Klaprothite, péligotite and ottohahnite, three new minerals with bidentate UO_7 -SO₄ linkages from the Blue Lizard mine, San Juan County, Utah, USA

ANTHONY R. KAMPF^{1,*}, JAKUB PLÁŠIL², ANATOLY V. KASATKIN³, JOE MARTY⁴ AND JIŘÍ ČEJKA⁵

¹ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA

² Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic

³ Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt, 18-2, 119071, Moscow, Russia

⁴ 5199 East Silver Oak Road, Salt Lake City, UT 84108, USA

⁵ Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00, Prague 9, Czech Republic

[Received 20 April 2016; Accepted 16 May 2016; Associate Editor: G. Diego Gatta]

ABSTRACT

The new minerals klaprothite (IMA2015-087), Na₆(UO₂)(SO₄)₄(H₂O)₄, péligotite (IMA2015-088), $Na_6(UO_2)(SO_4)_4(H_2O)_4$ and ottohahnite (IMA2015-098), $Na_6(UO_2)_2(SO_4)_5(H_2O)_7 \cdot 1.5H_2O$, were found in the Blue Lizard mine, San Juan County, Utah, USA, where they occur together as secondary phases. All three minerals occur as yellowish-green to greenish-yellow crystals, are brittle with irregular fracture, have Mohs hardness of $\sim 2\frac{1}{2}$ and exhibit bright bluish-green fluorescence, and all are easily soluble in roomtemperature H₂O. Only klaprothite exhibits cleavage; perfect on {100} and {001}. Quantitative energydispersive spectroscopy analyses yielded the empirical formulas $Na_{6,01}(U_{1,03}O_2)(S_{0,093}O_4)_4(H_2O)_4$ $Na_{5.82}(U_{1.02}O_2)(S_{1.003}O_4)_4(H_2O)_4$ and $Na_{5.88}(U_{0.99}O_2)_2(S_{1.008}O_4)_5(H_2O)_{8.5}$ for klaprothite, péligotite and ottohahnite, respectively. Their Raman spectra exhibit similar features. Klaprothite is monoclinic, $P2_1/c$, a = 9.8271(4), b = 9.7452(3), c = 20.8725(15) Å, $\beta = 98.743(7)^{\circ}, V = 1975.66(17)$ Å³ and Z = 4. Péligotite is triclinic, $P\overline{1}$, a = 9.81511(18), b = 9.9575(2), c = 10.6289(8) Å, $a = 88.680(6)^{\circ}$, $\beta = 73.990(5)^{\circ}$, $\gamma = 89.205(6)^{\circ}$, V = 998.22(8) Å³ and Z = 2. Ottohahnite is triclinic, $P\overline{1}$, a = 9.97562(19), b = 11.6741(2), c = 14.2903(10)Å, $\alpha = 113.518(8)^{\circ}$, $\beta = 104.282(7)^{\circ}$, $\gamma = 91.400(6)^{\circ}$, V = 1464.59(14) Å³ and Z = 2. The structures of klaprothite ($R_1 = 2.22\%$) and péligotite ($R_1 = 2.28\%$) both contain [(UO₂)(SO₄)₄]⁶⁻ clusters in which one SO_4 group has a bidentate linkage with the UO₇ polyhedron; Na–O polyhedra link clusters into thick heteropolyhedral layers and link layers into frameworks; the structures differ in the configuration of Na-O polyhedra that link the layers. The structure of ottohahnite $(R_1 = 2.65\%)$ contains $[(UO_2)_4(SO_4)_{10}]^{12}$ clusters in which each UO_7 polyhedron has a bidentate linkage with one SO_4 group; Na–O polyhedra link clusters into a thin heteropolyhedral slice and also link the slices into a framework. The minerals are named for Martin Heinrich Klaproth (1743-1817), Eugène-Melchior Péligot (1811-1890) and Otto Hahn (1879-1968).

Keywords: klaprothite, péligotite, ottohahnite, new mineral, uranyl sulfate, crystal structure, Blue Lizard mine, Utah, USA.

Introduction

In the last few years, the Blue Lizard uranium mine in southeast Utah has proven to be a prolific source of new minerals, especially sodium uranyl sulfates (Table 1). To date, our investigations have yielded

*E-mail: akampf@nhm.org https://doi.org/10.1180/minmag.2016.080.120

SUI	
÷	
ō	
10	
ц р	
ola	
Ĕ	
eir	
ţ	
g	
tip	
clu	
.й	
pr	
a,	
A	
Ð,	
9	
on	
Î	
ar 2	
pé	
S	
en	
ĨĊ.	
def	
ē	
arg	
ch	
eir.	
ţ	
ò	
[p	
പ്പ	
rar	
ar	
Je,	
nii	
dr	
zar	
Ē	
1e	
B	
[e]	
11	
on	
Ĥ	
als	
neı	
nii	
te 1	
lfai	
su	
Γ.	
an.	Ξ.
In .	ļĹ
ew	anc
Ž	ŝ
÷	Ć,
3LE	H ₂ (
LAE	H

of

Mineral	Structural formula	CDA (vu)	mol. H ₂ O (%)	mol. S (%)	mol. U (%)	Reference
Shumwayite*	$[(UO_{2})(SO_{4})(H,O)_{2}], H,O$	0.10	0.56	0.22	0.22	Kampf et al. (2017b)
Plášilite	Na(H, O), [(UO,)(SO_1)(OH)]	0.17	0.45	0.18	0.18	Kampf et al. (2015a)
Alwilkinsite-(Y)	$Y(H, \tilde{O})_{7}[(UO_{7}), (SO_{4}), O(OH)_{3}](H, O)_{7}$	0.20	0.72	0.09	0.14	Kampf et al. (2017a)
Bobcookite	Na(\tilde{H}, O), Al(\tilde{H}, O), [(UO_{γ}), (SO_{4}), (\tilde{H}, O),] 8H, O	0.22	0.69	0.15	0.08	Kampf et al. (2015b)
Wetherillite	Na,(H,O),(Mg,Zn)(H,O),[(UO,),(SO4),(H,O),] 4H,O	0.22	0.67	0.15	0.07	Kampf et al. (2015b)
Oppenheimerite	Na,(H,O),[(UO,)(SO_),(H,O)]	0.22	0.38	0.25	0.13	Kampf et al. (2015c)
Ottohahnite	$Na_{6}(H,O),[(UO,),(SO_{4}),](H,O),$	0.25	0.41	0.23	0.09	This study
Fermiite	$Na_4(H,O)_3[(UO_3)(SO_4)_3]$	0.29	0.27	0.27	0.09	Kampf et al. (2015c)
Meisserite	Na ₅ (SÕ ₃ ÕH)(H,Õ)[(UÕ ₂)(SO ₄) ₃]	0.29	0.13	0.35	0.09	Plášil et al. (2013)
Klaprothtite	$Na_6(H, O)_4[(UO_2)(SO_4)_4]$	0.33	0.27	0.27	0.07	This study
Péligotite	$Na_{6}(H, O)_{4}[(UO,)(SO_{4})]$	0.33	0.27	0.27	0.07	This study
Bluelizardite	$Na_{7}CI(H,O),[(UO_{3})(SO_{4})_{4}]$	0.33	0.13	0.27	0.07	Plášil et al. (2014)
Belakovskiite	Na ₇ (SO ₃ OH)(H ₂ O) ₃ [(UO ₂)(SO ₄) ₄ (H ₂ O)]	0.34	0.21	0.30	0.06	Kampf et al. (2014)

*The type localities for shumwayite are the Giveaway-Simplot mine and the Green Lizard mine, but it has also been found at the Blue Lizard mine. vu - valence units.

ANTHONY R. KAMPF ETAL.

FIG. 1. Klaprothite in incandescent light (top) and in 405 nm light (bottom); field of view = 1 mm across.

eight new uranyl sulfate minerals, belakovskiite, bluelizardite, fermiite, meisserite, oppenheimerite, plášilite, bobcookite and wetherillite. The ninth, tenth and eleventh new uranyl sulfates from this mine, klaprothite, péligotite and ottohahnite, are described herein. These three minerals, which occur in association with one another, are the first three minerals with structures containing bidentate linkages (shared edges) between UO₇ pentagonal pyramids and SO₄ tetrahedra. The twelfth new uranyl sulfate from the Blue Lizard mine, alwilkinsite-(Y) will be described in a subsequent paper and another new one occurring here, shumwayite, was recently described from the nearby Green Lizard and Giveaway-Simplot mines.

Klaprothite (//klæp rout ait/) is named in honour of German chemist Martin Heinrich Klaproth (1743–1817), the discoverer of uranium (1789), zirconium (1789) and cerium (1803). It should be noted that the material that Klaproth identified as a new element and named uranium was actually an oxide of the element. There have been several previous attempts to name a mineral for Klaproth,

FIG. 2. Crystal drawing of klaprothite; clinographic projection in nonstandard orientation, **b** vertical.

each of which subsequently resulted in a discreditation. The most recent discreditation occurred in 1947, when klaprotholite was shown to be a mixture of wittichenite and emplectite. We think that sufficient time has passed to again propose the naming a new mineral in honour of this pioneer in analytical chemistry and mineralogy.

Péligotite (//pe li gou tait/) is named in honour of the French chemist Eugène-Melchior Péligot (1811–1890), who isolated the first sample of uranium metal in 1841 and proved that the material

FIG. 3. Péligotite with tamarugite (white); field of view = 1.1 mm across.

FIG. 4. Crystal drawing of péligotite; clinographic projection in standard orientation.

described by Klaproth as the element in 1789 was actually an oxide of uranium.

Ottohahnite (/au tOu 'ha:n ait/) is named in honour of German chemist Otto Hahn (1879–1968) who discovered nuclear fission (of uranium) in 1938, for which he received the Nobel Prize in Chemistry. The compound name is proposed to avoid the possible confusion of 'hahnite' with several other mineral names, i.e. hainite, gahnite and cahnite. In particular, in Russian, the pronunciation of hahnite would be essentially the same as that of gahnite.

The new minerals and their names were approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association: klaprothite (IMA2015-087), péligotite (IMA2015-088) and ottohahnite (IMA2015-098). The description of each mineral is based on five cotype specimens. Those deposited in the collections of the Natural History Museum of Los

FIG. 5. Ottohahnite with tamarugite (white); field of view = 0.7 mm across.

Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA, have the catalogue numbers 65610 (cotype for klaprothite, péligotite and ottohahnite), 65611 (cotype for klaprothite), 65613 (cotype for klaprothite), 65613 (cotype for klaprothite), 65614 (cotype for péligotite and ottohahnite), 65616 (cotype for péligotite) and 65617 (cotype for ottohahnite). One cotype for each mineral is housed in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, registration number 4778/1 (klaprothite), 4779/1 (péligotite) and 4782/1 (ottohahnite).

Occurrence

Klaprothite, péligotite and ottohahnite were found underground in the Blue Lizard mine, Red Canyon, White Canyon District, San Juan County, Utah, USA (37°33'26"N 110°17'44"W). The Blue Lizard mine is located ~72 km west of the town of Blanding, Utah and ~22 km southeast of Good Hope Bay on Lake Powell. It is on the north side of Red Canyon and close to the Markey mine. Information on the history and geology of the deposit is taken largely from Chenoweth (1993).

The deposit was first recognized in the summer of 1898 by John Wetherill, while leading an archaeological expedition into Red Canyon. He noted yellow stains around a petrified tree. At that spot, he built a rock monument, in which he placed a piece of paper to claim the minerals. Although he never officially recorded his claim, 45 years later, in 1943, he described the spot to Preston V. Redd of Blanding, Utah, who went to the site, found Wetherill's monument and claimed the area as the Blue Lizzard claim (note alternate spelling). Underground workings to mine uranium were not developed until the 1950s.

Mineralized channels are in the Shinarump member of the Chinle Formation. The Shinarump member consists of medium- to coarse-grained sandstone, conglomeratic sandstone beds and thick siltstone lenses. Ore minerals were deposited as replacements of wood and other organic material and as disseminations in the enclosing sandstone. Since the mine closed in 1978, hydration-oxidation weathering of primary uranium minerals, mainly uraninite, by acidic solutions derived from the decomposition of associated sulfides such as pyrite, marcasite and chalcopyrite in the humid underground environment has produced a variety of

FIG. 6. The Raman spectra of klaprothite, péligotite and ottohahnite measured with a 532 nm laser.

secondary minerals, mainly sulfates, as efflorescent crusts on the surfaces of mine walls.

The new minerals are rare in the secondary uranyl sulfate mineral assemblage. Other secondary minerals found in direct association with klaprothite, péligotite and ottohahnite include blödite, bluelizardite, bobcookite, epsomite, gypsum, hexahydrite, konyaite, plášilite and tamarugite. The bulk of the matrix is comprised of subhedral to euhedral, equant quartz crystals that are recrystallized counterparts of the original grains of the sandstone. Other minerals remaining from the original sandstone include feldspar and rare almandine and zircon. Minerals related to the ore deposition include baryte, bornite, chalcopyrite, covellite, pyrite and uraninite. Other secondary minerals in the general assemblage include aluminocoquimbite, alwilkinsite-(Y), atacamite, belakovskiite, boyleite, brochantite, calcite, chalcanthite, cobaltoblödite, copiapite, coquimbite, cvanotrichite, d'ansite-(Mn), dickite, fermiite, ferrinatrite, dietrichite, gerhardtite, gordaite, halite, johannite, kaolinite, kieserite, kröhnkite, lishizhenite, manganoblödite, meisserite, natrozippeite, metavoltine. oppenheimerite, pseudojohannite, pickeringite, rhomboclase, römerite, rozenite, sideronatrite, shumwayite, thérèsemagnanite, wetherillite and other potentially new minerals currently under investigation.

A detailed discussion of the origin and conditions of formation of the uranyl sulfate assemblages at the Blue Lizard mine was provided by Plášil et al. (2014). The minerals formed at ambient temperature by evaporative processes at the surface of a rock with high relative porosity. The environment is relatively oxidizing (high Eh) and solutions are generally acidic (low pH). The relative acidity prevalent during the formation of any given phase can be interpreted from its charge deficiency per anion (CDA) calculated using the bond-valence approach (cf. Hawthorne and Schindler, 2008; Hawthorne, 2012); higher CDA correlates with higher pH. The molar proportions of S and U in the formulas are indicative of the relative concentrations of these elements in solution during formation and the molar proportion of H2O can be expected to increase with the relative humidity (RH) during formation. Table 1 provides the CDA and molar proportions of H₂O, S and U for each of the new uranyl sulfates found at the Blue Lizard mine. Klaprothite and péligotite are likely to have formed from less acidic solutions than did ottohahnite, and most of the other uranyl sulfates at the Blue Lizard mine. Klaprothite and péligotite are presumed to have formed under relatively low RH, while ottohahnite is likely to have formed at moderate RH. The molar proportions of S and U for these

		Klaprothite			Péligotite			Ottohahnite	
	Mean	Range	S.D.	Mean	Range	S.D.	Mean	Range	S.D.
Na ₂ O	21.06	19.67-22.85	1.08	20.55	18.98-22.56	1.46	13.73	12.92-15.66	0.84
UO,	33.14	31.07-36.92	1.82	33.27	29.61-38.14	3.53	42.68	41.01-44.39	0.99
SO ₃	35.93	33.15-38.40	1.38	36.60	33.88-39.20	1.88	30.44	28.86-31.45	0.97
H ₂ O	8.15*			8.22*			11.55§		
Total	98.28			98.64			98.40		

TABLE 2. Chemical analyses (in wt.%) for klaprothite, péligotite and ottohahnite.

S.D. - standard deviation.

*Calculated by stoichiometry on the basis of 22 O apfu. [§]Calculated by stoichiometry on the basis of 32.5 O apfu.

phases, with mol. S >> mol. U, suggest that they formed relatively far from the source of U (uraninite).

Physical and optical properties

Klaprothite

Klaprothite crystals are equant to prismatic (Figs 1 and 2), up to ~ 1 mm in maximum dimension, but usually much smaller. Crystal faces often are skeletal with rounded edges, suggestive of incomplete growth or later dissolution/deliquescence. Crystals typically occur in parallel intergrowths with surfaces made up of many stepped faces. Prisms are elongated on [010] and crystals exhibit the forms {100}, {001}, {110}, {011} and {012}. No twinning was observed.

Crystals are yellow green and transparent with a vitreous lustre. The streak is pale yellow green. The mineral fluoresces bright bluish green under both longwave and shortwave ultraviolet light. The Mohs hardness is ~2½. Crystals are brittle (slightly sectile) with perfect cleavages on {100} and {001} and have irregular fracture. The mineral is slightly deliquescent and is easily soluble in room-temperature H₂O. The density measured by flotation in a mixture of methylene iodide and acetone is 2.90(2) g cm⁻³. The calculated densities are 2.923 g cm⁻³ based on the empirical formula and 2.905 g cm⁻³ based on the ideal formula.

Optically, klaprothite is biaxial (-) with $\alpha = 1.497(1)$, $\beta = 1.517(1)$, $\gamma = 1.519(1)$ (measured in white light). The 2V measured directly on a spindle stage is $34(1)^{\circ}$; the calculated 2V is 34.7° . Dispersion is r > v, distinct. Pleochroism is X = colourless, Y = light yellowish green, Z = light yellowish green; $X < Y \approx Z$. The optical orientation is $Y = \mathbf{b}$, $X \wedge \mathbf{c} = 10^{\circ}$ in obtuse angle β .

Péligotite

Péligotite crystals are generally equant relatively simple rhombs (Figs 3 and 4), up to ~0.5 mm in maximum dimension, but usually much smaller. Crystal faces often are concave with rounded edges, suggestive of incomplete growth or later dissolution/ deliquescence. Crystals typically occur in subparallel aggregates and drusy intergrowths. Crystals exhibit the forms {001}, {110} and {110}; more complex forms are probably present, but are difficult to measure because crystals occur in tight intergrowths. No twinning was observed.

Crystals are yellow green and transparent with a vitreous lustre. The streak is pale yellow green. The mineral fluoresces bright bluish green under both longwave and shortwave ultraviolet light. The Mohs hardness is ~2½. Crystals are brittle (slightly sectile) with no cleavage and have irregular fracture. The mineral is slightly deliquescent and is easily soluble in room-temperature H₂O. The density measured by flotation in a mixture of methylene iodide and acetone is 2.88(2) g cm⁻³. The calculated densities are 2.878 g cm⁻³ based on the empirical formula and 2.875 g cm⁻³ based on the ideal formula.

Optically, péligotite is biaxial (-) with 1.493(1), $\beta = 1.511(1)$, $\gamma = 1.515(1)$ (measured in white light). The 2V measured directly on a spindle stage is 50(1)°; the calculated 2V is 50.0°. Dispersion is r > v, distinct. Pleochroism is X =colourless, Y = light yellowish green, Z = light yellowish green; $X < Y \approx Z$. The optical orientation is $X \wedge \mathbf{c} = 3^\circ$, $Y \wedge \mathbf{b} = 43^\circ$, $Z \wedge \mathbf{a} = 40^\circ$.

Ottohahnite

Ottohahnite crystals are generally equant (Fig. 5), up to ~ 0.1 mm in maximum dimension, but

	TABLE 3.	Powder	X-ray	data	for	klaprothite,	péligotite	and	ottohahnite.
--	----------	--------	-------	------	-----	--------------	------------	-----	--------------

Klap	rothite																		
$I_{\rm obs}$	dobs	d_{calc}	$I_{\rm calc}$	hkl	I _{obs}	d_{obs}	d_{calc}	$I_{\rm calc}$	hkl	$I_{\rm obs}$	dobs	d_{cale}	I _{cale}	hkl	$I_{\rm obs}$	$d_{\rm obs}$	d_{calc}	$I_{\rm calc}$	h k l
20	10.27	10 3150	28	0.0.2	31	2 716	(2 7202	10	224	16	2.0613	2 0630	12	0.0.10	11	1.6490	(1.6547	2	518
69	0.72	0.7120	76	100	51	2.710	2 2 7069	4	121	10	2.0013	1 2.0050	1.5	242	11	1,0409	1.6525	2	120
00	2.16	0 0115	10	011			2 7039	7	124	10	2.0244	2.0305	3	414			1.6455	2	427
		7.6777	7	102			2.7028	5	220			2.0328	2	1 2 0			1.6301	2	515
07	7.00	7.00777	100	012			2.0900	0	320			2.0201	2	130			1.6374	2	1211
91	1.09	6.9705	100	110	22	2016	1 2.00/9	4	232			2.0105	2	330	22	1 6333	1.03/4	2	1311
		0.8795	4	110	22	2.040	1 2.0057	0	313			1.9957	4	425	23	1.0233	1.0288	4	338
		0.5891	0	102			\$ 2.0545	0	315		1.0501	1.9825	4	245			1.6272	0	1112
	101	6.5250	2	111			2.0480	2	231	17	1.9504	1.9584	0	1010			1.6242	3	418
36	6.04	6.0309	40	112			2.6244	4	206			(1.9549	4	341			1.6232	2	255
		5.6186	3	013			(2.6135	6	126			(1.9404	3	051			1.6210	2	535
31	5.467	5.4585	41	112	35	2.570	{ 2.5904	7	134	48	1.9136	{ 1.9254	13	512			1.6188	2	600
77	5.158	5.1575	82	004			2.5787	6	008			1.9217	3	341			(1.6152	2	612
28	4.835	4.8722	25	104			2.5743	9	I 2 6			1.9196	5	343	12	1.5931	{ 1.6020	4	3112
		4.8565	3	200			2.5596	7	232			1.9186	2	335			1.5943	2	353
		4.7421	11	021			2.5523	8	035			1.9165	2	504			1.5919	3	355
14	4.557	4.5585	13	014			2.5341	2	216			1.9156	3	1210			(1.5810	3	439
	1903212	4.3750	2	211			r 2.5276	2	135			1.9147	3	431	12	1.5640	1.5689	3	163
58	4 330	4 3553	32	120	17	2,500	2 5245	4	324			1.9118	2	424			1.5601	4	347
20	1000	4 3213	9	121			2 5218	4	027			1 9109	9	150	16	1 5361	1 5404	3	330
		4 2020	23	104			2 4020	8	018			1 9080	7	151		10001	1 5302	2	616
46	4 104	4.2529	22	212			2 4707	2	234			1.9000	5	151			1 5350	2	3311
40	4.194	4.2100	33	121			2.4/9/	4	234	27	1 9751	1 0022	7	119			1.5550	2	624
		4.2038	14	121			2.4755	5	310	27	1.6/51	1.0000	-	410		1.5120	1.5341	4	024
		4.1571	14	202		0.410	2.4303	2	040			\$ 1.8778	2	147	11	1.5129	1.5291	2	2112
	2.000	4.1411	2	211	8	2.415	1 2.4282	2	400			1.8752	2	427			1.5265	3	451
13	3.960 {	3.9757	5	023			¢ 2.4195	3	041			1.8737	4	3010	12/22/	1000000	(1.5091	2	2312
		3.9286	7	114			2.4034	2	108			1.8717	2	511	10	1.4898	{ 1.4980	2	4 1 12
28	3.811 {	3.8237	17	212			(2.3743	7	412			f 1.8702	2	432			1.4899	2	159
	(3.7983	11	123	34	2.357	{ 2.3671	4	127	17	1.8492	{ 1.8597	8	2 2 10			1.4879	2	263
		3.7194	3	115			2.3634	9	218			1.8555	2	153			(1.4848	3	059
13	3.572	3.5710	14	123			2.3613	2	036			1.8483	9	318	12	1.4687	{ 1.4736	2	0014
	1	3.5419	3	024			2.3576	3	141	27	1.8145	1.8298	5	343			1.4724	2	455
100	3.434	3,4537	8	221			2.3522	6	235			1.8252	6	239			1.4715	4	2411
		3.4453	15	124			2.3381	7	404			1.8171	2	1 2 10			/ 1.4645	2	5210
		3,4397	68	220			2 3 3 3 5	3	118			1.8133	2	338	13	1.4456	1.4508	3	627
		3 4083	5	106	19	2 303	2 3106	3	226			1.8114	0	247			1 4473	2	543
	3	3 3730	15	222			2 3065	6	331			1 8002	3	523			1.4467	2	150
27	2 227	3 3434	0	016			2 3030	2	411			1.8032	2	520			1.4404	2	363
51	J /	2 2276	14	300			2 2064	Ā	043			1.8027	2	2010			1.4404	5	518
		2.2011	14	124			2.2904		322	16	1 7001	1.0027	5	12010	17	1 4312	1.4300	2	225
		2 2172	0	124			2.2914	2	224	10	1./001	1.7980	2	139	17	1.4215	1.4292	2	1214
		3.2172	9	0.2.1	10	2.260	1 2.2/44	2	224			1.7931	2	231			1.4237	2	1 2 14
		3.2089	4	031	10	2.260	{ 2.2657	2	520			1.7908	3	238			1.4225	2	107
		3.1625	4	222			\$ 2.2607	2	143			1.7835	4	524			1.4204	3	441
		3.1210	2	214			£ 2.2526	4	331			f 1.7709	2	048			(1.4158	2	3 1 12
65	3.082 {	3.1049	15	311	11	2.215	{ 2.2268	6	412	16	1.7528	{ 1.7623	5	055	10	1,4010	{ 1.4106	4	2 2 14
	(3.0966	10	106			2.2165	2	236			1.7541	4	155			4 1.4013	3	363
		3.0807	6	130			2.2098	4	143			1.7508	2	434			(1.3929	2	167
		3.0725	5	310			2.1964	2	306			1,7488	3	3210	15	1.3795	{ 1.3893	2	712
		3.0682	38	312			2.1927	2	421			c 1.7337	4	426			1.3842	2	455
61	3.012	3.0257	10	131			c 2.1891	2	332	26	1.7159	1.7294	7	441			1.3830	2	5112
1.25.25		3.0154	41	224	19	2 1 7 9	2 1845	4	334		333355	1 7199	2	440			< 1 3770	2	171
		2 9917	12	132	.,		2 1812	5	241			1 7146	6	155	0	1 3531	1 3544	2	401
12	2 030	2.0518	10	223			2.1766	3	235			1.7124	6	113	×	1.5551	1 3474	2	716
14	2.350	2.90126	7	132			2.1700	2	420			1 7062	2	514	15	1 3361	1 3416	2	710
		2.9130	2	216			2,1733	2	123			1.7003	2	1010	13	1.5501	1 2406	2	1 4 13
26	2010	2.0931		210			2.1384	*	425			1.7055	-	7 4 7			1.3400	4	1 4 13
20	2.810	2.8549	14	314			2.1429	4	400		1 7072	1.09/2	4	341			1.3391	4	2/1
		2.8248	5	314	10		(2.1282	2	321	25	1.6852	1.6930	3	0112			1.3356	2	/12
		2.8210	2	017	18	2.100	{ 2.1180	7	243			1.6922	3	255	5.		(1.3262	3	459
		2.8078	7	215			2.1080	4	424			1.6907	3	2 2 10	9	1.3166	{ 1.3189	2	1511
		2.7929	7	126			2.1028	3	335			1.6820	3	435			1.3157	2	175
		2.7622	2	133			2.0962	5	218			1.6808	2	532	11	1.2955	{ 1.3046	2	2214
							2.0929	5	416			1.6795	4	531			1.2960	2	718
									100 C					and the second se					
							2.0834	2	1010			1.6787	3	2112			1,2928	2	1116

usually much smaller. Crystal faces and edges are often rounded, suggestive of incomplete growth or later dissolution/deliquescence. Crystals are typically intergrown with tamarugite. No crystals forms could be measured. No twinning was observed.

Crystals are green yellow and transparent with a vitreous lustre. The streak is pale green yellow. The mineral fluoresces bright bluish green under both

longwave and shortwave ultraviolet light. The Mohs hardness is ~2½. Crystals are brittle (slightly sectile) with no cleavage and have irregular fracture. The mineral is slightly deliquescent and is easily soluble in room-temperature H₂O. The small size and difficulty of separating crystals from their intergrowths with tamarugite made the measurement of the density impractical. The calculated densities are 2.858 g cm⁻³ based on

TABLE 3. (contd.)

Peny	goute																				
I _{obs}	$d_{\rm obs}$		$d_{\rm cale}$	$I_{\rm calc}$	h k l	$I_{\rm obs}$	$d_{\rm obs}$	$d_{\rm catc}$	$I_{\rm calc}$	h k l	$I_{\rm obs}$	$d_{\rm obs}$	$d_{\rm calc}$	$I_{\rm calc}$	hkl	$I_{\rm obs}$	$d_{\rm obs}$		$d_{\rm calc}$	$I_{\rm calc}$	hkl
30	10.19		10 2146	42	0.0.1	18	2 816	£ 2,8100	3	113	7	2 1394	\$ 2 1448	3	242				1 7115	4	351
	10.17		9 9546	11	010	10	2.010	2 8161	14	132	A.)	20000	21378	6	420	13	1.6908	Į	1 7052	2	440
48	9.51		9 4341	70	100			2 8083	5	032			, 2 1221	7	411	1.5	1.0900	l	1.7039	2	053
32	8.15	.,	8 1378	49	101			2 7966	3	301	3	2 0958	2 0842	3	115				1.7024	2	006
100	7.11	Į	7.2014	44	011			2,7552	7	231	**		2 0823	2	124				1.6952	4	532
		l	7.0589	56	011			2.7511	2	321			2.0622	3	215				1.6893	6	316
			6 8744	8	110	24	2717	2 7295	9	223	11	2 0459	2 0429	16	005				1.6756	2	252
			6.8209	12	110			2.7240	5	230	••	2.0100	/ 2.0242	2	204			2	1.6725	2	016
			6.3716	10	111			2,7146	4	321	9	1,9919	2.0037	3	234	8	1.6605	Į	1.6659	2	521
32	6.23		6.2316	34	111			2,7107	5	231		A10.0.0.0	2.0022	5	414	0.80		l	1.6636	2	324
	Crimer.		6.1384	3	101			2 6934	7	311			1.9909	5	050				1.6555	3	135
			5.2411	11	111			2.6913	6	311			1.9875	2	421				1.6524	2	443
			5.2088	10	ĪĪI			2.6700	8	223			1.9837	2	431				1.6347	2	530
			5.1209	3	102			2.6492	2	320			1.9656	5	432				1.6334	2	441
63	5.14		5.1073	71	0.0.2	21	2 639	2 6450	7	322			1.9590	2	340				1.6316	2	135
8	4 79	1	4 8175	8	201			2 6324	10	313			1 9557	2	342	15	1.6235	Į	1.6276	2	505
43	4 54	J	4 5004	15	112			2 6206	10	222			1 9535	2	502		A	l	1 6247	2	225
		l	4 5815	22	012			2 6044	4	222			1 9516	2	315				1.6230	5	351
		1	4.5100	23	021			2.5605	2	204	26	1.9434	1.9440	20	150				1.6208	4	026
			4.4306	2	011	17	2 552	2 5566	6	123	20	110 4.04	1 9400	4	332				1.6185	2	161
53	4 307	5	4 3880	22	120		men J J da	2 5537	5	004			1 9357	2	125				1.6110	2	154
22	4.507	l	4 3663	2	211			2 5508	3	132			1 9335	6	315				1 6084	2	512
			4 3071	2	211			2.5500	2	232			1.0000	2	151				1.6056	2	435
			4.3071	12	121			2.3434	3	232	30	1 0131	J 1.9238	4	334				1.6044	2	455
			4.2090	19	210			2.5209	3	040	50	1,9151	1.9229	7	225	6	1 5990	ſ	1.5099	2	611
			4.2757	10	210	0	2 471	2.4000	6	014			1.9103	2	720	0	1.3009	1	1.5900	2	254
21	4 079	ſ	4.2490	12	202	9	2.4/1	2.4653	2	214			1.9133	16	450			ै	1.5905	2	116
21	4.078	1	4.0089	12	102			2.4033	3	014			1.9152	010	412				1.5752	2	212
12	2 962	ſ	4.0485	10	102			2.4017	4	1014			1.9101	0	412	7	1 6600	ſ	1.5752	2	343
15	3.832	1	3.8/92	4	121			2.4309	2	2 2 1			1.8917	2	1 4 2	/	1,5002	1	1,5090	2	200
			3.6550	2	212			2.4390	2	041	12	1 9716	J 1.0093	2	2 2 2 2				1.5639	2	0 1 5
10	3 754	ſ	3.7907	2	112			2.4291	-	140	14	1.8/10	1.00/9	2	545				1.5038	2	224
10	3.754	1	3.7007		212			2.4110	4	140			1.8808	4	500				1.5004	2	334
10	3 500	ì	3.7369	15	212		0.000	2.4088	2	402			1.8853	2	503			ſ	1.5483	3	334
19	3.598	-í	3.6274	14	211	18	2.392	{ 2.4069	4	041			1.8684	3	424	11	1.5317	í	1.5424	3	130
		•	3.0133	3	122			\$ 2.4005	2	033			1.8670	0	224			`	1.5558	4	433
20	2 526		3.6007	/	022			2.3951	2	141	10		1.8549	3	343				1.5346	2	404
20	3.526		3.5282	27	103			2.3921	4	213	10	1.8430	{ 1.8514	3	251				1.5351	2	330
			3.4921	9	221			2.3870	2	411			1.8460	3	513				1.5243	2	262
		ſ	3.4372	3	220			2.3806	3	213			1.8425	2	052				1.5171	2	207
73	3.418	í	3.4319	35	221	20		(2.3663	5	124			1.8374	2	144				1.5151	3	414
			3.4105	28	220	20	2.340	{ 2.3585	4	400			1.8288	2	251	1		ſ	1.4844	2	117
			3.4049	29	003			2.3530	3	033			1.8264	2	521	4	1.4599	í	1.4693	2	424
		ſ	3.3182	0	030			2.3460	9	331			ſ 1.8190	2	431			- 1	1.4624	3	516
11	3.249	1	3.2695	8	301			2.3319	2	412	15	1.8065	{ 1.8134	5	343	3	1.4307	í	1.4356	2	155
		C	3.2021	6	013			2.3303	2	312			1.8088	2	522			C	1.4299	2	363
		ſ	3.1601	6	122			2.3197	2	304			1.8058	6	135				1.4286	2	621
74	3.121	í	3.1379	31	130	633		(2.3119	3	141			1.8045	2	252				1.4100	2	226
		C	3.1198	40	311	11	2.279	{ 2.3008	5	141			1.7955	4	152	1000		ſ	1.4078	2	170
			3.1158	20	222			\$ 2.2910	5	410			1.7783	3	125	8	1.3829	1	1.3922	3	046
			3.0972	10	131			2.2816	3	332			1.7742	2	523			C	1.3908	2	712
			3.0840	6	302			2.2600	3	142			1.7689	2	520				1.3831	5	155
2		ſ	3.0793	6	213			2.2579	2	114			1.7647	4	044			ſ	1.3822	2	461
34	3.058	1	3.0684	6	221			2.2547	2	224	12457	0.00000000	1.7624	2	106	5	1.3578	ſ	1.3548	2	533
		C	3.0650	30	221	12000		(2.2454	2	232	16	1.7584	{ 1.7593	2	304			ł	1.3471	3	714
		ſ	3.0485	6	131	16	2.212	{ 2.2371	8	332			1.7576	6	441	8	1.3356	1	1.3401	2	517
11	2.983	1	3.0054	13	310			\$ 2.2198	5	042			1.7522	4	434			ſ,	1.3395	2	721
		ſ,	2.9919	2	310			2.2172	3	142			(1.7473	2	514				1.3387	2	514
			2.9625	2	312			2.2082	4	240	16	1.7263	{ 1.7351	9	441				1.3369	2	710
			2.9533	2	103			2.2052	3	413			1.7338	2	053				1.3361	2	256
			2.9296	3	312			2.1940	3	240			1.7296	3	314				1.3350	3	446
			2.9110	2	123			2.1876	4	421			1.7286	3	403				1.3342	2	723
			2.8468	4	123			2.1857	4	413			1.7242	2	342						
			2.8429	2	113			2.1639	2	322			1.7186	2	234						
			2.8368	3	023			2.1535	2	422			1.7166	4	153						

the empirical formula and 2.973 $\,{\rm g~cm^{-3}}$ based on the ideal formula.

Optically, ottohahnite is biaxial (-) with $\alpha = 1.511(1)$, $\beta = 1.514(1)$, $\gamma = 1.537(1)$ (measured in white light). The 2V measured directly on a spindle stage is 42(2)°; the calculated 2V is 40.2°. Dispersion is r > v, strong. Pleochroism is X = light yellowish green, Y = colourless, Z = yellowish

green; Y < X < Z. The optical orientation is $X \land \mathbf{a} = 43^\circ$, $Y \land \mathbf{b} = 11^\circ$, $Z \land \mathbf{c} = 29^\circ$.

Raman spectroscopy

The Raman spectra of klaprothite, péligotite and ottohahnite were recorded on a Thermo-Scientific DXR Raman microscope interfaced to an Olympus

Table	3.	(contd.)
-------	----	----------

Otto	ohahnite														
$I_{\rm obs}$	$d_{\rm obs}$		d_{cale}	$I_{\rm calc}$	hkl	$I_{\rm obs}$	$d_{\rm obs}$	$d_{\rm calc}$	I_{cale}	h k l	$I_{\rm obs}$	$d_{\rm obs}$	$d_{\rm calc}$	$I_{\rm calc}$	hkl
12	12.67	c	12.5801	10	001			3.3808	4	202			(2.2322	2	$4\bar{2}1$
3	10.64	Ł	10.6016	2	010			(3.2077	3	133	6	2.198	2.2136	3	154
		l	10.5726	2	$0\overline{1}1$	35	3.156	3.1607	23	$\bar{2} 2 2$			2.1935	2	340
10	9.54		9.5744	10	100			3.1410	4	311			(2.1900	2	142
7	8.92		8.9150	11	$\bar{1}01$	31	3.088	3.1023	22	$\bar{2} \bar{2} 4$	29	2.122	{ 2.1405	2	344
32	7.64		7.6513	27	110			3.0984	2	$2\overline{3}1$			2.1312	6	215
		1	7.4672	6	Ī Ī 1			3.0831	2	031			2.1269	2	$\bar{2}42$
41	6.81	Ţ	6 8221	20	011			3.0651	4	134			2 1248	3	316
		l	6,7990	11	$0\overline{1}2$			3.0489	3	$\bar{2}04$			2 1 2 3 4	2	124
			6 7766	3	111	63	2 977	2 9948	4	313			2 1203	3	050
			67616	4	101	05	2.711	2 0023	2	114			2 1058	4	411
			6 6621	5	110			2.9925	17	113			2.1038	2	253
100	6.21		6 2047	100	110			2.9001	2	2 2 3	10	2.071	2.0551	6	235
27	5.29	ſ	5 2009	100	020			2.9790	15	$2 \overline{3} \overline{3}$	10	2.071	2.0082	2	330
21	5.20	1	5.3000	12	020			2.9703	15	222	9	2.0100	2.0140	2	7234
			5.0567	15	112			2.9070	4	232			1 0893	2	432
10	1.000		5.0307	2	112			2.9456	4	310	10	1.0640	1.9882	2	237
19	4.992		5.0333	11	121	10	0.010	(2.9431	15	223	10	1.9642	1.9774	3	11/
			4.9591	2	201	42	2.913	{ 2.9176	14	042			1.9754	2	025
20		ſ	4.9338	8	121			2.9078	15	221			1.9477	2	513
39	4.650	ſ	4.6894	7	102			2.8579	4	322			(1.9377	2	413
		C	4.6826	11	112		121022420	(2.8399	2	125	35	1.9076	{ 1.9146	2	163
			4.6268	6	0 1 2	16	2.795	{ 2.8180	2	115			1.9135	8	441
			4.6148	7	013			2.7910	2	203			1.9104	2	513
			4.6086	4	210			2.7850	3	131			1.9088	9	043
			4.5296	7	$\bar{2}\bar{1}1$			2.7727	4	023			1.9020	4	047
24	4.465		4.4575	14	$\bar{2}02$			(2.7644	2	025			(1.8815	2	353
			4.3875	2	120	5	2.660	2.6558	2	311	23	1.8604	{ 1.8752	3	353
			4.3796	2	$\bar{2}\bar{1}2$			2.6447	2	032			1.8687	3	443
15	4.301		4.3096	10	103			(2.5385	2	331			1.8624	2	162
		1	4.2539	2	121	10	2.513	2.5284	2	$2\bar{2}4$			1.8593	4	151
18	4.153	Į	4,1934	3	003			2.5160	4	005			1.8553	4	406
(* . F.)		l	4.1529	8	210			c 2.4824	3	$\bar{4}01$			(1.8399	2	127
			4 1084	6	201	10	2 4 56	2 4679	4	240	12	1 7895	1 8074	2	521
			3.8466	2	031	10	2.100	2 4316	2	141	12	111050	1 7914	3	135
			3 8301	2	213			2 4301	2	314			1 7851	3	531
12	3 802		3 8048	6	113	11	2 402	2 4257	2	135			1.7603	2	422
12	5.602	3	3 6405	2	121	11	2.402	2.4257	2	112			1 7401	2	206
12	2 550	ſ	2 5016	2	$\frac{1}{1}$ $\frac{2}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$			2.4029	4	124	0	1 7242	1.7491	5	260
12	5.556	ì	2 5220	2	0.2.0			2.3992	4	224	12	1.7545	1.7575	2	250
			3.3339	4	030			2.3013	2	551	13	1.7021	1.7154	2	552
50	2.462	ſ	3.5242	4	1 3 3	11	2 204	2.358/	4	241			1.7113	4	333
52	5.462	í	3.4917	3	131	11	2.294	{ 2.3017	3	3 3 2			1.7083	4	200
		C	3.4750	32	130			2.2871	2	411			1.6962	3	265
			3.4440	3	124			(2.2775	2	233			1.6904	2	404
			3.4316	3	014	13	2.255	{ 2.2586	3	414					
								2.2539	5	303					

Only calculated lines with I > 2 are shown.

The data in these three tables are also deposited with the Principal Editor of *Mineralogical Magazine* and are available from http://www.minersoc.org/pages/e_journals/dep_mat_mm.html.

microscope (objective $50\times$). The spectrometer was calibrated by a software-controlled calibration procedure (within *Omnic 8* software) using multiple neon emission lines (wavelength calibration), multiple polystyrene Raman bands (laser frequency calibration), and standardized white light sources (intensity calibration). Spectral manipulation such as background correction and band-component

analysis was done with *Omnic* δ software. Spectra of all three minerals are displayed in Fig. 6.

OH stretching and H₂O bending vibrations

The bands attributable to the O-H stretching vibrations were observed for all three minerals, in

	Klaprothite	Péligotite	Ottohahnite
Structural formula	$Na_6(UO_2)(SO_4)_4(H_2O)_4$	$Na_6(UO_2)(SO_4)_4(H_2O)_4$	$Na_6(UO_2)_2(SO_4)_5(H_2O)_7 \cdot 1.5H_2O_{D1}$
Unit-cell dimensions	a = 9.8271(4) Å	a = 9.81511(18) Å	a = 9.97562(19) Å
	b = 9.7452(3) Å	b = 9.9575(2) Å	b = 11.6741(2)Å
	c = 20.8725(15) Å	c = 10.6289(8) Å	c = 14.2903(10) Å
	$\beta = 98.743(7)^{\circ}$	$\alpha = 88.680(6)^{\circ}$	$\alpha = 113.518(8)^{\circ}$
		$\beta = 73.990(5)^{\circ}$	$\beta = 104.282(7)^{\circ}$
Λ	1975.66(17) Å ³	$\gamma = 89.203(6)^{-2}$	$\gamma = 91.400(6)^{-1}$ 1464.59(14) Å ³
Z	4	2	2
Density (for above formula)	$2.906 \text{ g} \cdot \text{cm}^{-3}$	$2.875 \text{ g}\cdot\text{cm}^{-3}$	$2.978 \text{ g} \cdot \text{cm}^{-3}$
Absorption coefficient	8.877 mm^{-1}	8.784 mm^{-1}	11.611 mm^{-1}
F(000)	1624	812	1216
Crystal size (µm)	80 imes 60 imes 30	60 imes 45 imes 25	80 imes 60 imes 50
θ range	3.02 to 27.49°	3.20 to 27.44°	3.00 to 27.44°
Index ranges	$-12 \le h \le 12$	$-12 \le h \le 11$	$-11 \le h \le 12$
	$-12 \le k \le 12$	$-12 \le k \le 12$	$-15 \le k \le 15$
	$-27 \le l \le 27$	$-13 \le l \le 13$	$-18 \le l \le 18$
Reflections collected; unique	$23,627/4507; R_{\text{int}} = 0.035$	$17,794/4512; R_{\rm int} = 0.039$	$26,283/6658; R_{\text{int}} = 0.041$
Reflections with $F_{o} > 4\sigma(F)$	4034	4146	5721
Completeness to θ_{max}	99.5%	99.1%	99.6%
Restraints/parameters	12/325	12/325	0/425
Goof	1.098	1.089	1.040
Final R indices $[F_{0} > 4\sigma(F)]$	$R_1 = 0.0222, wR_2 = 0.0455$	$R_1 = 0.0228, wR_2 = 0.0490$	$R_1 = 0.0265, wR_2 = 0.0581$
R indices (all data)	$R_1 = 0.0271, wR_2 = 0.0470$	$R_1 = 0.0273, wR_2 = 0.0506$	$R_1 = 0.0341, wR_2 = 0.0610$
Largest diff. peak/hole	$+1.09/-0.86 \ e \ A^{-3}$	$+1.14/-0.67~e~{ m A}^{-3}$	$+1.35/-1.38 \ e \ A^{-3}$
* $R_{\text{int}} = \Sigma [F_0^2 - F_0^2(\text{mean})]/\Sigma [F_0^2]$. Goof = $S = [2F_0^2 + \text{Max}(F_0^2)]/3$; for klaprothite <i>a</i> is	= $\{\Sigma[w(F_o^2 - F_o^2)^2]/(n-p)\}^{1/2}$. $R_1 = \Sigma F_o - F_o ^2$ 0.0153 and b is 5.0943; for péligotite a	$\ /\Sigma F_0 . wR_2 = \{\Sigma[w(F_0^2 - F_0^2)^2]/\Sigma[w(F_0^2)^2]\}^{1/2};$ s 0.2090 and b is 1.0734; for ottohahnite a	$w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ where P is is 0.0288 and b is 2.1310.

TABLE 4. Data collection and structure refinement details for klaprothite, péligotite and ottohahnite.

762

ANTHONY R. KAMPF ETAL.

ę
- E
Ę
ha
0
Ĕ
g
aı
e
÷
Ö.
<u>ි</u> . සං
él
d
ပ်
it
÷
0
ā
la
ï
Ч
<u></u>
\sim
Ľ
\sim
ē
G
Ξ
G,
a
Б
e
Ξ
- 8
ă
d
IS.
р
р
an
ŝ
ē
lai
.E
Ъ
ō
8
2
Ë
5
\triangleleft
Sec.
- 8
BI
2
L

Klaprothite	x/a	y/b	z/c	$U_{ m eq}$	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Nal	0.90437(17)	0.30192(16)	0.89756(8)	0.0239(3)	0.0252(8)	0.0193(8)	0.0268(8)	0.0013(7)	0.0025(6)	-0.0041(7)
Na2	0.26877(17)	0.23763(17)	0.75503(8)	0.0271(4)	0.0240(9)	0.0303(9)	0.0256(8)	-0.0052(7)	-0.0008(7)	0.0031(7)
Na3	0.30983(19)	0.22928(17)	0.99039(8)	0.0303(4)	0.0376(10)	0.0256(9)	0.0247(8)	0.0045(7)	-0.0048(7)	-0.0117(7)
Na4	0.40612(17)	0.81668(16)	0.90064(8)	0.0254(4)	0.0240(8)	0.0267(9)	0.0242(8)	-0.0004(7)	-0.0003(6)	-0.0067(7)
Na5	0.3506(2)	0.62409(19)	0.74617(9)	0.0410(5)	0.0575(13)	0.0289(10)	0.0411(11)	-0.0083(8)	0.0219(9)	-0.0097(9)
Na6	0.0	0.5	0.5	0.0325(6)	0.0346(14)	0.0409(14)	0.0241(12)	0.0123(11)	0.0115(10)	0.0166(12)
Na7	0.5	0.5	0	0.0988(19)	0.075(3)	0.163(4)	0.0460(19)	0.059(2)	-0.0328(18)	-0.092(3)
U	0.99601(2)	0.20230(2)	0.60250(2)	0.01284(4)	0.01114(7)	0.01244(7)	0.01492(7)	0.00186(5)	0.00187(4)	-0.00010(5)
S1	0.66470(9)	0.53766(9)	0.87958(4)	0.01520(18)	0.0154(4)	0.0136(4)	0.0170(4)	0.0001(3)	0.0036(3)	-0.0022(3)
S2	0.16743(10)	0.04653(9)	0.88370(4)	0.01691(18)	0.0154(4)	0.0165(4)	0.0190(4)	0.0007(4)	0.0034(3)	-0.0018(4)
S3	0.26752(9)	0.45861(9)	0.60626(4)	0.01456(18)	0.0114(4)	0.0134(4)	0.0190(4)	-0.0005(3)	0.0028(3)	-0.0004(3)
$\mathbf{S4}$	0.22619(9)	0.49007(9)	0.87535(4)	0.01472(18)	0.0137(4)	0.0136(4)	0.0170(4)	-0.0004(3)	0.0026(3)	0.0013(3)
01	0.3707(3)	0.0712(3)	0.68903(13)	0.0309(7)	0.045(2)	0.0300(17)	0.0176(14)	-0.0040(12)	0.0032(13)	0.0023(14)
02	0.5873(3)	0.6234(3)	0.91893(13)	0.0247(6)	0.0220(15)	0.0252(15)	0.0283(15)	-0.0042(12)	0.0087(12)	0.0022(12)
03	0.6440(3)	0.3917(3)	0.89178(14)	0.0272(6)	0.0321(17)	0.0141(13)	0.0345(16)	0.0026(12)	0.0024(13)	-0.0063(12)
04	0.8155(3)	0.5630(3)	0.90098(15)	0.0300(7)	0.0157(15)	0.0303(16)	0.0445(18)	0.0038(14)	0.0061(13)	-0.0052(13)
05	0.1284(4)	0.0692(4)	0.81476(15)	0.0445(9)	0.040(2)	0.071(3)	0.0219(16)	0.0061(16)	0.0023(14)	0.0007(18)
90	0.8981(3)	0.6436(3)	0.57752(14)	0.0253(6)	0.0229(15)	0.0180(14)	0.0353(16)	0.0055(12)	0.0052(12)	-0.0015(12)
07	0.3169(3)	0.0514(3)	0.90312(14)	0.0274(7)	0.0146(14)	0.0322(16)	0.0361(17)	-0.0025(13)	0.0068(12)	-0.0046(12)
08	0.8771(3)	0.4064(3)	0.59786(17)	0.0354(8)	0.0303(18)	0.0149(14)	0.060(2)	-0.0011(14)	0.0026(15)	0.0069(13)
60	0.2088(3)	0.5943(3)	0.59533(18)	0.0373(8)	0.0297(17)	0.0169(15)	0.068(2)	0.0035(15)	0.0151(16)	0.0094(13)
010	0.3031(3)	0.4250(3)	0.67504(13)	0.0282(7)	0.0286(16)	0.0387(18)	0.0172(14)	-0.0008(12)	0.0030(12)	-0.0108(14)
011	0.3860(3)	0.4425(3)	0.57219(13)	0.0211(6)	0.0150(13)	0.0248(14)	0.0244(14)	0.0000(12)	0.0061(11)	0.0023(11)
012	0.1596(3)	0.3577(3)	0.57522(13)	0.0236(6)	0.0216(15)	0.0271(15)	0.0214(14)	-0.0001(12)	0.0007(11)	-0.0119(12)
013	0.2590(3)	0.4444(3)	0.81359(14)	0.0298(7)	0.0390(18)	0.0257(15)	0.0275(15)	-0.0070(13)	0.0139(13)	0.0030(14)
014	0.3122(3)	0.4266(3)	0.92971(14)	0.0263(6)	0.0196(15)	0.0293(16)	0.0276(15)	0.0103(12)	-0.0043(12)	-0.0002(12)
015	0.0770(3)	0.4683(3)	0.87985(13)	0.0211(6)	0.0139(13)	0.0159(13)	0.0334(15)	-0.0014(11)	0.0035(11)	-0.0026(11)
016	0.2383(3)	0.6437(3)	0.87958(13)	0.0198(6)	0.0149(13)	0.0117(12)	0.0339(15)	-0.0009(11)	0.0072(11)	-0.0002(10)
017	0.0502(3)	0.2256(3)	0.68669(13)	0.0218(6)	0.0190(14)	0.0271(15)	0.0197(13)	-0.0016(11)	0.0042(11)	0.0008(12)
018	0.9439(3)	0.1845(3)	0.51757(13)	0.0255(6)	0.0268(15)	0.0305(16)	0.0182(13)	0.0017(12)	0.0007(11)	-0.0029(13)
OW1	0.8704(4)	0.2477(6)	0.78456(18)	0.0576(12)	0.037(2)	0.106(4)	0.032(2)	-0.010(2)	0.0101(17)	-0.001(2)
Hla	0.937(5)	0.203(5)	0.783(3)	0.069						
H1b	0.880(6)	0.317(4)	0.761(3)	0.069						
OW2	0.4328(3)	0.7935(3)	0.01370(14)	0.0270(6)	0.0331(17)	0.0228(15)	0.0272(15)	0.0002(13)	0.0115(13)	0.0009(14)
										(continued)

KLAPROTHITE, PÉLIGOTITE AND OTTOHAHNITE: NEW URANYL SULFATE MINERALS

Klaprothite (contd.) x/a	y/b	z/c	$U_{ m eq}$	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
H2a H2b OW3 H3a	$\begin{array}{c} 0.414(5)\\ 0.393(5)\\ 0.4801(3)\\ 0.526(4)\end{array}$	$\begin{array}{c} 0.869(3) \\ 0.744(4) \\ 0.1886(3) \\ 0.252(4) \end{array}$	0.023(2) 0.035(2) 0.82167(13) 0.840(2)	$\begin{array}{c} 0.032\\ 0.032\\ 0.0251(6)\\ 0.030\end{array}$	0.0274(16)	0.0260(16)	0.0212(14)	-0.0022(12)	0.0019(12)	-0.0053(13)
H3b OW4 H4a H4b	0.454(5) 0.4137(4) 0.376(4) 0.499(3)	$\begin{array}{c} 0.143(4) \\ 0.8479(3) \\ 0.903(4) \\ 0.868(5) \end{array}$	$\begin{array}{c} 0.8493(18) \\ 0.78808(15) \\ 0.763(2) \\ 0.791(2) \end{array}$	$\begin{array}{c} 0.030\\ 0.0333(7)\\ 0.040\\ 0.040\end{array}$	0.0398(19)	0.0300(17)	0.0296(17)	0.0014(14)	0.0036(15)	-0.0016(15)
Péligotite	x/a	y/b	z c	$U_{ m eq}$	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Na1 Na2 Na3	$\begin{array}{c} 0.0173(2) \\ 0.13381(19) \\ 0.32017(19) \end{array}$	$\begin{array}{c} 0.21679(18)\\ 0.60608(18)\\ 0.28083(18)\end{array}$	$\begin{array}{c} 0.78354(16)\\ 0.49903(16)\\ 0.98490(17) \end{array}$	0.0321(4) 0.0312(4) 0.0302(4)	$\begin{array}{c} 0.0449(11) \\ 0.0367(10) \\ 0.0367(10) \end{array}$	$\begin{array}{c} 0.0279(10)\\ 0.0336(10)\\ 0.0285(10) \end{array}$	$\begin{array}{c} 0.0257(9) \\ 0.0223(9) \\ 0.0291(9) \end{array}$	$\begin{array}{c} -0.0057(7) \\ -0.0064(7) \\ -0.0105(7) \end{array}$	-0.0139(8) -0.0056(7) -0.0152(8)	$\begin{array}{c} 0.0180(8) \\ -0.0115(8) \\ 0.0145(8) \end{array}$
Na4 Na5 Na6	0.48329(18) 0.6224(2) 0	0.30651(18) 0.1241(2) 0.5	0.21999(16) 0.52127(18) 0	0.0290(4) 0.0405(5) 0.0255(5)	0.0303(10) 0.0411(11) 0.0246(13)	0.0307(10) 0.0445(12) 0.0317(13)	0.0298(9) 0.0295(10) 0.0201(11)	-0.0052(7) -0.0090(8) 0.0046(9)	-0.0146(7) 0.0028(8) -0.0062(9)	0.0090(8) -0.0229(9) 0.0020(10)
Na7 U	0.5 0.09294(2)	0 0.80723(2)	0 0.80855(2)	0.0826(15) 0.01259(5)	0.084(3)	0.137(4)	0.01266(7)	-0.0204(18) -0.00023(5)	-0.0191(16) -0.00267(5)	0.089(3) -0.00012(5)
S1 S2	0.23359(10) 0.27155(10)	0.02517(10) 0.47726(9)	0.23419(9) 0.76028(9)	0.01805(19) 0.01702(19)	0.0154(5) 0.0156(5)	0.0173(5) 0.0146(5)	0.0218(5) 0.0201(5)	0.0013(4)	-0.0059(4) -0.0038(4)	0.0024(4) 0.0032(4)
S3 S4	0.15332(10) 0.33207(10)	0.45960(9) 0.01303(9)	0.21644(9) 0.76845(9)	0.01466(18)	0.0136(5) 0.0143(5)	0.0137(5) 0.0147(5)	0.0164(4)	-0.0018(3) -0.0023(3)	-0.0035(3) -0.0036(3)	-0.0008(4) -0.0015(4)
010	0.2244(4)	0.0221(4)	0.3731(3)	0.0397(8)	0.049(2)	0.048(2)	0.0190(16)	0.0021(14)	-0.0037(14)	0.0052(17)
03	0.2676(4)	0.8920(3)	0.1791(3)	0.0364(8)	0.047(2)	0.0201(17)	0.045(2)	-0.0065(14)	-0.0165(16)	0.0092(15)
05 05	0.0921(3) 0.2572(4)	0.0632(3) 0.4774(3)	0.2179(4) 0.6279(3)	0.0401(9) 0.0386(8)	0.0176(17) 0.059(2)	0.0341(19) 0.038(2)	0.072(3) 0.0192(15)	-0.0093(17) -0.0025(13)	-0.0188(16) -0.0108(15)	0.0027(14) 0.0101(17)
06 70	0.1923(3)	0.3676(3)	0.8403(3)	0.0281(7)	0.0319(17)	0.0185(15)	0.0330(17)	0.0052(12)	-0.0078(13)	-0.0001(13)
08	0.2080(3)	0.6058(3)	0.8259(3)	0.0266(7)	0.0309(17)	0.0192(15)	0.0303(16)	-0.010/(17) -0.0019(12)	-0.0099(13)	0.0081(13)
00	0.1136(3)	0.5881(3)	0.1683(3)	0.0287(7)	0.0282(17)	0.0177(15)	0.0409(18)	0.0014(13)	-0.0111(14)	0.0068(12)
010	0.1011(3) 0.3065(3)	0.4443(3) 0.4391(3)	0.3582(3) 0.1685(3)	0.0302(7) 0.0242(6)	0.0358(18) 0.0358(18) 0.0130(14)	0.03/9(19)	0.0367(17)	-0.0028(12) -0.0038(12)	-0.0042(12) -0.0083(12)	-0.0103(14) 0.0028(12)
012	0.0866(3)	0.3520(3)	0.1543(3)	0.0223(6)	0.0247(16)	0.0211(15)	0.0223(14)	-0.0027(11)	-0.0082(12)	-0.0068(12)
										(continued)

ANTHONY R. KAMPF ETAL.

TABLE 5. (contd.)

Péligo	tite (contd.) x/a	d/y	z/c	$U_{ m eq}$	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
013 014	0.4120(3) 0.3831(3)	0.0350(3) 0.0928(3)	0.6332(3) 0.8573(3)	0.0308(7) 0.0254(6)	0.0260(17) 0.0262(16)	0.0421(19) 0.0253(16)	0.0198(15) 0.0291(16)	-0.0039(13) -0.0104(12)	0.0018(12) -0.0144(13)	-0.0100(14) 0.0019(13)
015	0.1781(3)	0.0374(3)	0.7821(3)	0.0200(6)	0.0141(14)	0.0168(14)	0.0305(15)	0.0014(11)	-0.0085(11)	0.0001(11)
016	0.3355(3)	0.8660(3)	0.8039(3)	0.0235(6)	0.0175(15)	0.0137(14)	0.0404(17)	0.0007(12)	-0.0099(12)	0.0003(11)
017	0.1527(3)	0.7912(3)	0.6350(3)	0.0218(6)	0.0268(16)	0.0217(15)	0.0159(13)	-0.0011(11)	-0.0040(11)	-0.0041(12)
018	0.9593(3)	0.1796(3)	0.0190(3)	0.0241(6)	0.0292(16)	0.0253(16)	0.0164(13)	-0.0030(11)	-0.0038(11)	-0.0017(13)
0W1	0.0212(6)	0.2052(6)	0.5629(4)	0.0723(15)	0.109(4)	0.078(3)	0.034(2)	-0.008(2)	-0.028(3)	0.044(3)
Hla	0.030(7)	0.129(3)	0.539(7)	0.087						
H1b	0.106(4)	0.233(7)	0.536(7)	0.087						
OW2	0.5681(3)	0.3171(3)	0.9800(3)	0.0285(7)	0.0239(17)	0.0277(18)	0.0301(17)	0.0024(13)	-0.0013(13)	0.0008(14)
H2a	0.588(5)	0.392(3)	0.944(5)	0.034						
H2b	0.642(4)	0.277(4)	0.961(5)	0.034						
OW3	0.3404(3)	0.6990(3)	0.3532(3)	0.0289(7)	0.0315(18)	0.0283(18)	0.0245(16)	-0.0021(13)	-0.0037(13)	0.0029(14)
H3a	0.321(5)	0.742(4)	0.294(4)	0.035						
H3b	0.403(4)	0.647(4)	0.317(4)	0.035						
OW4	0.4291(7)	0.2766(5)	0.4487(4)	0.0841(18)	0.126(5)	0.081(4)	0.034(2)	0.004(2)	-0.005(3)	0.052(3)
H4a	0.359(5)	0.303(7)	0.510(6)	0.101						
H4b	0.486(7)	0.342(7)	0.454(8)	0.101						
Ottoha	hnite									
	x/a	y/b	z/c	$U_{ m eq}$	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
UI	0.76518(2)	0.92310(2)	0.59278(2)	0.01693(6)	0.01595(10)	0.01423(9)	0.01643(9)	0.00435(7)	0.00092(7)	0.00139(7)
U2	0.43880(2)	0.47704(2)	0.20323(2)	0.01589(5)	0.01530(10)	0.01535(9)	0.01348(8)	0.00398(7)	0.00148(7)	0.00216(7)
$\mathbf{S1}$	0.64717(12)	0.22386(10)	0.18552(9)	0.0213(3)	0.0182(6)	0.0170(5)	0.0233(6)	0.0042(5)	0.0036(5)	0.0043(5)
S2	0.74046(12)	0.58141(10)	0.43301(8)	0.0173(2)	0.0161(6)	0.0153(5)	0.0150(5)	0.0029(4)	0.0011(4)	0.0015(4)
S3	0.42597(12)	0.80033(10)	0.39688(9)	0.0180(2)	0.0164(6)	0.0160(5)	0.0164(5)	0.0043(4)	-0.0003(4)	0.0041(4)
$\mathbf{S4}$	0.01287(13)	0.99886(11)	0.79367(9)	0.0228(3)	0.0211(6)	0.0225(6)	0.0176(5)	0.0052(5)	-0.0016(5)	0.0036(5)
S5	0.86118(12)	0.63587(11)	0.93924(9)	0.0214(2)	0.0182(6)	0.0210(6)	0.0189(5)	0.0064(4)	-0.0012(5)	-0.0023(5)
Nal	0.8619(2)	0.28948(17)	0.81894(15)	0.0293(5)	0.0302(12)	0.0235(10)	0.0255(10)	0.0055(8)	0.0013(9)	0.0041(9)
Na2	0.5133(2)	0.33816(19)	0.41652(16)	0.0312(5)	0.0337(12)	0.0311(11)	0.0323(11)	0.0166(9)	0.0093(9)	0.0046(9)
Na3	0.0619(2)	0.6873(2)	0.61423(17)	0.0344(5)	0.0444(14)	0.0287(11)	0.0371(12)	0.0165(9)	0.0174(10)	0.0182(10)
Na4	0.8728(2)	0.1325(2)	0.02411(18)	0.0390(5)	0.0364(13)	0.0345(12)	0.0441(13)	0.0218(10)	-0.0008(10)	-0.0028(10)
Na5	0.6421(3)	0.8889(2)	0.02774(19)	0.0401(6)	0.0458(14)	0.0238(11)	0.0443(13)	0.0058(10)	0.0160(11)	0.0064(10)
										(continued)

KLAPROTHITE, PÉLIGOTITE AND OTTOHAHNITE: NEW URANYL SULFATE MINERALS

TABLE 5. (contd.)

Ottohahnite (contd.)	x/a	y/b	z/c	$U_{ m eq}$	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
03	0.6328(5)	0.2402(4)	0.2889(3)	0.0503(12)	0.071(3)	0.059(3)	0.045(2)	0.033(2)	0.033(2)	0.028(2)
04	0.5596(4)	0.3102(3)	0.1485(3)	0.0324(9)	0.033(2)	0.0294(19)	0.0307(19)	0.0100(16)	0.0048(16)	0.0193(16)
05	0.8601(4)	0.5142(3)	0.4276(3)	0.0337(9)	0.029(2)	0.033(2)	0.040(2)	0.0154(17)	0.0095(17)	0.0177(17)
90	0.6499(4)	0.5452(3)	0.4854(3)	0.0314(8)	0.032(2)	0.036(2)	0.0237(18)	0.0104(16)	0.0064(16)	-0.0033(17)
07	0.6615(4)	0.5619(3)	0.3236(2)	0.0258(8)	0.0211(18)	0.0326(19)	0.0181(16)	0.0086(14)	0.0003(14)	-0.0040(15)
08	0.7937(4)	0.7186(3)	0.4916(3)	0.0312(8)	0.035(2)	0.0154(16)	0.0300(19)	-0.0014(14)	0.0043(16)	0.0025(15)
60	0.3898(4)	0.7619(4)	0.4731(3)	0.0409(10)	0.031(2)	0.061(3)	0.037(2)	0.031(2)	0.0046(17)	0.000(2)
010	0.4102(4)	0.6908(3)	0.2950(3)	0.0333(9)	0.042(2)	0.0164(17)	0.0274(18)	0.0001(14)	0.0009(17)	0.0086(16)
011	0.3319(4)	0.8863(3)	0.3723(3)	0.0364(9)	0.037(2)	0.0284(19)	0.038(2)	0.0119(17)	0.0023(17)	0.0173(17)
012	0.5713(4)	0.8642(3)	0.4383(3)	0.0295(8)	0.0222(19)	0.0328(19)	0.0256(18)	0.0115(15)	-0.0047(15)	-0.0036(15)
013	0.1514(4)	0.0527(4)	0.8109(3)	0.0450(11)	0.021(2)	0.042(2)	0.062(3)	0.019(2)	-0.0029(19)	-0.0038(18)
014	0.9971(5)	0.9828(4)	0.8860(3)	0.0468(11)	0.062(3)	0.056(3)	0.032(2)	0.027(2)	0.015(2)	0.023(2)
015	0.9695(4)	0.8768(3)	0.6967(3)	0.0306(9)	0.031(2)	0.0190(17)	0.0269(18)	0.0028(14)	-0.0058(15)	0.0099(15)
016	0.9052(3)	0.0764(3)	0.7644(3)	0.0250(8)	0.0218(18)	0.0180(16)	0.0242(17)	0.0028(14)	-0.0022(14)	0.0049(14)
017	0.9285(4)	0.6428(3)	0.0433(3)	0.0287(8)	0.0247(19)	0.035(2)	0.0229(17)	0.0145(15)	-0.0020(15)	-0.0024(16)
018	0.0473(4)	0.3070(4)	0.0998(3)	0.0418(10)	0.039(2)	0.051(2)	0.032(2)	0.0154(19)	0.0073(18)	-0.0171(19)
019	0.7297(4)	0.6946(3)	0.9403(3)	0.0326(9)	0.026(2)	0.0208(17)	0.0309(19)	-0.0012(15)	-0.0059(16)	0.0053(15)
020	0.8068(3)	0.5023(3)	0.8604(3)	0.0235(7)	0.0138(16)	0.0215(16)	0.0266(17)	0.0049(14)	0.0001(14)	0.0025(13)
021	0.8678(4)	0.9717(3)	0.5275(3)	0.0296(8)	0.026(2)	0.0302(19)	0.0319(19)	0.0116(16)	0.0104(16)	0.0011(16)
022	0.6598(4)	0.8690(3)	0.6539(3)	0.0302(8)	0.0245(19)	0.037(2)	0.0274(18)	0.0136(16)	0.0039(15)	0.0010(16)
023	0.4849(4)	0.5240(3)	0.1106(3)	0.0286(8)	0.028(2)	0.037(2)	0.0225(17)	0.0142(15)	0.0058(15)	0.0061(16)
024	0.3923(3)	0.4298(3)	0.2963(3)	0.0265(8)	0.0201(18)	0.0322(19)	0.0268(18)	0.0150(15)	0.0020(14)	-0.0026(15)
OW1	0.7096(5)	0.9473(4)	0.9026(3)	0.0545(12)	0.050(3)	0.062(3)	0.041(2)	0.015(2)	0.010(2)	-0.015(2)
OW2	0.9016(4)	0.5982(4)	0.6761(3)	0.0448(11)	0.036(2)	0.064(3)	0.035(2)	0.022(2)	0.0098(18)	0.003(2)
OW3	0.7482(4)	0.2485(4)	0.9332(3)	0.0381(9)	0.038(2)	0.044(2)	0.035(2)	0.0197(18)	0.0096(18)	0.0092(19)
OW4	0.9939(5)	0.3217(4)	0.7067(3)	0.0489(11)	0.059(3)	0.046(2)	0.040(2)	0.017(2)	0.014(2)	-0.003(2)
OW5	0.1271(4)	0.7924(4)	0.5167(3)	0.0446(10)	0.038(2)	0.054(3)	0.055(3)	0.033(2)	0.018(2)	0.007(2)
0W6	0.2298(4)	0.5100(4)	0.9070(3)	0.0369(9)	0.035(2)	0.043(2)	0.036(2)	0.0196(18)	0.0093(18)	0.0060(18)
OW7a*	0.5335(8)	0.802(2)	0.1177(13)	0.076(5)	0.037(4)	0.113(14)	0.091(9)	0.068(10)	0.001(4)	-0.013(5)
OW7b*	0.5358(19)	0.906(5)	0.180(3)	0.090(16)	0.034(10)	0.15(4)	0.11(3)	0.09(3)	0.004(11)	-0.018(13)
OW8	0.7656(7)	0.7849(5)	0.2689(4)	0.0800(17)	0.095(5)	0.084(4)	0.078(4)	0.045(3)	0.033(3)	0.018(3)
0W9*	0.6236(12)	0.0097(9)	0.3142(8)	0.063(3)	0.087(8)	0.050(6)	0.070(7)	0.028(5)	0.048(6)	0.019(5)

*Occupancies: OW7a: 0.69(4); OW7b: 0.31(4); OW9: 0.5

TABLE 5. (contd.)

766

ANTHONY R. KAMPF ET AL.

https://doi.org/10.1180/minmag.2016.080.120 Published online by Cambridge University Press

Klaprothite									
Na1–O9	2.325(3)	Na4–OW2	2.345(3)		S101	1.458(3)	U017	1.772(3)
Na1-OW1	2.390(4)	Na4016	2.353(3)		S1-O2	1.464(3)	U018	1.777(3)
Na1-015	2.415(3)	Na4011	2.376(3)		S1-O3	1.464(3)	U012	2.301(3)
Na1–O6	2.472(3)	Na4–OW4	2.381(4)		S1-04	1.502(3)	U-08	2.306(3)
Na1–O18	2.479(3)	Na4–O7	2.453(3)		<s1-0></s1-0>	1.472	U–O4	2.341(3)
Na1–O3	2.690(3)	Na4–O2	2.580(3)				U015	2.435(3)
Na1–O4	2.694(3)	<na4–o></na4–o>	2.415		S2-O5	1.449(3)	U016	2.456(3)
<na1-o></na1-o>	2.495	·				S2-06	1.457(3)	$< U - O_{U} >$	1.775
			Na5–OW4	2.396(4)		S2-07	1.464(3)	<u-0_a< td=""><td>2.368</td></u-0_a<>	2.368
Na2–OW3	2.366(3)	Na5–OW3	2.425(4)		S2-08	1.502(3)	cq	
Na2013	2.366(3	Ś	Na5010	2.445(3)		<s2–o></s2–o>	1.468		
Na2017	2.394(3	Ĵ	Na5–OW1	2.481(5)					
Na2-O1	2.440(3	Ś	Na5013	2.498(4)		S309	1.447(3)		
Na2010	2.531(3)	Na501	2.910(4)		S3010	1.462(3)		
Na205	2.583(4)	<na5o></na5o>	2.526		S3011	1.462(3)		
<na2–o></na2–o>	2.447	/				S3012	1.518(3)		
			Na6-O6(×2)	2.464(3)		<\$3–O>	1.472		
Na3014	2.305(3)	Na6 $-O12(\times 2)$	2.470(3)					
Na3011	2.427(3	Ś	Na6-O8(×2)	2.686(4)		S4-013	1.446(3)		
Na306	2.450(3	Ś	Na609(×2)	2.788(4)		S4-014	1.447(3)		
Na3–O2	2.467(3	ý	<na6o></na6o>	2.602		S4-015	1.498(3)		
Na3–O7	2.523(3	Ś				S4016	1.503(3)		
Na3–OW2	2.553(4)	Na7–O14(×2)	2.290(3)		<s4–o></s4–o>	1.474		
Na3012	2.613(3	Ś	Na7 $-O2(\times 2)$	2.342(3)					
<na3-o></na3-o>	2.477	·	Na7–OW2(×2)	2.959(3)					
Hydrogen bo	onds								
$D-H\cdots A$		D–H	$H \cdots A$	$D \cdots A$	<dha< td=""><td></td><td></td><td></td><td></td></dha<>				
OW1-H1a··	·05	0.79(3)	2.30(3)	3.060(6)	161(6)				
OW1-H1b··	·017	0.84(3)	2.61(3)	2.905(6)	102(6)				
OW2−H2a··	·011	0.80(3)	2.13(3)	2.914(4)	166(5)				
OW2-H2b··	·O3	0.79(3)	2.10(3)	2.859(4)	161(5)				
OW3–H3a··	·O3	0.83(3)	2.00(3)	2.817(4)	174(4)				
OW3-H3b··	·07	0.80(3)	2.08(3)	2.842(4)	159(5)				
OW4–H4a…	·01	0.80(3)	2.25(3)	2.987(4)	154(4)				
OW4–H4b··	·O10	0.86(3)	2.04(3)	2.873(5)	163(5)				
		~)	~ /	~ /					

TABLE 6. Selected bond distances (Å) and angles (°) for klaprothite, péligotite and ottohahnite.

the approximate range $3650-3300 \text{ cm}^{-1}$. The bands are very broad and of low intensity. Approximate O-H···O hydrogen bond lengths inferred from the corresponding stretching wavenumbers using Libowitzky's empirical relation (Libowitzky, 1999) vary in the range >3.2–2.77 Å.

Very weak bands at ~1650 cm⁻¹, attributed to the v₂ (δ) H–O–H bending mode of the H₂O molecules, were observed in the spectra of all three minerals. The low intensities of bands is typical of Raman spectra, in contrast to the higher intensity of v₂ (δ) mode bands in infrared spectra.

Vibrations of SO₄ groups

The vibrations of the sulfate tetrahedra are well resolved in the spectra of all three minerals. The activated antisymmetric vibration v_3 (SO₄) and the splitting of the degenerate modes suggest departure from the ideal T_d symmetry. The distortion of the tetrahedra due to the bidentate linkage between the SO₄ and UO₇ bipyramids is considerable (Plášil *et al.*, 2015). Multiple bands for v_1 (SO₄) in all three spectra are indicative of symmetrically non-equivalent SO₄ groups.

TABLE 6. (contd.)

Péligotite								
Na1–O9	2.302(3)		Na4-011	2.342(3)	S101	1.454(3)	U018	1.769(3)
Na1–OW1	2.340(5)		Na4–OW4	2.353(5)	S1-O3	1.459(3)	U-017	1.785(3)
Na1-015	2.365(3)		Na4-016	2.422(3)	S1-O2	1.463(3)	U-O4	2.290(3)
Na1-O18	2.429(3)		Na4-07	2.443(4)	S104	1.489(3)	U-08	2.316(3)
Na1–O6	2.501(4)		Na4–OW2	2.455(4)	<s1-o></s1-o>	1.466	U-012	2.332(3)
Na1–O3	2.932(4)		Na402	2.519(3)			U015	2.435(3)
Na1–O4	3.004(4)		<na4–o></na4–o>	2.422	S205	1.452(3)	U016	2.447(3)
<na1-o></na1-o>	2.553				S207	1.457(3)	$< U - O_{U} >$	1.777
			Na5-013	2.262(3)	S2-06	1.462(3)	<u-0_a< td=""><td>2.364</td></u-0_a<>	2.364
Na2010	2.309(3)		Na5–OW3	2.325(4)	S2-08	1.514(3)	eq	
Na2–OW3	2.371(4)		Na5-013	2.401(3)	<s2–o></s2–o>	1.471		
Na2–O5	2.403(4)		Na5017	2.511(3)				
Na2017	2.408(3)		Na501	2.537(4)	S309	1.455(3)		
Na2010	2.437(4)		Na5–OW4	2.679(6)	S3O10	1.456(3)		
Na2–OW1	2.588(5)		<na5–o></na5–o>	2.453	S3011	1.461(3)		
<na2–o></na2–o>	2.419				S3012	1.518(3)		
			Na6–O12(×2)	2.492(3)	<\$3–O>	1.473		
Na3014	2.313(3)		Na6-09(×2)	2.532(3)				
Na306	2.378(3)		$Na6-O6(\times 2)$	2.540(3)	S4014	1.442(3)		
Na3–OW2	2.452(4)		Na6–O8(×2)	2.567(4)	S4-013	1.448(3)		
Na3–O2	2.470(3)		<na6-o></na6-o>	2.533	S4015	1.494(3)		
Na3011	2.510(3)				S4016	1.505(3)		
Na3012	2.596(3)		Na7–O14(×2)	2.311(3)	<s4–o></s4–o>	1.472		
Na3–O7	2.961(4)		Na7 $-O2(\times 2)$	2.359(3)				
<na3–o></na3–o>	2.526		$Na7-O3(\times 2)$	2.750(3)				
			<na7-o></na7-o>	2.473				
Hydrogen bo	onds							
D–H··· A		D-H	$H \cdots A$	$D \cdots A$	$\leq DHA$			
OW1−H1a…	·01	0.80(3)) 2.46(3)	3.037(6)	130(6)			
OW1-H1b	·none	0.85(3))					
OW2−H2a··	·011	0.83(3)) 2.15(3)	2.955(4)	165(4)			
OW2−H2b··	·O3	0.80(3)) 2.27(4)	2.892(5)	135(5)			
OW3−H3a··	·O3	0.82(3)) 2.06(3)	2.856(4)	165(5)			
OW3−H3b··	·O7	0.82(3)) 2.08(3)	2.893(4)	172(5)			
OW4–H4a··	·O5	0.85(3)) 2.22(3)	2.963(6)	146(7)			
OW4–H4b⋯	·none	0.87(3))					

The bands located at ~1250 cm⁻¹ are attributable to split triply degenerate v_3 (SO₄) antisymmetric stretching vibrations. Raman bands located in the range ~1080 to ~960 cm⁻¹ are attributable to v_1 (SO₄) symmetric stretching vibrations. The intensities of the bands related to the symmetric stretching mode are considerably higher than those attributed to the activated antisymmetric stretching vibrations.

The medium-weak bands located at ~650 cm⁻¹ are attributed to the v_4 (δ) triply degenerated antisymmetric stretching vibrations of SO₄ tetrahedra and the bands at ~450 cm⁻¹ are assigned to the

split $v_2(\delta)$ doubly degenerate bending vibrations of the SO₄ groups. The number of split $v_2(\delta)$ vibrations is in accordance with the presence of several non-equivalent SO₄ tetrahedra in the structures of all three minerals.

Vibrations of UO₂²⁺

The bands related to the activated v_3 antisymmetric stretching vibration of the uranyl ion, $(UO_2)^{2+}$, were observed in the spectra of all three minerals. The reason for activation of this mode in the Raman spectra is the lowering of the factor group

TABLE 6. (contd.)

Ottohahnite	*						
Na1-017	2.349(4)	Na4018	2.343(4)	S101	1.449(4)	Hydrogen bor	nds
Nal-O16	2.377(4)	Na4–OW3	2.399(4)	S1-O2	1.452(4)	OW1-014	2.968(7)
Na1-OW3	2.386(4)	Na4–OW1	2.404(5)	S1-O3	1.455(4)	OW1-022	3.198(5)
Na1-O20	2.425(4)	Na4014	2.406(4)	S1-04	1.516(4)	OW2-06	3.053(5)
Na1-OW4	2.439(5)	Na4–O2	2.634(5)	<s1–o></s1–o>	1.470	OW2018	2.842(6)
Nal-O11	2.853(4)	Na4-014	2.655(5)			OW3-OW6	2.793(6)
Na1-O10	2.867(4)	<na4–o></na4–o>	2.474	S2-O5	1.446(4)	OW3–OW7a	2.710(9)
<na1–o></na1–o>	2.528			S2-06	1.457(4)	OW3-OW7b	3.01(2)
		Na501	2.339(4)	S2-07	1.489(3)	OW4-OW5	2.838(6)
Na2–O3	2.352(5)	Na5–OW7a	2.349(9)	S208	1.489(3)	OW4–OW8	2.739(7)
Na209	2.357(4)	Na5–OW1	2.380(5)	<s2–o></s2–o>	1.468	OW5-09	2.839(6)
Na206	2.439(4)	Na5019	2.417(4)			OW5-021	3.064(5)
Na2024	2.462(4)	Na5-013	2.522(5)	S309	1.448(4)	OW6-017	2.757(5)
Na206	2.486(4)	Na5–OW7b	2.59(3)	S3010	1.473(3)	OW6-023	2.941(5)
Na2-O22	2.615(4)	Na501	2.711(5)	S3-011	1.476(4)	OW7a–OW8	2.824(10)
<na2–o></na2–o>	2.452	Na5–O4	2.897(4)	S3012	1.477(4)	OW7a–OW9	2.790(17)
		<na5–o></na5–o>	2.527*	<s3–o></s3–o>	1.469	OW7b-O1	2.93(5)
Na3–OW5	2.375(5)					OW7b-OW8	3.00(3)
Na3–O5	2.385(4)	Na6–OW6	2.306(4)	S4-013	1.426(4)	OW8-013	2.773(7)
Na3015	2.386(4)	Na6-OW2	2.357(5)	S4-014	1.449(4)	OW8-OW9	2.931(11)
Na3–OW2	2.403(5)	Na6-OW4	2.384(5)	S4-015	1.495(3)	OW9-03	2.867(10)
Na3–O2	2.576(5)	Na6-O2	2.402(5)	S4-016	1.509(3)	OW9-09	3.180(10)
Na3–O5	2.846(4)	Na6-O5	2.638(5)	<s4–o></s4–o>	1.470		
Na3–O8	2.934(4)	Na6018	2.885(5)				
Na3–O3	2.961(6)	Na6–O7	2.961(5)	S5017	1.441(3)		
<na3–o></na3–o>	2.608	<na6–o></na6–o>	2.562	S5018	1.452(4)		
				S5019	1.496(4)		
U1-021	1.762(4)	U2023	1.770(3)	S5-O20	1.500(3)		
U1-022	1.768(4)	U2-024	1.779(3)	<\$5–O>	1.472		
U1-08	2.313(3)	U2-04	2.285(3)				
U1011	2.365(3)	U2-07	2.350(3)				
U1012	2.388(3)	U2O10	2.374(3)				
U1015	2.419(3)	U2019	2.430(3)				
U1016	2.420(3)	U2-O20	2.447(3)				
$< U1 - O_{Ur} >$	1.765	$< U2 - O_{Ur} >$	1.775				
<u1-0_en></u1-0_en>	2.381	<u2-0.< td=""><td>2.377</td><td></td><td></td><td></td><td></td></u2-0.<>	2.377				
-4							

*The contributions of Na–OW7a and Na–OW7b to <Na–O> are weighted according to the refined occupancies of the OW7a and OW7b sites.

(symmetry) due to the relatively low symmetry (monoclinic or triclinic) of these minerals. The bands are of low or very low intensity and are observed in the range ~960 to ~920 cm⁻¹. The very strong bands observed at ~830 cm⁻¹ are attributed to the v₁ symmetric stretching vibration of the uranyl ion.

The approximate U–O bond-lengths inferred from the observed energies of the $(UO_2)^{2^+}$ vibrations using the empirical relation of Bartlett and Cooney (1989) is 1.79 Å, consistent with the bondlengths obtained in our X-ray studies (klaprothite \sim 1.78 Å, péligotite \sim 1.79 Å, ottohahnite \sim 1.77 Å) and identical to the most common bond-length given by Burns *et al.* (1997) for the uranyl pentagonal bipyramid, 1.79 Å.

The very weak bands at ~550 and ~500 cm⁻¹ may be attributable to the v (U–O_{*ligand*}) vibrations. Bands of medium intensity at low wavenumbers, ~250 cm⁻¹, can be assigned to the v₂ (δ) doubly degenerate bending vibrations of (UO₂)²⁺ (e.g. Bullock and Parret, 1970; Ohwada, 1976; Brittain

Klaprothite	Nal	Na2	Na3	Na4	Na5	Na6	Na7	Π	SI	S_{2}	S3	S 4	H honds	Σ
2						1)		1	2	2		
10 6		0.16	0.15	0 11	0.04		0 21×24		1.57				0.13	1.90 7.01
070	0.08		C1.0	11.0			17.0		1.54				0 16 0 18	1.96
04	0.08							0.57	1.39					1.96
05		0.11								1.60			0.12	1.83
06	0.14		0.15			$0.15^{\times 2\downarrow}$				1.57				2.01
07			0.13	0.15						1.54			0.17	1.99
08						$0.08^{\times 21}$		0.61		1.39				2.08
60	0.21					$0.06^{\times 21}$					1.61			1.88
010		0.12			0.16						1.55		0.16	1.99
011			0.16	0.19							1.55		0.15	2.05
012			0.10			$0.15^{\times 2\downarrow}$		0.62			1.33			2.20
013		0.19			0.13							1.62		1.94
014			0.23				$0.24^{\times 21}$					1.61		2.08
015	0.17							0.48				1.41		2.06
016				0.20				0.46				1.39		2.05
017		0.18						1.71					0.15	2.04
018	0.14							1.70						1.84
OW1	0.18				0.14								-0.12, -0.15	0.05
OW2			0.12	0.20			$0.04^{\times 21}$						-0.15, -0.16	0.05
OW3		0.19			0.16								-0.18, -0.17	0.00
OW4				0.18	0.18								-0.13, -0.16	0.07
Δ	1.00	0.95	1.04	1.03	0.81	0.88	0.98	6.15	6.04	6.10	6.04	6.03		

TABLE 7. Bond-valence analysis for klaprothite, péligotite and ottohahnite. Values are expressed in valence units.*

ANTHONY R. KAMPF ETAL.

Péligotite	Na1	Na2	Na3	Na4	Na5	Na6	Na7	D	S1	S2	S3	S4	H bonds	
01			0.15	0.12	0.12		0 00×2↓		1.58				0.12	1.83
03 5	0.04		C1.0	c1.0			$0.07^{\times 24}$		1.55				0.15,0.17	1.98
04 05	0.03	0.17						0.60	I.44	1.59			0.14	1.90
06 07	0.13		$0.19 \\ 0.04$	0.16		$0.12^{\times 24}$				1.57 1.55			0.15	2.01 1.90
80	0.23					$0.11^{\times 24}$ $0.12^{\times 24}$		0.63		1.35	1.58			2.09 1.93
010		0.22, 0.16									1.57			1.96
011 012			$0.13 \\ 0.10$	0.21		$0.14^{\times 21}$		0.58			1.55 1.33		0.14	2.03 2.15
013 014			0.22		0.25,0.17		0 22×24					1.61 1.64		2.04 2.08
015	0.19						11.0	0.48				1.42		2.09
016				0.17				0.47				1.38		2.01
017 018	0.16	0.17			0.13			1.67 1.72						1.97 1.88
OW1	0.21	0.11	0.15	0.15									-0.12	0.19
OW3		0.19	01.0	01.0	0.21								-0.17, -0.15	0.08
Σ 0 W4	1.00	1.03	0.98	0.20 1.00	0.08 0.98	0.98	0.97	6.15	6.13	6.06	6.04	6.04	-0.14	0.14

771

TABLE 7. (contd.)

Ottohahnite				1											
	Na1	Na2	Na3	Na4	Na5	Na6	IJ	U2	$\mathbf{S1}$	S2	S3	S4	S5	H bonds	Σ
01					0.21,0.08				1.60					+0.05	1.94
02			0.11	0.09		0.17			1.59						1.96
03		0.20	0.04						1.58					+0.08	1.90
04					0.05			0.64	1.34						2.03
05			0.18, 0.05			0.09				1.62					1.94
90		0.16, 0.14								1.57				+0.12	1.99
07						0.04		0.56		1.44					2.04
08			0.04				0.60			1.44					2.08
60		0.20									1.61			+0.17, +0.05	2.03
010	0.05							0.54			1.50				2.09
011	0.05						0.55				1.49				2.09
012							0.52				1.49				2.01
013					0.13							1.71		+0.20	2.04
014				0.17, 0.09								1.60		+0.14	2.00
015			0.18				0.49					1.42			2.09
016	0.19						0.49					1.36			2.04
017	0.20												1.64	+0.20	2.04
018				0.20		0.05							1.59	+0.17	2.01
019					0.17			0.48					1.41		2.06
020	0.16							0.47					1.40		2.03
021							1.75							+0.12	1.87
022		0.10					1.73							+0.10	1.93
023								1.72						+0.14	1.86
024		0.15						1.69							1.84
OW1				0.17	0.19									-0.14, -0.10	0.12
OW2			0.17			0.23								-0.12, -0.17	0.11
OW3	0.18			0.18										-0.19, -0.19	-0.02
OW4	0.16					0.18								-0.17, -0.21	-0.04
OW5			0.19											+0.17, -0.17,	0.07
														-0.12	
OW6						0.23								+0.19,-0.20,	0.08
														-0.14	

ANTHONY R. KAMPF ETAL.

772

TABLE 7. (contd.)

Ottohahnite	Na1	Na2	Na3	Na4	Na5	Na6	IJ	U2	$\mathbf{S1}$	S2	S3	$\mathbf{S4}$	S5	H bonds	Σ
OW7					0.14,0.03									+0.19,-0.25,	0.02
OW8														+0.21,+0.16,	0.02
6M0														+0.13,+0.15,	0.02
Σ	0.99	0.95	0.96	0.90	1.00	0.99	6.13	6.10	6.11	6.07	60.9	6.09	6.04	-0.10,-0.10	
*S ⁶⁺ –O bond hydrogen-bon	l strength fi nd strength:	rom Brown a: s based on O-	nd Altermatt	(1985); Na ⁺ -(ths from Ferr	O bond strer aris, G. and	ngth from Ivaldi, G	1 Wood 8	and Pale	nik (199	9); U ⁶⁺ -	O bond	strength	from B	urns <i>et al.</i> (1997);	

et al., 1985; Plášil *et al.*, 2010, 2015). Weak Raman bands at ~150 cm⁻¹ are attributed to $-O_{eq}-U-O_{ea}$ bending vibrations (Ohwada, 1976).

Vibrations of Na–O bonds and lattice modes

Weak Raman bands with shoulders at ~280 cm⁻¹ could be related to Na–O stretching vibrations or to the v (U–O_{*ligand*}) stretching vibration (Plášil *et al.*, 2010, 2015). The bands located below 100 cm⁻¹ are related to the lattice modes.

Composition

Chemical analyses of klaprothite, péligotite and ottohahnite were performed using a CamScan 4D electron microprobe in energy-dispersive spectroscopy (EDS) mode (20 kV, 500 pA and beam rasterized on an area 8 μ m × 8 μ m in order to minimize sample damage). The EDS mode with the above experimental conditions, rather than wavelength-dispersive spectroscopy (WDS) mode, was chosen because of the instability of these minerals under the electron beam caused by the high contents of both Na and H₂O. Attempts to use the WDS mode with higher beam current were unsuccessful because of significant decomposition of the minerals after several seconds under the electron beam. Standards used were chkalovite for Na, synthetic UO₂ for U and synthetic ZnS for S. H₂O was not determined directly because of the scarcity of pure material. The H₂O content was calculated by stoichiometry on the basis of the number of O apfu from crystal-structure determinations. The Raman spectra confirm the presence of H₂O groups and the absence of B-O, C-O and N-O bonds in the minerals. No other elements with atomic numbers higher than 8 were observed. Analytical data are given in Table 2.

The empirical formula of klaprothite, calculated as the mean of 11 representative spot analyses, is $Na_{6.01}(U_{1.03}O_2)(S_{0.993}O_4)_4(H_2O)_4$ and that of péligotite, calculated as the mean of 8 analyses, is $Na_{5.82}(U_{1.02}O_2)(S_{1.003}O_4)_4(H_2O)_4$, both based on 22 O apfu). The ideal formula for both minerals is $Na_6(UO_2)(SO_4)_4(H_2O)_4$ which requires Na_2O 21.51, UO_3 33.10, SO_3 37.05 and H_2O 8.34, total 100 wt.%. The empirical formula of ottohahnite, calculated as the mean of 12 analyses, is $Na_{5.88}(U_{0.99}O_2)_2(S_{1.008}O_4)_5(H_2O)_{8.5}$ based on 32.5 O apfu. Its ideal formula is $Na_6(UO_2)_2(SO_4)_5(H_2O)_7$. 1.5H₂O, which requires Na_2O 14.18, UO_3 43.62, SO_3 30.52 and H_2O 11.68, total 100 wt.%.

TABLE 7. (contd.)

FIG. 7. (*Left*) The $[(UO_2)(SO_4)_4]^{6-}$ cluster in the structures of klaprothite and péligotite. (*Right*) The $[(UO_2)_4(SO_4)_{10}]^{12-}$ cluster constructed of four linked $[(UO_2)(SO_4)_4]^{6-}$ clusters.

The Gladstone-Dale compatibility index 1 – (K_P/K_C) for the empirical formulas of klaprothite, péligotite and ottohahnite are –0.008 (superior), – 0.015 (superior) and –0.021 (excellent), respectively (Mandarino, 2007). As noted by Kampf *et al.* (2015*c*), Gladstone-Dale calculations for uranyl sulfates should utilize $k(UO_3) = 0.118$, as provided by Mandarino (1976).

X-ray crystallography and structure refinement

Powder X-ray studies were carried out using a Rigaku R-Axis Rapid II curved imaging plate microdiffractometer, with monochromatized MoK α radiation ($\lambda = 0.71075$ Å). A Gandolfi-like motion on the ϕ and ω axes was used to randomize the orientation of the sample and observed *d*-values and intensities were derived by profile fitting using JADE 2010 software (Materials Data, Inc.). The powder data presented in Table 3 show good agreement with the patterns calculated from the structure determinations. Unit-cell parameters refined from the powder data using JADE 2010 with whole pattern fitting are for klaprothite: a = 9.812(4), b =9.739(4), c = 20.855(4) Å, $\beta = 98.743(8)^{\circ}$ and V =1969.7(12) Å³; for péligotite: a = 9.811(9), b =9.928(10), c = 10.635(10) Å, $\alpha = 88.79(3)^{\circ}$, $\beta =$ 74.00(3)°, $\gamma = 89.27(2)^{\circ}$ and V = 995.5(17) Å³; and for ottohahnite: a = 9.979(8), b = 11.660(8), c = 14.277(8) Å, $\alpha = 113.48(3)^{\circ}$, $\beta = 104.29(2)^{\circ}$, $\gamma = 91.35(2)^{\circ}$ and $V = 1462.6(18) \text{ Å}^3$.

The single-crystal structure data for klaprothite, péligotite and ottohahnite were collected at room temperature on a Rigaku R-Axis Rapid II curved imaging plate microdiffractometer, also using monochromatized Mo $K\alpha$ radiation. The data were

processed using the Rigaku CrystalClear software package and empirical (multi-scan) absorption corrections were applied using the ABSCOR program (Higashi, 2001) in the CrystalClear software suite. The structures were solved by direct methods using SIR2011 (Burla et al., 2012). SHELXL-2013 (Sheldrick, 2008) was used for the refinement of the structures. Difference-Fourier syntheses located all H atom positions in the structures of klaprothite and péligotite; however, H atom positions could not be located in the ottohahnite structure. For klaprothite and péligotite, H atom positions were refined with soft restraints of 0.82(3) Å on the O-H distances and 1.30(3) Å on the H-H distances and with the $U_{\rm eq}$ of each H set to 1.2 times that of its donor O atom.

For the structures of both klaprothite and péligotite, all non-hydrogen atoms refined to full occupancy, although the Na7 sites, at centres of symmetry in both structures, exhibited significant displacement along a. Refining these as split sites improved the *R*-factors slightly, but it was ultimately decided to report them as unsplit sites. The same high displacement along **a** is noted for this site in the structure of the synthetic phase equivalent to klaprothite (Plášil et al., 2015). For the structure of ottohahnite, all sites were refined with full occupancy except for three O sites in relatively close proximity: The occupancies of OW7a and OW7b (1.18 Å apart and coordinated to Na5) refined to 0.74 and 0.37. The occupancy of OW9 (1.77 Å from OW7b and not coordinated to a cation) refined to 0.48. In the final refinement, the OW7a and OW7b sites were constrained to a total occupancy of 1 and the OW9 site was assigned an occupancy of 0.5.

FIG. 8. The structures of klaprothite and péligotite viewed along [010]. Na polyhedra are turquoise blue. Unit-cell outlines are shown as dashed lines.

Data collection and refinement details are given in Table 4, atom coordinates and displacement parameters in Table 5, selected bond distances in Table 6 and bond-valence analyses in Table 7.

Description and discussion of the structures

In the structures of klaprothite, péligotite and ottohahnite, the U sites are surrounded by seven O atom sites forming squat pentagonal bipyramids. This is the most typical coordination for U^{6+} ,

FIG. 9. Heteropolyhedral layers in the structures of klaprothite and péligotite viewed perpendicular to {001} (upper images) and along [100] (lower images); [010] is horizontal in all cases.

FIG. 10. Edge-sharing chains of NaO6 octahedra in the structures of klaprothite and péligotite. The chain in klaprothite is along [010] and that in péligotite is along [110].

particularly in uranyl sulfates (Krivovichev, 2010, 2013), where the two short apical bonds of the bipyramid constitute the uranyl group. The bond lengths in U⁶⁺-coordination polyhedron in all three structures (klaprothite: <U1–O_{ap}>=1.775, <U1–O_{eq}>=2.368 Å; péligotite: <U1–O_{ap}>=1.777,

most typical lengths observed for [7]-coordinated U⁶⁺ (Burns et al., 1997). In all three structures, all five of the equatorial O atoms also participate in SO_4 tetrahedra and, in each case, three of the SO_4 tetrahedra share single equatorial O atoms and one shares two equatorial O atoms, i.e. a shared polyhedral edge. Such a bidentate linkage between a UO₇ pentagonal bipyramid and a SO₄ tetrahedron has previously been reported in synthetic phases, but never in minerals. The $[(UO_2)(SO_4)_4]^{6-}$ uranyl sulfate cluster (Fig. 7) is the fundamental building block in the structures of klaprothite and péligotite; while in the structure of ottohahnite, four of these uranyl-sulfate clusters are combined through shared SO4 tetrahedra to form a larger $[(UO_2)_4(SO_4)_{10}]^{12-}$ cluster (Fig. 7). Among synthetic Na uranyl sulfates, the structure of the synthetic equivalent of klaprothite was reported by Plášil et al. (2015) and the same $[(UO_2)(SO_4)_4]^{6-}$ cluster with a bidentate U-S linkage was reported in the structures of $Na_{10}[(UO_2)(SO_4)_4](SO_4)_2 \cdot 3H_2O$ (Burns and KNa₅[(UO₂)(SO₄)₄](H₂O) Hayden, 2002), (Hayden and Burns, 2002a) and $Na_6(UO_2)$ $(SO_4)_4(H_2O)_2$ (Hayden and Burns, 2002b). The $[(UO_2)_4(SO_4)_{10}]^{12-}$ cluster in the structure of ottohahnite has not previously been reported in the structure of any mineral or synthetic phase.

FIG. 11. One slice parallel to $\{11\overline{2}\}$ in the structure of ottohahnite containing the $[(UO_2)_4(SO_4)_{10}]^{12}$ -cluster and Na1, Na3 and Na5 atoms. Na–O bonds are shown as sticks.

Fig. 12. The structure ottohahnite viewed down [111] with $\{11\overline{2}\}$ horizontal. O atoms of H₂O groups are shown as white spheres. The unit cell outline is shown in red.

In the structures of klaprothite and péligotite, seven Na sites, in 6-, 7- and 8-coordinations, link to the O atoms in the clusters and to four H₂O groups, vielding relatively loosely bonded frameworks (Fig. 8). In both structures, the Na1O₇, Na3O₇, Na4O₆, Na6O₈ and Na7O₆ polyhedra combine with the uranyl sulfate clusters forming more tightly bonded heteropolyhedral layers parallel to {001} in which the Na polyhedra share some faces and edges with one another, and edges and corners with the UO₇ and SO₄ polyhedra of the uranyl sulfate clusters. The polyhedral layers in the two structures (Fig. 9) are topologically identical except for a minor difference in the Na7O₆ coordination. The principal difference between the structures is the configuration of the Na2O6 and Na5O6 octahedra between the layers. These octahedra form a zig-zag edge-sharing chain parallel to [010] in the structure of klaprothite, while in the structure of péligotite they form a straight edge-sharing chain parallel to [110] (Fig. 10).

In the structure of ottohahnite, the $[(UO_2)_4(SO_4)_{10}]^{12-}$ clusters are linked to one another *via* bonds to six different Na atoms. The Na atoms, with coordinations ranging from 6 to 8, bond to O atoms in the clusters and to H₂O groups. There are seven different H₂O groups (one of which is split) bonded to Na atoms and two H₂O groups,

one of which is half occupied, bonded only though hydrogen bonds. The plane of the $[(UO_2)_4(SO_4)_{10}]^{12-}$ cluster is parallel to $\{11\overline{2}\}$. Na1, Na3 and Na5 are in approximately the same plane with the cluster. Figure 11 shows the linkages between the clusters and Na1O₇, Na3O₈ and Na5O₇ coordinations within one slice through the structure parallel to $\{11\overline{2}\}$. The Na2, Na4 and Na6 atoms are placed between these slices linking them together via Na–O bonds and yielding Na2O₆, Na4O₆ and Na6O₇ coordinations. The isolated H₂O groups (OW8 and OW9) are also sandwiched in between the slices (Fig. 12).

Acknowledgements

Structures Editor Peter Leverett and an anonymous reviewer are thanked for their comments on the manuscript. Atali A. Agakhanov and Ladislav Lapčák are thanked for their assistance with the chemistry and Raman measurements, respectively. A portion of this study was funded by the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles County. This research was also financially supported by GACR post-doctoral Grant no. 13-31276P to J.P. and by the Ministry of Culture of the Czech Republic (DKRVO 2016/02; National Museum 00023272) to J.Č.

References

- Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. *Journal of Molecular Structure*, **193**, 295–300.
- Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the inorganic crystal structure database. *Acta Crystallographica*, B41, 244–247.
- Brittain, H.G., Ansari, P., Toivonen, J., Niinisto, L., Tsao, L. and Perry, D.L. (1985) Photophysical Studies of Uranyl Complexes. VIII. Luminiscence Spectra of UO₂SO₄: 31/2H₂O and Two Polymorphs of Bis(urea) Uranyl Sulfate. *Journal of Solid State Chemistry*, **59**, 259–264.
- Bullock, H. and Parret, F.W. (1970) The low frequency infrared and Raman spectroscopic studies of some uranyl complexes: the deformation frequency of the uranyl ion. *Canadian Journal of Chemistry*, 48, 3095–3097.
- Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. and Spagna, R. (2012) *SIR2011*: a new package for crystal structure determination and refinement. *Journal of Applied Crystallography*, **45**, 357–361.
- Burns, P.C. and Hayden, L.A. (2002) A uranyl sulfate cluster in Na₁₀[(UO₂)(SO₄)₄](SO₄)₂·3H₂O. Acta Crystallographica, C58, i121–i123.
- Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. *The Canadian Mineralogist*, 35, 1551–1570.
- Chenoweth, W.L. (1993) The Geology and Production History of the Uranium Deposits in the White Canyon Mining District, San Juan County, Utah. Utah Geological Survey Miscellaneous Publication, 93–3.
- Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O···O hydrogen bonds. Acta Crystallographica, B44, 341–344.
- Hawthorne, F.C. (2012) A bond-topological approach to theoretical mineralogy: crystal structure, chemical composition and chemical reactions. *Physics and Chemistry of Minerals*, **39**, 841–874.
- Hawthorne, F.C. and Schindler, M. (2008) Understanding the weakly bonded constituents in oxysalt minerals. *Zeitschrift für Kristallographie*, **223**, 41–68.
- Hayden, L.A. and Burns, P.C. (2002*a*) The sharing of an edge between a uranyl pentagonal bipyramid and sulfate tetrahedron in the structure of KNa₅[(UO₂)(SO₄)₄] (H₂O). *The Canadian Mineralogist*, **40**, 211–216.
- Hayden, L.A. and Burns, P.C. (2002b) A novel uranyl sulfate cluster in the structure of Na₆(UO₂)(SO₄)₄(H₂O)₂. *Journal of Solid State Chemistry*, **163**, 313–318.

Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.

Kampf, A.R., Plášil, J., Kasatkin, A.V. and Marty, J. (2014) Belakovskiite, Na₇(UO₂)(SO₄)₄(SO₃OH) $(H_2O)_3$, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. *Mineralogical Magazine*, **78**, 639–649.

- Kampf, A.R., Kasatkin, A.V., Čejka, J. and Marty, J. (2015a) Plášilite, Na(UO₂)(SO₄)(OH)·2H₂O, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. *Journal of Geosciences*, **60**, 1–10.
- Kampf, A.R., Plášil, J., Kasatkin, A.V. and Marty, J. (2015b) Bobcookite, NaAl(UO₂)₂(SO₄)₄(H₂O)₁₈, and wetherillite, Na₂Mg(UO₂)₂(SO₄)₄·18H₂O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. *Mineralogical Magazine*, **79**, 695–714.
- Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J. and Čejka, J. (2015c) Fermiite, Na₄(UO₂)(SO₄)₃·3H₂O, and oppenheimerite, Na₂(UO₂)(SO₄)₂·3H₂O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. *Mineralogical Magazine*, **79**, 1123–1142.
- Kampf, A.R., Plášil, J., Čejka, J., Marty, J., Škoda, R. and Lapčák, L. (2017a) Alwilkinsite-(Y), a new rare-earth uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. *Mineralogical Magazine*, 81, https:doi.org/10.1180/minmag.2016.080.139.
- Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J. Čejka, J. and Ladislav Lapčák (2017b) Shumwayite, [(UO₂) (SO₄)(H₂O)₂]₂·H₂O, a new uranyl sulfate mineral from Red Canyon, San Juan County, Utah, USA. *Mineralogical Magazine*, **81**, 273–285.
- Krivovichev, S.V. (2010) Actinyl compounds with hexavalent elements (S, Cr, Se, Mo) – structural diversity, nanoscale chemistry, and cellular automata modeling. *European Journal of Inorganic Chemistry*, 2010, 2594–2603.
- Krivovichev, S.V. (2013) Crystal chemistry of uranium oxides and minerals. Pp. 611–640 in: *Comprehensive Inorganic Chemistry II, Vol 2* (J. Reedijk and K. Poeppelmeier, editors). Elsevier, Oxford, UK.
- Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H…O hydrogen bond lengths in minerals. *Monatshefte für Chemie*, **130**, 1047–1059.
- Mandarino, J.A. (1976) The Gladstone-Dale relationship – Part 1: derivation of new constants. *The Canadian Mineralogist*, 14, 498–502.
- Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. *The Canadian Mineralogist*, **45**, 1307–1324.
- Ohwada, K. (1976) Infrared spectroscopic studies of some uranyl nitrate complexes. *Journal of Coordination Chemistry*, 6, 75–80.
- Plášil, J., Buixaderas, E., Čejka, J., Sejkora, J., Jehlička, J. and Novák, M. (2010) Raman spectroscopic study of the uranyl sulphate mineral zippeite: low wavenumber and U–O stretching regions. *Analytical and Bioanalytical Chemistry*, **397**, 2703–2715.

- Plášil, J., Kampf, A.R., Kasatkin, A.V., Marty, J., Škoda, R., Silva, S. and Čejka, J. (2013) Meisserite, Na₅(UO₂) (SO₄)₃(SO₃OH)(H₂O), a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. *Mineralogical Magazine*, **77**, 2975–2988.
- Plášil, J., Kampf, A.R., Kasatkin, A.V. and Marty, J. (2014) Bluelizardite, Na₇(UO₂)(SO₄)₄Cl(H₂O)₂, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. *Journal of Geosciences*, **59**, 145–158.
- Plášil, J., Meisser, N. and Čejka, J. (2015) The crystal structure of Na₆[(UO₂)(SO₄)₄](H₂O)₄: X-ray and Raman spectroscopy study. *The Canadian Mineralogist*, 54, 5–20.
- Sheldrick, G.M. (2008) A short history of *SHELX. Acta* Crystallographica, A64, 112–122.
- Wood, R.M. and Palenik, G.J. (1999) Bond valence sums in coordination chemistry. Sodium-oxygen complexes. *Inorganic Chemistry*, 38, 3926–3930.