k[Y1, . . . , Yd]. Note that ω satisfies (5·3) and (5·4), and all xi for
i = 1, . . . , d are algebraically independent. Hence, the injectivity of ω follows from the
discussion in Step 1 and Step 2.

(c) Taking (5·1) into consideration, we finally get

gr(Z̃)∼= k[Y1, . . . , Yd, Z1, . . . , Zr ]/(Z p
1 − F1, . . . , Z p

r − Fr ) (5·6)

as k-algebras. Hence Specm(gr(Z̃)) is a (strict) complete intersection.

Now we are in a position to prove Theorem 0·1.

5·2. The proof of Theorem 0·1(i)

Still set n = dim g and r = rank g. It is sufficient to prove that Z(T) coincides with Z̃.
The arguments are divided into a couple of steps.

Step 1. Recall the fractional fields F0 = Frac(Z0(T)) and F= Frac(Z(T)). Obviously F0

is a subfield of F. Set Q to be the fractional field of Z̃. By Lemmas 3·2 and 3·6, Q/F0 is
a finite field extension with extension degree dimF0 Q= pr . We first prove that F coincides
with its subfield Q.

Let us investigate the field extension F/F0. Consider the fractional ring of T(g, e):

Q(T)= T(g, e)⊗Z(T) F.

Denote by dimF Q(T) the dimension of Q(T) over F. From Proposition 2·2(iv) we see that
dimF Q(T)� p� with �= n − r − dim G.e. On the other hand, by Premet’s result in [30,
remark 2·1] we know that T(g, e) is a free Z0(T)-module of rank pn−dim G.e. Hence Q(T)

over F0 has dimension dimF0 Q(T)= pn−dim G.e. Consequently, we have

dimF0 F= dimF0 Q(T)/ dimF Q(T)

� pn−dim G.e/p�

= pr .

Combining this with dimF0 Q= pr , we have Q= F.
Step 2. As Z̃⊆ Z(T) and k is contained in Z̃, by inductive arguments on the degrees we

can deduce that the claim that

Z̃= Z(T)

amounts to the claim that

gr(Z̃)= gr(Z(T)) (5·7)
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under the Kazhdan grading.
In Step 1 we have seen that Z(T) and Z̃ have the same fraction field. From this one easily

derives that their graded algebras gr(Z(T)) and gr(Z̃) also share the same fraction field.
It follows from Proposition 2·1(iii) that gr(Z(T)) is integral over gr(Z0(T)), so, a fortiori,
gr(Z(T)) is integral over gr(Z̃). Therefore, to prove (5·7) it is sufficient to show that gr(Z̃)
is integrally closed.

Step 3. Keep in mind the algebra isomorphism in (5·6). Consider a finite morphism ι from
Specm(gr(Z̃)) onto affine space Ad arising from the injection

ι : k[Y1, . . . , Yd] → k[Y1, . . . , Yd, Z1, . . . , Zr ]/(Z p
1 − F1, . . . , Z p

r − Fr ). (5·8)

The singular points of Specm(gr(Z̃)) are the points where the functional matrix(
∂Fi

∂Y j

)
1 � i � r
1 � j � d

has rank less than r . By definition, this functional matrix is the same as(
∂κ(g̃i )|S
∂υ j

)
1 � i � r
1 � j � d

(5·9)

defined by �S (see Lemma 4·10), where κ(g̃1)|S, . . . , κ(g̃r )|S are the functions
κ(g̃1), . . . , κ(g̃r ) restricted to the ones on S, and υ1, · · · , υd denote linear coordinates on
S. The points with rank less than r defined in (5·9) are just non-regular points in S⊆ g. By
Proposition 4·13, the complement of Sreg in S has codimension not less than 2. Since ι is
a finite morphism, the set of singular points of Specm(gr(Z̃)) has codimension not less
than 2. This is to say, Specm(gr(Z̃)) is smooth outside of a subvariety of codimension 2.

Step 4. By Lemma 5·1, Specm(gr(Z̃)) is a (strict) complete intersection. According to
Serre’s theorem [35, chapter 4], a complete intersection variety is normal if it is smooth
outside of a subvariety of codimension 2. By Step 3, Specm(gr(Z̃)) is normal, i.e., gr(Z̃) is
integrally closed, which implies (5·7). According to the analysis in Step 2, we have shown
that Z̃= Z(T).

5·3. The proof of Theorem 0·1(ii)

To prove statement (ii), we mainly take use of the results in [4], and also the ones we
obtained in the previous sections.

Keep the notations as before. We claim that Z0(T)∩ Z1(T) is a polynomial algebra of
rank r , and Z1(T) is a free Z0(T)∩ Z1(T)-module with basis { f t1

1 · · · f tr
r | 0 � ti � p − 1,

1 � i � r}.
By [4, theorem 3·5(2)], Z0(g)∩ Z1(g) is a polynomial algebra of rank r , and Z1(g) is

a free Z0(g)∩ Z1(g)-module of rank pr with a basis consisting of all gt = gt1
1 · · · gtr

r with
0 � ti � p − 1 for all i (the condition on p is automatically satisfied in the present case). By
virtue of Lemma 3·2, the restriction of map ϕ to Z1(g) is an isomorphism. As Z0(g)∩ Z1(g)
is a subalgebra of Z1(g), it is an immediate consequence that ϕ(Z0(g)∩ Z1(g))∼= Z0(g)∩
Z1(g) as k-algebras. Therefore, ϕ(Z0(g)∩ Z1(g)) is also a polynomial algebra of rank r ,
and ϕ(Z1(g))= Z1(T) is a free ϕ(Z0(g)∩ Z1(g))-module of rank pr with a basis consisting
of all f t = ϕ(gt)= f t1

1 · · · f tr
r for t ∈�r .
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Now we will show that

ϕ(Z0(g)∩ Z1(g))= Z0(T)∩ Z1(T). (5·10)

First we have ϕ(Z0(g)∩ Z1(g))⊆ ϕ(Z0(g))∩ ϕ(Z1(g)) by definition. On the other hand,
for any x ∈ ϕ(Z0(g))∩ ϕ(Z1(g)), we can write x =∑

t∈�r
at f t1

1 · · · f tr
r for at ∈ ϕ(Z0(g)∩

Z1(g)) because ϕ(Z1(g)) is already proved to be a free ϕ(Z0(g)∩ Z1(g))-module of rank pr

with a basis consisting of all f t = f t1
1 · · · f tr

r for t ∈�r . So one can obtain that

(a(0,0,··· ,0) − x)+
∑

t∈�r ,t�=(0,0,··· ,0)
at f t1

1 · · · f tr
r = 0. (5·11)

Note that ϕ(Z0(g)∩ Z1(g))⊆ ϕ(Z0(g))∩ ϕ(Z1(g))⊆ ϕ(Z0(g))∩ T(g, e)= Z0(T) by (1·8)
and Lemma 3·2, and x ∈ Z0(T) by definition. Then it follows from statement (i) that all
the coefficients in (5·11) must be zero. In particular, x = a(0,0,··· ,0) ∈ ϕ(Z0(g)∩ Z1(g)), thus
we have ϕ(Z0(g))∩ ϕ(Z1(g))⊆ ϕ(Z0(g)∩ Z1(g)). Therefore, we obtain that ϕ(Z0(g)∩
Z1(g))= ϕ(Z0(g))∩ ϕ(Z1(g)). Moreover, taking (1·8), Lemma 3·2 and the discussion in
Section 1.4.1 into consideration, we further have that

ϕ(Z0(g))∩ ϕ(Z1(g))= Z0(p̃)∩ T(g, e)∩ Z1(T)= Z0(T)∩ Z1(T), (5·12)

then (5·10) follows.
Actually we can further obtain that Z1(T) is a complete intersection over Z0(T)∩ Z1(T).

This is because Z1(g) is a complete intersection over Z0(g)∩ Z1(g) by [4, theorem 3·5(3)],
and Lemma 3·2 entails that the map ϕ restricted to Z1(g) is an isomorphism, then Z1(g)∼=
Z1(T) and Z0(g)∩ Z1(g)∼= Z0(T)∩ Z1(T) as k-algebras.

By summing up the above along with the first statement, the proof of the second statement
is completed.

Remark 5·2. As an immediate consequence of the proof of Theorem 0·1(i), we have 2m = �

in Proposition 2·2(iv).

Remark 5·3. All the discussion in this section go through for the extended finite W -algebra
U (g, e), i.e., let Z(U (g, e)) be the center of the k-algebra U (g, e). Then we have the
following results:

(i) the k-algebra Z(U (g, e)) is generated by Z0(p̃) and Z1(T). More precisely, Z(U (g, e))
is a free Z0(p̃)-module of rank pr with a basis f t1

1 · · · f tr
r , where (t1, . . . , tr ) runs

through �r .
(ii) the multiplication map ν : Z0(p̃)⊗Z0(p̃)∩Z1(T) Z1(T)→ Z(U (g, e)) is an isomorphism

of algebras.
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