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Radial deformations of a ball composed of a nonlinear elastic material and
corresponding to cavitation have been much studied. In this paper we use rescalings
to show that each such deformation can be used to construct in¯nitely many
non-symmetric singular weak solutions of the equations of nonlinear elasticity for the
same displacement boundary-value problem. Surprisingly, this property appears to
have been unnoticed in the literature to date.

1. Introduction

Let « » Rn denote the reference state of a nonlinearly elastic body, let p > 1 and
let

u : « ! Rn; u 2 W 1;p( « ; Rn); det ru > 0 a.e.;

denote a deformation of the body. In hyperelasticity we associate with each defor-
mation the energy

E(u) =

Z

«

W (ru(x)) dx; (1.1)

where W : Mn£n
+ ! R + is the stored-energy function and Mn£n

+ denotes the n £ n
matrices with positive determinant (see, for example, [4]). The equilibrium equa-
tions of nonlinear elasticity are the Euler{Lagrange equations for (1.1) and can take
a number of forms. For the purposes of this paper we note the following two forms,

@

@x ¬

·
W (ru) ¯ 

¬ ¡ u;k
@W

@F k
¬

(ru)

¸
= 0;  = 1; 2; : : : ; n; (1.2)

and

@

@x¬

·
@W

@F i
¬

(ru)

¸
= 0; i = 1; 2; : : : ; n; (1.3)

where we have used the summation convention for repeated indices. (Equation (1.2)
is sometimes referred to as the energy-momentum form of the equilibrium equa-
tions.)
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Suppose further that the deformation u satis es the a¯ ne boundary condition

u(x) = Ax for x 2 @« ;

where A 2 Mn£n
+ is given. We denote by u h the corresponding homogeneous defor-

mation
u h (x) ² Ax:

Now let « = B, the unit ball in Rn, and decompose B º
S1

i = 1
·B"i (xi) up to

(Lebesgue) measure zero as the countable disjoint union of closed balls, i.e.

meas

½
B n

1[

i = 1

·B"i (xi)

¾
= 0; ·B"i (xi) \ ·B"j (xj) = ; for i 6= j; (1.4)

where
·B"i (xi) = fx : jx ¡ xij 6 "ig » B

and j¢j denotes the Euclidean norm on Rn. This can always be achieved, for example,
by Vitali’s theorem (see, for example, [6, p. 29]). Note that, by (1.4),

!n = !n

1X

i = 1

"n
i ;

where !n is the volume of the unit ball in Rn and hence

1X

i = 1

"n
i = 1: (1.5)

Next de ne ~u : B ! Rn by

~u(x) =

8
<

:
"iu

µ
x ¡ xi

"i

¶
+ Axi if x 2 B"i

(xi);

Ax otherwise:

(1.6)

Then ~u 2 W 1;p(B; Rn) and ( ~u ¡ u h ) 2 W 1;p
0 (B; Rn) (this construction is used in

proposition 2.3 of Ball and Murat [2]). Moreover, by (1.6),

E(~u) =

Z

B

W (r ~u(x)) dx

=

1X

i = 1

Z

B"i (xi)

W

µ
ru

µ
x ¡ xi

"i

¶¶
dx

=
1X

i = 1

"n
i

Z

B

W (ru(y)) dy

=

Z

B

W (ru(y)) dy

(where we have made the change of variables y = (x ¡ xi)="i and used (1.5)).
Therefore, ~u has the same energy as u. We show in this paper that if u is a radial
cavitation solution, then ~u is also a weak solution to the equations (1.3) and (1.2)
of nonlinear elasticity. We  rst gather in the next section some basic results on the
radial cavitation problem.
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2. Hypotheses on W

We assume throughout this paper that W 2 C2(Mn£n
+ ) is isotropic and frame

indi¬erent so that, for any Q 2 SO(n) (the n £ n special orthogonal matrices), we
have

W (F Q) = W (QF ) = W (F ) for all F 2 Mn£n
+ :

It is a consequence of the above assumption that

W (F ) = © (v1; v2; : : : ; vn) for all F 2 Mn£n
+ ; (2.1)

where © is a symmetric function of its arguments and v1; v2; : : : ; vn denote the
singular values of F (i.e. the eigenvalues of

p
F TF ).

We assume that W is strongly elliptic,

@2W

@F i
¬ @F j



(F )aiajb ¬ b > 0 (2.2)

for any a; b 2 Rn n f0g. We  nally assume that there exist " > 0 and C > 0 such
that °°°°F T @W

@F
(AF )

°°°° 6 C [W (F ) + 1] for all F 2 Mn£n
+ (2.3)

whenever kA ¡ Ik < ". Here, k ¢ k denotes the Euclidean norm on Mn£n,

kF k2 = F : F and F : G = tr(F TG) for F ; G 2 Mn£n:

3. Results on radial cavitation

Suppose that A = ¶ I, ¶ > 0, p 2 [1; n) and

u(x) =
r(R)

R
x; R = jxj; r : [0; 1] ! [0; 1); (3.1)

is a radial map of B, where r 2 C2((0; 1]) \ C1([0; 1]). Then

ru = r0(R)
x « x

R2
+

r(R)

R

·
I ¡ x « x

R2

¸

and, consequently (see, for example, [1]), the singular values, v1; v2; : : : ; vn, of
F = ru are given by v1 = r0(R), v2 = ¢ ¢ ¢ = vn = r(R)=R. Thus, using (2.1),

@W

@F
(ru) = © ;1 (R)

x « x

R2
+ © ;2 (R)

·
I ¡ x « x

R2

¸
(3.2)

and

ruT @W

@F
(ru) = r0(R) © ;1 (R)

x « x

R2
+

r(R)

R
© ;2 (R)

·
I ¡ x « x

R2

¸
; (3.3)

where © ;i denotes di¬erentiation of © with respect to its ith argument and © (R)
and © ;i (R) denote, respectively, © and © ;i evaluated at the arguments v1 = r0(R),
v2 = ¢ ¢ ¢ = vn = r(R)=R.
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Now suppose that u, given by (3.1), is a radial cavitation map, i.e. r satis es

(a) r(1) = ¶ ;

(b) r0(R) > 0 for R 2 (0; 1];

(c) the radial equilibrium equation

d

dR
[Rn¡1 © ;1 (R)] = (n ¡ 1)Rn¡2 © ;2 (R) for R 2 (0; 1);

(d) r(0) > 0 and limR ! 0+ Rn¡1 © ;1 (R) = 0.

Remark 3.1. See [7] and the references therein for constitutive hypotheses on W
under which there exist maps corresponding to radial cavitation.

Remark 3.2. A straightforward calculation, using (3.2) and (3.3), shows that any
solution of the radial equilibrium equation satis es (1.2) and (1.3) in B n f0g.

Remark 3.3. The conditions r0(R) > 0 for R 2 (0; 1], r(0) > 0 and r(1) = ¶ > 0
imply that a map u that corresponds to radial cavitation must be one-to-one on
B n f0g and satisfy u(B) » ¶ B.

Remark 3.4. The assumption (2.2) of strong ellipticity yields © ;11 > 0 for the
corresponding function © (given by (2.1)). Thus the radial equilibrium equation is
a well-de ned second-order di¬erential equation.

Remark 3.5. By lemma 4.1 of [1], a radial map u of the form (3.1) lies in
W 1;p(B; Rn), p > 1, if and only if the corresponding scalar function r(¢) is absolutely
continuous on closed subintervals of (0; 1) and satis es

Z 1

0

Rn¡1

·
jr0(R)jp +

¯̄
¯̄r(R)

R

¯̄
¯̄
p¸

dR < 1:

The next result notes, in particular, that every radial cavitation map u has  nite
energy.

Lemma 3.6. Let u be a radial cavitation map (i.e. u is given by (3.1), where r
satis¯es conditions (a){(d) above). Then

(i) E(u) = !n[ © (1) + (r(1) ¡ r0(1)))© ;1 (1)];

(ii) ¯ n

·
© ( ¯ ) +

µ
r( ¯ )

¯
¡ r0( ¯ )

¶
© ;1 ( ¯ )

¸
! 0 as ¯ ! 0 + ;

(iii) ¯ n[© ( ¯ ) ¡ r0( ¯ ) © ;1 ( ¯ )] ! 0 as ¯ ! 0 + :

Proof. Parts (i) and (ii) of the lemma (stated for n > 2) follow from a straightfor-
ward generalization of proposition 1.13 in [10] (which proves the same results, under
hypothesis (2.2), in the case n = 3). Part (iii) is then an immediate consequence of
part (ii) and condition (d) above.

https://doi.org/10.1017/S0308210500001979 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500001979


A construction of in¯nitely many singular weak solutions 989

Lemma 3.7. The radial cavitation map u satis¯es the weak form of the energy-
momentum equations,

Z

B

rv :

·
W (ru)I ¡ ruT @W

@F
(ru)

¸
dx = 0 for all v 2 C1

0 (B; Rn):

Remark 3.8. The above equations arise as necessary conditions for a minimizer
of (1.1) on using inner variations and the condition (2.3) (see [3]).

Proof. We  rst note that, by (2.3), the fact that u has  nite energy and the domi-
nated convergence theorem,

Z

B

rv : M (ru) dx = lim
¯ ! 0+

Z

BnB ¯ (0)

rv : M (ru) dx; (3.4)

where

M (ru) = W (ru)I ¡ ruT @W

@F
(ru): (3.5)

Next, since u satis es (1.2) in B n f0g, it follows from (3.3) and the divergence
theorem that

Z

BnB̄ (0)

rv : M (ru) dx =

Z

@B [ @B ¯ (0)

v ¢ M (ru)n

=

Z

@B ¯ (0)

¡ v ¢ M (ru)
x

jxj

=

Z

@B ¯ (0)

v ¢ [ © (R) ¡ r0(R) © ;1 (R)]n

= [© ( ¯ ) ¡ r0( ¯ ) © ;1 ( ¯ )]

Z

B̄ (0)

div v dx:

However,
¯̄
¯̄j © ( ¯ ) ¡ r0( ¯ ) © 1( ¯ )j

Z

B̄ (0)

div v dx

¯̄
¯̄ 6 C¯ nj © ( ¯ ) ¡ r0( ¯ ) © ;1 ( ¯ )j ! 0

as ¯ ! 0 + by lemma 3.6, which, together with (3.4) and the above calculation,
yields the desired result.

A slight modi cation of the above argument yields the following result, which
holds in the case when the test function v is not necessarily zero on @B.

Lemma 3.9. The radial cavitation map u satis¯es

Z

B

rv :

·
W (ru)I ¡ ruT @W

@F
(ru)

¸
dx = [© (1) ¡ r0(1)© ;1 (1)]

Z

@B

v ¢ n

for all v 2 C1( ·B; Rn):

Remark 3.10. It is a consequence of the invariance of the equilibrium equations
under the scaling symmetry (x; u) ! ( ° x; ° u) (with ° > 0) that any weak
solution u : B ! Rn of (1.2) (or (1.3)) generates a corresponding weak solution
u ° (x) = ° u(x=° ) of (1.2) (or (1.3)) on the domain ° B.
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We note further for later use that, in the particular case that u is a radial
cavitation map, we also have the following consequence of lemma 3.9,

Z

° B

rv :

·
W (ru ° )I ¡ ruT

°

@W

@F
(ru ° )

¸
dx = [ © (1) ¡ r0(1)© ;1 (1)]

Z

@( ° B)

v ¢ n

for all v 2 C1( ° ·B; Rn).
The next two results correspond to lemmas 3.7 and 3.9 for the second form (1.3)

of the equilibrium equations. These follow by analogous arguments to the above
and so the proofs are omitted.

Lemma 3.11. The radial cavitation map satis¯es the weak form of the equilibrium
equations (1.3), i.e.

Z

B

rv :
@W

@F
(ru) dx = 0 for all v 2 C1

0(B; Rn):

Lemma 3.12. The radial cavitation map satis¯es

Z

B

rv :
@W

@F
(ru) dx = © ;1 (1)

Z

@B

v ¢ n for all v 2 C1( ·B; Rn):

Remark 3.13. Lemmas 3.11 and 3.12 can also be obtained from theorem 4.2 in [1].

4. Construction of in¯nitely many singular weak solutions

We next apply the construction outlined earlier in (1.4){(1.6) to a radial cavi-
tation map u to construct a corresponding map ~u : B ! Rn with in nitely
many discontinuities. The main results of this paper are the following two theo-
rems.

Theorem 4.1. The map ~u lies in W 1;p(B; Rn) for 1 6 p < n, is injective almost
everywhere and is a weak solution of the equations

@

@x ¬

·
W (ru) ¯ 

¬ ¡ u;k
@W

@F k
¬

(ru)

¸
= 0 in B;  = 1; 2; : : : ; n;

i.e.

Z

B

rv :

·
W (r ~u)I ¡ r~uT @W

@F
(r~u)

¸
dx = 0 for all v 2 C1

0 (B; Rn):

Proof. The fact that ~u 2 W 1;p(B; Rn) and is injective almost everywhere follows
directly (see remarks 3.3 and 3.5). Now let v 2 C1

0 (B; Rn). Then, by the de nition
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of ~u, equation (3.5), lemma 3.9 and remark 3.10,

Z

B

rv : M (r ~u) dx =

1X

i = 1

Z

B"i (xi)

rv : M (r ~u) dx

=

1X

i = 1

[© (1) ¡ r0(1)© ;1 (1)]

Z

@B"i (xi)

v ¢ n

= [© (1) ¡ r0(1)© ;1 (1)]

1X

i = 1

Z

B"i (xi)

div v dx

= [© (1) ¡ r0(1)© ;1 (1)]

Z

B

div v dx

= [© (1) ¡ r0(1)© ;1 (1)]

Z

@B

v ¢ n = 0:

Theorem 4.2. The map ~u is a weak solution of the equations

@

@x ¬

·
@W

@F i
¬

(ru)

¸
= 0 in B; i = 1; 2; : : : ; n;

i.e. Z

B

rv :
@W

@F
(r~u) dx = 0 for all v 2 C1

0(B; Rn):

Proof. The proof of this result is exactly analogous to that of the last theorem and
is therefore omitted.

5. Concluding remarks

We note that the construction used in the last two theorems is independent of the
domain chosen and therefore yields singular weak solutions for any domain (given
a domain « , write « º

S1
i = 1

·B"i (xi) up to measure zero, de ne ~u by (1.6) and
proceed as in the case « = B). Note that, in the case when u is a radial cavitation
map, although the `composite deformation’ ~u constructed according to (1.6) is
continuous away from the singular set S = fxi : i 2 Ng, it is not C1 away from S.
In particular, ~u is not C1 on the boundary of the balls B ° k (xk). This follows from the
 rst equation of (1.6), since kruk is in nite at the origin and each x ¤ 2 @B ° k (xk)
is an accumulation point of the centres of the balls. (Otherwise, without loss of
generality, there exists x ¤ 2 @ ·B"1 (x1) with x¤ =2 fxig, and hence there is a ¯ > 0
such that xi =2 B3̄ (x¤ ) for all i. By (1.5), there exists M 2 N such that "i < ¯
and hence B̄ (x¤ ) \ ·B"i (xi) = ; for i > M . Also, x¤ =2 K :=

SM
i = 2

·B"i (xi), which
is closed, so d := dist(x¤ ; K) > 0. Consequently, D := Bm in (d;¯ )(x

¤ ) n ·B"1 (x1) has
positive measure and D \ ·B"i (xi) = ; for every i, a contradiction.)

Though it has been well known to workers in nonlinear elasticity that the con-
struction (1.6) yields deformations ~u with equal energy to u, it seems to have been
(surprisingly) overlooked to date that in the case when u is a radial cavitation
map this construction also produces further weak solutions. Hence the examples in
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this paper have implications for proving regularity of weak solutions in nonlinear
elasticity (see, for example, [5]). In this context, we mention the recent interesting
example of M�uller and µSver´ak [9] of a W 1; 1 weak solution that is nowhere C1.
Finally, we note that an analogous approach to that used in this paper can be used
to show that the maps ~u constructed from rescalings of a radial cavitation map
generate weak solutions of the Cauchy form of the equilibrium equations,

@

@y ¬
Ti¬ (y) = 0; y 2 u( « );

where

Ti¬ (u(x)) =
1

det ru(x)

@W

@F i


(ru(x))u;¬ (x):

The details are left to the interested reader. (Though, of course, in this case, the
deformed body ~u( « ) will vary according to the particular decomposition of « used
in constructing ~u.)
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