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Abstract
This study presents a novel context awareness multihuman–robot interaction (MHRI) system that allows multiple
operators to interact with a robot. In the system, a monocular multihuman 3D pose estimator is first developed with
the convolutional neural network. The estimator first regresses a set of 2D joints representations of body parts and
then restores the 3D joints positions based on these 2D representations. Further, the 3D joints are assigned to the
corresponding individual with a priority–redundancy association algorithm. The whole 3D pose of each person
is reconstructed in real time, even in crowded scenes containing both self-occlusion of the body and inter-person
occlusion. Then, the identities of multiple persons are recognized with action context and 3D skeleton tracking to
improve interactive efficiency. For context-awareness multitask interaction, the robot control strategy is designed
based on target goal generation and correction. The generated goal is taken as a reference to the model predic-
tive controller (MPC) to generate motion trajectory. Different interactive requirements are adapted by adjusting
the weight parameters of the energy function of the MPC controller. Multihuman–robot interactive experiments,
including dynamic obstacle avoidance (human–robot safety) and cooperative handling, demonstrate the feasibility
and effectiveness of the MHRI, and the safety and collaborative efficiency of the system are evaluated with HRI
metrics.

1. Introduction
Human–robot interaction (HRI) system enables human operators to work together with the robot, and has
a great potential for improving production efficiency [1, 2]. Compared with traditional robotic manufac-
turing systems [3], the HRI system allows human operators to work together with the robots without time
or space separation. In an HRI team, the operators can provide better problem-solving skills, whereas
robots have better strength and accuracy. The manufacturing efficiency can be further improved by
utilizing advantages from both operators and robots.

With the rapid development of the new manufacturing modes, however, the existing HRI systems
[4, 5] cannot meet the requirements of complex tasks, which only allow one operator to interact with
the robot. Recently, multihuman–robot interaction (MHRI) rises to a vital research topic in the field
of robotics applications [6]. Compared with the single HRI, the involvement of multiple humans can
improve the flexibility of robot control and task assignment, which is an important advantage of the
MHRI system. However, the involvement of multiple humans comes with new challenges, such as mul-
tihuman 3D pose estimation and pose occlusion. The recent works have made progress in safety [7, 8],
task allocation [9–11], and perception [12, 13] for the MHRI system. However, there remain challenges
in the integration of the real-time MHRI system, primarily due to the uncertainty and diversity of human
beings as well as the tasks, which lead us to investigate the general dynamic MHRI system.

Ensuring the safety between the operators and the robots (human–robot safety) is the key to the
HRI system. Many researchers have proposed sensor-based safety systems [14, 15]. By utilizing the
monitoring capability of depth sensors, the distance between human operators and robots can be actively
C© The Author(s), 2022. Published by Cambridge University Press.
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monitored. Robots can also be controlled to stop if the distance between human operators and robots
is too close. However, these approaches will decrease the efficiency of collaborative assembly, as the
robots will frequently move away and stop during the assembly process. To solve the problem of the
safe shutdown, researches on human behavior prediction [16, 17] have been conducted based on con-
text awareness. That is, the robot perceives the operator to avoid collision in advance by predicting the
joint position of the operator in a certain period in the future. To realize a more safety and efficient
MHRI system, in this study, researches on human–robot pose perception and robot interactive control
are required.

Human–robot pose perception includes monitoring the movement of the robot and multiple human
3D pose estimation. For the fixedly installed robot, the pose can be determined with robot hand-
eye calibration [18]. For multihuman 3D pose perception, in the previous works [14, 19], the Kinect
depth camera has been widely used for human 3D body estimation. However, human joints position
read directly based on depth information will cause depth value ambiguity by occlusion. To solve the
occlusion problem, multiview human 3D pose fusion methods [20, 21] are proposed to estimate more
accurate poses. However, due to extensive computation amount of multiview information fusion, the
real-time performance is poor with the increasing number of people. With the development of deep
learning in recent years, image-based 3D poses estimation methods have also made significant progress.
Specifically, deep learning-based multihuman 3D pose estimation methods are divided into two broad
categories: top–down [22–24] and bottom–up [25–28]. Top–down approaches of multihuman 3D pose
estimation first perform human bounding boxes detection for each individual. Then for each detected
person, absolute root coordinate and 3D root-relative pose are estimated by 3D pose networks. A camera
distance-aware approach in ref. [23] shows that the cropped human images were fed into their developed
RootNet to estimate the camera-centered root coordinates of the human body. Then the root-relative 3D
pose of each cropped human was estimated by the proposed PoseNet. However, the computational com-
plexity and the inference time of top–down methods may become excessive as the number of people
increases, especially in crowded scenes. On the contrary, the bottom–up approaches enjoy smaller com-
putation and time complexity. These approaches first produce all body joint locations, and then associate
body parts to each person. A key challenge of bottom–up approaches is how to group human body joints
which belong to each individual. A distance-based heuristic was developed in ref. [28] for connecting
joints in the multiperson context. Starting from the detected head, the full 3D pose is linked by selecting
the closest ones in terms of 3D Euclidean distance. However, the process of multihuman pose esti-
mation can only obtain the joint position. In MHRI scenarios, there are often unrelated persons in the
view field, which will affect the stability of interaction. Skeleton-based action recognition methods were
adopted, given their robustness to illumination change and scene variation [29, 30]. The operator and
other persons can be distinguished by their detected actions during the interactive process.

Excepting the information perception of the human and robot, motion planning and control tech-
nologies are also vital for adapting reactive changes in the HRI context. The robot should react more
dynamically to the presence of people and changes in the environment. Some studies [31–34] tend to
modify the robot tasks based on current HRI about the system. Typical approaches apply virtual repul-
sive forces to the robot to move it away from the operator [15, 33]. These methods are fast and reactive
but are suboptimal. Recently, some novel control methods [34–36] were proposed to generate motion
trajectory, which add the environmental constraints based on model predictive controller (MPC) con-
troller (such as distance between the obstacle and the robot [36]). Compared with the former, the results
of MPC using sampling and optimization are optimal but not fast enough to react to the changes in the
environment in real time. The proximal averaged Newton-type optimal control (PANOC) algorithm is
applied to the MPC framework to solve the problem of optimal cost [37, 38]. Further, an augmented
Lagrangian method (ALM) [36] was employed to deal with hard constraints for realizing robot manip-
ulator motion planning and control. However, the randomness of task targets and changes frequently of
work scenes are not fully considered in the interactive process. The control reliability of the robot is
difficult to guarantee in a dynamic environment.
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To achieve a safe and efficient MHRI system, this study focuses on multihuman 3D pose percep-
tion and robot control strategy. For multihuman 3D pose estimation, a real-time monocular 3D pose
estimator is designed based on the convolutional neural network. A set of 2D joints representations of
body parts are regressed at first, and then the 3D joints positions are restored at these 2D joints pixel
locations. These 3D joints are assigned to the corresponding individual with a priority–redundancy asso-
ciation algorithm. Our algorithm has good robustness even in the case of severe occlusion. To solve the
interference problem of other people in the interactive process, an operator and nonoperator recognition
algorithm is proposed based on action recognition and skeleton tracking to recognize the identity of
each person for effectively interacting with the robot. In our studies, the nonoperator is defined as non-
task demanded personnel during the interactive process and interfering personnel in the field of view.
Besides, combined with the robotic kinematics, the robot interactive control strategy is designed based
on target point generation and correction. The task point is fed into the low-level MPC controller as a
reference to generate a trajectory and realize the interaction between the robot and multiple persons. The
designed control strategy can improve adaptability of the robot for multiple tasks. In the end, the experi-
ments of safe interaction and cooperative carrying are designed to verify the feasibility and effectiveness
of the MHRI system by some related metrics.

Our contributions include:

1. A novel MHRI system is presented for contactless MHRI. Compared with the single HRI system,
our MHRI system has better adaptability to complex environments.

2. We propose a lightweight monocular multihuman 3D pose estimator with a convolutional neu-
ral network, which has good real-time performance and occlusion solving ability. The network
adopts multiple branches architecture and outputs the 2D/3D joint positions simultaneously. At
the end of the network, a priority–redundancy association algorithm is presented for reasoning
about inter-person occlusion and grouping the 3D joints to corresponding individuals.

3. A novel algorithm is proposed for identifying the operator and nonoperator based on action
recognition and 3D skeleton tracking to ensure that the robot can correctly interact with each
person in the scene. Multiple persons can be recognized correctly, even in the occlusion context
or loss pose information.

4. For multitask requirements, a flexible interaction strategy is proposed based on target task gener-
ation and correction. We also implement an ALM on top of the PANOC algorithm to enforce the
robot state constraints for reducing the tracking error of the robot. Besides, the flexible interaction
is achieved through adjusting the penalty coefficients according to different task requirements.

The remainder of this study is organized as follows: In Section 2, the overall MHRI system is intro-
duced. In Section 3, the methods of human–robot motion capture are presented in detail. In Section 4,
the strategy of robot control is designed. Subsequently, experiments and results are shown in Section 5.
The study ends with a conclusion in Section 6.

2. MHRI System Design
2.1. Description of multihuman–robot interactive task
In the MHRI system, the robot assists the operators in executing tasks as a partner. Figure 1 gives three
typical contactless MHRI tasks, such as dynamic obstacle avoidance (human–robot safety) and collab-
orative assembly. The HRI is realized through the robot tracking the target points generated by different
tasks. The tasks in Fig. 1 are described in detail as follows:

(1) For the multihuman–robot safety task, all people are regarded as obstacles, the robot should take
the initiative to avoid them. As shown in Fig. 1(a), when the operators enter the workspace of the robot,
the robot slows down to avoid the operator by replanning the trajectory actively.
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Figure 1. Description of the typical multi-human robot interactive tasks.

Figure 2. Our multi-human robot interaction system structure.

(2) For the multihuman–robot collaborative tasks, both operators and nonoperators may exist simul-
taneously. As shown in Fig. 1(b), there are an operator and a nonoperator. The operator and the robot
cooperate to complete the same task (carrying objects), whereas the safety between nonoperators and
the robot should be guaranteed.

(3) In the multihuman–robot collaborative tasks, multiple operators may also exist at the same time.
As shown in Fig. 1(c), the robot completes the task together with multiple operators to further improve
efficiency.

2.2 System architecture design
The flowchart of the proposed system mainly consists of three parts, namely human–robot motion cap-
ture, multitask robot control, and human–robot interface, as shown in Fig. 2. The human–robot motion
capture includes the multihuman pose estimation, recognition and tracking, and the robot pose estima-
tion. The robot pose is estimated with robotic kinematics and hand-eye calibration, while the multiple
human 2D/3D poses are estimated by the pose estimator from RGB image streams with neural net-
work. The 2D pose of each person is employed to recognize the operators by the pose action. Then,
the operators and nonoperators are tracked using the 3D poses and their initial identities in consecu-
tive frames to achieve reliable HRI. The human–robot interface stores the current human–robot pose,
analyzes the relative spatial relationship, and plays the role in synchronization and visualization. The
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Figure 3. Description of the coordinates in the MHRI system. The coordinates of camera c and the
robot base r0 are represented under the world coordinate ω. The human root joint h0 is indicated under
the camera c, the other joints of the human body are denoted based on the root joint h0. Similarly, the
other links of the robot are denoted with respect to the robot base r0. The whole coordinate structure
looks like a tree.

multitask robot control part includes the interactive strategies and robot controller design. The interac-
tive strategy includes three interactive tasks as shown in Fig. 1. According to different interaction modes,
the corresponding task goal is generated. Then the goal is taken as a reference to the model predictive
controller (MPC) based on constraints for updating the state of the robot, and the states updated are sent
to the real robot to complete the interactive behavior.

The overall MHRI system is developed based on the robot operating system (ROS) middleware [39].
Each part of the MHRI system communicates by receiving and publishing topic messages. As the top-
level module, human–robot motion capture perceives the spatial information of multiple humans and
the robot in the MHRI scene through a camera, and outputs the 3D pose position and identity of each
person, and each joint spatial position of the robot. Then, the human–robot interface inputs the 3D pose
of each individual and the robot, and outputs the spatial position relationship of each person relative
to the robot by analyzing the geometric distance. At the end, as the bottom-level control module, the
multitask control part takes the relative position of the robot to each person and interactive task mode as
the inputs to generate the task target goal. The goal is taken as a reference to the MPC so that the motion
instructions could be generated to complete the interactive behavior. At this time, the updated robot state
will be fed back to the robot estimation part in the human–robot motion capture, thus forming a closed
loop.

3. Human–Robot Motion Capture for MHRI
3.1. Calibration
Calibration is the basis for the MHRI system. There are three types of calibration: camera intrinsic
calibration, camera extrinsic calibration, and robot hand-eye calibration. Monocular sensor intrinsic
parameters can be calibrated by ref. [40], which will provide quality images for the HRI system. Robot
hand-eye calibration renders the collected images according to the robot location [18, 41]. The calibra-
tion process will determine the position and orientation of the robot with respect to the camera. The
camera extrinsic matrix calibration process is to calculate the transformation of the camera in the world
coordinate.

The outline of the coordinate description is shown in Fig. 3. Assume that w is the world coordinate,
c is the camera coordinate, r0 is the base coordinate of the robot, and h0 is the root joint of the human
operators. For the fixed robot and the camera, the transformation matrix Tc

r0
can be calculated by the

above robot hand-eye calibration. The monocular extrinsic matrix Tw
c is also directly read by OpenCV

https://doi.org/10.1017/S0263574722000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000017


2974 Xinyi Yu et al.

Toolkits1, which represents the transformation of camera c with respect to the world coordinate w. Then,
the transformation Tw

r0
of the base coordinate of the robot to world coordinate can be expressed as below.

The transformation Tw
r0

is a constant matrix, so that the repeated and complicated hand-eye calibration
process caused by the movement of the robot or camera can be avoided.

Tw
r0

= Tw
c Tc

r0
(1)

3.2. Representations of multihuman and robot poses
In our MHRI system, the robot can be regarded as a series rigid body link motion system. The parent
link and the child link are connected by a single degree of freedom (DOF) rotary joint. Through the
forward kinematics of the robot, the sublink coordinate can be interfaced from the base coordinate. The
transformation Tr0

ri
between any sublink rj and the base r0 can be expressed as follows:

Tro
rj

=
j∏

x=1

Trx−1
rx

(
θrx

) =
j∏

x=1

[
Rrx−1

rx
(θrx ) trx−1

rx

0 1

]
(2)

where θrx is the joint angle between sublink rx and parent link rx−1, Rrx−1
rx

and trz−1
rx

are the rotation matrix
and translation vector of sublink rx to its parent link rx−1.

Then, the transformation Tw
ri

of any sublink rj with respects to the world coordinate w can be indicated
as follows:

Tw
rj

= Tw
r0

Tr0
rj

(3)

The multihuman 3D poses are composed of the corresponding joints set, which are represented by
the root joint h0. Similar to the robot, the transformation Th0

hj
between any human joint hj and the root

joint h0 can be expressed as follows:

Th0
hj

=
j∏

n=1

[
I3 thn−1

n

0 1

]
(4)

where I3 is the identity matrix. thn−1
hn

is the translation vector of joint hn to its parent joint hn−1.
The human skeleton structure is not fully connected in series compared to the robot. The length of∏j

n=1 (.) depends on the number of body limbs from joint hj to root h0. For example, the number of limbs
(draw by black lines in Fig. 3) from the wrist joint to the root joint is 3.

In the same way, the position of the human joints should also be expressed in the world coordinate.
Supposed that ph0

hj
represents the position of joint hj expressed by h0, the joint position pw

hj
in world

coordinate can be calculated as follows:

pw
hj

= Tw
c Tc

ho
Th0

hj
ph0

hj
(5)

where pw
hj
, ph0

hj
are the homogeneous representation of j th joint by[X,Y,Z,1].

3.3. Real-time multihuman 3D pose estimation based on CNN
In this stage, we propose a monocular multihuman 3D pose estimator based on CNN for estimating
the human joints position in the MHRI system. First, the source of ideas behind the work is explained
and then the proposed method is described in detail, including the network structure, loss function and
association algorithm. Through researches on some previous works [22, 23] of multihuman 3D pose
estimation, we find that for different 3D pose estimators, the real-time performance and the occlusion
processing capability are rarely available simultaneously, whereas both should be required in our MHRI

1https://docs.opencv.org/master/d5/dae/tutorial_aruco_detection.html
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Figure 4. Schematic diagram of multihuman 3D pose estimation. Given an RGB image, the net-
work regresses several intermediate representations including 2D keypoint heatmaps, part affinity
fields(PAFs), location maps. With a new priority–redundancy association algorithm, body parts belong-
ing to the same people are linked to get fully 3D pose.

system. Therefore, we use a lightweight backbone network to extract features to reduce network reason-
ing time. Aiming at the occlusion problem, we propose a priority–redundancy association algorithm to
allocate the joint position of the network regression for obtaining the full 3D pose.

Figure 4 presents the flowchart of our bottom–up approach. Taking an RGB image as input, the
network outputs the 2D representations, including keypoint heatmaps and part affinity fields (PAFs)
[42], and 3D location maps [43]. Then, a priority–redundancy association algorithm is proposed to
assign detected 2D keypoints, and 3D location maps to individuals. Our network allows to read fully 2D
and 3D poses even in severe occlusion.

3.3.1. Network architecture
We use the lightweight MobileNet V3 [44] as the backbone network and modify it to a multitask structure
with multiple branches that output the following representations as illustrated in Fig. 4. There are two
output branches of the network. The 2D pose branch simultaneously regresses keypoint heatmaps and
PAFs, while the 3D pose branch regresses the location map. Given an RGB image I , getting the feature
matrixes through the lightweight backbone and feeding it into the 2D branch to obtain the heatmaps H
and PAFs C based on convolutional pose machines [45]. Then, the feature matrixes and the 2D heatmaps
are inputted into the 3D branch network with ResNet block [46] to regress the location maps M at
these 2D pixel location. Besides, we supervise the location maps between different stages to reduce the
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dependence of the network on the large labeled dataset. Supposed the predefined joints number is N , the
network will output a fixed number of maps, including N heatmaps, 2N PAFs, and 3N location maps.
The output representations are described as follows:

• HeatMap The possible pixel locations of human joints in the image. The 2D poses set of all
human is defined as P2D = {

pi|piεR
N×3

}
(i is the index of human). Each pose pi includes 15

joints. Each joint pj
i contains the corresponding pixel coordinates

(
xj

i, yj
i

)
and confidence αj

i ∈
[0, 1], where j is the index of joints. The confidence represents the joint evaluation by the neural
network. If αj

i = 0, the joint is considered undetected.
• Part affinity field (PAFs) PAFs proposed in ref. [42] include a set of 2D association vectors,

which assign the detected 2D joints to the corresponding person correctly. Each vector represents
the 2D orientation of the body part at the joint pixel location.

• Location Map Location map is a joint feature channel used to store the 3D coordinates at the
2D pixel location [47]. For each joint, three maps represent the corresponding estimated x, y, z
coordinates. For an image of size W × H, 3n maps of size W/k × H/k are used to store the 3D
positions of all n joints, where k is the down-sampling factor. The 3D pose of each person is
denoted as Mi. Each joint Mj

i is composed of corresponding
(
xj

i, yj
i, zj

i

)
coordinates.

3.3.2. Loss function
As shown in Fig. 4, we construct the loss function based on the 2D and 3D poses and supervised process.
The L2 loss is applied to all branches during training. The 2D pose loss L2D is the pixel location error
obtained by the heatmaps and PAFs with the ground truth in the image I . The 3D pose loss Lloc is the
joint error calculated by the 3D location maps and the ground truth. The supervised loss Lsup is the 3D
location maps error at different stages. The total loss Ltotal is expressed as follows:

Ltotal = w2D · L2D + wloc · Lloc + wsup · Lsup

L2D =
N∑

i=1

∑
p∈I

||Hi(p) − H∗
i (p)||2

2 +
2N−2∑
i=1

∑
p∈I

||Ci(p) − C∗
i (p)||2

2

Lloc =
N∑

i=1

∑
p∈I

||Mi(p) − M∗
i (p)||2

2

Lloc =
S∑

i,j (i �= j)

||Mi − Mj||2
2

(6)

where N and S are the number of joints and network stage, respectively, p means each pixel location and
superscript ∗ denotes the ground truth.W 2D, Wloc, and Wsup are the penalty coefficients.

3.3.3. Priority–redundancy part association
Given 2D coordinates of keypoints from heatmaps and 3D location maps, we need to associate detected
joints with corresponding individuals. Taking the PAF score directly to allocate joints, the pose is unreli-
able due to occlusion. In the inference process, since the number of people in the input image is unknown,
we use the root depth maps to reflect the operator number. Generally, the torso joints (neck and hip) in
the middle of the body are not occluded, which are the best choices for the root joints. In this study, the
neck joint of the human body is regarded as the root joint. If the root joint of an individual is visible,
we continue to assign the joint to the person. Otherwise, this person is not visible in the scene, and the
pose cannot be predicted. The inference process is outlined in Algorithm 1.

To solve the occlusion problem, we give priority to the unoccluded people when assigning joints. The
occlusion state can be inferred in the depth map (location map Z-channel) predicted by the network. The
root depth value represents the absolute position of each person. Therefore, the priority of each people
is sorted by the predicted root depth from near to far, rather than the PAF score. Note that our network
allows reading the position of the limb from any 2D joint of the corresponding limb [43]. For individual
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i, the basic pose P3D
base is first read at the root joint, which is regressed by an average pose in datasets

[48]. Then, we continue to read the limb pose from the joint close to the root to obtain the full 3D pose
P3D

i . If the joint is valid, the limb pose replaces the joints of the base pose. Otherwise, going down the
kinematic chain to check other joints of this limb. If all joints of the limb are invalid, the limb pose cannot
be refined. In the end, another refinement method is presented for reducing error further based on the
camera model. Given visible 2D coordinates (x,y) and joint depths Z , the 3D joints can be recovered
through the perspective camera model as follows:

[X, Y , Z]T = ZK−1[x, y, 1]T . (7)

where [X, Y , Z] and (x, y) represent the 3D and 2D coordinates of the joint, respectively, K is the camera
intrinsic matrix.

In summary, the pose estimator will output the 2D and 3D poses of each person in each frame in this
process. Each pose consists of corresponding joints set. The 2D pose includes the joint pixel coordinates
and confidence. The 3D pose includes the space position of each joint relative to the root joint. The
coordinates are all expressed in camera coordinate c, which provide essential information for subsequent
identification for operators and nonoperators.

3.4. Multihuman action recognition
Considering that there may be both operators and nonoperators in the MHRI process, the motion tra-
jectory of the robot will be affected by them. In this stage, the behavior of each person is predicted
through the action classification model, which is employed to recognize operators and non-operators in
the MHRI scene. As shown in Fig. 5, the action recognizer is composed of five linear layers and the
ReLU activation function. The input of the network is the 2D joint pixel location, and the output is the
corresponding action label.

l = f (P2D
i , ξ ) (8)

where l is the output action label, P2D
i represents the 2D pose of the person i, and ξ is the predefined

action label set.
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Figure 5. Schematic diagram of action classification. Given a 2D pose, the linear network will output
the corresponding action context.

Figure 6. Three tracking situations. In (a), it is an ordinary tracking situation, where the skeletons
between different frames are connected by the corresponding confidence. In (b), the number of skele-
tons in the frame t is greater than the previous frame. For the unpaired skeleton 1, it will continue to
search-forward and pair with the skeleton until l − τt. t− In (c), the number of skeletons of the current
frame t is also greater than the previous frame. After finishing the forward search process, there is still
an unpaired skeleton (skeleton 3) in the current frame. The skeleton should be assigned a unique ID.

The interactive actions of HRI are different from daily actions. In this study, four kinds of actions
are set according to the task requirements, which are named “T-Pose”, “Sit”, “Stand”, and “Operate”,
respectively. Operators and nonoperators are distinguished by T-Pose, whereas other actions are applied
to monitor the status of each people during the interactive process. In the recognition process, the oper-
ator should cooperate with the recognizer by posing the T. The action recognizer assigns the identity
for each person according to the current action of each person. Note that the T-pose action is only valid
once and the number of operators should be set in advance according to the task requirements.

3.5. Multihuman 3D poses tracking
The multihuman 3D poses estimation and recognition stages only process the data at the current frame.
Therefore, it is impossible to identify and track the 3D pose belonging to the same people in consecutive
frames. In this stage, a multihuman 3D poses tracking algorithm based on the greedy strategy is designed
to track all people in continuous frames through their initial identity and 3D poses estimation results of
each frame. This method focuses on solve the constant tracking and recognition problems of operators
and nonoperators in the MHRI system, which improves the stability of the system and the interaction
experience of the operator.

In this step, the time index t is considered to redefine the symbol of the 3D pose. For example, ST

represents the set of all 3D skeletons at time t, st
i ∈ St represents the pose numbered i, st

in represents the
n-th joint of the pose, and αt

in ∈ {0, 1} represents whether the n-th joint exists at time t.
The 3D pose tracking stage inputs the unsorted multiple human 3D poses of each frame and out-

puts the 4D pose sequence with time information. The 3D skeletons belonging to the same person are
associated in consecutive frames based on the greedy algorithm. As shown in Fig. 6, we consider three
different association cases in consecutive frames. The corresponding confidence is calculated to connect
the skeletons by the Euclidean distance between poses. The correspondence cost between skeletons can
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be calculated as follows:

ς 3D(St
I , Sls

J ) =

N∑
j=1

||St
Ij − Sts

Jj|| · αt
Ijα

ts
Jj

N∑
j=1

αt
Ijα

ts
Jj

(9)

where ||·|| is the joints Euclidean distance of st
Ij and st

Jj, j = (1, 2, . . ., N)is the joint number, where N is
total joints number in a skeleton, and t is current frame and ts is search frame.

The tracking process is outlined in Algorithm 2. Define the current frame t as the paired frame and
ts as the search frame. The search frame is initialized as ts = t−1 The correspondence of all paired
skeletons in the current frame and the search frame is calculated from Eq. (9). For example, there are all
four pairs for two persons, including two correct pairs and two mispairs. The purpose of tracking is to
preserve the correct pairs and to remove the wrong ones. The ordered list is traversed by the increasing
value of ζ, and the first valid association is found. An association is considered as valid if the correspon-
dence score ζ is below the empirically estimated correspondence threshold ζmin = 0.2. The pose st

i in the
current frame will inherit the ID number of the pose sts

i in the search frame. At the same time, the redun-
dant pairs related to it should be removed. If there are some unpaired skeletons in the current frame,
it means that some new skeletons have appeared, or these skeletons have lost track due to association
errors or occlusions during the pairing process. At this point, the search frame is set as ts = t−2. This
algorithm will repeat the above pairing and updating process until ts = t – τt , where τt is the maximum
search scope. If there is still an unpaired posture at this time, it can be considered that the posture newly
appears, and a unique ID is assigned to the skeleton.

Our algorithm enables multihuman 3D poses to be tracked effectively even in the absence of some
frames due to association errors or occlusion during the pairing process.

4. Robot Control Strategy
In the HRI process, the robot realizes interaction by tracking the task goals specified by the opera-
tors. However, the goals are potentially randomness and unreasonableness in the process of interaction.
On one hand, operators cannot give precise task goals directly, and the ambiguous goals needs to be
adjusted through constant feedback. On the other hand, the target point specified by the operator may
exceed the effective working range of the robot, which causes the robot to move unsafely, even cause
loss due to collision in the interactive process. To solve these problems, in this section, the task tar-
get generation and correction methods are proposed to ensure effective interaction for the robot based
on boundary constraints according to the task in Fig. 1. Besides, for the requirements of multiple
tasks, a robotic controller is designed to control the robot moving smoothly based on model predictive
control.

4.1. Task target generation and correction
In the interactive process, the robot always has a task goal Tw

0 in the workspace. Note that the interac-
tion is achieved through the robot tracking goal Tw

0 . With the perception information and the designed
tasks shown in Fig. 1, the generation methods of Tw

0 are presented to the corresponding interactive
tasks.

In the multihuman–robot safety interaction, human joints are regarded as moving or stationary obsta-
cles. For avoiding obstacles, a good method is the accumulation of attractive and repulsive forces
between the obstacles and the end-effort of the robot [49]. In the interactive process, by sensing the
distance between the end-effort and each joint of the human body in real time, the position of Tw

0 is
calculated by the attraction and repulsion vectors. When the distance between the human joint and the
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robot is greater than the safety threshold τd, the robot will move to the original target tw
0 , where tw

0 is the
translation vector of target Tw

0 . The target generates an attractive vector F0 to the end-effort ree of the
robot. F0 is expressed as follows:

F0 = tw
0 − tw

ree
(10)

where tw
ree

is the tool position of the robot in world coordinate w.
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In contrast, if the distance dree

hi
j

of the joint hi
j of person i to the end-effort ree is less than τd, the repulsive

force vector Fhi
j
is generated as follows:

Fhi
j
=

⎧⎪⎨
⎪⎩

tw
ree

− tw
hi

j

|tw
ree

− tw
hi

j
| , if dree

hi
j
< τd

0 , otherwise

, (11)

where tw
hi

j
is the translation of the human joint in the world coordinate w.

Then, the synthetic force Fadd is divided into two items corresponding on the attractive vector F0 and
the repulsive force Fhi

j
of all joints of each person. Fadd is defined as:

Fadd = F0 +
∑
i∈I∇

∑
j∈J∇

Fhi
j

(12)

where I∇ and J∇ represent person set and joint set, respectively.
Next, the target Tw

0 is generated as follows:

Tw
0 = Tg

ree
+ [Fadd

0

]
[0 0 0 δ] (13)

where δ ∈ (0, ∞) is the distance coefficient to adjust linearly the synthetic force.
For the collaborative tasks, the position and orientation of the object are generated by detecting the

AR markers pasted on its surface. In the beginning, a camera is fixed in the robot tool for detecting
the AR marker. The position and orientation of the camera are equal to the transformation matrix
of the end-effect of the robot with a constant translation error. The transformation matrix of the
camera in the world coordinate can be expressed as follows:

Tw
c = Tw

tool + Ttool
c =

[
Rw

tool + Rtool
c tw

tool + ttool
c

0 1

]
(14)

where Tw
tool represents the transformation between the tool coordinate of the robot and the world

coordinate, Ttool
c represents the transformation between the camera and the tool coordinate of the robot.

The task target Tw
0 is the position of the object in the world coordinate, which is given by:

Tw
0 = Tw

c Tc
0 (15)

where Tc
0 represents the transformation of the object o relative to the camera c.

In addition, the generated target goal Tw
0 should be constrained within the workspace of the robot to

avoid singular state. The singular means that the joint angles cannot be solved through robotic inverse
kinematics when the robot is fully deployed or multiaxis collinear. Supposed that the maximum theoret-
ical workspace radius of the robot is R, then the practical workspace radius is restricted as Rmax = 0.9R
in our experiment context. If the task point Tw

o exceeds the workspace W {Rmax} the position of Tw
0 will be

replaced by limited boundary values. Similarly, the robot should be restricted outside the minimum work
area W {Rmin} to avoid self-collision when moving, and the minimum work-area is set as Rmin = 0.2R.

4.2. Model predictive controller design
In the MHRI system, for robot control, the following aspects need to be considered: 1) The strong cou-
pling between multijoint of the robot, linear controllers (such as PID) are difficult to achieve the expected
control effect of the robot system with high coupling; 2) In the interactive process, there are some con-
straints (such as joint speed and acceleration) to meet the normal operation of the robot; 3) Multiple
tasks have different requirements for the controller. For example, the robot needs to respond quickly to
reduce trajectory tracking errors in collaborative tasks, whereas the smoothness of the trajectory is more
important in human–robot safety. Aiming at the above problems, a low-level controller is designed to
control the movement of the robot based on MPC. Firstly, the multijoint robot model can be regarded as
a constrained multi-input multi-output (MIMO) control model. The advantage of the MPC is that it is
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Figure 7. The MPC control system for UR5 manipulator. Given a target point Tref
EE , the state of each

joint is solved by robotic inverse kinematics. The error ei between the current state and target state of
each joint are taken as the inputs into the optimizer to calculate the control actions ui(i = 1, . . .,n). Input
the action ui into predictive model to update the joint status, and control the movement of the robotic
manipulator in real time after filter.

a multivariable controller which takes into account all factors and outputs the controlled actions at the
same time. Secondly, the MPC controller solves the actions by constructing the optimization problem.
Some constraints can be added to the optimization problem to meet the expected results. In addition, the
requirements of different HRI tasks can also be met by adjusting the corresponding penalty coefficients.
The whole MPC control framework is shown in Fig. 7.

Define the robot joint as q ∈R
n, where n represents the DOF of the robot. According to robotic

kinematics, there is a nonlinear function between the end-effort TEE and the joint angle q.

TEE = fkin (q) (16)

Let q̇ refer to the joint velocities. The state x of the control system can be denoted as [q, q̇]T . Let the
control action u = q̈. The dynamic system is given as follows:

ẋ = f (x, u) =
[

0 1
0 0

]
x +

[
0
1

]
u

y = [
1 0

]
x

(17)

The discrete equation of the continuous state system with a sampling time of ts is expressed as
follows:

xk+1 = xk +
[

q̇ts + 1

2
uts

uts

]
(18)

The purpose of the controller is to calculate the trajectory of the robot from the starting pose q0 to
the desired pose Tgoal. The problem of nonlinear model predictive control for trajectory planning can be
expressed as follows:

objective: min lN(xN) +
N−1∑
k=0

lk(xk, uk)

subject to : x0 = xstart, fkin(qN) = Tgoal (19)
xk+1 = fk(xk, uk), k ∈ N[0,N−1]

uk ∈ Uk, k ∈ N[0,N−1]

xk ∈ Xk, k ∈ N[0,N]

where Xk and Uk are assumed to be closed and compact convex set projections. In this study, Xk and
Uk correspond to the state and joint acceleration constraint, respectively. Here, lk(xk, uk):Rnx×nu → R
refers to the stage costs at the k-th instant, which can be defined as: lk(xk, uk) = (xk − xref )TQk(xk − xref ) +
(uk − uref )TRk(uk − uref ) and the terminal cost lN(uN):Rnx → R is defined as: lN(xk) = (xN − xref )TQN(xN −
xref ), where RK , QK and QN are the penalty coefficients, XK and UK are the k-th system state and joint
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acceleration, respectively, xref and uref are reference value of system state and joint acceleration, xnis
terminal state.

The objective function is minimized by the PANOC algorithm [50] which adopts the limited-memory
BFGS to speed up convergence. PANOC is a first-order matrix-free solver for nonconvex optimization
problems with favorable convergence properties. It can easily deal with hard constraints that have a
feasibility set that permits a computationally simple projection operation. The main feature of PANOC
algorithm is summarized here. Let o(z):Rnz →R be a function that is CLl . Let Z denote the feasibility
set of z. One can define a projected gradient step as:

zv+1 =Πz(z
v − γ∇o(z

v)) (20)

where Π denotes a projection operation to the feasible set Z and (20) always leads to a decrease in
cost function if γ < 1/Ll A series of iterates zv, zv+1, . . . are used to implement a limited-memory quasi-
Newton method.

For the problem (19), such constraints are typically solved using quadratic penalty method. For the
quadratic penalty method, the square sum is multiplied by a factor and added to the original cost func-
tion. This factor is increased sequentially in an outer iteration step to satisfies the constraints more
closely. Considering that the high factor will cause ill-conditioning and convergence issues in the penalty
method. We try to satisfy constraints more accurately by increasing the factor to a very high value with
the ALM [51]. Let x = [x1 x2 x3 . . . xN] and u = [u1 u2 u3 . . . uN−1], the quality constraints as the residual
from (19b) and (19c) as g (x, u). The total objective function from (19a) be defined as:

L(x, u) = lN(xN) +
N−1∑
k=0

lk(xk, uk) (21)

The augmented Lagrangian formulation for problem (21) can be defined as follows:

ψ(x, u, λ, c) = L + λTg(x, u) + 1

2
μ||g(x, u)||2 (22)

where λ, μ are the penalty coefficients. The algorithm for minimizing the augmented Lagrangian is
presented in Algorithm 3.

Due to the presence of noise, the trajectory of the robot may fluctuate in actual applications. We use
the first-order filter to filter the output value of the system to make the trajectory smoother for the robot.
The first-order filter can be expressed as:

yf (t) = α.yf (t − 1) + (1 − α) · ym(t) (23)

where yf , ym are the filtered value and the measured value, respectively; α= e−Ts/τ , where Ts is the
sampling time and τ is time constant.

5. Experiment and Result
In the following subsections, the multihuman pose perception and the robot trajectory tracking are
described, then the presentation and the discussion of the obtained results are reported. At the end, the
effectiveness and feasibility of the proposed MHRI system has been demonstrated through multihuman
robot safety and multihuman robot collaboration.

5.1. Experiments of multihuman 3D poses estimation
5.1.1. Datasets and evaluation metrics

COCO. [52] A large-scale object detection dataset, which contains more than 200,000 images and
250,000 person instances labeled with keypoints. Annotations on train and val (with over 150,000 peo-
ple and 1.7 million labeled keypoints) are publicly available. In experiments, the pixel locations of
multihuman 2D keypoints are regressed on the dataset.
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CMU Panoptic. [48] A large-scale dataset contains various indoor social activities (playing an instru-
ment, dancing, etc.), which are collected by multiple cameras. Mutual occlusion between individuals
and truncation makes it challenging to recover 3D poses. Similarly, the 3D position of human joints are
regressed on this dataset in our experiment.

MPJPE. Mean per-joint position error (MPJPE) is a common metric that corresponds to the mean
Euclidean distance between ground truth and prediction for all joints of total people.

MPJPE = 1

N

N∑
i=1

||Ji − J∗
i ||2. (24)

where N is the number of joints, Ji and J∗
i are the estimated position and the ground truth position of

the i-th joint, respectively.

5.1.2. Training details
This study implements the proposed network scheme by the pytorch 1.6.0 framework at the Ubuntu
20.04 Operating System. The CPU is i9-9700 with the running memory of 32G, and the GPUs are
three NVIDIA TITAN XPs. According to the training process in ref. [27], the optimizer is the Adam
optimization, the parameters β1 and β2 are 0.9 and 0.999, respectively. The learning rate is 0.0002 and
the batch size is 32 for a total of 20 epochs on mixed datasets of COCO and CMU Panoptic. Images
are resized to a fixed size of 455 × 256 as the input of the network, and 200K images from different
sequences are selected as our training set, all images from four activities (Haggling, Sports, Ultimatum,
Pizza) in two cameras (16 and 30) as our test set. Since the COCO dataset lacks 3D pose annotations,
the weights of 3D losses are set to zero when the COCO data is fed.

5.1.3. Results of multihuman 3D pose estimation
We use general evaluation index to carry out quantitative estimation of the proposed scheme, and com-
pare it with existing methods. Table I provides the results over the recent state of the art methods on the
CMU Panoptic dataset. It indicates that our model outperforms previous methods excepting [27]. Our
average error is only 8 mm away from the state-of-the-art (SOTA) method [27]. In particular, the results
on Haggling and Pizza scenarios are roughly equal to it. As these sequences share no similarity with the
training set, the result shows the generalization ability of our model. The examples of multihuman 3D
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Table I Compared the results of human 3D poses estimation with SOTA works in CMU datasets.
Haggling, Sports, Ultim, and Pizza represent different scene video sequences in this dataset.

Methods Haggling Sports Ultim Pizza Average
MPJPE Popa et al [53] 217.9 – 193.6 221.3 210.9

Mehta et al [43] 91.1 94.4 92.5 104.5 95.6
Moon et al [23] 89.6 – 79.6 90.1 86.4
Zanfir et al [22] 72.4 – 66.8 94.3 77.8
Zhen et al [27] 63.1 – 56.6 67.1 62.3
Ours 63.9 77.1 71.5 69.7 70.5

Figure 8. Example of action dataset in HRI scene.

human pose estimation on our MHRI context are shown in Fig. 10. Our method can estimate the whole
3D pose for each person even in case of people overlap (2nd row).

5.2. Multihuman action recognition
The output 2D poses are employed to recognize the action context of each people in our MHRI system.
Before training, we create the action dataset by using the outputs of the 2D pose network branch. Some
images of the dataset are shown in Fig. 8.

https://doi.org/10.1017/S0263574722000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000017


2986 Xinyi Yu et al.

Table II Action recognition quality analysis. The number represents
the corresponding accuracy. Accuracy = the sample number of predict
right/total sample number.

Accuracy T-Pose Sit Stand Operate
T-Pose 99.5 0 0 0
Sit 0 94.3 0 0
Stand 0 0 99.7 0.5
Operate 0.5 5.7 0.3 99.5

Figure 9. The recognition process of operators and nonoperators.

The action recognizer is a classification model. In the training process, we adopt Adagrad as the
optimizer with 3e-3 learning rate. The batch size is 512, and the loss function is CrossEntropy. We train
the classification model for 100 epochs on the action dataset as the final model. The input of the model
is the 2D joint pixel position, and the output is the corresponding action label.

Table II shows that the classification model has high accuracy in predicting the actions of multiple
people. An example of multiple people recognition process in our MHRI context is shown in Fig. 9. The
person with T-pose action is regarded as the operator(red), and the other are nonoperators. Note that
only one operator is set at this time.

5.3 Multihuman 3D pose tracking
A common metric [54] in multiobject tracking, which counts the identity changes of the tracked objects.
These scores are shown in Table III. The video sequences with varying numbers of people are collected
firstly, which include walking, interacting, occlusion, etc. Each sequence includes approximately 3k
images. The tracking result is verified in these video sequences.

Table III shows that the pose tracking algorithm has good robustness. In the case of small number
of people, the skeletons can be tracked correctly. However, the tracking accuracy will decrease with the
increase of the number of people. The reason is that the occlusion between the persons are inevitable,
which will cause the loss of the occluded human posture when the number of people increases. A good
solution is to increase the scope τl of the search frame, but it also increases the calculation time (the
best time complexity is O(1), the worst case is O(τl) according to Fig. 6). Table III shows the results of
τl = 30 and τl = 60, respectively.

Figure 10 shows the estimation, recognition, and tracking results of the multihuman pose. In the
process of human pose estimation, multiple persons are labeled by various colors (as shown in the
top row of Fig. 10). Furthermore, the operator is selected in recognition stage according to the task
requirements. In the tracking process, we select three different images to show the multihuman 3D
poses tracking performance. The multihuman 3D pose estimation, recognition, and tracking video is
presented in: https://youtu.be/wvGmZx1Jghc.

https://doi.org/10.1017/S0263574722000017 Published online by Cambridge University Press

https://youtu.be/wvGmZx1Jghc
https://doi.org/10.1017/S0263574722000017


Robotica 2987

Table III Multihuman 3D poses tracking quality analysis. The number of
frames(F), tracked people (TP), ID switches (IDS), and ID switches after
adjusting for number of frames and number of tracked people (Norm. IDS)
in each sequence (Norm. IDS = IDS/TP/F).

F TP IDS Norm.IDS
τt = 30 3000 2 0 0

3000 3 3 3.3∗10-4
3000 4 5 4.1∗10-4

τt = 60 3000 2 0 0
3000 3 1 1.1∗10-4
3000 4 1 8.3∗10-5

Figure 10. Qualitative analysis of multihuman 3D pose perception. There are three example images.
For each case, the top row shows the input image, and the bottom row shows the 3D pose estimation
results in RVIZ. The action recognition and tracking results are shown in the image by different colors.
The orange circles highlight the occluded limbs in localization of human bodies.

5.4. Real-time performance of the network analysis
We verify the time cost for each stage in MHRI scene, including the pose estimation, recognition, and
tracking. A bottom–up strategy and a lightweight backbone are employed to reduce the inference time
for pose estimation. For pose recognition, the inference time and GPU memory can be ignored because
the model is tiny. For pose tracking, only the Euclidean distance of the paired poses is calculated, the
time complexity depends on the number of paired poses.

Table IV shows that the estimation stage takes about 28 ms to predict the multihuman 3D pose through
the network, and the memory size is a constant number because of a fixed size of input images. In
particular, we compare the result with the SOTA method [27], and our network inference time is only
half of it. In the recognition and tracking stages, the average calculation cost (2.5 ms and 3.3 ms) can
be ignored. However, the corresponding cost time will also increase with the increase of the number of
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Table IV Run time and memory calculation. The units of time and memory are ms and M, respectively.
Pose estimation and recognition stages run through the GPU, and the consumption time represents the
inference cost of a image. The memory is the size of the GPU memory occupied in the inference process.
Pose tracking stage runs on the CPU and does not consume GPU memory resources.

1-Person 2-Person 3-Person

Time Memory Time Memory Time Memory
Pose Our 27.3 1027 27.7 1027 28 1027
estimation Zhen et al [27] 57 1379 57 1379 57 1379
Action recognition 0.5 0.7 1.6 0.7 3.3 0.7
Pose tracking – – 2.9 – 3.6 –

Figure 11. The MPC controller time cost. The blue line represents the time cost of each optimization
stage, and the red line represents the average time cost.

people. Nevertheless, it does not affect the overall real-time performance. Note that the search scope τl

is set to 60 at this time.

5.5. The experiment of the robot target tracking
The MPC controller is validated on a UR5 robot manipulator with 6 DOF. In the experiment, the per-
formance of the robot is verified by tracking the human wrist joint trajectory through adjusting the
corresponding weight parameters. The MPC sampling time is set to 0.16 s with a horizon of four steps,
and the controller runs at a rate of 50 Hz. The maximum values of joint speed vmax and acceleration amax

are limited to 1.5 rad/s and 3.0 rad/s2, respectively. The joint states (joint angle and velocities) are read
from the robot once each 20 ms, which is taken as the starting point for the MPC solver to compute the
control action. Then, the joint states are updated to the actual robot model. In this study, the computation
time required with the PANOC solver is about 0.52 ms, as shown in Fig. 11. The penalty coefficients are
given by Qk = QN = [10.0, 4.0], and Rk = 2.0 to simultaneously meet avoidance and collaboration.

In the tracking experiment, the robot moves from the start point to the reference goal. As shown in
Fig. 12, it could be seen that the tracking trajectory is converging to the reference goal continuously,
which verifies the validity of proposed method. The tracking error is calculated by the joint errors and
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Figure 12. Target tracking diagram of the MPC controller. The blue line represents the target trajectory,
and the orange line represents the track trajectory. The three figures show the track trajectories of the
robot joints 1–3, respectively.

Figure 13. Schematic diagram of the robot joint filtering. The blue line represents the original speed,
and the orange line is filter speed.

the average tracking error is about 3 mm with terminal constraint. Experiment shows that the controller
has a good performance even if taking into account the inherent time lag (prediction) of model predictive
control, and the tracking error is within the allowable range of the MHRI system requirement.

At the end, the first-order filter is employed to filter out the noise to make the robot move smoothly
for better interaction. The parameters set as Ts = 1 and τ = 3 at this time. As shown in Fig. 13, the robot
joints have irregular rectangular tooth waveform (blue line) because there is noise interference when the
hardware collects information. It will cause the robot to jitter during operation. After filtering, the joint
speed of the robot is smoother for improving the human interaction experience, as shown by the red line
in Fig. 13. Note that the parameter α in Eq.23 cannot be set to large because it will increase the delay
time of the robot.

5.6. Human–robot interactive experiment
5.6.1. System setting
To illustrate the effectiveness of the proposed MHRI system, in this study, two high-definition (HD)
cameras sensors are required, one of which is employed for human body capture and the other for object
detection. The image resolution of the HD camera is 1920 × 1080. Both cameras are connected to the
host machine through the USB3.0 interface. Due to different OS requirements of deep learning and
the robot driver on the system, two computers are required. A desktop computer configured with i7-
8700X and Nvidia Titan XP cards is the host PC for multihuman 2D/3D pose estimation, recognition,
and tracking, and a laptop as the slave controls the movement of the robot. The master–slave machine
communicates with each other by publishing or receiving ROS topic messages based on TCP/IP.
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5.6.2. Evaluation metrics
For our MHRI system, the performances of system safety and quantitative measures are considered,
such as team performance. In most cases, the metrics are independent of the content of the interac-
tion scenario. The metrics currently included in the MHRI system consist of the proposed safety rate,
interference delay, and other related metrics from ref. [54]. These metrics are described as below:

(1) Safety rate: the percentage of trajectories that the robot can safely avoid human interference.
(2) Team efficiency: the percentage of tasks completed by design autonomy.
(3) Team effectiveness: the time required for the human–robot team to complete the tasks success-

fully.
(4) Human idle time (H-IDLE) and robot idle time (R-IDLE): the percentage of the total time that

agents (human or robot) are inactive. The metrics reflect the performances of team coordination
and agent utilization.

(5) Concurrent activity (C-ACT): the percentage of the total time of both agents are active simulta-
neously. This metric can be seen as a sign of team synchronization and balanced work.

(6) Interference delay (I-DEL): the percentage of the total time that the human operators interfere
the movement of the robot during the interaction. It is included in the C-ACT.

The above metrics evaluate the process of MHRI through generalized measurement parameters with-
out considering the specific HRI tasks and scenarios. Therefore, these metrics can be employed to
evaluate the MHRI system and interactive tasks designed.

5.6.3. Multihuman–robot safety experiment
In the multihuman–robot safety, the robot can avoid the operators actively when they enter the workspace
of the robot in the interaction process. The origin trajectory of the robot is shown in Fig. 14(a). When any
person is close to the robot working area, the original trajectory of the robot is blocked by human joint,
as shown in Fig. 14(b). The system readjusts the trajectory of the robot through the artificial potential
field, and the robot reaches the target position without conflict with the human body. In the experiment
of the multihuman robot safety, the safety efficiency is measured by the ratio between the number of
obstacle avoidance paths and the total running trajectories of the robot. The trials of static and dynamic
obstacles are considered in the MHRI process. For the former, the human joint is placed in the middle of
the running path of the robot. We record 50 robot trajectories and observe that the number of successful
obstacles avoidance paths is 48, and the safety efficiency, in this case, is 96%. For the latter, the human
joints are dynamic moving when the robot runs. In this case, 40 robot trajectories are recorded and the
number of successful obstacles avoidance paths is 36, and the safety efficiency is 90%. Compared with
the former, the randomness of the dynamic trial is stronger and the safety efficiency is lower than the
static trial. Experiments show that our MHRI system has good safety performance. The MHRI safety
video is presented in https://youtu.be/zmodf45ajHg.

5.6.4. Multihuman–robot collaboration experiment
As mentioned in Section 2, two situations exist for multihuman–robot collaboration assembly: both the
operators and nonoperators or multiple operators. In the former, the operator and robot cooperate to
complete the specified task, and the nonoperator is regarded as an obstacle to keep safe with the robot.
As shown in Fig. 15, an operator (red) and a nonoperator (green) exist. The robot grabs the block from the
table and returns to the workbench, waiting for the operator to come and fetch it, whereas the nonoperator
is regarded as obstacles. The perspective of the end-effort of the robot is shown in the red box. In the
latter, multiple operators and the robot work together to complete the same task, further improving
the efficiency of collaboration. As shown in Fig. 16, there are two operators. The operators hold the
marked object, and the robot will actively grab the object and put it in the basket. The perspective of the
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Figure 14. Multihuman robot active collision avoidance.

robot end-effort is also shown in the red box. In the collaboration process, the end-effort of the robot
first reaches an approximate position with respect to the human body root joint. Then, the AR-Marker
pasted on the object is set as the target position for grabbing it, which outputs the 6D pose of the block
through the camera fixed in the end effort of the robot. The MHRI collaboration video is presented in
https://youtu.be/55gDJ3cyfNs.

To ensure the correctness of the experimental results, we define the same task: block transportation.
Three trials correspond to the three situations in Fig. 1. Table V lists the metrics gathered from each
trial of the transport task. For all experiments, effectiveness is always 1.0 because the study can always
be completed, but it requires different time costs which are 208 s, 258 s, and 210 s, respectively.
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Figure 15. Single human–robot collaboration assemble.

Figure 16. Multihuman–robot collaboration assembly.

For the first case, the robot completes its work autonomously, but it will be interfered with by humans.
In this process, the human agent has two states: active (I-DEL time is 38%) or inactive (H-IDLE time
is 62%). The robot does not need to wait for the operator to release the task point and keeps working
(R-IDLE time is 0). Hence, the autonomous case has the best efficiency with a study completion time of
208 s. Besides, the concurrent activity time (C-ACT time is 38%) equals the interference delay because
obstacle avoidance means that the robot and operators are active in the interaction process.

For the second case, the robot collaborates with the operator while keeping safe with the nonoper-
ator. The time cost is increased by the R-IDLE time (R-IDLE time is 15%) because the robot needs to
wait until the operator publishes the task point. In this experiment, the H-IDLE and C-ACT times are
accumulated by the activity time of the operator and the nonoperator. The I-DEL time is only recorded
by the activity time of the non-operator. This case has an impact on the team effectiveness, but it can
adapt to more flexible environmental changes.

For the third case, all humans are the operators, so the I-DEL time is 0. The robot only waits for
different operators to publish the task points, and the R-IDLE will increase because there is a delay
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Table V Assembly Task Study Metrics

Trial Effect Effic.(s) H-IDLE R-IDLE C-ACT I-DEL
Autonomous 1 208 0.62 0 0.38 0.38
An operator & a non-operator 1 258 0.57 0.15 0.28 0.2
Multi-operator 1 210 0.44 0.31 0.25 0

time between task points. The H-IDLE time is decreased because of the increase of human tasks. The
transport efficiency is better than that in Case 2. The experiment shows that multiple operators–robot
interaction can improve the work efficiency compared to the single operator–robot interaction.

6. Conclusion
In this study, a MHRI system is designed with human–robot motion capture and the robot flexible control
strategy. In human–robot motion capture, the pose of the robot is estimated by the robot kinematics and
robot hand-eye calibration. For multihuman 3D pose estimation, a real-time 3D pose estimator based
on CNN is presented to perceive the 3D poses of multiple persons in the interactive process. At first,
the estimator takes the lightweight backbone to extract joints features and reduce inference time. Then,
a priority–redundancy association algorithm is proposed to assign 3D joints for each individual and
solve the occlusion problem among multiple persons. Considering the conditions of nontask demand
and interfering personnel in the interactive process, an operator and nonoperator recognition algorithm
with action recognition and skeleton tracking is proposed to ensure the stability of the multihuman
interactive process. For the robot control strategy, corresponding task target generation and correction
methods are designed for different interactive modes. Besides, a low-level MPC controller is devel-
oped to generate the motion trajectory according to the target goal. HRI is realized through the robot
tracking the trajectory. Experimental results are included to show the stability and robustness of mul-
tihuman 3D pose estimation, recognition and tracking, the smoothness of target tracking of the robot,
the feasibility, and effectiveness of the MHRI system in different modes. This innovation expands the
research of multihuman robot interactive control in complex environments and provides a reference for
further improving industrial manufacturing. In future work, we will conduct research on human body
information perception to improve the accuracy of human body posture estimation.
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