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ABSTRACT
A smooth adaptive sliding-mode-based controller is developed for BTT missiles consider-
ing nonlinear couplings and aerodynamic uncertainties, wherein fixed-time stability theory
is synthesised into sliding-mode control algorithm, such that control variables follow the
desired command within fixed-bounded convergence time. Unlike other terminal sliding-
mode-related works, the bound of settling time is independent of initial states, indicating that
performance metrics, for instance the convergence rate, can be evaluated in advance. The con-
trol input is designed to be intrinsically smooth, based on adaptive estimations, and therefore
the problem of singularity and chattering is effectively eliminated. Simulation results demon-
strate the satisfactory performance and validate the effectiveness of the designed approach.
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NOMENCLATURE

BTT bank-to-turn

Cy
α , Cy

δz aerodynamic lift coefficients related with angle of attack and elevator

Cz
β , Cz

δy lateral force coefficients related with sideslip angle and rudder

dα1, dα2 lift uncertainty coefficients related with angle of attack and elevator

dβ1, dβ2 lateral force uncertainty coefficients related with sideslip angle and rudder

dx roll moment uncertainty coefficient related with aileron

dy1, dy2 yaw moment uncertainty coefficients related with sideslip angle and rudder
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dz1, dz2 pitch moment uncertainty coefficients related with attack angle and elevator

DOF degree of freedom

Jx, Jy, Jz moments of inertial in terms of x, y, z axis of body coordinate system

L characteristic length

m missile mass

mx
δx roll moment coefficient related with aileron

my
β , my

δy yaw moment coefficients related with sideslip angle and rudder

mz
α , mz

δz pitch moment coefficients related with attack angle and elevator

Mx, My, Mz aerodynamic moments with respect to roll, yaw and pitch

P engine thrust

q dynamic pressure calculated by q = 0.5ρV 2

s missile reference area characteristic length.

STT skid-to-turn

TSMC terminal sliding mode control

V flight velocity

Y aerodynamic lift

Z lateral force

α, β, γ angle of attack, sideslip and roll

wx, wy, wz angular velocities in terms of x, y, z axis of body coordinate system

δx, δy, δz deflections of aileron, rudder, and elevator

ρ air density

θ pitch angle

1.0 INTRODUCTION
With increasing demands of weapon tactical performance under complex battlefield environ-
ment, the bank-to-turn (BTT) missile has drawn significant attention because of its long range,
high accuracy and superior manoeuvrability compared with conventional skid-to-turn (STT)
missiles.

General BTT missiles adopt a non-axial symmetric configuration. The maximum lift sur-
face is oriented rapidly to the desired direction by a roll movement whereas the attitude angle
of sideslip in yaw channel remains fixed, constituting the coordinate manoeuvring movement.
This characteristic inevitably induces heavy nonlinear crossing couplings and interactions
between different channels, which typically contributes to the intrinsic nonlinear dynamics of
the BTT missile. Meanwhile, the influence caused by aerodynamic parameters is more severe
than that of the STT missile, indicating that aerodynamic perturbations remain to be taken into
consideration during the controller design process. Additionally, for a missile flight system, a
well-behaved controller not only tracks the command swiftly, but exhibits certain robustness
against disturbances and uncertainties existed throughout the fickle flight regime. From the
point of overall design, it is also preferable to evaluate the control performances as much as
possible once preliminary controller deign is accomplished.

In the past decades, a number of strategies have been proposed. Refs. (1) and (2) design
the autopilot in pitch and yaw channel independently without considering nonlinear items
at the beginning. By utilizing an adaptive anti-disturbance control algorithm and adding
coordinate-loops respectively, the influences of nonlinear couplings have been compensated.
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Ref. (3) transformed the missile dynamics to a linear parameter varing form, and then applied
a gain scheduling method. Based on the linearisation method with the assumption of small
perturbation theory and fixed parameter hypothesis, classical control method, like the PI
control(4), root locus and frequency control(5), and pole placement method(6) are applied on
the linear dynamic model. However, these methods fail to interact with couplings and uncer-
tainties directly, and the overall system may be constrained when the interactions between
different channels are severe. To improve this, more advanced techniques towards nonlinear
control and robustness are introduced. Refs. (7) and (8) combined H∞ control algorithm with
linear parameter varying (LPV) synthesis and neural networks repectively. Ref. (9) utilised the
dynamic inversion method to design the control input, together with the extended-mean tech-
nique dealing with system uncertainties. To improve system performance when encountering
severe. To improve system performance when encountering severe disturbances, Ref. (10)
employed the the disturbance observer technique to compensate for the unknown couplings
and external disturbances. In Refs. (11) and (12), the fusion of adaptive sliding-mode control
and fuzzy logic was considered, enabling the controller to demonstrate multiple advantages
of both control algorithms.

Among abundant controller design approaches, the sliding-mode control (SMC) has
obtained extensive attention for its remarkable robustness. The characteristics of fast
response, interference immunity, and insensitivity to the bounded disturbances make it suit-
able for the BTT controller design(13,14). Typical SMC method involves two items, namely the
sliding manifold and reaching law. The former generally comprises tracking errors in relation
to control objectives while the latter accounts for motivating system states “on sliding mode”.
Linear sliding manifolds, together with corresponding linear reaching laws, provide asymp-
totic stability of control variables in sliding movement, which means system states converge
to the equilibrium point exponentially at infinite time(15). Then the algorithm is improved as
terminal sliding mode control (TSMC) with finite time convergence property. Refs. (16) and
(17) introduced functions to determine the reaching law, with which control variables reach
the desired values within finite time. Refs. (18) and (19) have succedded in accomplishing
the finite-time consensus of a second-order multi-agent system and higher-order multi-agent
system, respectively. In Ref. (20), a new form of switching surface is introduced to derive
a novel fast TSMC approach, where the reaching phase is eliminated to improve the global
robustness of the system. To avoid singularity problems induced by higher order nonlinear
functions, Refs. (21) and (22) finished similar deductions of nonsingular TSMC algorithm,
ensuring the feasibility of controller implementation. In Ref. (23), a new continuous nonlin-
ear distributed consensus tracking protocol is constructed via a nonsingular terminal sliding
mode (TSM) scheme.

However, in the above finite time convergence-related works, detailed estimations of set-
tling time are not addressed. Only theoretical results are provided in the citation of lemmas.
From the given mathematical version of theoretical settling time, the convergence rate can
be estimated on the condition that prior knowledge of system initial states are available.
Diverse initial conditions correspond to various settling time, indicating that the maximum
value depends on the largest initial error related with the Lyapunov function. It is significant
that the settling time can be predicted when initial conditions are unknown, both for prelimi-
nary design and engineering application. Thus in contrast with existing finite-time controllers,
the upper bound of the settling time can be estimated in the sense of fixed-time convergence
concept(24), in which the bounded convergence time is independent of system initial condi-
tions. With the newly constructed sliding mainfold, Ref. (25) achieved a nonsingular fixed
time consensus tracking for second-order multi-agent networks. Carried the idea farther, it
expanded the fixed-time terminal sliding mode control methods for a class of second-order
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nonlinear systems(26). In Ref. (27), a controller in the sense of fixed-time convergence concept
has been constructed for rigid spacecraft, in which the attitude angles converged to the equi-
librium points within the defined fixed time even with actuator saturation and faults. Based on
distributed control strategy with observers, Ref. (28) proposed two novel controllers to deal
with the fixed-time coordinated tracking problem for second order multi-agent system.

Further, to interact with disturbances, variable structure items which comprise discon-
tinuous schemes like the signum function are normally employed in the SMC control
methodologies mentioned above. The discontinuous signum function induces the well-known
chattering phenomenon as the switching gain need to be defined larger than the bound of
uncertainties, which degrades system performance and prohibits implementation of the con-
troller. Some works substituted the discontinuous item with saturation function or sigmoid
function(29), whereas control effectiveness is sacrificed to a certain degree. Refs. (10) and
(30) utilised the the disturbance observer to estimate the uncertainties. Despite the fact that
control burden can be reduced with ESO’s output incorporated into control input as a feedfor-
ward scheme, the discontinuous item is inevitably unavoidable, and the system suffers from
the chattering phenomenon inevitably. Meanwhile, the bandwidth of the disturbance observer
has to be selected wide enough to cover the frequency of the nonlinear coupling terms, which
is a tradeoff between robustness and control performance. To alleviate chattering effectively,
an integrated roll-pitch-yaw autopilot based on global TSMC control was synthesised in
Ref. (29) with a partial state nonlinear observer without using the signum function.

Motivated by previous work, a smooth adaptive sliding-mode-based controller for BTT
missiles has been designed in our research with fixed time convergence in the presence of
nonlinear couplings and aerodynamic uncertainties. Adaptive estimations with some mathe-
matical results are incorporated to derive the control algorithm. Unlike existing BTT missile
controllers, the designed approach motivates missile attitude variables, namely the angle of
attack, sideslip, and roll, converge to the equilibrium points before the predefined bounded
settling time in the presence of nonlinear couplings and aerodynamic uncertainties. The con-
trol input is inherently continuous without introducing any discrete items, like the signum
function. The upper bound of setting time is simply a function of designed parameters, indi-
cating that prior information about the convergence rate can be obtained at a preliminary
design period without acquiring system initial conditions. Within the known uniform bounded
convergence time, BTT controller can track the desired command at any given initial states,
which is of significant value for both overall missile design and performance evaluation. The
smooth input of the designed BTT controller avoids the problem of singularity and chatter-
ing, which not only ensures better performance of missile control system, but simultaneously
provides considerable availability for practical implementation. Comprehensive simulations
are carried out to demonstrate the superior performance of the designed BTT controller. The
fixed time convergent characteristics are fully reflected in the cases of separate controller gains
and initial states. Meanwhile the smooth inputs exhibit nice continuity in spite of nonlinear
couplings and aerodynamic uncertainties.

The rest of this paper is organised as follows. Nonlinear BTT missile dynamics is pre-
sented in the forthcoming section. Decomposed into loop structures, Section 3 introduces
some preliminaries and elaborates the smooth adaptive sliding mode-based controller design
process, in which the fixed time convergence theory is synthesised. In Section 4, detailed
stability analysis are provided via Lyapunov theory. Various simulations are performed in
Section 5 with specific analysis to validate the effectiveness of the designed approach, and
finally, conclusions are given in Section 6.
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2.0 BTT MISSILE DYNAMIC MODEL FORMULATION
Conventional control problem of BTT missiles embodies the tracking of the commanded
angle of attack, sideslip and roll. The nonlinear attitude dynamic model is formulated in the
presence of gravity, crossing couplings and aerodynamic uncertainties, which is suitable for
the generic tail-controlled BTT missiles in non axial-symmetric winged configuration.

In controller design procedures, it is quite usual to assume that flight altitude is fixed
with a constant velocity, and the aerodynamic uncertainties, as well as their derivatives, are
all bounded. The airframe is considered to be governed by rigid body mechanics, which
indicates that aero-elasticity, static parameter variations, like mass, and moment of inertial
are neglected through the entire flight. Besides, precise measurement of attitude angles and
angular velocities can be acquired with advanced onboard sensors.

Then, the complete 6-DOF dynamic model of BTT missile is depicted as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̇ = ωz − ωx tan β cos α + ωy tan β sin α − (P sin α + Y )

mV cos β

+ g

V cos β
(sin ϑ sin α + cos ϑ cos γ cos α)

β̇ = ωx sin α + ωy cos α + Z − P cos α sin β

mV

+ g

V
(sin ϑ cos α sin β − cos ϑ cos γ sin α sin β + cos ϑ sin γ cos β)

γ̇ = ωx − tan ϑ(ωy cos γ − ωz sin γ )

ω̇x = Jy − Jz

Jx
ωzωy + Mx

Jx

ω̇y = Jz − Jx

Jy
ωxωz + My

Jy

ω̇z = Jx − Jy

Jz
ωxωy + Mz

Jz

· · · (1)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y =
[
(1 + dα1)Cα

y α + (1 + dα2)Cδz
y δz

]
qs

Z = [
(1 + dβ1)Cβ

z β + (1 + dβ2)Cδy
z δy

]
qs

Mx = (1 + dx)mδx
x δxqsL

My =
[
(1 + dy1)mβ

y βqsL + (1 + dy2)m
δy
y δy

]
qsL

Mz = [
(1 + dz1)mα

z α + (1 + dz2)mδz
z δz

]
qsL

· · · (2)

where Cy
∗, Cz

∗, mx
∗, my

∗ and mz
∗ are coefficients of corresponding aerodynamic force and

moment-related with attitude angles and actuator deflections. As assumed at the beginning,
all of the coefficients representing aerodynamic perturbations, namely, dα1, dα2, dβ1, dβ2, dx,
dy1, dy2, dz1, dz2 are bounded. δx, δy, δz are control input variables.

From Eq. (1), it is apparent that BTT missile dynamics comprises kinematical coupling,
aero dynamical coupling, inertial coupling and control couplings, which significantly con-
tribute to the nonlinearity of the control problem. Rearrange Eqs. (1) and (2) to form the
following nonlinear system:
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{
ẋ1 = f 1 + g1x2 + d1

ẋ2 = f 2 + g2u + d2
· · · (3)

x1 =
⎡
⎣ α

β

γ

⎤
⎦, x2 =

⎡
⎣ωx

ωy

ωz

⎤
⎦, u =

⎡
⎣ c1δx

b4δy

a4δz

⎤
⎦

f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1α + d1 sin α

cos β
+ g

V cos β
(sin ϑ sin α+

cos ϑ cos γ cos α)

b1β − d1 cos α sin β + g

V
(sin ϑ cos α sin β+

cos ϑ sin γ cos β − cos ϑ cos γ sin α sin β)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f 2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

Jy − Jz

Jx
ωzωy

Jz − Jx

Jy
ωxωz + b3β

Jx − Jy

Jz
ωxωy + a3α

⎤
⎥⎥⎥⎥⎥⎥⎦

g1 =
⎡
⎢⎣

− tan β cos α tan β sin α 1

sin α cos α 0

1 − tan ϑ cos γ tan ϑ sin γ

⎤
⎥⎦, g2 =

⎡
⎢⎣

c1 0 0

0 b4 0

0 0 a4

⎤
⎥⎦

where

a1 = Cy
αqs

mV
, a2 = Cy

δz qs

mV
, a3 = mz

αqsL

Jz
, a4 = mz

δz qsL

Jz

b1 = Cz
βqs

mV
, b2 = Cz

δy qs

mV
, b3 = my

βqsL

Jz
, b4 = my

δy qsL

Jz

c1 = mx
δxqsL

Jx
, d1 = P

mV

and d1 = [d11, d12, d13]T, d2 = [d21, d22, d23]T are the bounded uncertainties concerning
aerodynamic-related parameters. Define that |d1i| ≤ σ 1i, |d2i| ≤ σ 2i, i = 1, 2, 3 and σ 1i, σ 2i

are all positive constants.
System (3) well represents the complex nonlinear behaviour of BTT missiles steering by

actuator deflections. It involves gravitational effect, aerodynamic uncertainties, and highly
cross-couplings between different channels. With measurable state variables x1 and x2, items
like f 1, f 2, g1, and g2 can be calculated. The developed nominal dynamic model is suitable
to design a nonlinear controller based on robust nonlinear stabilising and tracking control
algorithm.

3.0 BTT CONTROLLER DESIGN
In this section, the concept of fixed time stability is introduced first, together with some
primary mathematical results. Afterwards, a smooth adaptive sliding-mode-based BTT con-
troller has been designed with fixed time convergence characteristic. The influence of
uncertainties is alleviated without the commonly used discontinuous items (like the sign
function), and therefore avoid the well-known chattering problems in conventional SMC
method.
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3.1 Preliminary and design objective
The concept of fixed-time stability can be interpreted as the extension of finite-time stability.

Consider the nonlinear system(16)

ẋ = f(x, t), f(0, t) = 0, x ∈ Rn · · · (4)

where f: U0 × R →Rn is continuous on U0 × R, and U0 is an open set of the origin.
The origin is a finite-time stable equilibrium if it is Lyapunov stable and for any given initial

time t0 and initial state x(t0) = x0∈U ⊂ U0, there exists a settling time T ≥ 0, which depends
on x0, such that for every solution of system (5), x(t) = φ(t: t0, x0) ∈U /{0}, satisfies

{
lim

t→T(x0)
ϕ(t : t0, x0) = 0, t ∈ [t0, T(x0)]

ϕ(t : t0, x0) = 0, t > T(x0)
· · · (5)

Moreover, if the origin is finite-time stable with U = Rn, then the origin is a global
finite-time-stable equilibrium. Following lemma provides sufficient condition for the finite
convergence-control design(31).

Lemma 1: Consider the differential equation of system (4). Suppose there exists a continuous
positive-definite function V (x, t): Û→R, where Û is a neighborhood of the origin, such that
there are real number c > 0 and 0 < a < 1 satisfying V̇ (x, t)+cVα(x, t) ≤ 0 on Û. Then the
zero solution of system (5) is finite-time stable. The settling time is given by

T(x0) ≤ V 1−α(x0)

c(1 − α) · · · (6)

In addition, if Û = Rn, and V is radially unbounded, then the origin is globally finite-time
stable.

Obviously, the finite convergence time derived from lemma 1 depends on system initial con-
dition. Different initial states correspond to various settling time, which indicates no uniform
bound of convergence time can be obtained in advance without the knowledge of maximum
V (x0). If prior information of system initial states is not available, pre-evaluations of controller
performance would be restricted to some extent. From the point of preliminary overall design
and engineering application, it is preferable that system performance metrics — for example,
the bound of settling time — can be estimated beforehand regardless of initial system states.
Moreover, for those with strict positive dwelling time, such as hybrid system control, it is
necessary to stabilise the controlled system exactly before the next switching occurs(32). Thus
moving further on, the concept of fixed-time convergence is put forward.

Consider system (4), the origin is said to be a “fixed-time stable” equilibrium point if it is
globally finite-time stable and the settling time function T(x0) is bounded; that is, there exists
Tmax > 0 such that T(x0) < Tmax, ∀x0∈Rn.The following lemma presents helpful result for the
design of controller with fixed-time convergence(22).

Lemma 2: Consider a scalar system

ẏ = −αy
m
n − βy

p
q , y(0) = y0 · · · (7)

where α > 0, β > 0. m, n, p and q are positive odd integers satisfying m > n, p < q. Then the
origin of system (7) is fixed-time stable and the settling time T is bounded by
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T < Tmax= 1

α

n

m − n
+ 1

β

q

q − p · · · (8)

As denoted in Eq. (8), the upper bound of settling time is independent of system initial con-
dition and basically determined by designed parameters, namely, m, n, p, q, α, β. Therefore,
prior knowledge of “fixed” settling time can be obtained at the beginning with appropriate
selection of parameters on the basis of system performance metrics.

Before conducting the BTT controller design, two fundamental equations are supplemented
as follows.

(ab)2

4μ
+ μ ≥ ab · · · (9)

ζc2 + d2

4ζ
≥ cd · · · (10)

Equations (9) and (10) are mathematically correct and are helpful to prove the stability of
the designed controller in the subsequent section.

Design objective: In this paper, a robust smooth adaptive sliding mode controller is pro-
posed with fixed time convergence property for BTT missiles under the condition of nonlinear
couplings and aerodynamic uncertainties, with which system states converge to the com-
manded value within predefined bound of settling time at any initial conditions, and the
designed control input is essentially smooth without introducing any discontinuous items.

3.2 BTT smooth adaptive fixed time convergent sliding mode controller
This section derived a robust smooth sliding-mode-based controller with fixed-time conver-
gence for system (3). In the light of time scale separation principal, cascade control structure
is employed and therefore (3) is decomposed into outer loop and inner loop architectures.
The former accounts for generating proper angular rate command to trace the attitude angle
signals, while the latter for operating on the tail deflections to track the reference angular rate
command obtained from forward loop.

A. Outer loop

Suppose the desired command is xd and xd = [αd , βd , γd]T . The objective of outer loop
control is to design the angular rate defined as a virtual control input (x1c) to make x1 converge
to xd within a fixed bounded time. Rewrite the first equation of system (3) here

ẋ1 = f 1 + g1x1c + d1 · · · (11)

Define a sliding manifold as

s1 = [s11, s12, s13]T = x1 − xd · · · (12)

Taking the derivative of S1 with respect to time yields

ṡ1 = f 1 + gx1c + d1 − ẋd · · · (13)

A notation has been employed here to represent the multiplication between scalar and
vector
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κθ r = [κθ1
r, κθ2

r, · · · κθn
r]T · · · (14)

where κ, r are scalar constants and ϑ = [ϑ1, ϑ2,. . . ϑn]T is a Rn vector.
To achieve the fixed-time convergence, the reaching law is designed in the form

ṡ1 = −β11s1

m1
n1 − β21s1

p1
q1 − β31s1 − χ̂1s1

4μ1
+ d1 · · · (15)

where β1, β2, ε1 and μ1 are non-negative. m1, n1, p1 and q1 are positive odd constants
satisfying m1 > n1, p1 < q1. The vector fields take the form as indicated in Ref. [14].
χ̂1 = diag[χ̂11, χ̂12, χ̂13] is the estimation of χ1 = diag[σ 11

2, σ 12
2, σ 13

2] and is determined
by the updating law

˙̂χ1i = −β41χ̂1i + s2
1i

4μ1
, i = 1, 2, 3. · · · (16)

where β41 > 0.
Substitute Eq. (15) into Eq. (13), the virtual control signal of outer loop can be obtained as

x1c = [x1c1, x1c2, x1c3]T = g1
−1(−f1 − β11s1

m1
n1 − β21s1

p1
q1 − β31s1 − χ̂1s1

4μ1
+ ẋd) · · · (17)

Next, with the obtained virtual control input x1c from Eq. (17), the control input of angular
rate loop can be obtained under same baseline.

B. Inner loop

Similar procedures are implemented in inner loop design. The objective is to deduce the
actual control input such that tracking error between the virtual control signal and the actual
angular rates converges to the origin within the fixed bounded time. Rewrite the second
equation of system (3)

ẋ2 = f 2 + g2u + d2 · · · (18)

Another sliding manifold is defined as

s2 = [s21, s22, s23]T = x2 − x1c · · · (19)

Differentiating S2 yields

ṡ2 = f 2 + u + d2 − ẋ1c

= f 2 + u + d2
∗ · · · (20)

where d2
∗ = [d21

∗, d22
∗, d23

∗]T = d2 − ẋ1c. Considering the real situation of the BTT missile
control system, ||ẋ1c|| cannot be infinite and is supposed to be constrained by an appropriate
positive margin. Then, as ||d2|| and ||ẋ1c|| are both bounded, d2

∗ is therefore finite. Define the
corresponding margin as d2i

∗≤ σ 2i
∗, i = 1, 2, 3 and σ 2i

∗ are positive constants.
In the similar way, the reaching law for inner loop is designed to be

ṡ2 = −β12s2

m2
n2 − β22s2

p2
q2 − β32s2 − χ̂2s2

4μ2
+ d2

∗ · · · (21)
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where β12, β22, β32 and μ2 are non-negative. m2, n2, p2 and q2 are positive odd constants
satisfying m2 > n2, p2 < q2.χ̂2 = diag[χ̂21, χ̂22, χ̂23] is the estimation of χ2 = diag[(σ 21

∗)2,
(σ 22

∗)2, (σ 23
∗)2] and is determined by the updating law

˙̂χ2i = −β42χ̂2i + s2
2i

4μ2
, i = 1, 2, 3. · · · (22)

where β42 > 0.
Regardless of different subscripts, the designed parameters in Eqs. (21) and (22) possess

identical value range and definition of vector exponentiation function with those described in
Eqs. (15) and (16).

Considering (20) and (21), the actual control input for stabilising the tracking error in the
inner loop is derived as

u = δ = g−1
2

(
−fx2 − β12s2

m2
n2 − β22s2

p2
q2 − β32s2 − χ̂2s2

4μ2

)
· · · (23)

Obviously, in Eq. (23), there is no discontinuous item, for example the signum function, in
the control input of the designed controller. It is inherently smooth and consequently avoids
the problem of chattering. The smooth input is significant in both theoretical analysis and
practical application.

4.0 STABILITY ANALYSIS
In this section, closed-form stability analysis of dynamic system (3) in the presence of
nonlinear couplings and aerodynamic uncertainties is given with the designed controller.
Preliminaries supplemented at the end of Section 3.1 are helpful to the proof of the main
results.

Theorem 1: For the BTT missile dynamic system (3), attitude variables can track the desired
command with the developed controller within fixed bounded time and converge to a neigh-
borhood around sliding manifold. The fixed bound of settling time can be predefined with
designed control parameters regardless of initial conditions.

Proof For outer loop, consider the Lyapunov function

V1 = 1

2
sT

1 s1 + 1

2

3∑
i=1

χ̃2
1i · · · (24)

where χ̃1i = χ1i − χ̂1i, i = 1,2,3.
Differentiating V 1 with respect to time and substituting (16), (17) into it yield

V̇1 = sT
1 ṡ1 +

3∑
i=

χ̃1i
˙̃χ1i

= sT
1

(
−β11s1

m1
n1 − β21s1

p1
q1 − β31s1 + d1 − χ̂1s1

4μ1

)
−

3∑
i=1

χ̃1i

(
−β41χ̂1 − s2

1i

4μ1

)

=
3∑

i=1

(
−β11s1i

m1+n1
n1 − β21s1i

p1+q1
q1 − β31s2

1i + s1id1i − χ̂1is2
1i

4μ1
+ β41χ̂1iχ̃1i − χ̃1is2

1i

4μ1

)
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≤
3∑

i=1

(
−β31s2

1i + |s1i| σ1i − χ̂1is2
1i

4μ1
+ β41χ̂1iχ̃1i − χ̃1is2

1i

4μ1

)

=
3∑

i=1

(
−β31s2

1i + |s1i| σ1i − χ1is2
1i

4μ1
+ β41χ1iχ̃1i − β41χ̃

2
1i

) · · · (25)

Considering Eqs. (9) and (10), one gets

V̇1 ≤
3∑

i=1

(
−β31s2

1i + μ1 + β41ζ1χ̃
2
1i + β41

χ2
1i

4ζ1
− β41χ̃

2
1i

)

=
3∑

i=1

(−β31s2
1i − β41(1 − ζ1)χ̃2

1i

) +
3∑

i=1

(
μ1 + β41

χ2
1i

4ζ1

)
≤ −η1V1 + ς1

· · · (26)

where η1 = min {2β31, 2β41(1−ζ1)}, ς1 =
3∑

i=1
(μ1 + β41

χ2
1i

4ζ1
).

According to the boundedness theorem, s1i and χ1i are uniformly ultimately bounded.
Assume that |χ1i|≤ ξ1, where ξ1 is positive.

Similarly, define another Lyapunov function of inner loop as

V1 = 1

2
sT

2 s2 + 1

2

3∑
i=1

χ̃2
2i · · · (27)

where χ̃2i = χ2i − χ̂2i, i = 1,2,3.
Taking the derivative of V 2, it follows from Eqs. (22) and (23) that

V̇1 = sT
2 ṡ2 +

3∑
i=

χ̃2i
˙̃χ2i

=
3∑

i=1

(
−β12s2i

m2+n2
n2 − β22s2i

p2+q2
q2 − β32s2

2i + s2id2i
∗ − χ̂2is2

2i

4μ2
+ β42χ̂2iχ̃2i − χ̃2is2

2i

4μ2

)

≤
3∑

i=1

(
−β32s2

2i + |s2i| σ2i − χ̂2is2
2i

4μ2
+ β42χ̂2iχ̃2i − χ̃2is2

2i

4μ2

)

=
3∑

i=1

(
−β32s2

2i + |s2i| σ2i − χ2is2
2i

4μ2
+ β42χ2iχ̃2i − β42χ̃

2
2i

)

≤
3∑

i=1

(
−β32s2

2i + μ2 + β42ζ2χ̃
2
2i + β42

χ2
2i

4ζ2
− β42χ̃

2
2i

)

=
3∑

i=1

(−β32s2
2i − β42(1 − ζ2)χ̃2

2i

) +
3∑

i=1

(
μ2 + β42

χ2
2i

4ζ2

)
≤ −η2V2 + ς2

· · · (28)

where η2 = min {2β32, 2β42(1-ζ2)}, ς2 =
3∑

i=1
(μ2 + β42

χ2
2i

4ζ2
). Thus s2i and χ2i are uniformly

ultimately bounded. Assume that |χ2i|≤ ξ2, where ξ2 is positive.
For the integral system, consider the Lyapunov function

V3 = 1

2
sT

1 s1 + 1

2
sT

2 s2 · · · (29)
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Combined with Eqs. (16), (17), (22) and (23), the derivative of V 3 is expressed in the
following form

V̇3 = sT
1 ṡ1 + sT

2 ṡ2

=
3∑

i=1

(
− β11s1i

m1+n1
n1 − β21s1i

p1+q1
q1 − β31s2

1i + s1id1i − χ̂1is2
1i

4μ1

−β12s2i

m2+n2
n2 − β22s2i

p2+q2
q2 − β32s2

2i + s2id2i − χ̂2is2
2i

4μ2

)

≤
3∑

i=1

(
− β11s1i

m1+n1
n1 − β21s1i

p1+q1
q1 − β31s2

1i +
ξ1s2

1i

4μ1
+ μ1

−β12s2i

m2+n2
n2 − β22s2i

p2+q2
q2 − β32s2

2i +
ξ2s2

2i

4μ2
+ μ2

)

=
3∑

i=1

(
− β11s1i

m1+n1
n1 − β21s1i

p1+q1
q1 −

(
β31 − ξ1

4μ1

)
s2

1i + μ1

−β12s2i

m2+n2
n2 − β22s2i

p2+q2
q2 −

(
β32 − ξ2

4μ2

)
s2

2i + μ2

)

· · · (30)

Denote ⎧⎪⎪⎨
⎪⎪⎩

β31
∗ = β31 − ξ1

4μ1

β32
∗ = β32 − ξ2

4μ2

· · · (31)

Equation (30) yields

V̇3 ≤
3∑

i=1

(
− β11s1i

m1+n1
n1 − β21s1i

p1+q1
q1 −

(
β31

∗ − μ1

s2
1i

)
s2

1i − β12s2i

m2+n2
n2

−β22s2i

p2+q2
q2 −

(
β32

∗ − μ2

s2
2i

)
s2

2i

)

≤
3∑

i=1

(
− β11s1i

m1+n1
n1 − β21s1i

p1+q1
q1 − β12s2i

m2+n2
n2 − β22s2i

p2+q2
q2

) · · · (32)

To ensure the stability of the integral system, designed parameters are chosen to satisfy
β31

∗ ≥ μ1/s1i
2, β32

∗ ≥ μ2/s2i
2. To simplify the design process and keep its uniformity, other

parameters are chosen conveniently in the form β11=β12=β1, β21=β22=β2, m1 = m2 = m,
n1 = n2 = n, p1 = p2 = p, q1 = q2 = q. Then, Eq. (32) is transformed into

V̇3 = s1
T ṡ1+s2

T ṡ2

≤
3∑

i=1

(
−β1s1i

m+n
n − β2s1i

p+q
q − β1s2i

m+n
n − β2s2i

p+q
q

)

=
3∑

i=1

{
−β1[(s1i

2)
m+n

2n + (s2i
2)

m+n
2n ] − β2[(s1i

2)
p+q
2q + (s2i

2)
p+q
2q ]

}

≤ −2
n−m

2n β1(2V3)
m+n
2n − β2(2V3)

p+q
2q

· · · (33)
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Table 1
BTT missile aerodynamic parameters

Parameter Value Parameter Value

a1 2.66 b2 −1.21
a2 1.08 b3 −11
a3 −10.98 b4 −16.2
a4 −15.8 c1 61.52
b1 −2.58 d1 1.25

Considering lemma 2, V 3 = 0 implies s1=s2=0. If V 3 �= 0, substituting y = √
2V3 into Eq.

(33) yields

ẏ ≤ −2
n−m

2n β1(y)
m
n − β2(y)

p
q · · · (34)

which follows lemma 2, that system state reaches the sliding bounded region within fixed time
t < Tmax. The fixed settling time is bounded and can be expressed as follows

t < Tmax= 1

β1

2
m−n

2n n

m − n
+ 1

β2

q

q − p · · · (35)

Finally, decreasing V ultimately drives the trajectories of states converge to the small region
|s1i| < (μ1/β31

∗)1/2 within the fixed bounded settling time, and thus the tracking of the desired
command is guaranteed.

Further, Eq. (35) indicates that the uniform fixed bound of convergence time is a function of
designed control parameters. It is independent of system initial conditions and consequently
can be known in advance.

5.0 SIMULATION
In this section, comprehensive simulations are carried out on a typical 6DOF BTT missile
in the presence of nonlinear couplings and aerodynamic uncertainties. To validate the effec-
tiveness of the designed controller, two kinds of maneuveorsare pursued with varying aero-
dynamic uncertainties, namely, fixed constant command and successive command. For the
former, fixed-time convergence characteristic is first validated, and afterwards Monte Carlo
simulations are conducted with different initial conditions to further demonstrate the conver-
gence performance of the proposed method. For the latter, a continuous command is generated
as a reference signal under diverse aerodynamic uncertainty conditions, which reflects the
robustness of the designed controller adequately. Considering the intrinsic BTT maneuveor-
ingcharacteristics, the signal of sideslip angle is set to be zero throughout the entire flight.

Aerodynamic parameters for the simulation are given in Table 1. Control parameters
are chosen to be β1=β2=βcp, m1 = m2 = m = 7, n1 = n2 = n=5, p1 = p2 = p = 5,
q1 = q2 = q = 7, β31 = 1.5, β32 = 2, μ1 = 0.01, μ2 = 0.05.

5.1 Fixed constant command with different β and initial states.
This case simply takes the tracking ability of fixed constant command into consideration.
Assume that coefficients of aerodynamic forces and moments are all increased by 30% of
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Figure 1. Control system response in pitch channel. (a) Response of attack angle. (b) Time history of
elevator deflection.

their nominal values. First, initial system states and desired commanded signals are set to be
α0 = 0, β0 = −8, γ0 = 0, αd = 10, βd = −8, and γd = 45 degree respectively. Figs. 1(a)–3(a)
exhibits the time histories of system response in pitch, yaw, and roll channels with dif-
ferent control parameter βcp. Fin deflections in corresponding scenarios are depicted in
Figs. 1(b)–3(b).

As visualised in Figs. 1(a)–3(a), with the designed controller, BTT missile can track the
desired command with satisfactory performance in the presence of nonlinear couplings and
aerodynamic uncertainties. The settling times of the angle of attack, sideslip, and roll are
approximately summarised in Table 2.
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Figure 2. Control system response in yaw channel. (a) Response of sideslip angle. (b) Time history of
rudder deflection.

Obviously, control variables all converge to their desired value before the theoretical fixed
bound of setting time Tmax, which is calculated from Eq. (35) with the designed parame-
ters. Because of large deviations between command signals and system initial states at the
beginning, the control inputs approach large values promptly at initial periods for the sake of
tracking. In roll channel as shown in Fig. 3(b), the aileron even goes beyond the deflection
constraint. With fin deflections continuously contributing to the control efforts, propelling the
required control quantities rapidly within the scope of available control load, the burden of
aerodynamic actuator reduced with time increasing, and fins gradually actuate smoothly to
ensure the tracking precision. As a result, fast tracking within fixed-bounded convergence
time is guaranteed for a BTT missile flight system with the designed controller.
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Table 2
Settling time of three channels (s)

βcontrol 4 5 6
Pitch 1.27 0.87 0.71
Yaw 1.25 0.78 0.6
Roll 1.32 0.89 0.73
Tmax 1.60 1.27 1.06

Figure 3. Control system response in roll channel. (a) Response of roll angle. (b) Time history of aileron
deflection.
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Response of pitch channel when b= 5

Response of yaw channel when b= 5

Response of roll channel when b= 5

(c)

(b)

(a)

Figure 4. Monte-Carlo simulation with designed BTT controller. (a) Response of pitch channel when β = 5.
(b) Response of yaw channel when β = 5. (c) Response of roll channel when β = 5.

To further validate the fixed-time convergence property of the designed BTT controller,
where the fixed bound of settling time is independent of system initial conditions, Monte-
Carlo simulations are conducted with various original states, namely, α0 from −8~16 deg, β0

from −10~10 deg, and γ0 from −25~45 deg. In this occasion, reference signals are given as
αd = 9 deg, βd = 0 deg, and γd = 25 deg. βcp = 5 and other parameters are identical with
previous occasion. The results are depicted in Fig. 4
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Figure 5. Control system response in pitch channel. (a) Response of attack angle. (b) Details of
response.

Figure 4 sufficiently demonstrates the tracking performance with the designed BTT con-
troller under different initial condition scenarios. A missile can track the desired command
before the fixed predefined theoretical bounds of convergence time (Tmax = 1.27s for βcp = 5).
Time histories of system responses exhibit nice uniform convergent characteristic when
diverse initial states are given. Simulation results of this situation fully reflect the fixed time
convergence characteristic of the designed controller, which is independent of initial condi-
tions and can be evaluated with control parameters in advance. That is also what separates the
designed method with conventional terminal sliding-mode controllers.
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Figure 6. Control system response in yaw channel.

Figure 7. Control system response in roll channel. (a) Response of roll angle. (b) Details of response.
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Figure 8. Control time history of elevator deflection.

5.2 Successive command tracking in different aerodynamic uncertainty
scenarios

This case takes tracking successive maneuveoringcommand for consideration. A contin-
uous command is generated as the desired signal for BTT missile to maneuveor. It is
assumed that aerodynamic coefficients are increased by 20%, 40%, 60%, respectively, that
is dα1 = dα2 = dβ1= dβ2 = dx = dy1 = dy2 = dz1 = dz2 = d, and d = 0.2, 0.4, 0.6. βcp = 5,
and initial angle of attack, sideslip, and roll equal to 0, −8, 0 degree, respectively. Time his-
tories of system response with the designed controller in the presence of various uncertainties
are depicted in Figs. 5–7, where the continuous turn command are illustrated as a reference.
Figures 8–10 give the diagrams of corresponding tail deflections. Details of distinct small
deviations have been augmented in subgraphs.

Figures 5–7 show that continuous command can be tracked effectively with the designed
controller under various aerodynamic uncertainty scenarios. Within theoretical predefined
settling time, which is 1.27s, the trajectories of missile attitude angles are driven closely to
the desired value at the beginning, and afterwards follows the successive maneuveoringsignal
efficiently.

As shown in Figs. 8–10, elevator, rudder, and aileron deflections first increase promptly
because of the large deviation between original states and the desired values. When initial
errors are swiped out to a small extent, smooth fin deflections take a crucial role consec-
utively, contributing to effective control efforts and thus improving tracking capacities of
missile control system. Despite the fact that command signal in yaw channel is set to be zero,
rudder deflection is not zero when corresponding initial error is eliminated as shown in Fig. 9,
it deflects coordinately with the other actuators. This is because of the strong nonlinear cou-
plings of BTT missile dynamics. Tracking behaviour in the other directions exerts definite
influences on yaw channel, and the inducing effects can be eliminated subsequently with the
designed controller. Meanwhile it is worth to notice from Figs. 8–10 that the input signals are
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Figure 9. Control time history of rudder deflection.

Figure 10. Control time history of aileron deflection.

smooth without singularity and chattering, which not only enhances tracking performance,
but is preferable for practical engineering applications.

Although different degree of aerodynamic uncertainty exists throughout the flight regime,
the designed controller guarantees suitable tracking precision of BTT missile flight system
and demonstrates satisfactory robustness against uncertainties.
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6.0 CONCLUSIONS
This paper designed a robust smooth adaptive sliding-mode-based controller with fixed-time
convergence for BTT missiles considering nonlinear couplings and aerodynamic uncertain-
ties. Based on fixed-time stability theory and adaptive estimations, the designed smooth
sliding-mode controller guarantees that the BTT missile tracks the commanded angle of
attack, sideslip, and roll within fixed bound of setting time under different initial condi-
tion scenarios. The bounded convergence rate can be predefined as a function of design
parameters regardless of system initial states, which is of significant value from the aspect of
preliminary design and performance evaluation. Meanwhile, the smooth controller input rep-
resenting actuator deflections is intrinsic continuous without adopting any discrete schemes,
such that singularity and chattering problems are evaded effectively, facilitating practical
implementations of the proposed method as well. In the end, extensive simulations validate
the effectiveness of the designed BTT controller.
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