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In this article, starting from continuous-time local level unobserved components
models for stock and flow data we derive locally best invariant ~LBI! stationarity
tests for data available at potentially irregularly spaced points in time+ We dem-
onstrate that the form of the LBI test differs between stock and flow variables+ In
cases where the data are observed at regular intervals throughout the sample we
show that the LBI tests for stock and flow data both reduce to the form of the
standard stationarity test in the discrete-time local level model+ Here we also show
that the asymptotic local power of the LBI test increases with the sampling fre-
quency in the case of stock, but not flow, variables+ Moreover, for a fixed time
span we show that the LBI test for stock ~flow! variables is ~is not! consistent
against a fixed alternative as the sampling frequency increases to infinity+We also
consider the case of mixed frequency data in some detail, providing asymptotic
critical values for the LBI tests for both stock and flow variables, together with a
finite-sample power study+ Our results suggest that tests that ignore the infra-
period aspect of the data involve rather small losses in efficiency relative to the
LBI test in the case of flow variables but can result in significant losses of effi-
ciency when analyzing stock variables+

1. INTRODUCTION

Consider the discrete-time local level, or random walk plus noise, unobserved
components model of Harvey ~1989, p+ 19!, extended to allow for a determin-
istic kernel, at , for the univariate time series process $ yt % :
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yt � at �m t � «t , «t; NIID~0,s«2!, (1.1)

m t � m t�1 � ht , ht; NIID~0,sh2!, (1.2)

t � 1, + + + ,T+ We assume the initial condition m0 � 0, which implies no loss of
generality, provided at includes a constant and, for the present, that the irregu-
lar and level disturbance processes $«t % and $ht % are uncorrelated, both tempo-
rally and contemporaneously+

In the context of ~1+1!-~1+2! considerable theoretical and empirical interest
have focused on the so-called stationarity testing problem+ That is, defining the
signal-to-noise ratio in ~1+1!-~1+2! as q � sh

20s«2 , testing the null hypothesis of
stationarity, H0 : q � 0, against the unit root alternative, H1 : q � 0+ Setting at �
a, a constant, Nyblom and Mäkeläinen ~1983! demonstrate that the locally best
invariant ~LBI! test of H0 against H1 rejects for large values of the statistic

NM �
e'We

Te'e
, (1.3)

where e � ~e1, + + + , eT !
' is the T-vector of ordinary least squares ~OLS! residuals

obtained from regressing yt on an intercept, t � 1, + + + ,T, and W is the so-called
random walk generating matrix with ~i, j !th element equal to the minimum of i
and j, i, j � 1, + + + ,T+ King and Hillier ~1985! show that this is also a one-sided
Lagrange multiplier test of H0 against H1+ Nyblom ~1986! has extended the
analysis of Nyblom and Mäkeläinen ~1983! to the case where at � a � bt, a
linear time trend, in which case the LBI test is as given in ~1+3! except that e is
now the vector of OLS residuals from regressing yt on an intercept and trend+
Further generalizations are provided by Nabeya and Tanaka ~1988!, Kwiat-
kowski, Phillips, Schmidt, and Shin ~1992!, and Busetti and Harvey ~2001!+

Tanaka ~1996, p+ 368!, inter alia, demonstrates that under the local alterna-
tive, Hc : q � c20T 2 , c � 0, as T r `

NMn �
0

1

Vj~r;c!2 dr, (1.4)

with

V1~r;c! [ B1~r!� c��
0

r

W1~s! ds � r�
0

1

W1~t! dt�, (1.5)

V2~r;c! [ V1~r;c!� 6r~1 � r!�
0

1

V1~s;c! ds,

wheren denotes weak convergence of the associated probability measures and
the nomenclature j� 1,2, is used exclusively throughout this paper to indicate
whether the deterministic kernel is a constant, in which case j � 1, or a linear
time trend, in which case j� 2+ In ~1+4!, B1~r! [W0~r!� rW0~1!, r � @0,1# , is
a standard Brownian bridge process, defined via the standard Brownian motion
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W0~r!, whereas W1~r! is a standard Brownian motion process independent of
W0~r!+1

Where c � 0, Hc reduces to H0, and hence ~1+4! will give the limiting null
distribution of the LBI statistic, NM of ~1+3!+ For j � 1 and j � 2 these are,
respectively, first- and second-level Cramér–von Mises distributions with one
degree of freedom; see Harvey ~2001! for further discussion on the Cramér–
von Mises family of distributions+ In what follows we will denote these Cramér–
von Mises distributions by VMj~1!, j�1,2, upper tail critical values from which
are provided in, for example, Kwiatkowski et al+ ~1992, p+ 166! and Harvey
~2001, pp+ 4, 8!+ Moreover, from ~1+4! the limiting ~local! power function of
NM under Hc for an a-level test will be given by

pj~c! [ Pr ��
0

1

Vj~r;c!2 dr � ka,j� , j� 1,2, (1.6)

where ka,j is such that Pr $*0
1 Vj~r;0!2 dr � ka,j%� a, j� 1,2+ For both j� 1

and j � 2, ~1+6! is monotonically increasing in c+ These limiting power func-
tions are graphed in Tanaka ~1996, Figure 10+4, p+ 389!+ Under the fixed alter-
native H1 : q � 0, NM is of Op~T ! and positive; see, inter alia, Kwiatkowski
et al+ ~1992, pp+ 165–169!+ Consequently, the LBI test is consistent against fixed
alternatives+

Although the foregoing results were derived under the assumption of uncor-
related disturbances, Bailey and Taylor ~2002! have recently demonstrated that
the form of the LBI test, for a given deterministic kernel, is unaltered by allow-
ing for contemporaneous correlation between «t and ht : the so-called nonorthog-
onal model+ Moreover, they demonstrate that the limiting distribution theory in
~1+4! for NM of ~1+3! also remains appropriate under the nonorthogonal model+

The stationarity testing literature to date has started from the basic presump-
tion that the data are generated by the regularly spaced discrete-time local level
model, ~1+1!-~1+2!+ However, as argued in Harvey ~1989, p+ 479!, “A continu-
ous time model is, in some ways, more fundamental than a discrete time model
+ + + a good deal of the theory in economics and other subjects is based on
continuous time models+” Notably, continuous-time models provide a frame-
work that allows us to handle irregularly spaced data and highlights the impor-
tant distinctions that exist, in particular when the data are irregularly spaced,
between stock and flow variables+ Stocks are variables such as prices, unemploy-
ment, temperature, and the capital stock that can, in principle, be observed at
any given point in time, whereas flows are variables such as rainfall, income,
and consumption expenditures that are defined with respect to an interval of
time+ It is perhaps surprising, therefore, that stationarity tests have been widely
applied to both macroeconomic and financial data without any formal investi-
gation into what effects the stock-flow distinction has on the underlying test-
ing problem+ Using continuous-time formulations of the local level model for
stock and flow variables, we undertake a detailed exploration of these issues
in this article+
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In Section 2 we set out the continuous-time formulation of the local level
model for both stock and flow variables and derive the corresponding discrete-
time analogue models+ In neither case do these analogue models reduce to the
discrete-time model ~1+1!-~1+2!, except where the observations are regularly
spaced+ Even then, in the case of flow variables one obtains the nonorthogonal
discrete-time local level model+ This then allows us, in Section 3, to derive the
LBI tests for the null hypothesis that the signal-to-noise ratio in the continuous-
time model is zero against the alternative that it is positive in cases where the
sample observations are irregularly spaced through time+ We demonstrate that
the form of the resulting LBI test, for a given pattern of intraobservation inter-
vals, is different for stock vis-à-vis flow variables+ The limiting null distribu-
tions of the LBI statistics are, in general, nonpivotal+An exception occurs where
the data are regularly sampled+ Here the LBI tests for stock and flow data both
have pivotal Cramér–von Mises distributions+

In Section 4 we analyze the case where the data are regularly sampled and
show that for stock variables the local limiting power of the LBI test increases
with the sampling frequency; that is, ceteris paribus, power is higher for N years
of monthly data than for N years of annual data+ Moreover, for stock variables
we also show that the LBI test is consistent against fixed alternatives for cases
where the continuous-time model is generated for a fixed time span but with
the sampling interval tending to zero+ In contrast, we show that for flow vari-
ables the local limiting power of the LBI test does not increase with the sam-
pling frequency, and that the LBI test is not consistent when the time span is
fixed and the sampling interval tends to zero+ Interestingly, these findings con-
trast with what has been found for the Dickey–Fuller test by Phillips ~1987!,
Perron ~1991!, Ng ~1995!, and Chambers ~2004!+ However, this is perhaps not
surprising given that our model effectively reverses the role of the null and the
alternative hypotheses, relative to the Dickey–Fuller setup+ Loosely speaking,
in both models a stock variable that admits a unit root appears “more nonsta-
tionary” when it is observed with higher frequency, whereas a parallel, but
reversed, argument holds in the case of flow variables+

An interesting case of irregularly spaced data is provided by mixed fre-
quency data+ An example of this is where some subsample of the complete data
set is observed annually and the remaining subsample comprises quarterly obser-
vations+ In Section 5 we derive explicit expressions for the LBI stationarity
tests for mixed frequency data, as special cases of the tests derived in Sec-
tion 3+We provide representations for the limiting null distributions of the LBI
statistics, demonstrating that these depend on the fraction of the data observed
in each subsample and on the relative observation frequencies in the two sub-
samples+ These representations differ considerably between stock and flow vari-
ables+ A selection of critical values from these asymptotic distributions is
provided+We also consider tests that are based on statistics modified, either by
considering the two subsamples separately or by data aggregation, so as to have
limiting null distributions belonging to the Cramér–von Mises family+ The finite-
sample power properties of these tests are compared, via Monte Carlo simula-
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tion, with the LBI tests+ Our results suggest that the use of the aggregate data
involves only negligible losses in efficiency for the case of flow variables but
not for stock variables; in the latter case our simulations are decisively in favor
of the exact LBI tests developed in this paper+

2. CONTINUOUS-TIME LOCAL LEVEL MODELS FOR STOCK AND
FLOW DATA AND THEIR DISCRETE-TIME ANALOGUES

The continuous-time analogue of the discrete-time random walk transition equa-
tion ~1+2! is given by

dm~t ! � j2~dt !, t � 0, (2.1)

where j2~dt ! is a random measure, defined formally later+ Formulating the
continuous-time analogue of the observation equation ~1+1! is more involved+
Because of the static nature of ~1+1!, different continuous-time formulations of
the observation equation will necessarily be required for the separate cases of
stock and flow data because the former are measured at single points in time
whereas the latter are measured as integrals over the sampling interval+ Con-
sider first the case of stock data+ Here the appropriate observation equation is
given by

y~t ! � a~t !�m~t !� «~t !, t � 0, (2.2)

where a~t ! is a deterministic kernel and «~t ! is heuristically a serially uncorre-
lated mean-zero process with variance s«

2 , as in Wymer ~1993!+ For the case of
flow variables, the corresponding observation equation is given by

y~t ! dt � @a~t !�m~t !# dt � j1~dt !, t � 0, (2.3)

where j � ~j1,j2!
' is a two-dimensional random measure, defined on all sub-

sets of the half-line 0 � t � ` with finite Lebesgue measure, satisfying
Assumption 2+1 of Bergstrom ~1986!, with E @j~dt !#� 0 and E @j~dt !j '~dt !#�
~dt !S, S� diag~s«

2 , sh2!+ Heuristically speaking, j~dt ! can be thought of as a
continuous-time white noise process ~for further discussion, see Bergstrom,
1984, p+ 1157!, and, moreover, ~2+3! may be viewed as ~2+2! multiplied through
by dt and with «~t ! dt replaced by j1~dt !+

Our continuous-time local level models for stock and flow data are therefore
given by ~2+2!-~2+1! and ~2+3!-~2+1!, respectively+ As with ~1+1!-~1+2!, for both
~2+2!-~2+1! and ~2+3!-~2+1! we may assume the initial condition m~0! � 0 with
no loss of generality, provided a~t ! contains an intercept term+ Harvey and Stock
~1993, pp+ 58–59! and Chambers and McGarry ~2002! specify the discrete-time
observation equations for stock and flow data directly+ However, a comparison
of ~2+6!-~2+7! and ~2+9!-~2+10!, which follow, with equations ~9!, ~10!, ~12!, and
~25! of Harvey and Stock ~1993, pp+ 58– 64! shows that the discrete-time ana-
logues of ~2+2!-~2+1! and ~2+3!-~2+1! coincide with the discrete-time models spec-
ified for stock and flow variables in Harvey and Stock ~1993!+ This point is
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also recognized by Chambers and McGarry ~2002!, who argue in the context of
the discrete-time analogues that “the random disturbance + + + can be interpreted
either as the discrete time realization of a genuine irregular component in con-
tinuous time + + + or as a measurement error that is associated with the discrete
time sampling of the continuous time process” ~p+ 393!+

Our formulations of the local level model for stock and flow variables pro-
vide a general framework from which to examine the corresponding exact
discrete-time models, where the observations are sampled at possibly irregular
intervals+As with the stationarity tests outlined for the case of the discrete-time
local level model, ~1+1!-~1+2! in Section 1, our interest focuses on testing the
null hypothesis of stationarity against the unit root alternative in the continuous-
time local level models+ That is, we wish to test the following hypothesis regard-
ing the structural, signal-to-noise ratio, parameter2 q � sh

20s«2

H0 : q � 0 (2.4)

versus

H1 : q � 0 (2.5)

in ~2+2!-~2+1!for stock variables and in ~2+3!-~2+1! for flow variables, using obser-
vations on the process that are available at possibly irregular spaced discrete
time points+ In particular, we suppose that the data are observed over the inter-
val 0 � t � N, where N denotes the span of the data, at T irregular observation
times $tt%, t � 1, + + + ,T, where tt � tt�1 � dt, t0 � 0, with the intraobservation
intervals, dt, expressed in calendar time units, such that (t�1

T dt � N+
In a series of influential papers Bergstrom ~1983, 1984, 1985!, inter alia, sets

out the theoretical treatment of continuous-time autoregressive models and their
estimation by Choleski factorization of the Gaussian likelihood+ Building upon
this work, Harvey ~1989, Ch+ 9! and Harvey and Stock ~1993! consider a gen-
eral class of state space models in continuous time where the Gaussian likeli-
hood estimation is carried out via the Kalman filter+ The continuous-time models
in ~2+2!-~2+1! and ~2+3!-~2+1! may be regarded as simple examples from this
class of state space models+3 They are nevertheless important from the point of
view of constructing stationarity tests for the case of irregularly spaced obser-
vations on stock and flow data, respectively+ We now derive the discrete-time
analogues of ~2+2!-~2+1! and ~2+3!-~2+1!+

2.1. Stock Variables

Consider first the case of a stock variable+ Let yt � y~tt!, mt � m~tt!, at �
a~tt!, and «t � «~tt!+ Evaluating ~2+2!-~2+1! at t � tt, yields the discrete-time
analogue

yt � at�mt� «t , (2.6)

mt � mt�1 � ht , m0 � 0, (2.7)
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where «t and ht are mean-zero, serially uncorrelated, and mutually orthogonal
disturbances with variances s«

2 and dtsh
2 , respectively+ It is important to notice

that, unlike the discrete-time model in ~1+1!-~1+2!, the disturbances driving the
level equation, ~2+7!, are heteroskedastic when the observations are irregularly
sampled, that is, where dt is not constant through the observed sample+ In the
case where a~t ! � a, then so at � a, so that a constant in the continuous-time
local level model, ~2+2!-~2+1!, implies a constant in the discrete-time analogue,
~2+6!-~2+7!+ However, if a~t !� a � bt, a linear trend, then at� a � btt, which
will not, in general, be of the form of a linear trend in t+ An obvious exception
occurs where dt is fixed through the sample ~the observations occur at regular
time points!+ In this case the discrete-time analogue ~2+6!-~2+7! clearly reduces
to a discrete-time local level of the form ~1+1!-~1+2!+

2.2. Flow Variables

An observed flow variable, which we denote by Yt, is obtained by integrating
the ~unobserved! continuous-time analogue y~t ! over the interval ~tt�1, tt# ,
namely,

Yt ��
tt�1

tt

y~t ! dt+ (2.8)

As demonstrated in Appendix A, one therefore obtains that the discrete-time
analogue of ~2+3!-~2+1! is given by

Yt � At� dt mt� «t
*, (2.9)

mt � mt�1 � ht , m0 � 0, (2.10)

where At � *tt�1

tt a~t ! dt, mt � m~tt!, and «t
* and ht are mean-zero, serially

uncorrelated disturbances+ However, and in contrast to the case of a stock
variable, the disturbance in the measurement equation «t

* is contemporane-
ously ~but not temporally! correlated with that of the transition equation ht,
namely,

Var�«t*ht� � �dt3sh203 � dts«
2 �

1

2
dt

2sh
2

�
1

2
dt

2sh
2 dtsh

2 � ;
see also Harvey and Stock ~1993!+4

As regards the deterministic kernel, if a~t ! � a, then At � adt, so that a
constant in the continuous-time local level model ~2+3!-~2+1! does not imply a
constant in the discrete-time analogue model, unless dt is fixed through the
sample+ Moreover, if a~t ! � a � bt, a linear trend, then At � ~a � btt �
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~b02!dt!dt: as with the case of a stock variable, this reduces to a standard lin-
ear trend where dt is constant across the sample+

It is crucial to notice that, and again in contrast to the case of stock vari-
ables, even where dt is constant across the sample, ~2+9!-~2+10! does not reduce
to the class of discrete-time local level models as in ~1+1!-~1+2!, because of the
contemporaneous correlation between «t

* and ht+ However, because our inter-
est in this paper lies solely in developing optimal tests of H0 of ~2+4! against H1

of ~2+5!, we know from the results of Bailey and Taylor ~2002! that, in this
regard, the orthogonal and nonorthogonal local level models may be treated as
if they were the same+ This point is pursued further in Section 3+3+

3. THE LBI TEST AGAINST THE PRESENCE OF A RANDOM
WALK COMPONENT

In this section we derive the LBI test of H0 of ~2+4! against H1 of ~2+5! for the
cases of both stock and flow variables observed at ~possibly irregularly spaced!
discrete points+ These results show that there are significant and important dif-
ferences between the two cases+ The LBI tests are obtained using the frame-
work of King and Hillier ~1985!+

The structure of the resulting LBI test statistics is shown to depend on the
intraobservation intervals, dt, t � 1, + + + ,T, which may be regular or irregular+
The former case is pursued further in Sections 3+3 and 4, where it is shown that
the statistics simplify considerably+ Two interesting examples of the latter are
the mixed frequency data and missing data cases+ The first example is pursued
in detail in Section 5+ Stationarity tests in the presence of missing data obtain
as special cases of the LBI tests outlined for stock and flow variables in Sec-
tions 3+1 and 3+2, respectively, and we shall not pursue such tests in any further
detail here+ However, for a setup that is analogous to our stock variable case
and under certain restrictions on the intraobservation intervals, Nishino ~2002!
provides an exploration of stationarity testing with missing data+

3.1. Stock Variables

Let yS � ~ y1, + + + , yT !
' denote the T � 1 vector of observations when the observed

variable is a stock+ From ~2+6!-~2+7! and assuming Gaussianity, we immedi-
ately obtain that

yS ; N~aS ,s«2VS ~q!!, (3.1)

where aS is a T � 1 vector with tth element at and VS~q!� IT � qVd, with Vd
a ~T � T ! matrix with ~i, j !th element equal to the minimum of ti and tj , i, j �
1, + + + ,T+

A straightforward application of equation ~6! of King and Hillier ~1985, p+ 99!
then yields that the LBI test of H0 of ~2+4! against H1 of ~2+5! in the case of a
stock variable rejects for large values of the statistic
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LS �
eS
' Vd eS

TeS
' eS

+ (3.2)

In ~3+2!, eS � ~e1,S , + + + , eT,S !
' is the vector of OLS residuals obtained from the

projection onto the deterministic component aS + For the linear trend case, a~t !�
a � bt and eS is obtained from regressing yt on zS,t � ~1, tt!' , whereas in the
case of a constant level, a~t !� a, the elements of eS are simply the deviations
from the sample mean+

The numerator of the statistic LS of ~3+2! may be written equivalently as the
weighted sum of squared ~reverse! partial sums of the OLS residuals,

eS
' Vd eS � (

t�1

T

dt�(
j�t

T

ej,S�2

, (3.3)

the weights being the sequence of intraobservation intervals $d1, + + + ,dT % + Because
of this dependence on the d1, + + + ,dT the null distribution of LS cannot be easily
obtained+ An obvious exception, considered in Section 3+3, occurs when the
observations are sampled at regularly spaced intervals, that is, where dt is con-
stant across the sample+ However, because LS is formed as the ratio of two
quadratic forms in Gaussian variables, the exact distribution of LS under both
H0 of ~2+4! and H1 of ~2+5!, for a given sequence, $d1, + + + ,dT % , can be obtained
using the well-known Imhof ~1961! routine+

3.2. Flow Variables

Consider now the case of a flow variable+ Let yF � ~Y1, + + + ,YT !
' denote the

T � 1 vector of observations on the flow variable and let D � diag~d1, + + + ,dT !+
In Appendix B it is demonstrated that, from ~2+9!-~2+10! and assuming
Gaussianity,

yF ; N~aF ,s«2 D102VF ~q!D
102 !, (3.4)

where aF is a T � 1 vector with tth element At and

VF ~q! � IT � qD102VdD
102 � qV*,

with Vd defined as before, and where V* is a symmetric matrix with ~i, j !th
element, i � j � 1, + + + ,T,

@V* # ij � ��
2

3
di

2 i � j,

�
1

2
di

302dj
102 i � j+

(3.5)

Again using equation ~6! of King and Hillier ~1985, p+ 99!, it then follows
that the LBI test of H0 of ~2+4! against H1 of ~2+5! for the case of a flow vari-
able rejects for large values of the statistic
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LF �
eF
' ~D102VdD

102 � V* !eF

TeF
' eF

+ (3.6)

In the context of ~3+6!, eF � ~e1,F , + + + , eT,F !
' is the vector of OLS residuals

from regressing D�102yF on the deterministic component D�102aF + For exam-
ple, in the case of a constant level a~t ! � a, so that At � adt, one obtains that
et,F � dt

�102~Yt � dt(Yt0N !, t � 1, + + + ,T+
Noting that the variance of eF

' V* eF is of smaller order ~in T ! than that of
eF
' D102VdD

102eF under both H0 of ~2+4! and H1 of ~2+5!, it follows that LF is
asymptotically equivalent to the simplified statistic

LF
* �

eF
' D102VdD

102eF

TeF
' eF

+ (3.7)

In what follows we will therefore concentrate our attention on LF
* + As with LS

of ~3+2!, the numerator of LF
* of ~3+7! depends on the sequence of intraobserva-

tion intervals $d1, + + + ,dT % + For a given sequence, $d1, + + + ,dT % , the exact distri-
bution of LF

* , and indeed LF , can again be obtained using the Imhof ~1961!
routine, whereas matters again simplify greatly when dt is constant across the
sample+

3.3. LBI Tests when dt Is Constant

Suppose now that the intraobservation interval dt is constant, taking the fixed
value d, known as the sampling interval, throughout the sample+ As a conse-
quence we obtain that Vd� dW, where W is the random walk–generating matrix
introduced in Section 1+

Consider first the case of a stock variable+ Here we immediately obtain from
~3+2! that

LS �
deS
' WeS

TeS
' eS

, (3.8)

where eS are as defined following ~3+2! but with dt [ d+ This implies that the
elements of eS are simply the demeaned or detrended observations on yt for the
case of a constant or linear trend, respectively+ Similarly, in the case of flow
variables, we obtain from ~3+7! that

LF
* �
d 2eF

' WeF

TeF
' eF

, (3.9)

where eF are similarly the demeaned or detrended observations on the flow
variable Yt for a constant or linear trend, respectively+

Given the distributional properties established for the stock data, yt , in ~3+1!
and the flow data, Yt, in ~3+4!, it follows immediately from ~1+4! and applica-
tions of the continuous mapping theorem ~CMT! that, under H0 of ~2+4!, LS and
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LF
* weakly converge, as Tr `, to d times a VMj~1! distribution and d 2 times a

VMj~1! distribution, respectively+5 Moreover, notice from the discussion imme-
diately following ~3+6! that this result will also hold for LF + Indeed, we can say
rather more than that in this case: it is straightforward to show that when dt is
constant throughout the sample, for a given value of T, ~eF

' V* eF !0~TeF
' eF ! col-

lapses to a constant with respect to eF + Consequently, LF and LF
* will have iden-

tical critical regions+ There is, therefore, no loss in efficiency from considering
the test based on the LF

* statistic in this case, which is exact LBI+
In practice, when constructing the statistics LS and LF

* we may set the calen-
dar time unit dt� 1 without altering the critical regions of the associated tests+
We may therefore define the resulting LBI statistics as OLS ~d! [ LS 0d and
OLF
* ~d! [ LF

* 0d 2 , respectively, which clearly coincide with the standard discrete-
time stationarity test statistic, NM of ~1+3!, applied to the observed stock
and flow data, respectively+ Moreover, both OLS~d! and OLF

* ~d! will clearly have
pivotal VMj~1! limiting null distributions so that the critical values tabulated in
Kwiatkowski et al+ ~1992! and Harvey ~2001! may be applied directly+ For the
remainder of this paper, where dt is fixed throughout the sample, any reference
to LBI tests will be taken to mean those based on the statistics OLS ~d! and
OLF
* ~d!+
Empirical applications of the standard stationarity tests of Section 1 have

concentrated in the main on regularly spaced macroeconomic aggregates, such
as income, output, and consumption, which are, by definition, flow variables
and, hence, will generate nonorthogonal discrete-time local level models; see
the discussion at the end of Section 2+Although Bailey and Taylor ~2002! moti-
vated their research from purely statistical grounds, our results demonstrate that
their findings are also of central importance to the problem of stationarity test-
ing in economic data+ They tell us that the standard stationarity test will be
exact LBI and with the same limiting null distribution, irrespective of whether
the data are generated as a stock or flow variable, provided the data are observed
at regularly spaced intervals+ However, as we shall see in the next section, the
power properties of the LBI tests do differ across the stock and flow cases+
Specifically, we show that the local limiting power function of the LBI test for
stock ~flow! data depends ~does not depend! on the sampling frequency, d�1 ,
and that for a fixed data span the LBI test for stock ~flow! data is consistent
~not consistent! against fixed alternatives as the sampling frequency tends to
infinity+

4. TEST POWER AND THE SAMPLING FREQUENCY

In this section we suppose that the underlying process is generated by the
continuous-time local level model ~2+2!-~2+1! for stock variables or ~2+3!-~2+1!
for flow variables and that observations on y~t ! are made at intervals of length
d � 0 over the interval 0 � t � N, where N denotes the span of the data+ The
number of observations is therefore given by T � N0d, and this quantity will
clearly increase if either N increases or d decreases, or both+ Our aim in this
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section is to study the large-sample power properties of the LBI tests appropri-
ate for stock and flow variables+We first analyze in Section 4+1 the behavior of
the test statistics under a sequence of local alternatives on the signal-to-noise
ratio in the underlying continuous time models, which are useful for computing
the local limiting power function of the tests as the time span increases to infin-
ity+ Subsequently, in Section 4+2 we look at the large-sample behavior of the
statistics under fixed alternatives to establish the consistency ~or otherwise! of
the tests+ We show that fundamentally different results emerge for stock and
flow variables+ Monte Carlo simulation results and three empirical illustrations
are provided in Sections 4+3 and 4+4, respectively+

4.1. Behavior under Local Alternatives

The structural parameter of interest in both ~2+2!-~2+1! and ~2+3!-~2+1! is the
signal-to-noise ratio, q � sh

20s«2+ For this parameter, a sequence of alternatives
local to H0 of ~2+4! in the span of the data, N, is therefore given by

HN ~c! : qN � c20N 2, c � 0+ (4.1)

The subscript N has been placed on the signal-to-noise ratio to highlight that
this corresponds to a local alternative hypothesis and also to distinguish it from
the nomenclature used in Section 1+ Notice that sh

2 � c2s«
2 N�2 , under ~4+1!+

Moreover, for c � 0, HN ~c! again reduces to H0+
We now analyze the power properties of the LBI tests for both stock and

flow variables under HN ~c! of ~4+1! as N r `+ We show that for stock vari-
ables asymptotic local power is an increasing function of the sampling fre-
quency d�1 , whereas for flow variables power is unaffected by d�1 + As is
subsequently demonstrated numerically by Monte Carlo methods in Section 4+3,
the asymptotic local distribution theory provides a good approximation to the
finite-sample impact of the sampling frequency on power in both cases+

Consider first the case of a stock variable+ It was demonstrated in Section 2
that the exact discrete-time analogue of the continuous-time model ~2+2!-~2+1!
is a random walk plus noise model with variances s«

2 and dsh
2 , respectively,

observed for T � N0d periods+ Using ~2+6!-~2+7!, the derived signal-to-noise
ratio, say qT,S ~where we use S to denote stock!, in the discrete-time analogue
under HN ~c! of ~4+1! is therefore given by

qT,S �
dc2s«

2

s«
2 N 2 �

dc2

T 2d 2 [
cS

2

T 2 , (4.2)

where cS [ c		Md, which is clearly an increasing function of the sampling fre-
quency, d�1 +

Therefore, it immediately follows from the results in Section 3+3 and a com-
parison with ~1+4! that, for given values of c and j, pj~c		Md! will be an
increasing function of the sampling frequency+ The implication of this is that
the asymptotic local power of the LBI test in the case of a stock variable will
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be higher the larger is the sampling frequency, ceteris paribus, being a function
of c		Md+

Consider now the model for a flow variable+ Noting again from Bailey and
Taylor ~2002! that the contemporaneous correlation between the signal and noise
processes has no effect on the local limiting distribution of the LBI statistic,
exactly the same line of argument can be used to analyze the power properties
of the LBI test for flow variables+

Using ~2+9!-~2+10!, noting that in this case the signal is dmt, it follows that
the derived signal-to-noise ratio for a discretely sampled flow variable, say qT,F

~where F denotes flow!, under the local alternative HN ~c! is given by

qT,F �
d 3c2s«

20N 2

1

3
d 3c2s«

20N 2 � ds«
2

�
c2

1

3
c2 � T 2

[
cF

2

T 2 , (4.3)

where

cF [

c2

1

3

c2

T 2 � 1

and is clearly such that limTr` cF � c+ As N r ` with d fixed, we see from
~4+3! that the local limiting power of the LBI test in the case of flow data depends
only on j and the noncentrality parameter, c, of ~4+1!+ Crucially, it does not
depend on the sampling frequency d�1 + Consequently, and in contrast to the
case of stock variables, the local limiting power of the LBI test for a given
noncentrality parameter, c, will not increase with the sampling frequency+

4.2. Behavior under Fixed Alternatives

We now consider the continuous-time model for stock and flow variables ~2+2!-
~2+1! and ~2+3!-~2+1! under the hypothesis that the signal-to-noise ratio q �
sh

20s«2 is fixed and strictly greater than zero; that is, we are interested in the
behavior of the tests under a fixed alternative rather than under the local alter-
native ~4+1! of Section 4+1+ In particular we will show that, for a fixed time
span N, as the sampling frequency tends to infinity ~d r 0! the LBI test is
consistent for the case of stock variables but it is not consistent for flows+Where
N r ` the test is consistent for both stock and flow data+ The proof for this
case is not provided here because it follows immediately from Kwiatkowski
et al+ ~1992! and Bailey and Taylor ~2002!+

Consider first the case of a stock variable+ From ~2+6!-~2+7!, the discrete time
analogue, observed at a fixed time interval d, can be written as

yt � at� d 102mt
*� «t , t� 1,2, + + + ,T[ N0d,

mt
* � mt�1

* � ht
*, m0

*� 0,
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where «t, ht* are serially uncorrelated and mutually orthogonal Gaussian dis-
turbances with variances s«

2 and sh
2 , respectively, and at� Xt

' b is a determin-
istic component represented in terms of a k-dimensional nonstochastic regressor
Xt with associated coefficient vector b+ We assume that Xt satisfies standard
regularity conditions as in Phillips and Xiao ~1998!; that is, there exist a scal-
ing matrix LT and a bounded piecewise continuous function X~r! such that ~a!
LT X{Tr} r X~r! as T r ` uniformly in r � @0,1# ; and ~b! *0

1 X~r!X~r!' dr r
QX , a positive definite matrix, as T r `+ These conditions are clearly met if
the deterministic component is a constant level or a linear trend, but they also
allow for more general functions such as piecewise polynomial trends+

From Section 3+3, the LBI statistic takes the form

OLS ~d! �

T �2 (
t�1

T �(
j�t

T

ej�2

T �1 (
t�1

T

et
2

, (4.4)

where et is the tth element of the vector of OLS residuals eS , obtained from
regressing the observation vector yS � ~ y1, + + + , yT !

' on the deterministic vari-
ables XS � ~X1

' , + + + , XT !
'+ As discussed in Section 3+3, ~4+4! is the usual form of

the LBI test of stationarity for data sampled at constant intervals+
For a T-dimensional vector z denote by Sz its orthogonal projection onto the

space spanned by XS , that is, Sz � XS ~XS
' XS !

�1 XS
' z, with Szt being the tth

element of Sz; clearly, if Xt is a constant regressor then Szt is just the average
of the elements of z+ Then we can write the OLS residuals as et � yt � Tyt �
d 102~mt

* � Tmt* ! � ~«t � S«t!+ Now, as d r 0 with N fixed, and recalling that
T � N0d, standard applications of the invariance principle and the CMT then
yield, for r � @0,1# , the following limiting results:

T �102~m@Tr#
* � Tm@Tr#

* !n sh~W~r!� RW~r!!� Op~1!, (4.5)

T �302 (
j�@Tr#

T

~m@Tr#
* � Tm@Tr#

* !n sh�
r

1

~W~r!� RW~r!! dr � Op~1!, (4.6)

where W~r! is a standard Brownian motion process, RW~r! [ X '~r!QX
�1 �

*0
1 X~r!W~r! dr, and @{# denotes the integer part of its argument+ Notice that if

Xt is a constant regressor, then RW~r! [ *0
1 W~r! dr+

Therefore we immediately obtain from ~4+5! and ~4+6! that ~m@Tr#
* � Tm@Tr#

* !�
Op~d

�102! and (j�@Tr#
T ~m@Tr#

* � Tm@Tr#
* ! � Op~d

�302!, while using similar argu-
ments ~«@Tr# � S«@Tr#! � Op~1! and (j�@Tr#

T ~«@Tr# � S«@Tr#! � Op~d
�102!+ The

numerator of the LBI statistic ~4+4! is then seen to be of Op~d
�1! whereas,

because e@Tr# � Op~1!, the denominator is of Op~1!+ Consequently, as d r 0
with fixed time span N, the LBI statistic ~4+4! is of Op~d

�1!, and the consis-
tency property of the test follows+ The qualitative prediction of this large-
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sample result also appears evident in the finite-sample simulation results reported
in Table 1 in Section 4+3+

Consider now the case of a flow variable+ From ~2+9!-~2+10! the discrete-
time analogue, observed at a fixed time interval d, can be written as

Yt � At� d 302mt
� � «t

� , t� 1,2, + + + ,T[ N0d,

mt
� � mt�1

� � ht
� , m0

� � 0,

where ~«t
� ,ht�!' are serially uncorrelated Gaussian disturbances with

Var�«t�ht�� � �s«2 � d 2sh
203 �

1

2
dsh

2

�
1

2
dsh

2 sh
2 �

and At � Xt
�b� is a deterministic component+ From Section 3+3, the LBI sta-

tistic is

OLF ~d! �

T �2 (
t�1

T �(
j�t

T

ej
��2

T �1 (
t�1

T

et
�2

, (4.7)

where et
� is the tth element of the vector of OLS residuals eF , obtained from

regressing the observation vector yF � ~Y1, + + + ,YT !
' on the deterministic vari-

ables XF � ~X1
�' , + + + , XT

�'!'+ Again, ~4+7! is the usual form of the LBI test of
stationarity for data sampled at constant intervals+

Noticing that the random walk component in the observation equation is scaled
by d 302 , rather than d 102 as in the stock variable case, and adapting the previ-
ous arguments used for the stock case, it is easily demonstrated that as d r 0
with N fixed, OLF~d! is of Op~1! and consequently the LBI test is not consistent
in the case of flow data; cf+ Table 1 in Section 4+3+

4.3. Monte Carlo Simulations

In this section we use Monte Carlo simulation methods to investigate the finite-
sample power properties of the LBI tests of Section 3+3+All experiments reported
in this paper were programmed using the random number generator of the matrix
programming language Ox 2+20 of Doornik ~1998!, over 10,000 Monte Carlo
replications+ All tests were run at the nominal 5% asymptotic level, although
other choices of the nominal level did not alter the results qualitatively+

Specifically, we simulate data according to the discrete-time analogues ~2+6!-
~2+7! for stock data and ~2+9!-~2+10! for flow data over a time span of N � 100
and setting dt� d constant+Without loss of generality we set s«

2 � 1 and com-
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pute the tests across a range of values of sh
2 � c20N 2, for c � 0,2+5,5,10,25,

and of the sampling interval d � 1, 12_ ,
1
4
_ , 16_ ,

1
12
_ + In each case the number of obser-

vations is therefore 1000d+ Notice, therefore, that the implied signal-to-noise
ratios in the discrete-time analogue models for the cases of stock and flow vari-
ables will be dc201002 and d 2c20~ 13_d 2c2 � 1002!, respectively; cf+ ~4+2!-~4+3!+

We may think of this as data from an underlying continuous-time process
observed over a 100-year span at regular discrete intervals in time correspond-
ing to an annual, biannual, quarterly, bimonthly, and monthly sampling fre-
quency when d � 1, 12_ ,

1
4
_ , 16_ ,

1
12
_ , respectively+ Without loss of generality, we have

set the deterministic kernel a~t ! � 0 in what follows, because our tests are
constructed from exact invariant statistics+

Parts a and b of Table 1 report the empirical rejection frequencies, as func-
tions of c and d, for the tests that reject for large values of the LBI statistics
OLS~d! and OLF

* ~d!, for stock and flow variables, respectively+ The stock and flow
statistics were constructed from the residual vectors eS and eF whose elements

Table 1. Simulated rejection probabilities ~� 100!

d

1 1
2
_ 1

4
_ 1

6
_ 1

12
_

~a! Constant level case
c � 0 OLS~d! 5+3 5+3 5+1 4+7 4+7

OLF
* ~d! 5+3 5+3 5+1 4+7 4+7

c � 2+5 OLS~d! 12+9 20+3 31+7 39+4 54+8
OLF
* ~d! 12+8 13+1 13+0 12+8 12+7

c � 5 OLS~d! 30+3 45+5 60+5 69+5 82+1
OLF
* ~d! 30+2 31+7 31+7 31+0 31+3

c � 10 OLS~d! 58+1 74+4 85+8 91+0 96+5
OLF
* ~d! 58+1 60+8 60+6 60+4 60+8

c � 25 OLS~d! 88+3 95+5 98+8 99+6 99+9
OLF
* ~d! 88+1 90+4 90+9 91+4 91+6

~b! Linear trend case
c � 0 OLS~d! 4+8 5+2 4+6 5+0 4+8

OLF
* ~d! 4+8 5+2 4+6 5+0 4+8

c � 2+5 OLS~d! 6+7 9+5 13+2 17+9 29+7
OLF
* ~d! 6+7 7+3 6+8 7+0 6+9

c � 5 OLS~d! 12+9 22+3 35+1 47+0 66+8
OLF
* ~d! 12+8 13+9 13+2 13+5 13+2

c � 10 OLS~d! 34+2 55+0 73+4 83+3 94+0
OLF
* ~d! 34+2 35+5 35+2 36+6 36+5

c � 25 OLS~d! 79+6 93+0 98+5 99+4 99+9
OLF
* ~d! 80+1 82+7 83+5 84+1 84+5
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are the demeaned ~j� 1 in part a! or detrended ~j� 2 in part b! observations
on the observed stock and flow variables, respectively+ Consequently all of the
statistics possess a VMj~1! limiting distribution under H0 of ~2+4!; cf+ Sec-
tion 3+3+ The 5% asymptotic critical value for the tests is therefore 0+461 for
j � 1 and 0+149 for j � 2; see, for example, Harvey ~2001!+

A number of important observations can be drawn from the results presented
in Table 1+ First, in the case where d � 1 the power of the tests for stock and
flow variables is almost identical throughout+ This is, of course, to be expected
given that the signal-to-noise ratio for stock variables is given by c20~T 2d!
whereas for flow variables it tends to c20T 2, as T, the number of sample obser-
vations, increases; see Sections 4+1 and 4+2+ Moreover, the observed powers
reported in Table 1 for d� 1 closely correspond with the limiting power func-
tions of Model A and Model B of Tanaka ~1996, p+ 390!, respectively, despite
being obtained for the moderately small sample size of T � 100+

Second, for the case of flow variables we see from the results in Table 1 that,
ceteris paribus, power does not increase as the sampling interval d decreases,
as predicted by the limiting distribution theory in Section 4+2+ Indeed, for a
given value of c, there are virtually no differences in power across the various
values of d considered+

Third, in the case of stock variables we see that power increases as d decreases,
other things equal+ For example, in Table 1, part a, with c � 5 the power for
d � 1, where we have annual observations on the underlying continuous-time
process, is 30+3%, but for data that have been observed monthly throughout the
sample the power of the test is dramatically increased to 82+1%+ Moreover, as
predicted by the limiting distribution theory in Section 4+1, the finite-sample
local power of the test appears closely related to the quantity cS [ c		Md+ For
example, c � 2+5,d � 1

4
_ and c � 5,d � 1 both give cS � 5, whereas c � 5,

d � 1
4
_ and c � 10,d � 1 both equate to cS � 10+ We see from the results in

Table 1 that the power of the stock test for c � 2+5,d � 1
4
_ and c � 5,d � 1 is

very similar and is also very similar for c � 5,d � 1
4
_ and c � 10,d � 1+

Finally, notice that, as expected, the simulated powers reported in part a of
Table 1 are higher than the corresponding entries in part b+ This is due to the
usual efficiency loss resulting from the estimation of an extra parameter in the
model with a linear trend+

4.4. Empirical Illustrations

Figure 1 graphs the quarterly seasonally unadjusted series of the Italian
unemployment rate over the period 1980Q1–2003Q4; the data source is Istat,
the Italian statistical office+ A random walk plus noise model, where a time-
varying seasonal component is also included as in Harvey ~1989, p+ 42!, sat-
isfactorily tracks the data, with a standard error of 0+41 and with no evidence
of serial correlation in the Kalman filter residuals+ The maximum likelihood
estimates of sh

2 and s«
2 are 0+1279 and 0+0109, with signal-to-noise ratio
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q � 11+73, whereas the variance of the seasonal component is only 0+0003+
The LBI test, applied to the seasonally adjusted data,6 provides a sound rejec-
tion of the null hypothesis of stationarity: the statistic ~4+4! is equal to 1+827
compared with the 10%, 5%, and 1% asymptotic critical values, which from
Harvey ~2001, p+ 4! are 0+347, 0+461, and 0+743, respectively+ Even with a
~superfluous! nonparametric long-run variance correction of the form consid-
ered in Kwiatkowski et al+ ~1992, pp+ 164–165! employed, the null is still
rejected at at least the 5% significance level when a lag truncation of three or
less is used in the long-run variance estimator+ As the unemployment rate is a
stock variable, on the basis of the foregoing theoretical development one would
expect, other things equal, less evidence for rejection under the alternative
if the stationarity test were to be applied to annual data+ Indeed, the LBI sta-
tistic applied to the annual data ~with no long-run variance correction! takes
the greatly reduced value 0+374, which is now only a borderline rejection
at the 10% significance level+ It is also interesting to notice that fitting a ran-
dom walk plus noise model to the annual data yields sh

2 � 0+6418 ~with s«
2

approximately zero!; this is not inconsistent with what one would compute by
multiplying by four the variance in the quarterly model; cf+ ~2+6!-~2+7!+

Consider now Figure 2, which graphs annual and biennial data ~the latter
divided by two in the graph! on the flow of the Nile over the period 1871–
1970+ The unit of measurement is cubic meters times 108; see Koopman, Har-

Figure 1. Italian unemployment rate, 1980Q1–2003Q4+
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vey, Doornik, and Shephard ~2000!+ It is known that the Aswan dam was
constructed in 1899, and consequently one has to account for a structural break
in the level of the series+ The stationarity tests therefore have to be run with a
level change in the deterministic component+ Critical values for this case are
provided in Busetti and Harvey ~2001!; for a breakpoint fraction equal to 0+3
the 10% asymptotic critical value is 0+189+ The LBI statistic for the biennial
data takes the value 0+086, signaling no evidence that a random walk compo-
nent is present in the data+ Consonant with the large-sample theory, doubling
the number of observations by running the test on the annual data does not
alter our inference; the LBI statistic takes the value 0+089, which is virtually
unchanged from that obtained from the biennial data+

Figure 3 depicts the monthly inflation rate in Japan, computed as first differ-
ence of the logarithm of the Consumer Price Index; the source is the Bank of
International Settlements+ Inflation can be regarded as a flow variable because
it is the first difference of a stock and it is clearly measured with respect to an
interval of time+ Quarterly inflation can be calculated equivalently as a three-
period average of the monthly data or as the three-month differences of the
logarithm of the price index+ To allow for serial dependence in the series, we
calculated the KPSS statistic ~Kwiatkowski et al+, 1992, equation ~13!, p+ 165!
~notice that this is just the LBI statistic of ~4+7! with the OLS variance estima-
tor in the denominator replaced by a corresponding long-run variance estima-
tor!, on both monthly and quarterly inflation+ We computed KPSS statistics

Figure 2. Flow of the Nile, 1871–1970+
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over the full-sample data ~1985–2002, with a time span, N, equal to 72 quar-
ters! and over the two subsamples 1985–1993 and 1994–2002, each of which
has N � 36+ The statistics were calculated for two values, x � 4 and x � 8,
of the lag truncation parameter suggested in Kwiatkowski et al+ ~1992!,
� � int@x~T0100!104# , where T is the number of sample observations+ To account
for deterministic seasonal fluctuations in the series, the residuals used in com-
puting the statistics were obtained in each case from regressing the observed
data on a set of conventional seasonal dummies+ Doing so does not alter the
large-sample behavior of the resulting statistics vis-à-vis the case where only a
constant is included; cf+ Phillips and Jin ~2002!+

For the full-sample data there is rather strong evidence against the null hypoth-
esis of stationarity: for the monthly data with x � 4 and x � 8 the KPSS statis-
tic takes the values 0+863 and 0+662, respectively, which are significant at the
1% and 5% significance levels, respectively; for the quarterly data the corre-
sponding outcomes are 0+573 and 0+420, which are significant at the 5% and
10% levels, respectively+ In contrast, for the first subsample, 1985–1993, the
outcomes for the monthly ~quarterly! data with x � 4 and x � 8 are 0+367 and
0+330 ~0+311 and 0+229!, whereas for the second subsample, 1994–2002, the
corresponding outcomes are 0+282 and 0+283 ~0+283 and 0+235!, all but the first
of which are insignificant at the 10% level+ These outcomes are consistent with
the theoretical prediction that the power of the test can only be increased by
enlarging the span of the data+ Qualitatively similar results were also found for

Figure 3. Inflation rate in Japan, 1985M1–2002M12+
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other subsamples of length N � 36, so that the observed results are not merely
attributable to the particular sample split reported+

5. STATIONARITY TESTS WITH MIXED FREQUENCY DATA

As Harvey ~1989, p+ 325! comments, “A series may sometimes consist of obser-
vations at two different timing intervals+ For example, observations may, at first,
only be available on an annual basis, whereas later on they are collected every
quarter+” In this section we explore the impact of such mixed frequency data
on tests of H0 of ~2+4! against H1 of ~2+5! for both stock and flow variables+
Because both subsamples include information about the trend, how we handle
the mixed frequency data is potentially important for the power properties of
the resulting test+

In this section we derive the exact LBI tests for both stock and flow vari-
ables in cases where we have a sample of mixed frequency data+We show that
the LBI statistics have nonpivotal limiting distributions+ We compare the exact
LBI tests with simple modifications of these statistics, constructed to have piv-
otal limiting distributions, and also tests that are constructed from the aggre-
gated data+ The former are obtained by applying the statistic NM of ~1+3! to
each of the two subsamples and adding the resulting statistics together, whereas
the latter are tests that aggregate the more frequently observed data so as to
have the same sampling frequency as the data from the first interval; see Har-
vey ~1989, p+ 310!+

In what follows, we suppose that for some l � @0,1# the first @lT # observa-
tions have been made with a sampling frequency of one, possibly annually as
in Harvey’s example given previously, whereas the remaining T � @lT # obser-
vations are made with a sampling frequency of d�1 � 1;7 for example, the case
where the first half of the available sample data consists of annual observations
and the second half of quarterly observations corresponds to l � 0+5 and d �
1
4
_ + The corresponding sequence of intraobservation intervals will therefore be
given by

dt � �1 1 � t� @lT #

d @lT #� 1 � t� T+

Consequently, the LBI tests for H0 of ~2+4! against H1 of ~2+5! for the case of
stock and flow variables reject for large values of the statistics given in ~3+2!
and ~3+6!, respectively, on setting the dt as before in the formulation thereof+
Moreover, notice that

tt [ (
j�1

t

dj � �t 1 � t� @lT #

dt� ~1 � d!@lT # @lT #� 1 � t� T
(5.1)

and thus N [ tT � @lT # � d~T � @lT # !+

STATIONARITY TESTS FOR IRREGULARLY SPACED OBSERVATIONS 777

https://doi.org/10.1017/S0266466605050401 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050401


The limiting distribution of the LBI statistic for the case of a stock variable,
LS , under H0 of ~2+4! follows using ~3+3!, ~C+4! in Appendix C, and the CMT+
Specifically,

LS n �
0

l

BS,j~r!
2 dr � d�

l

1

BS,j~r!
2 dr+ (5.2)

The form of the limiting process BS,j~r! depends on the deterministic compo-
nent a~t !+ For j� 1, the constant case, it was demonstrated in Section 2+1 that
at � a in ~2+6!-~2+7!, regardless of dt, and hence eS are simply the demeaned
observations on yt+ Consequently, BS,1~r! will be a standard Brownian bridge
process+ For j� 2, the linear trend case, the form of the limiting process BS,2~r!
is more complicated and is given in part C1 of Appendix C+

Turning to the flow variable case, the limiting distribution8 of LF
* under H0

of ~2+4! can similarly be established as

LF
* n �

0

l

BF,j~r!
2 dr � d�

l

1

BF,j~r!
2 dr+ (5.3)

Again the form of the limiting process BF,j~r! depends on a~t !+ For j � 1, it
follows from the results in Section 2+2 that At� a for 1 � t � @lT # and At�
ad for @lT #� 1 � t � T, in ~2+6!-~2+7!+ It then follows that the residual vector
eF has tth element

et,F � dt
�102�Yt� dt(Yt 0N� � �Yt�(Yt 0N t� @lT # ,

d�102 �Yt� d(Yt 0N� t � @lT # ,

from which it follows, as demonstrated in part C2 of Appendix C, that

BF,1~r!

[ �d 102~W~1!� W~l!!� ~W~l!� W~r!!� ~d~1 � l!� l� r!J r � l,

d 102~W~1!� W~r!!� d~1 � r!J r � l,

where J [ ~l � d~1 � l!!�1~W~l! � d 102~W~1! � W~l!!! and W~r! is a stan-
dard Brownian motion+ The form of the limiting process BF,2~r! is more com-
plicated and is given in part C3 of Appendix C+

As is clear from ~5+2! and ~5+3! the limiting null distributions of the LS and
LF
* statistics depend in a complicated manner on two nuisance parameters, d

and l+ Consequently, asymptotic critical values for the two tests will need
to be tabulated across these two parameters+ In parts a and b of Table 2 we
present the upper-tail 1%, 5%, and 10% fractiles from the right members of
~5+2! and ~5+3!, respectively, for l � $0+25,0+50,0+75% and d � $1, 12_ ,

1
4
_ , 16_ ,

1
12
_ % ,

for both j � 1 ~constant! and j � 2 ~linear trend!+ In each case these were
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Table 2. Upper tail fractiles from the asymptotic null distributions of the LS

and LF
* statistics

Sampling interval d

1 1
2
_ 1

4
_ 1

6
_ 1

12
_

~a! Constant level case
LS

l � 0+25 0.90 0+347 0+196 0+124 0+101 0+080
0.95 0+461 0+259 0+164 0+134 0+107
0.99 0+743 0+416 0+264 0+217 0+176

l � 0+50 0.90 0+347 0+260 0+221 0+209 0+197
0.95 0+461 0+345 0+295 0+280 0+264
0.99 0+743 0+562 0+490 0+468 0+448

l � 0+75 0.90 0+347 0+324 0+315 0+311 0+308
0.95 0+461 0+434 0+420 0+416 0+412
0.99 0+743 0+707 0+690 0+684 0+678

LF
*

l � 0+25 0.90 0+347 0+135 0+066 0+049 0+034
0.95 0+461 0+180 0+088 0+064 0+045
0.99 0+743 0+288 0+143 0+106 0+073

l � 0+50 0.90 0+347 0+194 0+134 0+117 0+102
0.95 0+461 0+253 0+176 0+154 0+133
0.99 0+743 0+416 0+287 0+249 0+213

l � 0+75 0.90 0+347 0+267 0+231 0+219 0+208
0.95 0+461 0+354 0+307 0+293 0+278
0.99 0+743 0+566 0+486 0+460 0+438

~b! Linear trend case
LS

l � 0+25 0.90 0+119 0+074 0+048 0+038 0+025
0.95 0+149 0+092 0+060 0+047 0+031
0.99 0+218 0+138 0+091 0+070 0+045

l � 0+50 0.90 0+119 0+085 0+065 0+057 0+050
0.95 0+149 0+105 0+079 0+071 0+062
0.99 0+218 0+152 0+115 0+104 0+094

l � 0+75 0.90 0+119 0+104 0+097 0+094 0+092
0.95 0+149 0+130 0+121 0+118 0+116
0.99 0+218 0+190 0+179 0+176 0+173

LF*

l � 0+25 0.90 0+119 0+046 0+023 0+017 0+012
0.95 0+149 0+057 0+028 0+021 0+014
0.99 0+218 0+085 0+041 0+030 0+021

l � 0+50 0.90 0+119 0+067 0+046 0+040 0+035
0.95 0+149 0+083 0+058 0+050 0+043
0.99 0+218 0+121 0+065 0+074 0+063

l � 0+75 0.90 0+119 0+092 0+079 0+075 0+071
0.95 0+149 0+114 0+098 0+093 0+088
0.99 0+218 0+166 0+143 0+137 0+129
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calculated via direct simulation ~i+e+, approximating the limit functionals using
partial sums of normal random variables! for T � 5,000, using 50,000 Monte
Carlo replications+

There is, however, a simple way of obtaining statistics in both stock and flow
cases that have pivotal limiting null distributions in the presence of mixed fre-
quency observations+ In what follows the subscript index i is used to denote either
the case of a stock variable, i � S, or of a flow variable, i � F+ Define the vec-
tors of OLS residuals Iei

* � ~ Ie1, i
* , + + + , IeT, i

* !' , i � S,F, as follows+ For the case of
stock variables these are obtained from regressing yt on either ~1, ht~l!!' , for
the constant case, or, for the linear trend case, ~1,t, ht~l!,tht~l!!' , t� 1, + + +T,
where ht~l! [ 1~t � @lT # !, 1~{! the usual indicator function+ For the case of
flow variables the same regressions are computed on replacing yt by Yt+

Using these residuals we then construct the modified statistics

ZLi
* �

(
t�1

@lT #�(
k�t

T

Iek, i�2

@lT # (
t�1

@lT #

Iet, i2

�

(
t�@lT #�1

T �(
k�t

T

Iek, i�2

~T � @lT # ! (
t�@lT #�1

T

Iet, i2

, i � S,F+ (5.4)

It is important to notice that for both stock and flow variables, the left member
of ~5+4! is constructed by applying the statistic NM of ~1+3! separately to each
of the two subsamples, $1, + + + , @lT #% and $@lT # � 1, + + + ,T % , of stock or flow
data and then taking the sum of the two resulting subsample statistics+ In doing
so we are clearly ignoring the information on the sequence of intraobservation
intervals dt, t � 1, + + + ,T+

Because, in all cases considered, (k�@lT #�1
T Iek, i [ 0, the two terms that

appear in the right member of ~5+4! are asymptotically independent+ Conse-
quently, it trivially follows from the results in Section 3 and the CMT that,
under H0 of ~2+4!,

ZLi
*n �

0

1

Bj,1~r!
2 dr ��

0

1

Bj,2~r!
2 dr, i � F,S, (5.5)

where Bj,1~r! and Bj,2~r! are independent VMj~1! distributions, j � 1,2+ By
the additive properties of the Cramér–von Mises family of distributions ~see
Busetti and Harvey, 2001, p+ 136!, we obtain that the right member of ~5+5! is a
pivotal jth-level Cramér–von Mises distribution with two degrees of freedom,
denoted VMj~2!, j � 1,2+ Critical values from the VM1~2! and VM2~2! distri-
butions are tabulated in Nyblom and Harvey ~2000! and Harvey ~2001!+

One might also consider aggregating the second subsample of data such
that the aggregated observations in the second subsample have the same sam-
pling frequency as the data from the first interval+ The aggregated stock and
flow data are given by yt � y~t! and Yt � *t�1

t y~r! dr, t � 1,2, + + + ,N, which
we collect into the N-dimensional vectors yS

* � ~ y1, y2, + + + , yN !
'and yF

* �
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~Y1,Y2, + + + ,YN !
' , respectively+ We then simply apply the standard stationarity

test, NM of ~1+3!, to yS
* and yF

* , respectively+ In what follows we will denote
the resulting statistics as LS,0 and LF,0

* , respectively+ It is trivial to show that
both LS,0 and LF,0

* weakly converge under H0 of ~2+4!, as T r `, to VMj~1!
distributions, j � 1,2+ For j � 1 the residuals used in constructing the LS,0

and LF,0
* statistics are the demeaned yS

* and yF
* , respectively, whereas for

j � 2 they are formed as the detrended yS
* and yF

* , respectively+
Both the modified statistics of ~5+4! and the statistics based on the aggre-

gated data ignore the infraperiod aspect of the data+ One might expect that in
the case of flow variables these tests will have very similar power properties to
the test based on LF

* ~which is approximately LBI! because, as shown in Sec-
tion 4, power does not increase with the sampling frequency in the case of flow
variables+ In contrast, the results in Section 4+3 would lead us to expect signif-
icant power losses from ignoring the infraperiod information in the case of stock
variables+ We now use numerical methods to explore these issues further+

5.1. Monte Carlo Simulations

In this section we simulate mixed frequency data for d � $1, 12_ ,
1
4
_ , 16_ ,

1
12
_ % and l �

$0+25,0+50,0+75%+ Using the observed data, yt ~stock! and Yt ~flow!, we com-
pute the statistics LS , LF

* , ZLS
* , and ZLF

* + The first two statistics are then compared
with the asymptotic 5% critical values from Table 2, parts a and b, and the
latter two with the upper 5% point from the VMj~2! distribution, that is, 0+748
for a constant level j � 1 and 0+247 for the linear trend case j � 2; see, for
example, Harvey ~2001!+ In addition we also consider the standard NM statis-
tics, denoted LS,0 and LF,0

* , applied to the aggregated stock and flow data, yS
*

and yF
* , as described previously+

Specifically, we simulate the local level process ~1+1!-~1+2! for t �1,2, + + + ,960d,
across d � $1, 12_ ,

1
4
_ , 16_ ,

1
12
_ % + Taking d� 1 to represent yearly data, we consider the

cases of annual observations that become biannual, quarterly, bimonthly,monthly
when d assume the values 1

2
_ , 14_ ,

1
6
_ , 1

12
_ , respectively+ The signal-to-noise ratio is set

to sh
20s«2 � c20~960d!2, for c � 0,2+5,5,10, so that we may simulate the power

functions of the tests in terms of the magnitude of the local alternative hypoth-
esis in a process generated with constant sampling frequency d�1 +

From this underlying data generating process ~DGP! we obtain mixed fre-
quency observations for stock and flow variables, where the first @lT # obser-
vations are sampled with unit frequency ~annual! and the remaining T � @lT #
observations are sampled with frequency d�1 � 1+ In particular, for each d,
data have been generated with frequency d�1 and then aggregated only in the
first subsample to obtain observations with unit frequency+9 Notice that T � 96
in all cases, whereas l varies among $0+25,0+50,0+75%+

Parts a–c of Table 3 report the empirical rejection frequencies, as functions
of c, d, and l, for the tests that reject for large values of the LBI statistics LS ,
LF
* , the simplified statistics ZLS

* , ZLF
* , and the standard NM statistics LS,0, LF,0

*

STATIONARITY TESTS FOR IRREGULARLY SPACED OBSERVATIONS 781

https://doi.org/10.1017/S0266466605050401 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050401


Table 3. Simulated rejection probabilities ~� 100! for the mixed frequency
DGP

Constant level Linear trend

d 1 1
2
_ 1

4
_ 1

6
_ 1

12
_ 1 1

2
_ 1

4
_ 1

6
_ 1

12
_

~a! l � 0+25
c � 0

LS 5+3 4+9 4+5 4+1 4+7 4+7 5+4 5+8 5+2 5+0
ZLS 5+2 5+0 4+8 5+1 4+4 5+3 5+3 5+7 5+1 4+9

LS,0 5+3 4+9 4+9 5+1 5+0 4+7 4+9 5+3 5+1 5+2
LF
* 5+3 5+1 4+6 4+8 4+9 4+7 5+4 5+4 4+7 4+9
ZLF 5+2 5+0 5+1 4+8 4+4 5+3 5+5 5+6 5+2 4+8

LF,0
* 5+3 5+1 4+6 4+8 4+9 4+7 4+9 5+0 4+8 4+6

c � 2+5
LS 13+3 13+1 14+9 16+6 22+7 6+9 8+3 9+3 9+4 10+4
ZLS 8+6 8+7 8+9 9+6 10+4 6+2 6+3 7+0 6+3 6+6

LS,0 13+3 10+3 10+3 11+0 13+1 6+9 6+6 6+7 6+4 6+8
LF
* 13+3 16+8 25+8 34+9 56+5 6+9 8+9 12+2 15+2 31+8
ZLF 8+6 9+3 13+6 18+0 38+1 6+2 6+7 7+7 8+7 16+2

LF,0
* 13+3 16+8 25+0 33+3 52+2 6+9 8+4 11+2 14+5 27+4

c � 5+0
LS 30+7 32+2 37+2 41+1 49+2 13+2 16+5 20+3 21+1 25+9
ZLS 18+8 20+1 22+8 24+0 30+0 9+1 9+5 10+3 10+4 11+9

LS,0 30+7 25+2 24+6 25+8 30+9 13+2 11+7 11+4 11+0 12+8
LF
* 30+7 39+2 52+9 64+1 81+6 13+2 18+8 29+7 39+8 68+1
ZLF 18+8 22+3 35+3 46+0 66+0 9+1 10+4 14+2 19+4 39+6

LF,0
* 30+7 38+7 50+9 59+9 74+5 13+2 17+7 27+4 36+0 57+0

c � 10
LS 59+5 62+5 67+8 70+5 75+6 34+6 41+0 48+0 51+2 60+1
ZLS 45+7 48+7 54+9 58+3 66+2 20+8 22+4 24+9 26+9 33+0

LS,0 59+5 52+2 51+0 51+8 56+7 34+6 28+1 27+5 27+6 31+8
LF
* 59+5 67+9 79+3 86+6 94+9 34+6 46+8 63+8 74+6 92+9
ZLF 45+7 55+1 70+0 77+2 85+7 20+8 25+1 37+7 49+6 70+1

LF,0
* 59+5 66+5 74+9 79+9 85+6 34+6 43+8 58+2 66+9 79+6

~b! l � 0+5
c � 0

LS 5+3 5+4 5+1 5+1 5+4 4+7 5+3 5+4 5+3 5+8
ZLS 4+9 5+1 4+9 4+9 4+8 5+4 5+3 5+5 5+1 5+2

LS,0 5+3 4+8 4+9 5+0 5+0 4+7 5+1 4+9 5+1 5+1
LF
* 5+3 5+8 5+1 5+3 5+0 4+7 5+5 4+9 4+9 5+0
ZLF 4+9 5+5 4+6 4+6 4+9 5+4 5+4 5+7 5+0 4+9

LF,0
* 5+3 5+4 4+9 5+2 4+9 4+7 5+4 4+9 4+7 4+8

c � 2+5
LS 13+3 16+4 23+8 29+5 42+1 6+9 8+4 9+7 11+0 16+5
ZLS 7+4 9+1 11+2 13+7 21+3 5+8 6+5 7+1 7+5 9+5

LS,0 13+3 12+9 16+7 19+6 26+8 6+9 7+4 7+9 8+6 11+6
LF
* 13+3 22+3 39+7 53+9 77+8 6+9 10+2 18+3 29+1 59+7
ZLF 7+4 12+2 25+6 40+1 65+9 5+8 7+0 11+5 18+3 44+2

LF,0
* 13+3 21+4 38+4 52+3 74+5 6+9 10+0 17+8 27+7 55+8

continued
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Table 3. Continued

Constant level Linear trend

d 1 1
2
_ 1

4
_ 1

6
_ 1

12
_ 1 1

2
_ 1

4
_ 1

6
_ 1

12
_

~b! l � 0+5 ~continued!
c � 5+0

LS 30+7 38+1 49+7 56+3 68+1 13+2 18+1 22+6 27+6 41+1
ZLS 15+8 21+1 29+5 36+4 48+8 8+0 9+8 13+0 14+9 23+0

LS,0 30+7 31+9 38+4 43+9 54+2 13+2 14+5 17+0 20+3 29+7
LF
* 30+7 47+4 69+0 80+2 93+2 13+2 23+6 45+8 64+1 88+9
ZLF 15+8 30+5 54+5 68+5 84+8 8+0 12+6 28+8 45+5 74+9

LF,0
* 30+7 46+3 66+6 77+4 89+7 13+2 22+9 44+2 60+5 84+0

c � 10
LS 59+5 66+9 74+6 79+2 86+4 34+6 44+0 55+4 62+1 75+0
ZLS 43+0 52+7 63+7 69+2 78+7 17+3 23+2 33+3 41+1 55+4

LS,0 59+5 60+2 66+4 70+8 78+4 34+6 36+6 43+9 49+4 63+1
LF
* 59+5 74+7 89+1 94+2 98+2 34+6 55+9 79+3 90+7 98+1
ZLF 43+0 64+2 82+6 88+5 93+9 17+3 33+3 62+5 77+9 90+8

LF,0
* 59+5 73+2 86+7 91+5 95+1 34+6 54+3 76+0 86+6 94+8

~c! l � 0+75
c � 0

LS 5+3 4+9 4+9 4+8 4+5 4+7 5+1 5+1 5+5 4+7
ZLS 5+1 4+9 5+0 5+3 4+5 5+2 5+4 4+9 5+5 5+1

LS,0 5+3 5+3 4+7 4+9 4+9 4+7 5+1 4+7 5+3 5+0
LF
* 5+3 4+9 4+5 4+7 4+4 4+7 5+1 4+6 4+5 4+9
ZLF 5+1 5+4 5+0 5+1 4+6 5+2 5+6 5+1 5+6 4+9

LF,0
* 5+3 5+0 4+7 5+0 4+5 4+7 5+1 4+5 4+4 4+8

c � 2+5
LS 13+3 18+9 28+9 35+0 51+0 6+9 8+9 11+7 15+7 23+8
ZLS 8+7 11+0 17+5 22+9 34+4 5+9 7+3 8+6 10+6 15+5

LS,0 13+3 16+3 23+2 28+7 41+0 6+9 8+1 9+5 12+7 19+2
LF
* 13+3 25+8 49+6 65+6 86+8 6+9 11+8 26+1 42+5 76+9
ZLF 8+7 17+6 40+9 57+4 80+9 5+9 8+9 19+5 32+2 67+4

LF,0
* 13+3 25+8 49+8 65+5 85+8 6+9 11+7 25+5 41+5 75+1

c � 5+0
LS 30+7 42+6 56+8 64+2 76+2 13+2 19+8 29+7 38+5 54+8
ZLS 18+9 28+4 41+5 49+9 63+5 8+6 12+7 19+5 25+3 40+2

LS,0 30+7 38+5 49+5 57+0 69+9 13+2 17+4 25+0 31+6 47+5
LF
* 30+7 53+0 77+1 87+3 96+5 13+2 29+1 59+8 77+6 95+1
ZLF 18+9 42+2 69+0 81+3 92+5 8+6 20+2 48+1 66+7 89+9

LF,0
* 30+7 52+8 76+6 86+6 95+4 13+2 29+2 58+9 76+3 93+7

c � 10
LS 59+5 70+6 81+2 86+0 91+8 34+6 47+7 63+8 72+0 85+1
ZLS 44+6 58+1 71+2 77+3 85+7 20+1 32+9 49+0 58+1 74+3

LS,0 59+5 67+2 76+1 81+4 88+9 34+6 44+2 58+8 66+7 80+2
LF
* 59+5 79+4 93+1 96+5 98+9 34+6 63+6 89+1 95+5 99+2
ZLF 44+6 70+9 88+6 93+4 96+5 20+1 49+0 80+4 90+1 96+6

LF,0
* 59+5 78+9 92+5 95+8 98+2 34+6 63+0 87+9 94+3 98+4
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applied to the aggregated stock and flow data, as explained in the previous sec-
tion+ Notice that the latter two are computed for a number of observations equal
to ~l � d~1 � l!!T � T+

First notice that for d � 1 the results in Table 3, parts a–c, are much the
same because here the observation frequency is constant throughout the sam-
ple+ Moreover, here the results for the LBI tests closely resemble the simulated
local limiting powers reported in Table 1, parts a and b, for d � 1+ Notice also
that in Table 3, parts a–c, but not in Table 1, parts a and b, the time span N
increases as d reduces: N � ~l0d� 1 � l!T+ It is therefore no surprise that the
simulated power of the tests for both stock and flow turns out to be, in general,
an increasing function of the sample frequency d�1+

Consider now in particular part b of Table 3, where l� 0+5, that is, the case
where half of the data are observed on an annual basis and the remaining half
at higher frequency+ The empirical size, contained in the first six rows of the
table where c � 0, is reasonably close to the nominal asymptotic 5% level for
all reported tests+ For stock variables the highest power is achieved by using
the LBI test LS + Here the power loss from ignoring the more finely available
observations and running the standard Nyblom and Mäkeläinen ~1983! test on
the aggregated data, namely, using the statistic LS,0, is not negligible; for exam-
ple, in the case of constant level with c � 2+5 and d� 1

12
_ the use of the LBI test

yields power of 42+1%, as against 26+8% when using the corresponding aggre-
gated data+ Despite using all available data, the modified test ZLS that combines
the evidence in the two subsamples is less powerful than ZLS,0, with power of
21+3% in the foregoing example+ This is attributable to the efficiency loss
incurred by having to estimate additional parameters+ For flow variables, on
the other hand, the power losses from using aggregate data appear negligible+
In the example used previously, where c � 2+5 and d � 1

12
_ , the rejection fre-

quencies are 77+8% for the LBI test LF
* and 74+5% for the Nyblom and

Mäkeläinen test LF,0
* for the case of constant level+ Again, and for the same

reason, lower power, 65+9%, is obtained by running the modified test ZLF +
The results for the linear trend case are qualitatively similar to those reported

for a constant level, although for each configuration of d, l, and c power is
smaller+ This is analogous to what happens in the standard Nyblom and
Mäkeläinen ~1983! tests; cf+ Kwiatkowski et al+ ~1992!+

The results reported in parts a and c of Table 3, where l is 0+25 and 0+75,
respectively, are also broadly similar to the corresponding results for l� 0+50+
The main difference is the lower ~respectively higher! power than in part b+
This can be easily explained by looking at the span of the data N � ~l0d �
1 � l!T, which, for d � 1, is increasing in l+

In summary, the Monte Carlo results strongly suggest using the LBI test if
the variables are stock; the critical values for l � $0+25,0+50,0+75% are pro-
vided in parts a and b of Table 2; for other values of l they can be obtained
from the authors on request+ For flow variables, on the other hand, it appears
that near-efficient tests can be obtained even when one ignores the more finely

784 FABIO BUSETTI AND A.M. ROBERT TAYLOR

https://doi.org/10.1017/S0266466605050401 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050401


available observations, because, as we have already seen, the limiting power
properties of the tests for flow variables depend on the span of the data and not
the number of sample observations+

6. CONCLUSIONS

Using a continuous-time framework in this paper we have derived locally best
invariant ~LBI! stationarity tests for both stock and flow data available at poten-
tially irregularly spaced points in time+ The resulting tests were shown to differ
between stock and flow variables+ The special case of mixed frequency data
was analyzed in detail with asymptotic critical values and a power study pro-
vided+ Our results suggested that tests based on statistics that ignore the infra-
period aspect of the data, such as those constructed from aggregated data, involve
rather small losses in efficiency, relative to the LBI test, for the case of flow
variables but can incur significant efficiency losses when dealing with stock
variables+ We have also demonstrated that where the data are observed at reg-
ular intervals throughout the sample the LBI tests for stock and flow data reduce
to the form of the standard stationarity test of, inter alia, Nyblom and Mäkeläinen
~1983! applied to the observed stock and flow data, respectively+ These statis-
tics were shown to have Cramér–von Mises limiting null distributions+ For reg-
ularly sampled data we also demonstrated that the asymptotic local power of
the LBI test increases with the sampling frequency in the case of stock vari-
ables but not for flow variables+ Moreover, for a fixed time span the LBI test
for stock variables was shown to be consistent against a fixed alternative as the
sampling frequency increased to infinity+ This was shown not to be true in the
case of flow variables+

Although we have focused on issues concerned with testing against a unit
root at frequency zero, the analysis of this paper can be extended to the sea-
sonal stationarity tests developed in, inter alia, Canova and Hansen ~1995!+ As
an example, if one had mixed frequency data observed first annually and then
subsequently quarterly it is clear that only the second subsample contains infor-
mation useful in constructing tests against seasonal frequency unit roots+ How-
ever, if our data were available first quarterly and then monthly, information on
the seasonal spectral frequencies p and p02 ~3p02! would be contained in both
subsamples+ Consequently, seasonal unit root tests for mixed frequency data,
akin to those developed in Section 5, can be constructed to be more powerful
~in the case of stock variables! than those based on data where the monthly
data are aggregated to quarterly data+ Moreover, by adopting a continuous-time
framework one can also show that, in the case of stock variables, tests against,
for example, a pair of complex conjugate unit roots at frequency p02 ~3p02!
will be consistent against fixed alternatives for the case where a fixed data span
is available but where the sampling frequency tends to infinity as a multiple of
four+
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NOTES

1+ The result in ~1+4! and those that follow also hold under considerably weaker, martingale
difference, conditions on the irregular and level disturbance processes; see Stock ~1994, pp+ 2745,
2794–2799! for details+

2+ Notice that the signal-to-noise ratios that are subsequently obtained for the discrete-time ana-
logues for stock and flow variables are derived, rather than structural, parameters+

3+ More sophisticated models, including those with common trends and cointegration in contin-
uous time, have been considered by Harvey and Stock ~1988, 1989!, Phillips ~1991!, and Comte
~1999!, inter alia+

4+ Notice that Harvey and Stock ~1993! write ~2+9! with mt�1 in place of mt and redefine
«t
* accordingly+ Save for the minus sign in the expression for Cov~«t

*,ht!, the two representa-
tions coincide+ Moreover, Chambers and McGarry ~2002, p+ 395! choose a different formulation
where the disturbance terms in the discrete-time observation and transition equations are uncor-
related ~both temporally and contemporaneously! but the latter follows an MA~1! process+
The nonorthogonal representation, ~2+9!-~2+10!, is clearly the more useful in the context of this
paper+

5+ Recall from Section 1 that the nomenclature VMj~1!, j � 1,2, denotes, respectively, first-
and second-level Cramér–von Mises distributions with one degree of freedom+

6+ The data were seasonally adjusted in the context of the basic structural model of Harvey
~1989, p+ 47!, using the inbuilt seasonal adjustment procedure in the STAMP 6+0 package of Koop-
man et al+ ~2000!+

7+ One might also consider the case where d�1 � 1, that is, where observations become avail-
able at less frequent intervals after time @lT # + The theory that follows is also appropriate to this
case, but we choose to focus on d�1 � 1 because this seems more likely in practice+ Moreover,
although we have set the sampling frequency in the first subsample to be one this also involves no
loss of generality+

8+ Recall from Section 3+2 that LF
* and LF are asymptotically equivalent+

9+ Notice that the Monte Carlo experiments reported in this section involve ~partial! temporal
aggregation over fixed time intervals and thus are slightly different from those of Section 4+3,
where data were generated from the exact discrete-time analogues of the underlying continuous-
time process+

REFERENCES

Bailey, R+W+ & A+M+R+ Taylor ~2002! An optimal test against a random walk component in a non-
orthogonal unobserved components model+ Econometrics Journal 5, 520–532+

Bergstrom, A+R+ ~1983! Gaussian estimation of structural parameters in higher order continuous
time dynamic models+ Econometrica 51, 117–152+

Bergstrom, A+R+ ~1984! Continuous time stochastic models and issues of aggregation over time+
In Z+ Griliches & M+ Intriligator ~eds+!, Handbook of Econometrics, vol+ 2, pp+ 1145–1212+
North-Holland+

Bergstrom, A+R+ ~1985! The estimation of parameters in nonstationary higher-order continuous-
time dynamic models+ Econometric Theory 1, 369–385+

Bergstrom,A+R+ ~1986! The estimation of open higher-order continuous-time dynamic models with
mixed stock and flow data+ Econometric Theory 2, 350–373+

Busetti, F+ & A+C+ Harvey ~2001! Testing for the presence of a random walk in series with struc-
tural breaks+ Journal of Time Series Analysis 22, 127–150+

Canova, F+ & B+E+ Hansen ~1995! Are seasonal patterns constant over time? A test for seasonal
stability+ Journal of Business & Economic Statistics 2, 292–349+

Chambers, M+J+ ~2004! Testing for unit roots with flow data and varying sampling frequency+ Jour-
nal of Econometrics 119, 1–18+

786 FABIO BUSETTI AND A.M. ROBERT TAYLOR

https://doi.org/10.1017/S0266466605050401 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050401


Chambers,M+J+ & J+McGarry ~2002!Modelling cyclical behavior with differential-difference equa-
tions in an unobserved components framework+ Econometric Theory 18, 387– 419+

Comte, F+ ~1999! Discrete and continuous time cointegration+ Journal of Econometrics 88,
207–226+

Doornik, J+A+ ~1998! Object-Oriented Matrix Programming Using Ox 2.0+ Timberlake Consultants
Press+

Harvey, A+C+ ~1989! Forecasting, Structural Time Series Models and the Kalman Filter+ Cam-
bridge University Press+

Harvey, A+C+ ~2001! Testing in unobserved components models+ Journal of Forecasting 20,
1–19+

Harvey, A+C+ & J+H+ Stock ~1988! Continuous time autoregressive models with common stochastic
trends+ Journal of Economic Dynamics and Control 12, 365–384+

Harvey, A+C+ & J+H+ Stock ~1989! Estimating integrated higher-order continuous time auto-
regressions with an application to money-income causality+ Journal of Econometrics 42,
319–336+

Harvey, A+C+ & J+H+ Stock ~1993! Estimation, smoothing, interpolation, and distribution for struc-
tural time-series models in continuous time+ In P+C+B+ Phillips ~ed+!, Models, Methods, and Appli-
cations of Econometrics: Essays in Honour of A.R. Bergstrom, pp+ 55–70+ Blackwell+

Imhof, J+P+ ~1961! Computing the distribution of quadratic forms in normal variables+ Biometrika
48, 419– 426+

King, M+L+ & G+H+ Hillier ~1985! Locally best invariant tests of the error covariance matrix of the
linear regression model+ Journal of the Royal Statistical Society, Series B 47, 98–102+

Koopman, S+J+, A+C+ Harvey, J+A+ Doornik, & N+ Shephard ~2000! STAMP 6.0, Structural Time
Series Analyser, Modeller and Predictor+ Chapman and Hall+

Kwiatkowski, D+, P+C+B+ Phillips, P+ Schmidt, & Y+ Shin ~1992! Testing the null hypothesis of sta-
tionarity against the alternative of a unit root: How sure are we that economic time series have a
unit root? Journal of Econometrics 54, 159–178+

Nabeya, S+ & K+ Tanaka ~1988! Asymptotic theory of a test for the constancy of regression coef-
ficients against the random walk alternative+ Annals of Statistics 16, 218–235+

Ng, S+ ~1995! Testing for unit roots in flow data sampled at different frequencies+ Economics Let-
ters 47, 237–242+

Nishino, H+ ~2002! Stationarity Test for Data with Missing Observations+ Manuscript, Faculty of
Law and Economics, Chiba University, Japan+

Nyblom, J+ ~1986! Testing for deterministic linear trend in time series+ Journal of the American
Statistical Association 81, 545–549+

Nyblom, J+ & A+C+ Harvey ~2000! Tests of common stochastic trends+ Econometric Theory 16,
176–199+

Nyblom, J+ & T+ Mäkeläinen ~1983! Comparisons of tests for the presence of random walk coeffi-
cients in a simple linear model+ Journal of the American Statistical Association 78, 856–864+

Perron, P+ ~1991! Test consistency with varying sampling frequency+ Econometric Theory 7,
341–368+

Phillips, P+C+B+ ~1987! Time series regression with a unit root+ Econometrica 55, 277–301+
Phillips, P+C+B+ ~1991! Error correction and long-run equilibrium in continuous time+ Economet-

rica 59, 967–980+
Phillips, P+C+B+ & S+ Jin ~2002! The KPSS test with seasonal dummies+ Economics Letters 77,

239–243+
Phillips, P+C+B+ & Z+ Xiao ~1998! A primer on unit root testing+ Journal of Economic Surveys 12,

423– 470+
Stock, J+H+ ~1994! Unit roots, structural breaks and trends+ In R+F+ Engle & D+L+ McFadden ~eds+!,

Handbook of Econometrics, vol+ 4, pp+ 2739–2840+ Elsevier Science+
Tanaka, K+ ~1996! Time Series Analysis: Nonstationary and Noninvertible Distribution Theory+Wiley+

STATIONARITY TESTS FOR IRREGULARLY SPACED OBSERVATIONS 787

https://doi.org/10.1017/S0266466605050401 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050401


Wymer, C+ ~1993! Estimation of nonlinear continuous-time models from discrete data+ In P+C+B+
Phillips ~ed+!, Models, Methods and Applications of Econometrics: Essays in Honour of A.R.
Bergstrom, pp+ 91–114+ Blackwell+

APPENDIX A

From ~2+2!-~2+1! we have that

Yt ��
tt�1

tt

y~t ! dt

��
tt�1

tt

a~t ! dt ��
tt�1

tt ��
0

t

j2~ds!� dt ��
tt�1

tt

j1~dt !

� At��
tt�1

tt �m~tt !��
t

tt

j2~ds!� dt ��
tt�1

tt

j1~dt !

� At� dt m~tt !��
tt�1

tt �
t

tt

j2~ds! dt ��
tt�1

tt

j1~dt !, (A.1)

where integrals are defined in the wide sense, with the exception of those taken with
respect to the random measure; see Bergstrom ~1984!+ Defining mt � m~tt! and «t

* �
*tt�1

tt j1~dt ! � *tt�1

tt *t
tt j2~ds! dt, write ~A+1! as

Yt � At� dt mt� «t
*,

where the transition equation is given by

mt � mt�1 � ht ,

with ht [ *tt�1

tt j2~dt !+
Using, for example, the results of Bergstrom ~1984, 1986!, we first have that

E @*tt�1

tt ji ~dt !# � 0, i � 1,2+ Moreover,

E��
tt�1

tt

j1~dt !�2

� ~tt� tt�1!s«
2

� dts«
2 , (A.2)

and, similarly, E @ht# 2 � dtsh
2 , which establishes the result for Var~ht!+ Notice also

that $ht% is serially independent+
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The result for Var~«t
*! follows from ~A+2! and noting that

E��
tt�1

tt �
t

tt

j2~ds! dt�2

� E�dtht��
tt�1

tt ��
tt�1

t

j2~ds!� dt�2

� dt
3sh

2 ��
tt�1

tt �
tt�1

tt

E��
tt�1

t

j2~ds!�
tt�1

v

j2~ds!� dt dv

� 2dtE���
tt�1

tt

j2~ds!��
tt�1

tt ��
tt�1

t

j2~ds!� dt�
� dt

3sh
2 � sh

2�
0

dt�
0

dt

min~t, v! dt dv

� 2dt�
tt�1

tt ��
tt�1

t

E @j2~ds!# 2� dt

� dt
3sh

2 �
1

3
dt

3sh
2 � 2dtsh

2�
0

dt

tdt

�
1

3
dt

3sh
2 +

Again notice that $«t
*% is serially independent+ Finally,

Cov~ht ,«t*! � �E�ht��
tt�1

tt �
t

tt

j2~ds! dt��
� E�ht�

tt�1

tt ��
tt�1

tt

j2~dt !��
tt�1

t

j2~ds!� dt�
� �E�ht2�

tt�1

tt

dt � ht�
tt�1

tt ��
tt�1

t

j2~ds!� dt�
� ��dt2 ��

tt�1

tt

~t � tt�1! dt�sh2
� ��dt2 �

1

2
~tt

2 � tt�1
2 !� dt tt�1�sh2

� �
1

2
dt

2sh
2 ,

whereas all noncontemporaneous covariances are zero+
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APPENDIX B

From ~2+9!-~2+10! the DGP for Yt
* [ Yt � At is given by Yt

* � dtmt � «t
* �

dt~(j�1
t hj ! � «t

*+ Consequently,

E~Yt
*2! � dt

2 E�(
j�1

t

hj�2

� E~«t
*!2 � 2dtE~«t

*ht!

� dt
2sh

2 tt� ~dt
3sh

203 � dts«
2!� dt

3sh
2

and, hence,

E~dt
�1 Yt

*2! � s«
2~1 � qdt tt� 203qdt

2!+

Similarly, for t � s,

E~Yt
*Ys
*! � dtds E�(

j�1

t

hj(
i�1

s

hi�� E�«t*ds(
i�1

s

hi�
� dtdssh

2 tt� 102dsdt
2sh

2

and, consequently,

E~dt
�102 Yt

*Ys
*ds

�102! � s«
2~qdt

102ds
102 tt� 102qds

102dt
302!+

APPENDIX C: Limiting Distributions
of LBI Statistics for Mixed

Frequency Data

C1: Stock Variables with Linear Trend. Under H0 of ~2+4! the discrete-time model
may be written as

yt � a � bzt� «t , «t ; NIID~0,s«2!, (C.1)

where

zt � �t t� @lT # ,

dt� ~1 � d!@lT # t � @lT # +

Let [a, Zb denote the OLS estimators from ~C+1!+ Using the following limiting results
~see also Busetti and Harvey, 2001, p+ 146!:
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T �2 (
t�1

T

zt
p
&&

1

2
d~1 � l!2 �

1

2
l~2 � l! [ k1, (C.2)

T �3 (
t�1

T

zt
2 p
&&

1

3
~1 � l!3d2 � l~1 � l!2d�

1

3
l2~3 � 2l! [ k2 , (C.3)

T �102 (
t�1

@Tr#

«t 0s«n W~r!, r � @0,1# , (C.4)

T �302 (
t�1

T

zt «t 0s«n �
0

l

rdW~r!� d�
l

1

rdW~r!� l~1 � d!~W~1!� W~l!! [ J *,

(C.5)

where W~r!, r � @0,1# , is a standard Brownian motion process, it is straightforward to
establish that

�T 102~ [a � a!

T 302~ Zb � b!�n s«k3
�k2W~1!� k1 J *

�k1W~1!� J *�,
where k3 [ k2 � k1

2+
Now, let et� «t� ~ [a � a!� zt~ Zb � b!, t� 1, + + + ,T, denote the corresponding OLS

residuals from ~C+1!+ Using the foregoing limiting results and applications of the CMT
we obtain that

T �102 (
t�1

@Tr#

et 0s« � T �102 (
t�1

@Tr#

«t 0s«� T 102~ [a � a!@Tr#0~Ts«!

� T �2 (
t�1

@Tr#

ztT
302~ Zb � b!0s«

n W~r!� r~k2W~1!� k1 J * !0k3 �
1

2
m~r!~J * � k1W~1!!0k3[ BS,2~r!,

where

m~r! � �r 2 r � l,

l2 � d~r 2 � l2 !� 2l~1 � d!~r � l! r � l+

Notice that because there is a constant term in the regression, (j�1
T ej � 0 and thus

(t�1
T ~(j�t

T ej !
2 � (t�1

T ~(j�1
t ej !

2+ Because T �1(t�1
T et

2 p
&& s«

2 , the stated limiting
distribution, ~5+2!, then follows immediately using applications of the CMT+ Notice that
for l � 0,1 and0or d � 1, BS,2~r! reduces to a standard second-level Brownian bridge
process+

C2: Flow Variables with Constant Level. Under H0 of ~2+4! the discrete-time
model may be written as

dt
�102 Yt � azt� «t , «t ; NIID~0,s«2!, (C.6)
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where

zt � �1 t� @lT # ,

d102 t � @lT # +

The OLS estimator [a from ~C+6! therefore satisfies

[a � a �

(
t�1

T

zt «t

(
t�1

T

zt
2

�

(
t�1

@lT #

«t� d102 (
t�@lT #�1

T

«t

@lT #� d~T � @lT # !
+ (C.7)

Proceeding as in part C1 of this Appendix, it is straightforward to show that

T 102~ [a � a!n s« J, (C.8)

where J � ~l � d~1 � l!!�1~W~l! � d102~W~1! � W~l!!! and W~r!, r � @0,1# , is a
standard Brownian motion process+ Routine algebra establishes that

LF
* �

eF
' D102VdD102eF

TeF
' eF

�

T �2 (
t�1

T

dt�(
j�t

T

ej dj
102�2

T �1 (
t�1

T

et
2

�

T �2�(
t�1

@lT #�(
j�t

T

ej dj
102�2

� d (
t�@lT #�1

T �(
j�t

T

ej dj
102�2�

T �1 (
t�1

T

et
2

, (C.9)

where et� «t� zt~ [a � a!, t � 1, + + + ,T, are the OLS residuals from ~C+6!+ Using ~C+8!
and applications of the CMT it is straightforward but tedious to demonstrate that

T �102 (
t�1

@Tr#

et dt
102n s«BF,1~r!, (C.10)

where BF,1~r! is as defined in the main text+ Notice that for l � 0,1 and0or d � 1,
BF,1~r! reduces to a standard Brownian bridge process+ The stated result then follows
directly from ~C+9!, ~C+10!, applications of the CMT, and the fact that T �1(t�1

T

et
2 p
&& s«

2 +

C3: Flow Variables with Linear Trend. Under H0 of ~2+4! the discrete-time model
may be written as

dt
�102 Yt � az1,t� bz2,t� «t , «t ; NID~0,s«2!, (C.11)
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where

z1,t � �1 t� @lT # ,

d102 t � @lT # ,

z2,t � �t�
1

2
t� @lT # ,

d302�t�
1

2�� d102~1 � d!@lT # t � @lT # +

Using the following limiting results ~see also Busetti and Harvey, 2001, p+ 146!:

T �1( z1,t
2 p
&& l� d~1 � l! [ k1,

T �2( z1,t z2,t
p
&&

1

2
~l2 � d 2~1 � l2 !� 2dl~1 � d!~1 � l!! [ k2 ,

T �3( z2,t
2 p

&&
1

3
~l3 � d 3~1 � l3 !� 3dl~1 � d!~1 � l!~l� d!! [ k3 ,

T �102( z1,t «t 0s«n W~l!� d 102~W~1!� W~l!! [ J1,

T �302( z2,t «t 0s«n �
0

l

rdW~r!� d 302�
l

1

rdW~r!� d 102~1 � d!l~W~1!� W~l!! [ J2 ,

where W~r!, r � @0,1# , is a standard Brownian motion process, it is straightforward to
demonstrate that

�T 102~ [a � a!

T 302~ Zb � b!�n s«k4
�k3 J1 � k2 J2

�k2 J1 � k1 J2
�,

where k4 � k1 k3 � k2
2 +

Now let et � «t � z1,t~ [a � a! � z2,t~ Zb � b!, t � 1, + + + ,T, denote the OLS residuals
from ~C+11!+ Consequently, from the foregoing limiting results and applications of the
CMT, we obtain that

T �102 (
t�@Tr#

T

et dt
1020s« � T �102 (

t�@Tr#

T

«tdt
1020s«� T �1 (

t�@Tr#

T

z1,t dt
102 T 102~ [a � a!0s«

� T �2 (
t�@Tr#

T

z2,t dt
102 T 302~ Zb � b!0s«

n BF,2~r!,
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where

BF,2~r! [ �
d102~W~1!� W~l!!� ~W~l!� W~r!!

�~ fa~l!� l� r!Ja � �fb~l!�
1

2
~l2 � r 2 !�Jb , r � l

d102~W~1!� W~r!!� fa~r!Ja � fb~r!Jb , r � l

and where fa~r!� d~1 � r!, fb~r!�
1
2
_d2~1 � r 2!� ld~1 � d!~1 � r!, Ja � k4

�1~k3 J1 �
k2 J2!, Jb � �k4

�1~k2 J1 � k1 J2!+ The stated result then follows directly from ~C+9!,
where et, t � 1, + + + ,T, in ~C+9! are now the OLS residuals from ~C+11!, applications of
the CMT, and the fact that T �1(t�1

T et
2 p
&& s«

2 + Again, notice that for l � 0,1 and0or
d � 1, BF,2~r! reduces to a standard second-level Brownian bridge process+
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