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BNP in children with congenital cardiac disease: is there now
sufficient evidence for its routine use?
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Abstract Interest in brain natriuretic peptide (BNP) and N-terminal pro-brain natriuretic peptide
(NT-proBNP) in the management of children with CHD has increased. There are, however, no current guide-
lines for their routine use. The aim of this review article is to provide an update on the data regarding the use of
BNP/NT-proBNP in the evaluation and surgical treatment of children with CHD. BNP/NT-proBNP levels in
children with CHD vary substantially according to age, laboratory assay methods, and the specific haemody-
namics associated with the individual congenital heart lesion. The accuracy of BNP/NT-proBNP as supple-
mental markers in the integrated screening, diagnosis, management, and follow-up of CHD has been established.
In particular, the use of BNP/NT-proBNP as a prognostic indicator in paediatric cardiac surgery has been widely
demonstrated, as well as its role in the subsequent follow-up of surgical patients. Most of the data, however, are
derived from single-centre retrospective studies using multivariable analysis; prospective, randomised clinical
trials designed to evaluate the clinical utility and cost-effectiveness of routine BNP/NT-proBNP use in CHD are
lacking. The results of well-designed, prospective clinical trials should assist in formulating guidelines and expert
consensus recommendations for its use in patients with CHD. Finally, the use of new point-of-care testing
methods that use less invasive sampling techniques – capillary blood specimens – may contribute to a more
widespread use of the BNP assay, especially in neonates and infants, as well as contribute to the development of
screening programmes for CHD using this biomarker.
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Background

According to themost recent international guidelines,1,2

natriuretic peptides, and in particular the peptides
related to the B-type cardiac peptide hormone – such
as brain natriuretic peptide (BNP) and N-terminal
pro-brain natriuretic peptide (NT-proBNP) – are
considered first-line biomarkers for the diagnosis of
both acute and chronic heart failure in adult patients.
In adult patients, the quality of the clinical evidence
is in establishing that the measurements of BNP and

NT-proBNP are useful in validating clinical judge-
ment to confirm or exclude chronic ambulatory heart
failure or acute decompensated heart failure.2 The
value of natriuretic peptide testing is particularly
significant when the aetiology of dyspnoea is unclear.
Indeed, all international guidelines, dating from the
beginning of the 21st century, state that lower levels
of BNP or NT-proBNP actually exclude the presence
of heart failure and higher levels have a reasonably
high positive predictive value to diagnose heart fail-
ure in adult patients.1–7

Although interest in the measurement of BNP and
NT-proBNP for the management and follow-up of
children with acquired and CHD has progressively
increased in recent years, no evidence-based
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guidelines or even expert consensus recommenda-
tions exist for this clinical setting at present.8–10

Several studies, however, do support the use of BNP/
NT-proBNP in the screening, management, and
follow-up of children with CHD, as recently
reviewed in detail.8–10 Although all of these studies
indicate that BNP/NT-proBNP is a reliable prog-
nostic biomarker after paediatric cardiac surgery,
there are some limitations, which may adversely
affect the scientific validity and clinical implications
of these data. Some of these studies are relatively
small and underpowered, and large-scale multi-cen-
tre studies are limited. As yet, there are no pro-
spective randomised clinical trials specifically
designed to evaluate the cost-effectiveness of BNP/
NT-proBNP use in paediatric cardiology/paediatric
cardiac surgery.8–10

The goal of this review article is to provide an
update of the evidence related to the use of BNP/NT-
proBNP in paediatric cardiology and cardiac surgery
with particular focus on CHD. The most important
biochemical characteristics and the pathophysiological
role of natriuretic peptides in paediatric cardiology and
cardiac surgery are considered in the first section. In the
second section, the clinical usefulness of the BNP/
NT-proBNP assay for the diagnosis, prognosis, and
follow-up of paediatric patients with CHD will be
discussed in accordance with established evidence-
based principles.11,12

Biochemical characteristics of the B-type
cardiac natriuretic peptide system

The human BNP gene in the cardiomyocyte nucleus
encodes for a 134 amino-acid pre-proBNP1–134
molecule. This pre-proBNP molecule is split into a
108 amino-acid proBNP1–108 molecule – usually
termed proBNP – as well as a 26 amino-acid signal
peptide. Before being secreted from the cardiomyocyte
into the bloodstream, proBNP is split by proteolytic
enzymes, corin and/or furin, into two more peptides: a
biologically inactive NH2-terminal peptide fragment
called NT-proBNP1–76 and the COOH-terminal
peptide fragment proBNP77–108, which is the biolo-
gically active 32 amino-acid peptide usually designated
simply as BNP13,14 (Fig 1). In addition to the biolo-
gically active peptide hormone BNP and the inactive
peptide NT-proBNP, a large number of circulating
fragments, derived from proBNP, can be identified by
chromatographic techniques in human plasma,
including the intact and glycosylated forms of the
precursor proBNP.15–33 Some recent studies demon-
strate that the intact and glycosylated forms of proBNP
constitute a significant percentage of the immunor-
eactive B-type-related peptides circulating in the
plasma of patients with heart failure.15–33 These data,

therefore, suggest an additional mechanism for synth-
esis of the biologically active BNP and inactive
NT-proBNP that are found in the bloodstream. That
is, these two peptides can also be produced from
proBNP that is released into the bloodstream through
enzymatic cleavage by plasma proteases, such as corin
(Fig 1).34–37

From an analytical chemistry point of view, the
marked heterogeneity of the B-type natriuretic
peptides that are circulating in human blood may
explain the large differences seen in the results reported
for the different immunoassay methods that are con-
sidered specific to the biologically active peptide
hormone BNP. On the other hand, one sees greater
consistency in the results observed using the various
immunoassay techniques for the NT-proBNP, perhaps
because there is less heterogeneity in the circulating
forms of that biologically inactive peptide.38–41

For example, a recent study, using standardised proto-
cols and quality control techniques, demonstrated
that the IRMA method (Shionogi’s Diagnostic
Division, Osaka, Japan), the ADVIA method for the
Centaur platform (Siemens Health Care Diagnostics,
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Figure 1.
Schematic representation of production/secretion pathways of B-type
natriuretic hormone and its related peptides. Human brain
natriuretic peptide (BNP) is synthesised as a 134 amino-acid (aa)
precursor protein (pre-proBNP) and is subsequently processed
during secretion to form the 108-aa peptide, proBNP. The pro-
peptide hormones of the cardiac natriuretic peptides can be
enzymatically cleaved by at least two pro-protein convertases
produced in the cardiomyocytes, such as corin and furin. In
particular, proBNP is processed to form the 76-aa N-terminal
peptide (NT-proBNP), and then the biologically active 32-aa
C-terminal peptide called proBNP (or abbreviated BNP), which
has a shorter plasma half-life of about 15–20 minutes versus
1–2 hours for NT-proBNP. There are, consequently, lower plasma
concentrations of proBNP (BNP) compared with NT-proBNP.
Moreover, the intact proBNP 108-aa peptide is also present in
plasma, especially in the plasma of patients with heart failure, in
both glycosylated and non-glycosylated forms.
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Tarrytown, New York, United States of America),
and the ST AIA-PACK method for the AIA platform
(TOSOH Corporation, Tokyo, Japan) yielded
significantly lower, as much as 50%, BNP levels
compared with other immunoassays, such as the
point-of-care test Triage method (Alere Diagnostics,
Waltham,Massachusetts, United States of America), the
BNP Triage Biosite for Access and UniCell DxI
platforms (Beckman Coulter Diagnostics, Beckman
Coulter Inc., Brea, California, United States of America),
the MEIA method for the AxSYM platform (Abbott
Diagnostics, Abbott Park, Lake Forest, Illinois, United
States of America), and the chemiluminescent micro-
particle immunoassay for the ARCHITECT platform
(Abbott Diagnostics).41 Luckenbill et al42 reported that
many of these systematic differences between the
various BNP immunoassay systems could be due to
cross-reactivity between the glycosylated and non-
glycosylated forms of the precursor proBNP. These
data suggest that clinicians should be cautious when
comparing results obtained from different laboratories
using different BNP immunoassay methods. The refer-
ence levels for “normal” natriuretic peptide (BNP/NT-
proBNP) levels in children differ according to
age.8,10,43–55 Plasma BNP/NT-proBNP concentrations
are highest during the first 4 days of life, possibly due to
the stress of the birth process and possibly due to
adaptation of the neonate to postnatal circulation. These
levels then rapidly fall during the 1st week, with a
further slower progressive reduction throughout the 1st
month of life (Table 1 and Fig 2). After the 1st month of
life, BNP/NT-proBNP concentrations remain steady,
without any significant change up to 12 years of age.
There are generally no gender-related differences in
“normal” BNP/NT-proBNP levels in children up to the
beginning of adolescence.13,14,44,45,48,49,56 Throughout
adolescence, fertile girls show progressively higher
circulating BNP/NT-proBNP levels than boys, prob-
ably because of a direct positive action of female sex
steroid hormones on production of the cardiac
natriuretic hormones by cardiomyocytes and a negative
action of male sex hormones on this process.13,14,56–58

From a clinical standpoint, it is important to note
that BNP/NT-proBNP levels may be affected by
several physiological or clinical conditions. For
example, neonatal twins usually have higher BNP/
NT-proBNP concentrations than singletons. More-
over, babies of mothers with type 1 diabetes, prema-
turity, intrauterine growth retardation, caesarian
section following uterine contraction, and intrauterine
stress usually have higher BNP/NT-proBNP levels
compared with neonates unaffected by these
conditions.59–62

Table 1. Distribution of BNP values (ng/L) grouped according to four time periods from birth to 12 years of life measured in 253 healthy
newborns and infants in the authors’ laboratory with the BNP triage biosite for access platform (by Beckman Coulter Diagnostics).

Groups (time periods from birth) Number of individuals Mean± SD Median Range 97.5th percentile p-value

0–2 days 68 280.3± 167.5 243.5 41–866 758.7 p< 0.0001*
3–30 days 75 136.1± 149.3 75 10–763 741.4 p< 0.0001**
1–12 months 46 20.3± 10.7 19 5–45 43.9
1–12 years 64 15.7± 8.9 13 4–46 39.8
All groups (0–12 years) 253 123.4± 160.1 38 4–866 622.0

Range: minimum and maximum values
*Significantly higher than all subsequent time period values
**Significantly higher than the values observed throughout the subsequent time periods (i.e., 2–12 months and 2–12 years)

Figure 2.
Plasma brain natriuretic peptide (BNP) levels in healthy newborns
throughout the first days of life. Plasma BNP values were
measured in 188 healthy newborns throughout the first days of life.
Plasma BNP concentrations are very high during the first 4 days
of life; then values fall rapidly during the 1st week with a further
slower progressive reduction throughout the 1st month of life.
Plasma BNP was measured in the authors’ laboratory with the
automated Access platform (Triage BNP reagents, Access
Immunoassay Systems, REF 98200, Beckman Coulter Inc.,
Fullerton, California, United States of America). The trend was
indicated by a continuous line, assessed by smooth spline analysis
(data modified from references8,54,78).
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The pathophysiological role of BNP

The natriuretic peptides – atrial natriuretic peptide
and BNP – are synthesised and secreted mainly by
cardiomyocytes;13,14,16 however, there is evidence,
especially in patients with chronic cardiac diseases,
that atrial natriuretic peptide is preferentially syn-
thesised in the atria, whereas BNP is preferentially
synthesised in the ventricles.13,14 Synthesis and
secretion of atrial natriuretic peptide and BNP may
be regulated differently in atrial versus ventricular
myocytes and, most likely also, during neonatal
versus adult life.13,14,63 As a consequence, it is con-
ceivable that two separate cardiac endocrine systems
exist, one in the atrium, where atrial natriuretic
peptide and its related peptides are preferentially
produced, and the other in the ventricle, pre-
dominantly secreting BNP and its related peptides.
A normal ventricular myocardium may produce

only a limited amount of BNP in response to an acute
event such as a sudden rise in the end-diastolic pressure,
probably through increased secretion of BNP that is
already synthesised and is being stored in secretory
granules in the cardiomyocyte cytoplasm. On the other
hand, in the presence of chronic heart failure, an
upregulation of the actual synthesis of BNP and its
subsequent secretion from the cardiomyocyte into the
bloodstream seems to be triggered by neuro-hormonal
and immunological signals to the myocardium.13,14

Wall distension is generally considered to be the
primary mechanical stimulus for BNP production by
ventricular tissue. This occurs in clinical conditions
that are associated with electrolyte and fluid retention
with consequent expansion of the effective plasma
volume, as seen in primary or secondary hyper-
aldosteronism that accompanies cardiac, renal, and
liver failure.13,14 Several studies, however, indicate
that BNP synthesis/secretion may be regulated dif-
ferently in normal versus diseased ventricular myo-
cardium. Indeed, ventricular hypertrophy, especially
associated with fibrosis, can stimulate BNP
production.13,14,64–66 Furthermore, some experi-
mental and clinical studies indicate that myocardial
ischaemia and, perhaps, hypoxia could induce the
synthesis/secretion of BNP and its related peptides by
ventricular cardiomyocytes, even if they are isolated
and cultured.67–72 Accordingly, BNP plasma
concentrations can fluctuate widely depending on
the surrounding pathophysiological stimuli and
cardiovascular haemodynamics, both in healthy
individuals and in patients with heart failure.43,73,74

The biologically active hormone BNP, however, has a
shorter plasma half-life compared with its biologically
inactive sibling, NT-proBNP. Consequently, BNP
typically has a lower plasma concentration.43,73,74

In particular, it is estimated that BNP has a plasma

half-life of about 15–20minutes, whereas that of
NT-proBNP is more than 60minutes in healthy
individuals.43,73,74 Furthermore, it is likely that the
intra-individual biological variability for BNP and
NT-proBNP ranges from 30 to 70% both in healthy
individuals and in patients with heart failure.43,73,74

For these reasons, only variations in serial measure-
ments of circulating levels of BNP and NT-proBNP
higher than 30% should be considered to have
clinical relevance in the follow-up of patients with
heart failure.75,76

BNP levels depend upon the type of CHD

Circulating BNP levels are more related to the type of
CHD than to disease severity. On average, patients
with complex CHD, such as a functionally
univentricular heart and transposition of the great
arteries, show higher BNP concentrations compared
with those with simpler cardiac defects.8,77–80

Generally speaking, BNP is higher in CHD that
primarily involves the left rather than the right
ventricle. Several studies54,77,78,81,82 have indicated
that higher BNP concentrations are observed in
patients with CHD characterised by left ventricular
volume overload. For example, defects such as
ventricular septal defect, patent ductus arteriosus,
truncus arteriosus, and atrioventricular septal defects
are associated with higher BNP levels than those
found in patients with right ventricular volume
overload – for example, atrial septal defect,
anomalous pulmonary venous return – or pressure
overload – for example, tetralogy of Fallot, pulmon-
ary stenosis.8,10 Furthermore, defects characterised by
left ventricular pressure overload, such as aortic
stenosis or coarctation of the aorta, are associated with
higher BNP levels compared with defects with right
ventricular pressure overload. Furthermore, children
with uncorrected pulmonary stenosis or tetralogy of
Fallot usually show BNP levels only slightly higher
than those of normal children.8,10

From a clinical point of view, it is important to
emphasise that several pathophysiological mechanisms
and clinical conditions may affect plasma BNP levels,
including associated cardiac defects; complex haemody-
namic interactions between the ventricular chambers;
the presence of extracardiac co-morbidity; systemic
diseases; and the age and general status of the child.8,10

BNP levels in children with cardiomyopathies

Relatively few data are available on BNP levels in
children with cardiomyopathies;83–93 however,
the usefulness of BNP as a diagnostic and/or
prognostic biomarker has been tested in some cardio-
myopathies, including dilated,83,86 left ventricular
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non-compaction,83 Duchenne muscular dystrophy,83

inflammatory,83,93 ischaemic,83 oncologic,83,89,92, and
mitochondrial92 cardiomyopathies. Children with dila-
ted cardiomyopathy usually have higher BNP levels
compared with those with hypertrophic and restrictive
forms.86 Several studies have reported that echocardio-
graphic parameters, such as ventricular systolic and
diastolic function, volume, and wall thickness, are sig-
nificantly related to BNP/NT-proBNP levels.83–86

Furthermore, the BNP and NT-proBNP assay is very
useful in the early detection of left ventricular impair-
ment in children with doxorubicin-induced cardio-
myopathy,87–92 as well as in those with iron-overload
cardiomyopathy in beta thalassemia major.91

BNP as a prognostic biomarker in paediatric
cardiac diseases

The criteria for the determination of clinical utility and
cost-effectiveness of a biomarker have been recently
revised.94–96 These criteria require a specific and com-
plex statistical approach,94–96 which is difficult to
achieve in studies involving paediatric cardiac surgery.
Measuring biomarker levels alone in fact is not
sufficient for establishing clinical utility.94–96 Demon-
strating a statistically significant association between a
specific biomarker level and a given clinical outcome
using regression analysis is necessary, but not sufficient,
to demonstrate that particular biomarker’s predictive
value according to these evidence-based criteria.94–96

Indeed, at least three other criteria, in addition to sta-
tistical significance, have been proposed for the rigor-
ous evaluation of new biomarkers: discrimination,
calibration, and reclassification.94–96 Unfortunately, of
the studies performed thus far on the use of BNP/NT-
proBNP assay in CHD, none have met these
criteria.8,10 As discussed further in more detail, the
existing evidence available on BNP-NT-proBNP in
patients with CHD is derived from single-centre
studies using multivariable models. Although these
data are able to establish a statistically significant
association between the BNP levels and certain clinical
outcomes or events, they have not been shown to be
superior to other clinical indicators derived from car-
diac imaging or haemodynamic investigations.8,10

BNP as a diagnostic biomarker in CHD

Several recent studies have demonstrated that BNP
levels are associated with reasonable diagnostic accuracy
(area under the curve values from receiver operating
characteristic analysis ranging from 0.75 to 0.97)
in differentiating between children with and those
without CHD, when appropriate cut-off levels
are used.8,10 As theoretically expected, the highest
diagnostic accuracy was found when CHD patients

were compared with a group of healthy individuals
rather than with paediatric patients with respiratory or
other non-cardiac diseases with similar symptomatol-
ogy, such as dyspnoea.8,10 Several studies have used
adult BNP clinical guidelines1–6 to evaluate the use-
fulness of the BNP assay to differentiate between acute
and chronic cardiac and respiratory diseases in children,
in particular those admitted to a paediatric intensive
care unit.97–102 These studies are not comparable
because of a lack of homogeneity related to important
differences in the populations of patients enrolled and
because of the methods employed for BNP and NT-
proBNP measurements, including the upper limit of
normal.97–102 The reliability of the statistical analyses
of several studies is also adversely affected by
small sample sizes, with <50 CHD patients
enrolled.100,101,109 Furthermore, the results of some
studies are limited by significant differences in the
clinical severity of the CHD in the enrolled patients.
From a statistical point of view, this lack of clinical
homogeneity makes it difficult to perform an accurate
meta-analysis of data reported in the literature. For
example, Koulouri et al99 reported a BNP cut-off value
of 40 pg/ml for the diagnosis of heart failure versus
respiratory diseases (sensitivity 91% and specificity
77%) in a group of 49 children with acute respiratory
distress. By way of comparison, Choen et al101 com-
pared a group of 17 children with heart failure with
another group of 18 children with acute lung disease.
In this study, plasma NT-proBNP levels were sig-
nificantly higher for infants with heart failure (median:
18452 ng/L; range: 5375–99,700 ng/L) than for
infants with lung disease (median: 311 ng/L;
range: 76–1341 ng/L). In a prospective study,
Maher et al100 enrolled 33 children with newly
diagnosed congenital or acquired heart disease and
70 children with respiratory and infectious diseases.
BNP levels were significantly higher in patients with
cardiac diseases (mean 3290± 1609 ng/L; range:
>521–5000 ng/L) than in those with non-cardiac dis-
eases (mean 17.4± 20 ng/L; range: <5–174 ng/L).100

The only prospective and blinded study in the litera-
ture102 enrolled 100 children who presented to the
paediatric intensive care unit. These authors divided
the patients enrolled in the study into two groups
according to age –42 neonates and 58 children – and
then calculated different BNP cut-off levels for the two
groups as follows: one for neonates 0–7 days of age
(170 ng/L with sensitivity of 94% and specificity of
73%) and the other for older children (41 ng/L with
sensitivity of 87% and specificity of 70%).102

BNP as a screening biomarker of CHD

From a clinical point of view, it is important to more
accurately evaluate the usefulness of the BNP assay in
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screening for CHD. Recently, several authors
recommended the use of pulse oximetry to screen for
CHD in the neonatal and paediatric age
groups.103,104 It is well known, however, that pulse
oximetry may give inaccurate results in detecting
some potentially life-threatening CHDs, such as
coarctation of the aorta and lesions associated
with left-to-right shunts in neonates. The addition
of a BNP assay may increase the accuracy of
neonatal screening programmes for the diagnosis of
CHD,8,10,105 especially given the fact that is it now
possible to measure BNP using a point-of-care test
method with blood samples collected by pricking the
heel or fingertip of neonates and children. This
technique yields BNP levels that are comparable to
those measured using an automated platform (Fig 3).
The use of a point-of-care test method and blood
samples collected by venipuncture allows for easier
and less invasive BNP measurements, and thus it is
more conducive for screening programmes in
neonates and children, even in an ambulatory setting.

BNP in the management of uncorrected CHD

Several studies support the usefulness of BNP/NT-
proBNP measurements in the follow-up of patients
after surgical correction/palliation of CHD, as well as
in the follow-up of children with cardiomyopathies of

various aetiologies.8,10 In particular, the clinical
relevance of the BNP/NT-proBNP assay in the sur-
gical ligation of neonatal patent arterial ducts was
evaluated by several authors.106–111 Indeed, BNP
levels after the first 3 days of life were able to identify
the patients requiring patent ductus arteriosus surgical
ligation.106,107–109 BNP/NT-proBNP levels also
correlate with the magnitude of shunt, pulmonary
artery pressure, pulmonary vascular resistance, and
end-diastolic volume in the presence of a patent arterial
duct.78,81,106–110 From a clinical point of view, BNP
levels may be helpful especially when it is difficult to
decide whether it is necessary to treat and how to treat
neonates with CHD associated with a left-to-right
shunt.112 BNP/NT-proBNP levels are higher in
patients with left and right heart obstructive lesions
than they are in normal individuals, and these bio-
marker levels usually correlate with oxygen saturation
in cyanotic patients where BNP levels are higher.8,10

No correlation was found, however, between BNP
levels and some functional or structural parameters,
such as haemodynamic gradients or the degree of
hypertrophy in patients with CHD characterised by left
and right heart obstruction,81 and therefore, further
studies are needed to better clarify the role of BNP in
these CHDs.

BNP in children undergoing cardiac surgery
for correction/palliation of CHD

Increasing evidence, mainly derived from single-centre
studies using regression analysis, supports the use of
BNP-NT-proBNP levels as prognostic markers
for children undergoing cardiac surgery for the treat-
ment of CHD.113–131 In particular, the independent
association of BNP levels – especially those measured
preoperatively – with important outcome events such
as the duration of mechanical ventilation, ICU stay,
need for inotropic support, and low cardiac output
syndrome were reported.113–131

The clinical interpretation of preoperative bio-
marker levels is relatively easier than the post-
operative ones, because the latter may be affected by a
huge number of confounding factors, such as patient
age and disease severity8,10,118,123,12. In older chil-
dren, postoperative biomarker levels usually increase
compared with preoperative levels, peaking at
12–24 hours after surgery and remaining higher
than the preoperative levels at the time of
discharge118–120,124 (Fig 4b). Neonates, however, on
average show very high preoperative levels of BNP/
NT-proBNP with a progressive decline in the bio-
marker levels after surgery123,124 (Fig 4a). This dif-
ferent postoperative pattern of biomarker kinetics
between neonates and older children may in part be
explained by the generally higher severity of neonatal

Figure 3.
Linear regression between log-transformed brain natriuretic peptide
(BNP) values measured with the automated DxI 800 platform
(Triage BNP reagents) in 82 venous plasma samples (X-axis, log-
scale) and BNP values measured with the point-of-care test method
in the respective finger blood samples (Y-axis, log-scale). A very
close linear regression was found between the BNP values measured
with these two methods, as indicated by the results of the regression
analysis reported in the figure.
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CHD and by the greater complexity of neonatal sur-
gical procedures; however, age falls out as an inde-
pendent predictor of biomarker level behaviour in
multivariable models that also include surgical
complexity, estimated by both Aristotle score and

risk adjustment in congenital heart surgery classifi-
cation.123,124 In neonates, biomarker levels usually
tend to progressively decline after the initial peak
reached within the first 24 hours postoperatively.
From a clinical point of view, when biomarker

levels do not fall appreciably or when they progres-
sively increase after the early postoperative period,
this may suggest complications and/or only partial
surgical correction of the CHD.123,124 Furthermore,
both in neonates and in older children, BNP levels at
discharge after surgery remain, on average, higher
than those found in normal individuals, thus indi-
cating a slower, progressive recovery towards a “nor-
mal” haemodynamic balance, even in patients with
well-corrected cardiac defects.8,10,123,124

Finally, some studies have evaluated the role of
BNP in children receiving a heart transplant125–130

or during mid-term mechanical cardiac support.131

These studies indicate that NT-proBNP and BNP are
accurate in the prediction and detection of rejection
and that biomarker levels decreased after instituting
mechanical cardiac support. Further studies are
needed to better demonstrate the role of the BNP/
NT-proBNP assay in these specific clinical situations.

BNP in the follow-up of corrected/palliated
CHD

This section discusses the role of biomarker levels in
the follow-up of patients with some major groups
of corrected and/or palliated CHD. These diagnoses
include a surgically repaired functionally univentricular
heart, congenitally corrected transposition of the
great arteries, and tetralogy of Fallot.8–10

BNP in functionally univentricular cardiac circulation
Several studies support the use of biomarker levels in
the follow-up of children with a functionally uni-
ventricular heart,80,132–154 including those who have
undergone staged palliation. Neonates with a func-
tionally univentricular heart usually show the highest
levels of BNP/NT-proBNP among all patients
with CHD.8–10 Moreover, adult patients who have
undergone Fontan palliation showed higher bio-
marker levels than those with other corrected/
palliated CHD.151 Different morphological types of
functionally univentricular hearts are often associated
with important differences in biomarker levels,
although it is not yet clear whether there is a sig-
nificant difference in BNP production between
functionally univentricular heart defects of a right
ventricular versus left ventricular morphology.81,132

BNP/NT-proBNP levels usually tend to
decrease throughout the successive stages of Fontan
palliation.134,139 Once an asymptomatic Fontan

Figure 4.
Time-course of plasma BNP values in neonates (age< 30 days,
n= 72) (a) and in children (age ⩾ 30 days, n= 115) (b) with
congenital heart defects is reported in the figure. The results are
expressed as boxes with five horizontal lines, displaying the 10th,
25th, 50th (median), 75th, and 90th percentiles of the variable.
All values above the 90th percentile and below the 10th percentile
(outliers) are plotted separately (as circles). The p-levels of
statistical significance compared with the pre-surgery BNP values
by Fisher’s protected least significant difference (PLSD) test after
repeated measures ANOVA are also indicated in the figure. Log-
transformed BNP values are used for the statistical analysis.
Plasma BNP was measured in the authors’ laboratory with the
automated Access platform (Triage BNP reagents, Access
Immunoassay Systems, by Beckman Coulter).
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patient reaches school age and adolescence, on aver-
age, biomarker levels drop to the reference normal
range.80,131–134 In contrast, adolescents with a
Fontan circulation and heart failure demonstrated
biomarker levels that are significantly higher than
those in patients with a Fontan circulation without
heart failure. In these patients, biomarker levels cor-
relate with disease severity as staged by the NYHA or
New York University Pediatric Heart Failure
scores.80,136,139,147 BNP/NT-proBNP levels also
correlate with several echocardiographic parameters
including the severity of atrioventricular valve
regurgitation,80 systolic ventricular dysfunction,152

indices of diastolic dysfunction,144 and total
ventricular mass on MRI.136 The data on the
relationship between BNP levels and peak oxygen
consumption and/or the chronotropic index during
exercise testing are conflicting,80,140 because only
some, but not all, studies showed significant corre-
lations.8,10,139 Some studies report that higher BNP
levels are associated with poor outcome80 and worse
neuro-developmental outcomes in infants with
single-ventricle physiology.136–146,152 From a
pathophysiological point of view, it is important to
note that the BNP level may help distinguish heart
failure due to ventricular dysfunction from that due
to isolated failure of a Fontan circulation,139 since the
circulating BNP is produced mainly by ventricular
cardiomyocytes rather than by endothelial and vas-
cular tissue.13,14 Furthermore, plasma BNP has been
shown to be higher in patients with classic atrio-
pulmonary Fontan connection than in those with a
total cavo-pulmonary connection.136,142,143

BNP in the systemic right ventricle
Several studies report that BNP may be useful as an
additional biomarker in the follow-up of patients with
a systemic morphological right ventricle after surgical
palliation,155–166 including patients with a systemic
morphological right ventricle in a Fontan circulation,
in transposition of the great arteries after an
atrial switch operation, and after physiological repair of
congenitally corrected transposition of the great
arteries.158,160,164 In adults with a systemic right ven-
tricle, biomarker levels were higher than in controls,
even in asymptomatic patients.155–166 In symptomatic
patients, BNP levels correlated with the degree of heart
failure staged by NYHA functional class.155,156

Positive correlations between biomarker levels and
some echocardiographic and MRI parameters, includ-
ing right ventricular function,155,156,158,163,164 end-
diastolic volume,156,157,160,165 and severity of tricuspid
valve regurgitation,158,166 were also demonstrated,
whereas negative correlations were usually found with
oxygen consumption peak values.157–159,163,165

BNP in tetralogy of Fallot
The clinical relevance of BNP in the integrated follow-
up of patients after tetralogy of Fallot repair has
been assessed in several studies.167–186 Patients after
tetralogy of Fallot correction can demonstrate a series of
typical pathological sequelae, such as residual pulmon-
ary regurgitation and/or stenosis, causing right ven-
tricular dilatation, hypertrophy, or both. Patients with
these cardiac alterations may be initially asymptomatic,
but subsequently deteriorate progressively into having
symptomatic heart failure.167,168 At present, there are no
solid guidelines for the management of these patients, in
particular concerning the critical values of elevated right
ventricular dimensions to take into account for an
eventual re-intervention.167–186 The use of BNP may
provide important additional information both for the
evaluation of asymptomatic individuals as well to grade
and monitor the degree of heart failure.8–10

In the last decade, a large number of studies have
reported significant relationships between circulating
levels of biomarkers and several structural and func-
tional parameters as assessed by echocardiography
and MRI.167–185 The majority of these studies have
demonstrated a significant association between BNP
levels and the degree of pulmonary regurgitation,
right ventricular end-diastolic volume, and systolic
pressure.171–173,177–179,181 On the other hand,
conflicting results were reported concerning the
association between BNP levels with right
ventricular function.171–173,177–179,181 Increased
BNP levels in patients with tetralogy of Fallot may be
related not only to right ventricular dysfunction but
also to impairment of left ventricular function by the
dilated right ventricle.171 Several studies have
reported a significant association between BNP levels
and some cardiopulmonary parameters, including
peak oxygen uptake, forced vital capacity, and the
minute ventilation/carbon dioxide production
ratio.169,172 Finally significant reductions of BNP
levels after all types of cardiac valve replacements
have been well documented.170,174

Conclusions and future perspectives

The most recent international guidelines – a report of
the American College of Cardiology Foundation and the
American Heart Association task force – for the man-
agement of heart failure recommend B-type natriuretic
peptides as the first-line biomarkers (level I, force of
evidence A) for the diagnosis and prognosis of acute and
chronic forms of heart failure and for both ambulatory
and hospitalised adult patients.2 These recommenda-
tions are based upon a number of well-designed, ran-
domised clinical trials, as well as on some meta-analyses
reported in the literature on the clinical relevance of
BNP in adult patients with heart failure.1–7,186,187
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Clinical studies evaluating the relevance of BNP as
a cardiac biomarker for paediatric cardiac diseases
represent <10% of the total number of papers on the
clinical usefulness of this cardiac biomarker. As the
pathophysiological role of natriuretic peptides is
similar in both adult and paediatric cardiac disease, it
is conceivable that this discrepancy between clinical
studies in the adult and paediatric populations is due
to the difficulties related to the design of prospective,
randomised clinical trials with an adequate number
of patients with CHD, especially neonates. As CHD
occurs in <1% of births per year, it is difficult to
enrol an adequate number of patients in a single-
centre study. Furthermore, some methodological
problems and ethical considerations may limit the
quality of paediatric clinical research.188–190

The authors of this review hope that this gap
between adult and paediatric clinical studies of BNP
will be reduced in the near future. Certainly, inter-
national guidelines and/or expert consensus opinion
on the use of BNP in paediatric patients with CHD
are long overdue. The use of new point-of-care test
methods – which use less invasive samples, such as
capillary blood specimens –may contribute to a more
widespread use of BNP assays, especially in neonates
and infants, and to the development of screening
programmes for CHD using this biomarker.

Summary

Increasing evidence supports the use of BNP/NT-
proBNP levels as biomarkers in the integrated
screening, diagnosis, management, and follow-up of
patients with CHD. In particular, the prognostic role
of BNP in children undergoing cardiac surgery has
been demonstrated by several studies. Similarly, the
role of BNP in the follow-up of some broad groups of
patients with corrected/palliated CHD, including a
functionally univentricular heart at various stages of
palliation, systemic right ventricle, and tetralogy of
Fallot, is well established. Most of the available evi-
dence, however, derives from single-centre studies,
using multivariable models, whereas randomised
clinical trials designed to prove the cost-effectiveness
of the routine use of BNP/NT-proBNP assays in
paediatric cardiology/cardiac surgery are lacking.
These prospective and randomised clinical studies are
needed to demonstrate the usefulness of the routine
use of natriuretic peptide assays in CHD. The results
of well-designed clinical trials should promote the
development of guidelines and expert consensus
recommendations. The use of new point-of-care test
methods may contribute to a more widespread use of
BNP assays, especially in neonates and infants, as well
as to the development of screening programmes
for CHD.
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