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UNIVERSALLY BAIRE SETS AND GENERIC ABSOLUTENESS

TREVORM.WILSON

Abstract. We prove several equivalences and relative consistency results regarding generic absoluteness
beyond Woodin’s (

˜
Σ21)

uB� generic absoluteness result for a limit of Woodin cardinals �. In particular,
we prove that two-step ∃R(

˜
Π21)

uB� generic absoluteness below a measurable limit of Woodin cardinals
has high consistency strength and is equivalent, modulo small forcing, to the existence of trees for (Π21)

uB�

formulas. The construction of these trees uses a general method for building an absolute complement for
a given tree T assuming many “failures of covering” for the models L(T,Vα) for α below a measurable
cardinal.

Introduction. Generic absoluteness principles assert that certain properties of the
set-theoretic universe cannot be changed by forcing. Some properties, such as the
truth or falsity of the continuum hypothesis, can always be changed by forcing.
Accordingly, one approach to formulating generic absoluteness principles is to con-
sider properties of a limited complexity such as those corresponding to pointclasses
in descriptive set theory:

˜
Σ12, ˜
Σ13, projective, and so on. (Another approach is to

limit the class of allowed forcing notions. For a survey of results in this area, see
Bagaria [1].)
By Shoenfield’s absoluteness theorem,

˜
Σ12 statements are always generically abso-

lute.Generic absoluteness principles for larger pointclasses tend to be equiconsistent
with strong axioms of infinity, and they may also relate to the extent of the univer-
sally Baire sets. For example, one-step

˜
Σ13 generic absoluteness is equiconsistent with

the existence of a Σ2-reflecting cardinal and equivalent with the statement that every

˜
Δ12 set of reals is universally Baire (Feng, Magidor, and Woodin [3, Corollary 3.1
and Theorem 3.3]).
Another example is that two-step

˜
Σ13 generic absoluteness, which is the statement

that one-step
˜
Σ13 generic absoluteness holds in every generic extension, is equivalent

with the statement that every set has a sharp (Woodin [20, Lemma 1]) and also with
the statement that every

˜
Σ12 set of reals is universally Baire (Feng, Magidor, and

Woodin [3, Theorem 3.4]).
A third example is that projective generic absoluteness (either one-step or
two-step) is equiconsistent with the existence of infinitely many strong cardi-
nals (Hauser [6], Woodin). Feng, Magidor, and Woodin asked whether projective
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generic absoluteness implies, or is implied by, the statement that every projective set
is universally Baire. This question seems to remain open.
A bit higher in the complexity hierarchy we reach an obstacle: the continuum
hypothesis is a Σ21 statement that cannot be generically absolute, so generic abso-
luteness principles at this level of complexity must be limited in some way in order
to be consistent. One approach is to consider only the generic extensions that satisfy
the continuum hypothesis.Woodin showed that the absoluteness of Σ21 statements to
such generic extensions follows from large cardinals (see Larson [8, Theorem 3.2.1]).
The approach we take in this article is to replace Σ21 with (Σ

2
1)
Γ where Γ is a

pointclass and a statement is called (Σ21)
Γ if it has the form

∃A ∈ Γ (HC;∈, A) |= ϕ
for some statement ϕ in the language of set theory expanded by a unary predicate
symbol.We will consider pointclasses Γ that are “well behaved” and in particular do
not contain well orderings of R. The pointclass uB of universally Baire sets of reals
and its local version uB� are both examples of such pointclasses, and indeedWoodin
has shown that if � is a limit of Woodin cardinals then generic absoluteness holds
for (

˜
Σ21)

uB� statements with respect to generic extensions by posets of cardinality
less than � (see Steel [17, Theorem 6.1]).
In this article, we investigate generic absoluteness principles for pointclasses
beyond (

˜
Σ21)

uB� in relation to strong axioms of infinity and determinacy, and also in
relation to the extent of the universally Baire sets. First, we consider generic abso-
luteness for ∃R(

˜
Π21)

uB� statements. This level of complexity is interesting because,
whereas (

˜
Σ21)

uB� generic absoluteness follows from the modest large cardinal hypo-
thesis that� is a limit ofWoodin cardinals, generic absoluteness for the slightly larger
pointclass ∃R(

˜
Π21)

uB� is not known to follow from any large cardinal assumption
whatsoever (although it can be forced from large cardinals). Moreover, inner model
theory suggests a possible reason that it might not follow from large cardinals; see
Remarks 2.2 and 2.6 below.
In Section 2, we consider the principle of one-step ∃R(

˜
Π21)

uB� generic absoluteness
below a limit of Woodin cardinals �, obtain a consistency strength upper bound for
it in terms of large cardinals, and obtain an equivalent characterization in terms
of a closure property of the pointclass of �-universally Baire sets. The problem of
finding a consistency strength lower bound for this generic absoluteness principle
remains open.
In Section 3, we prove some lemmas for constructing absolute complements
of trees. These lemmas do not require any facts about generic absoluteness or
pointclasses and may be read independently of the rest of the article.
In the remaining sections, we consider stronger principles of generic absoluteness
and we derive consistency strength lower bounds for these principles in the form of
strong axioms of determinacy. Given a limit � of Woodin cardinals, we show that
certain generic absoluteness principles imply strong axioms of determinacy in the
model L(Hom∗

� ,R
∗
�) associated to a V -generic filter on the poset Col(�,<�). It is

convenient to express these strong axioms of determinacy in terms of the extent of
the Suslin sets.
In Section 4, we consider the principle of two-step ∃R(

˜
Π21)

uB� generic absoluteness
below a limit of Woodin cardinals �. Woodin showed (see Remark 4.4 below) that
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an upper bound for the consistency strength of this generic absoluteness principle
is the existence of a limit � of Woodin cardinals and a cardinal less than � that is
<�-strong. Under the additional assumption that the limit � of Woodin cardinals is
measurable, we obtain the following lower bound.

Theorem 0.1. If � is a measurable limit of Woodin cardinals and two-step
∃R(
˜
Π21)

uB� generic absoluteness holds with respect to generic extensions by posets
of cardinality less than �, then the model L(Hom∗

� ,R
∗
�) satisfies AD+ “every ˜

Π21 set
of reals is Suslin.”

We almost have equiconsistency (and would have, if not for the assumption of
measurability) because the theory ZF + AD + “every

˜
Π21 set of reals is Suslin” is

equiconsistent with ZFC + “there is a limit � of Woodin cardinals and a cardinal
less than � that is <�-strong” (Woodin; see Steel [16, Section 15]).
It isworthmentioning, althoughwewill not use this fact, that the statement “every

˜
Π21 set of reals is Suslin” is equivalent under ZF+ AD+ to the statement “�0 < Θ”
about the length of the Solovay sequence.1 The forward direction of this equivalence
uses the uniformization property of Suslin sets and is essentially given by Solovay
[14, Lemma 2.2]. The reverse direction is due to Woodin, building on results of
Martin and Woodin [9]. Woodin’s argument is unpublished; see Wilson [19] for a
slightly sharper version.
In Section 5, we consider generic absoluteness of the theory of L(uB�,R) below
a limit of Woodin cardinals �. Woodin showed (see Theorem 5.1 below) that an
upper bound for the consistency strength of this generic absoluteness principle is
the existence of a limit � of Woodin cardinals and a cardinal less than � that is
<�-supercompact. Under the additional assumption that the limit � of Woodin
cardinals is measurable, we obtain the following lower bound.

Theorem 0.2. If � is a measurable limit of Woodin cardinals and L(uB�,R) ≡
L(uB�,R)V [g] for every generic extension V [g] by a poset of cardinality less than �,
then the models L(Hom∗

� ,R
∗
�) and L(uB�,R) both satisfy AD + DC + “every set of

reals is Suslin.”

The theory ZF + AD + DC + “every set of reals is Suslin” is equiconsistent
with the theory ZFC + “there is a limit � of Woodin cardinals such that � many
cardinals less than � are<�-strong” (Woodin and Steel, unpublished). Because this
large cardinal hypothesis is much weaker than the existence of a limit � of Woodin
cardinals and a cardinal less than � that is <�-supercompact, Theorem 0.2 is far
from equiconsistency.
It is worth mentioning that the statement AD + “every set of reals is Suslin” is
equivalent under ZF + DC to ADR, the axiom of determinacy for real games, by
unpublished work of Martin and Woodin (see Steel [17, Theorems 9.1, 9.2]).

§1. �-universally Baire sets and (
˜
Σ21)

uB� sets. For our purposes, a tree is a tree on
�k × Ord for some natural number k, meaning a collection of finite sequences of
elements of �k × Ord that is closed under initial segments and ordered by reverse
inclusion. Usually we assume k = 1 for simplicity and leave obvious generalizations

1The axiom AD+ is a technical strengthening of AD due to Woodin that holds in all known models
of AD and in particular in models of the form L(Hom∗

� ,R
∗
� ).
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to the reader. We may abuse notation by treating a finite sequence of elements of
�k ×Ord as a (k +1)-tuple of finite sequences. According to the usual convention,
elements of the Baire space �� are called reals and the Baire space itself may be
denoted by R when appropriate. Given a tree T on � ×Ord and a real x, we define
a tree Tx on Ord, called a section of T , by

Tx = {s ∈ Ord<� : (x � |s |, s) ∈ T}.
The projection p[T ] of T is the set of reals defined by

p[T ] = {x ∈ R : Tx is ill founded}.
An equivalent definition of the projection is to let [T ] be the set of infinite branches
of T , which is a closed subset of �� ×Ord� , and to let p[T ] be its projection onto
the first coordinate.
For any given real x the statement x ∈ p[T ] is generically absolute by the
absoluteness of well foundedness. New reals appearing in generic extensions may
or may not be in p[T ].
A set of reals A is Suslin if it is the projection of a tree. That is, A = p[T ] for
some tree T on �×Ord. The pointclass of Suslin sets is a natural generalization of
the pointclass of

˜
Σ11 (analytic) sets, which have the form p[T ] for trees T on �×�.

The Suslin sets play an important role under the axiom of determinacy. However,
under the axiom of choice every set of reals is trivially Suslin by a tree T on �×2ℵ0 ,
so in this context one has to impose some condition on the tree in order to get an
interesting definition.
A pair of trees (T, T̃ ) on � × Ord is �-absolutely complementing, where � is a
cardinal, if in every generic extension by a poset of cardinality less than � the trees
project to complements:

p[T ] = R\ p[T̃ ].
Note that for any pair of trees (T, T̃ ) on � × Ord the statement p[T ] ∩ p[T̃ ] = ∅
is generically absolute by a standard argument using the absoluteness of well
foundedness. Therefore if the statement p[T ] = R\p[T̃ ] holds in V and the
statement p[T ] ∪ p[T̃ ] = R holds in every generic extension by a poset of
cardinality less than �, then the pair (T, T̃ ) is �-absolutely complementing.
A set of realsA is �-universally Baire if there is a �-absolutely complementing pair
of trees (T, T̃ ) such that A = p[T ].2 The pointclass uB� is defined to consist of the
sets of reals that are �-universally Baire. Note that if � is a limit cardinal and a set
of reals is κ-universally Baire for all cardinals κ < � then it is �-universally Baire;
this can be seen by “amalgamating” a transfinite sequence of trees into a single tree
whose projection is the union of their projections. A set of reals is universally Baire
(uB) if it is �-universally Baire for all cardinals �.
For a set of reals A ∈ uB� and a generic extension V [g] by a poset of cardinality
less than �, there is a canonical extension AV [g] ⊂ R

V [g] of A defined by

AV [g] = p[T ]V [g]

2In this article, we use the definition of �-universal Baireness from Larson [8] and Steel [17], not the
one from Feng, Magidor, and Woodin [3] that involves posets of cardinality equal to �.
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for any �-absolutely complementing pair of trees (T, T̃ ) ∈ V with A = p[T ]V . This
extension of A does not depend on the choice of the �-absolutely complementing
pair of trees.
Universal Baireness was introduced by Feng, Magidor, and Woodin [3] as a
generalization of the property of Baire that implies some other classical regularity
properties such as Lebesgue measurability. Although universally Baire sets can fail
to be determined, as in L, if there is a Woodin cardinal less than � then every
�-universally Baire set of reals is determined by Neeman [11, Theorem 6.17].3

If � is a limit of Woodin cardinals then we obtain not only the determinacy of the
uB� sets, but also a proper class model of ZF + AD via Woodin’s “derived model”
construction, which will be useful to us as a way of bringing together the uB� sets
existing in various generic extensions under one umbrella. We define the following
standard notation:

Definition 1.1. Let � be a limit of Woodin cardinals and let G ⊂ Col(�,<�) be
a V -generic filter. We define

R
∗
G =

⋃
α<�

R
V [G�α] and HC∗

G =
⋃
α<�

HCV [G�α].

For a set of reals A ∈ uB�, we define
A∗
G =

⋃
α<�

AV [G�α] ⊂ R
∗
G.

Similarly, for a set of reals A ∈ uBV [G��]� where � < � we define

A∗
G =

⋃
�≤α<�

AV [G�α] ⊂ R
∗
G.

Finally, we define the pointclass

Hom∗
G = {A∗

G : A ∈ uBV [G��]� for some � < �},
which might just as aptly have been called uB∗G .

4

The following theorem is a special case of Woodin’s derived model theorem. For
a proof of this special case, see Steel [17]. The axiom AD+ in the theorem is a
strengthening of AD due to Woodin that holds in all known models of AD.5

Theorem 1.2 (Woodin). Let � be a limit of Woodin cardinals and let G ⊂
Col(�,<�) be a V -generic filter. Then the model L(Hom∗

G ,R
∗
G) satisfies AD

+.
The theory of the model L(Hom∗

G,R
∗
G) does not depend on the choice of generic

filter G because the Levy collapse poset Col(�,<�) is homogeneous, so we will
sometimes omit G from the notation and refer to “the” model L(Hom∗

� ,R
∗
�).

3In the case that there are two Woodin cardinals less than �, the determinacy of the �-universally
Baire sets of reals follows from earlier work of Martin, Steel, and Woodin.
4The name Hom∗

G comes from the notion of <�-homogeneity, which in the case that � is a limit of
Woodin cardinals is equivalent to �-universal Baireness by work of Martin, Solovay, Steel, and Woodin
(see Steel [17, Sections 2–4] or Larson [8, Theorem 3.3.13]).
5For the definition ofAD+, seeWoodin [21, Definition 22]. Instead of usingAD+ directly, we will use

some consequences due to Woodin, namely Theorems 1.4 and 1.6 below and the Σ1-reflection theorem.
For a proof of the Σ1-reflection theorem, see Steel and Trang [15].
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In the past, Theorem 1.2 has been called the derived model theorem and the model
L(Hom∗

G,R
∗
G ) has been called a derived model. More recently, the term “derived

model” refers to a model that may properly contain L(Hom∗
G,R

∗
G) and the term

“derived model theorem” refers to the fact that this larger model satisfies AD+

(Woodin [21, Theorem 31]; see Zhu [22] for a proof). The modelL(Hom∗
G,R

∗
G ) will

suffice for this article.
The following generic absoluteness theorem will be used many times throughout
the article. For a proof, see Steel [17, Theorem 6.1; Lemmas 7.3 and 7.4].
Theorem 1.3 (Woodin). Let � be a limit of Woodin cardinals. For every real x,
every set of realsA ∈ uB�, every formula ϕ(v) in the language of set theory expanded
by two new predicate symbols, every generic extension V [g] by a poset of cardinality
less than �, and every generic extension V [G ] by Col(�,<�) containing V [g], the
following equivalences hold :

∃B ∈ uBV� (HCV ;∈, A, B) |= ϕ[x]
⇐⇒ ∃B ∈ uBV [g]� (HCV [g];∈, AV [g], B) |= ϕ[x]
⇐⇒ ∃B ∈ Hom∗

G (HC
∗
G ;∈, A∗

G ,B) |= ϕ[x]
⇐⇒ ∃B ∈ L(Hom∗

G ,R
∗
G) (HC

∗
G ;∈, A∗

G ,B) |= ϕ[x].
Two special cases of Theorem 1.3 will be used often. First, in the case A = ∅, we
get generic absoluteness for various restricted notions of Σ21(x); in particular we get
(Σ21(x))

uB� generic absoluteness between V and V [g]. Second, in the case that ϕ
does not mention B, we get generic absoluteness for statements that are projective
in A and its expansions AV [g] and A∗, respectively.
The main consequence of AD+ in the derived model that we will need is given by
the following theorem.
Theorem 1.4 (Woodin). AD+ implies that every Σ21 set of reals is Suslin and is the
projection of a tree T on � ×Ord that is definable without parameters.
The tree in Theorem 1.4 comes from the scale property of Σ21 (see Steel [17,
Section 8] for the case of derivedmodels).Note that if � is a limit ofWoodin cardinals
and T is a tree obtained by applying Theorem 1.4 in the model L(Hom∗

� ,R
∗
�), then

we have T ∈ V by the homogeneity of the poset Col(�,<�). We will often use the
following immediate corollary of Theorems 1.3 and 1.4.
Corollary 1.5 (Trees for (Σ21)

uB� formulas). Let � be a limit ofWoodin cardinals.
For every formula ϕ(v) in the language of set theory expanded by a new predicate
symbol, there is a tree Tϕ ∈ V such that for every generic extension V [g] of V by a
poset of cardinality less than � and every real x ∈ V [g] we have

x ∈ p[Tϕ ] ⇐⇒ ∃B ∈ uBV [g]� (HCV [g];∈, B) |= ϕ[x].
We remark that these trees can be used to get (Σ21)

uB� generic absoluteness between
V and V [g] by a standard argument using the absoluteness of well foundedness,
just as Shoenfield trees can be used to get Σ12 generic absoluteness. In the case of
(Σ21)

uB� generic absoluteness it is simpler to prove the absoluteness directly, using
the stationary tower, than to build the trees Tϕ of Corollary 1.5. However, these
trees Tϕ will still be quite useful for other purposes.
The following theorem can be considered as a basis theorem for the pointclass
Σ21. For a proof in the case of derived models, see Steel [17, Section 8].
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Theorem 1.6 (Woodin). AD+ implies that every true Σ21 statement has a witness
that is a Δ21 set of reals.
Woodin’s basis theorem easily generalizes to say that for every real x, every
true Σ21(x) statement has a Δ

2
1(x) witness, uniformly in x in the following sense.

(The author is probably not the first to take note of this generalization, but does
not know of a reference for it.)

Lemma 1.7. Assume AD+ and let ϕ(v) be a formula in the language of set theory
expanded by a unary predicate symbol. Consider the Σ21 set S defined by

y ∈ S ⇐⇒ ∃B ⊂ R (HC;∈, B) |= ϕ[y].
Then to each real y ∈ S, we can assign B(y) ⊂ R satisfying (HC;∈, B(y)) |= ϕ[y]
in such a way that the following binary relations are both Σ21:

{(y, z) ∈ R× R : y ∈ S & z ∈ B(y)},
{(y, z) ∈ R× R : y ∈ S & z /∈ B(y)}.

In other words B(y) ∈ Δ21(y) for each real y ∈ S, uniformly in y.
Proof. This follows easily from the proof of Woodin’s basis theorem (see Steel
[17, Section 8]) and in particular from the fact that for every real y, if there is a set of
reals B such that (HC;∈, B) |= ϕ[y], then there is such a set B with the additional
property that B ∈ ODL(A,R)y for some set of reals A. Note that the model L(A,R)
depends only on the Wadge rank of A and not on A itself. Minimizing this Wadge
rank and then minimizing the witness B in the canonical well ordering of ODL(A,R)y

sets, a straightforward computation shows that the witness B(y) we obtain is Δ21(y)
uniformly in y. �
In particular the above lemma applies to the pointclass Σ21 of the model
L(Hom∗

� ,R
∗
�) where � is a limit of Woodin cardinals. Next we will obtain a version

of the lemma in terms of the pointclass (Σ21)
uB� .

Lemma 1.8. Let � be a limit of Woodin cardinals and let ϕ(v) be a formula in the
language of set theory expanded by a unary predicate symbol. Consider the (Σ21)

uB�

set S defined by

y ∈ S ⇐⇒ ∃B ∈ uB� (HC;∈, B) |= ϕ[y].
Then to each real y ∈ S, we can assign B(y) ∈ uB� satisfying (HC;∈, B(y)) |= ϕ[y]
in such a way that the following binary relations are both (Σ21)

uB� :

{(y, z) ∈ R× R : y ∈ S & z ∈ B(y)},
{(y, z) ∈ R× R : y ∈ S & z /∈ B(y)}.

In other words B(y) ∈ (Δ21(y))uB� for each real y ∈ S, uniformly in y.
Proof. Working in L(Hom∗

� ,R
∗
�), consider the Σ

2
1 set of reals S

∗ defined by

y ∈ S∗ ⇐⇒ ∃B∗ ⊂ R
∗
� (HC

∗
� ;∈, B∗) |= ϕ[y].

By Lemma 1.7, to each real y ∈ S∗, we can assign a witness B∗(y) ⊂ R
∗
� satisfying

(HC∗
� ;∈, B∗(y)) |= ϕ[y] such that B∗(y) ∈ Δ21(y) for each real y ∈ S∗, uniformly

in y. Note that in the case y ∈ V , we have B∗(y) ∩ V ∈ V by the homogeneity of
the Levy collapse poset.
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By Woodin’s generic absoluteness (Theorem 1.3), we have S∗ ∩ V = S and,
defining B(y) = B∗(y) ∩ V , we have B(y) ∈ (Δ21(y))uB� for each real y ∈ S,
uniformly in y. Also by Theorem 1.3, the structure (HC;∈, B(y)) is an elementary
substructure of (HC∗

� ;∈, B∗(y)), so it satisfies ϕ[y]. For each real y ∈ S, the
trees for the set B∗(y) and its complement given by applying Theorem 1.4 in the
model L(Hom∗

� ,R
∗
�) are in V by homogeneity, where they form an �-absolutely

complementing pair for the set B(y). Therefore B(y) ∈ uB�. �

§2. One-step ∃R(
˜
Π21)

uB� generic absoluteness. Next we will consider principles of
generic absoluteness for pointclasses beyond (

˜
Σ21)

uB� . First we define a “lightface”
(effective) version.

Definition 2.1. Let � be a limit of Woodin cardinals. Then ∃R(Π21)uB� generic
absoluteness below � is the statement that for every formula ϕ(v) in the language of
set theory expanded by a unary predicate symbol, and for every extension V [g] of
V by a poset of cardinality less than �, we have

∃y ∈ R
V ∀B ∈ uBV� (HCV ;∈, B) |= ϕ[y]

⇐⇒ ∃y ∈ R
V [g] ∀B ∈ uBV [g]� (HCV [g];∈, B) |= ϕ[y].

Remark 2.2. The canonical inner modelM� for� manyWoodin cardinals does
not satisfy ∃R(Π21)uB� generic absoluteness below its limit of Woodin cardinals �,
as mentioned in Steel [17, Remark 6.2]. This is because it satisfies the ∀R(Σ21)uB�
statement “every real is in a mouse with a uB� iteration strategy,” which fails in
small forcing extensions that add reals.
This remark applies not only to M� but also to some other mice satisfying
stronger large cardinal axioms, as shown in Steel [16]. It is an open question whether
∃R(Π21)uB� generic absoluteness below � is implied by any large cardinal hypothesis
on �.

Remark 2.3. The upward direction of ∃R(Π21)uB� generic absoluteness, from V
toV [g], is automatic from (

˜
Σ21)

uB� generic absoluteness.More specifically, it follows
from (Σ21(y))

uB� generic absoluteness where y is a real witnessing that the ∃R(Π21)uB�
statement holds in V .
In the terminology of Hamkins and Löwe [4], the existence of a real y witnessing
an ∃R(Π21)uB� statement is a button from the point of view of V�. That is, once
“pushed” (made true) by forcing, it cannot be “unpushed” (made false) by any
further forcing. Therefore ∃R(Π21)uB� generic absoluteness is a special case of the
maximality principleMP defined by Hamkins [5]: if � is a limit of Woodin cardinals
and V� |= MP then ∃R(Π21)uB� generic absoluteness holds below �.
The consistency of ∃R(Π21)uB� generic absoluteness can be established by a com-
pactness argument based on the one given byHamkins [5] for the consistency of the
maximality principle MP. We just have to localize the argument to V� and check
that the hypothesis “� is a limit of Woodin cardinals” is preserved, which we do
below for the convenience of the reader.
Proposition 2.4. If the theoryZFC+ “there are infinitely manyWoodin cardinals”
is consistent, then so is ZFC+ “� is a limit ofWoodin cardinals and ∃R(Π21)uB� generic
absoluteness holds below �.”
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Proof. LetM be a model of ZFC+“there are infinitely manyWoodin cardinals”
and let �M ∈ M be a limit of Woodin cardinals of M . Let T be the theory in
the language of set theory expanded by a constant symbol � consisting of the ZFC
axioms, the assertion that � is a limit of Woodin cardinals, and for each formula
ϕ(v), the assertion “if the statement ∃y ∈ R ∀B ∈ uB� (HC;∈, B) |= ϕ[y] holds
in some generic extension of V by a poset of cardinality less than �, then it holds
in V .” The theory T implies ∃R(Π21)uB� generic absoluteness below �. We will show
that T is consistent.
Indeed, given any finite subset T0 ⊂ T let ϕ0(v), . . . , ϕn−1(v) enumerate all the
formulas ϕ(v) that are mentioned in T0 and have the property that the ∃R(Π21)uB�
statement “∃y ∈ R ∀B ∈ uB� (HC;∈, B) |= ϕ[y]” holds in some generic extension
ofM by a poset of cardinality less than �M . For each i < n take a poset Pi ∈ (V�)M
whose top condition forces this ∃R(Π21)uB� statement. Then any generic extension
of (M,�M ) by the product forcing P0 × · · · × Pn−1 satisfies the statements “∃y ∈
R ∀B ∈ uB� (HC;∈, B) |= ϕi [y]” for all i < n by Remark 2.3, and also it still
satisfies ZFC + “� is a limit of Woodin cardinals” because Woodin cardinals are
preserved by small forcing, so it satisfies T0. �
The next result is an equivalent condition for ∃R(Π21)uB� generic absoluteness to
hold below � in terms of a closure property of the pointclass uB� of �-universally
Baire sets of reals.

Proposition 2.5. For any limit of Woodin cardinals �, the following statements
are equivalent.
1. ∃R(Π21)uB� generic absoluteness holds below �.
2. Every (Δ21)

uB� set of reals is �-universally Baire.
Proof. (1) =⇒ (2): The proof of this direction is analogous to that of Feng,
Magidor, and Woodin [3, Theorem 3.1] with the pointclass (Σ21)

uB� in place of the
pointclass Σ12. Let A be a (Δ

2
1)
uB� set of reals and take formulas ϕ(v) and 	(v) such

that for all reals y we have

y ∈ A ⇐⇒ ∃B ∈ uB� (HC;∈, B) |= ϕ[y] and
y /∈ A ⇐⇒ ∃B ∈ uB� (HC;∈, B) |= 	[y].

Let Tϕ and T	 be trees such that in every generic extension V [g] of V by a poset of
cardinality less than � we have, for every real y ∈ V [g],

y ∈ p[Tϕ ] ⇐⇒ ∃B ∈ uB� (HC;∈, B) |= ϕ[y] and
y ∈ p[T	] ⇐⇒ ∃B ∈ uB� (HC;∈, B) |= 	[y].

In particular, in V we have A = p[Tϕ] = R\p[T	]. We claim that the trees Tϕ
and T	 are �-absolutely complementing. Let V [g] be a generic extension of V by
a poset of cardinality less than �. As usual, the absoluteness of well foundedness
gives p[Tϕ ] ∩ p[T	] = ∅ in V [g]. On the other hand, the ∀R(Σ21)uB� statement

∀y ∈ R ∃B ∈ uB� (HC;∈, B) |= ϕ[y] ∨ 	[y]
holds in V , so by our hypothesis (1) it holds in V [g] and we have

V [g] |= p[Tϕ ] ∪ p[T	] = R.

Therefore the trees Tϕ and T	 project to complements in V [g].
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(2) =⇒ (1): Suppose that the ∀R(Σ21)uB� statement
∀y ∈ R ∃B ∈ uB� (HC;∈, B) |= ϕ[y]

holds inV .We want to show that it continues to hold in generic extensions by posets
of cardinality less than �. (The other direction of generic absoluteness is automatic;
see Remark 2.3.) In this case Lemma 1.8 gives a total function y �→ B(y) uniformly
choosing (Δ21(y))

uB� sets of reals to witness our true (Σ21(y))
uB� statements. By

hypothesis (2), the (Δ21)
uB� relation

W = {(y, z) ∈ R× R : z ∈ B(y)}
is �-universally Baire. The true statement

∀y ∈ R (HC;∈,Wy) |= ϕ[y]
can be expressed as a first-order property of the structure (HC;∈,W ). LettingV [g]
be any generic extension of V by a poset of cardinality less than � and letting
WV [g] ⊂ R

V [g]×R
V [g] denote the canonical extension ofW to V [g], a special case

of Theorem 1.3 (Woodin’s generic absoluteness theorem) gives

(HC;∈,W ) ≺ (HCV [g];∈,W V [g]).

Therefore we have

∀y ∈ R
V [g] (HCV [g];∈, (WV [g])y

) |= ϕ[y].
This shows that the sections (WV [g])y for reals y ∈ V [g] witness that our ∀R(Σ21)uB�
statement holds in V [g], as desired. �
Remark 2.6. Recall that the canonical inner model M� for � many Woodin
cardinals does not satisfy ∃R(Π21)uB� generic absoluteness below its limit of Woodin
cardinals �. This can now be seen to follow from the fact that M� has a (Δ21)

uB�

well ordering of its reals, and that no well ordering of the reals can have the Baire
property (which is implied by universal Baireness).
In general, the set of reals appearing in mice with uB� iteration strategies is a
(Σ21)

uB� set with a (Σ21)
uB� well ordering given by the comparison theorem for mice.

Therefore if every real is in such a mouse (as it is inM� ; see Steel [17, Remark 6.2])
then this well ordering is a (Δ21)

uB� well ordering of the reals.
This remark applies not only toM� but also to someothermice satisfying stronger
large cardinal axioms. It is an open question whether every large cardinal hypothesis
on � is consistent with the existence of a (Δ21)

uB� well ordering of the reals.

Next we consider a boldface generic absoluteness principle that allows all reals
in V as parameters. It is called one-step generic absoluteness to distinguish it from
the two-step generic absoluteness principle defined in Section 4.

Definition 2.7. One-step ∃R(
˜
Π21)

uB� generic absoluteness below �, where � is a
limit of Woodin cardinals, is the statement that for every formula ϕ(v, v′) in the
language of set theory expanded by a unary predicate symbol, every real parameter
x ∈ V , and every generic extension V [g] of V by a poset of cardinality less than �,
we have

∃y ∈ R
V ∀B ∈ uBV� (HCV ;∈, B) |= ϕ[x, y]

⇐⇒ ∃y ∈ R
V [g] ∀B ∈ uBV [g]� (HCV [g];∈, B) |= ϕ[x, y].
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By a straightforward relativization of Proposition 2.5, this principle is equivalent
to a closure property of the pointclass of �-universally Baire sets:

Proposition 2.8. For any limit of Woodin cardinals �, the following statements
are equivalent.
1. One-step ∃R(

˜
Π21)

uB� generic absoluteness holds below �.
2. Every (

˜
Δ21)

uB� set of reals is �-universally Baire.
Obtaining one-step∃R(

˜
Π21)

uB� generic absoluteness in the first place is not simply a
matter of relativization, however. Even if we can force below � tomake an ∃R(Π21)uB�
formula hold for all the real parameters in V for which it can be forced to hold,
doing so might add more reals that we must consider as parameters, so we might
need to force again, etc.Fortunately, amild large cardinal assumption is sufficient to
show that this process eventually reaches a stopping point. Namely, the assumption
that some cardinal 
 < � is Σ2-reflecting in V�, meaning that it is inaccessible and
V
 ≺Σ2 V�. (Feng, Magidor, and Woodin [3, Theorem 3.3] similarly used the Levy
collapse of a Σ2-reflecting cardinal to obtain one-step

˜
Σ13 generic absoluteness.)

Remark 2.9. One can also obtain one-step ∃R(
˜
Π21)

uB� generic absoluteness below
a limit � of Woodin cardinals as an application (in V�) of a “boldface maximality
principle” that is shown in Hamkins [5] to hold after the Levy collapse of a (fully-)
reflecting cardinal.

We note a useful reformulation: V
 ≺Σ2 V� if and only if for every set x ∈ V

and every formula 	, if there is an ordinal � < � such that V� |= ϕ[x], then there
is an ordinal �̄ < 
 such that V�̄ |= ϕ[x]. This reformulation is usually proved for
� = Ord, but when � is a limit of Woodin cardinals the model V� satisfies enough
of ZFC for the proof.
It is convenient to split the consistency proof of one-step ∃R(

˜
Π21)

uB� generic
absoluteness into two parts. First we prove a lemma using only the hypothesis
V
 ≺Σ2 V� and then we use the inaccessibility of 
 to get the full result.
Lemma 2.10. Let � be a limit of Woodin cardinals and let 
 < � be a cardinal such
thatV
 ≺Σ2 V�. Let ϕ(v, v′) be a formula in the language of set theory expanded by a
unary predicate symbol and let x be a real parameter. Suppose there is a poset P ∈ V�
such that

1 �P ∃y ∈ R ∀B ∈ uB� (HC;∈, B) |= ϕ[x, y].
Then there is a poset P̄ ∈ V
 with the same property:

1 �
P̄
∃y ∈ R ∀B ∈ uB� (HC;∈, B) |= ϕ[x, y].

Proof. Take a cardinal κ < � large enough that P ∈ Vκ. We may assume that
κ is inaccessible, which implies (uB)Vκ = uBκ. After forcing with P, we still have
(uB)Vκ = uBκ becauseκ remains inaccessible.Also, by takingκ < � to be sufficiently
large we may ensure that uBκ = uB� after forcing with P by an observation of Steel
andWoodin; see Larson [8, Theorem 3.3.5].6 Therefore our assumption on P yields

Vκ |= 1 �P ∃y ∈ R ∀B ∈ uB (HC;∈, B) |= ϕ[x, y].
6This observation is usually stated in terms of homogeneously Suslin sets: Hom� = Hom<� for all

sufficiently large � < �. The present version is equivalent; one has only to let κ be greater than the second
Woodin cardinal above �.
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Now because V
 ≺Σ2 V� and the inaccessibility of κ is a first-order property of
Vκ+1, we can take an inaccessible cardinal κ̄ < 
 and a poset P̄ such that

Vκ̄ |= 1 �P̄
∃y ∈ R ∀B ∈ uB (HC;∈, B) |= ϕ[x, y].

After forcingwith P̄we have (uB)Vκ̄ = uBκ̄ because κ̄ is inaccessible, andwe trivially
have uB� ⊂ uBκ̄ because κ̄ < �, so the desired conclusion follows. �
Proposition 2.11. Let � be a limit of Woodin cardinals and let 
 < � be an
inaccessible cardinal such that V
 ≺Σ2 V�. Let G ⊂ Col(�,<
) be a V -generic filter.
Then V [G ] satisfies one-step ∃R(

˜
Π21)

uB� generic absoluteness below �.

Proof. Let x ∈ V [G ] be a real parameter. We will show that V [G ] satisfies
∃R(Π21(x))uB� generic absoluteness below �. Because 
 is inaccessible, the real x
is contained in the generic extension of V by some proper initial segment of the
generic filter G . Because our large cardinal hypotheses on 
 and � are preserved by
forcing with posets of cardinality less than 
, we may assume x ∈ V .
By Lemma 2.10, every ∃R(Π21(x))uB� statement that can be forced by a poset in
V� (over V [G ], or equivalently over V ) can also be forced by a poset in V
. Such
a poset in V
 is absorbed into Col(�,<
) by universality, so the desired statement
holds in V [G ] by the upward direction of ∃R(Π21(x))uB� generic absoluteness, which
is automatic. �
We remark that strong cardinals are Σ2-reflecting, so the hypothesis of
Proposition 2.11 follows from � being a limit of Woodin cardinals and 
 < �
being <�-strong (the AD + �0 < Θ hypothesis). However, it is much weaker than
this because if � is a Mahlo cardinal then there are many inaccessible cardinals

 < � such thatV
 is a fully elementary substructure of V�. We have not proved any
consistency strength lower bound, leading to the obvious question.

Question 2.12. What is the consistency strength of the theory ZFC + “there is a
limit � of Woodin cardinals such that one-step ∃R(

˜
Π21)

uB� generic absoluteness holds
below �”?

§3. Building absolute complements for trees. In this section, which may be read
independently of the rest of the article, we introduce a method for building an
absolute complement to a given tree (Lemma 3.1 below). Two related theorems are
that if κ is supercompact then every tree becomes weakly homogeneous in some
small forcing extension (Martin andWoodin [9, Theorem 3.2]) and if κ is a Woodin
cardinal then every tree becomes <κ-weakly homogeneous in some small forcing
extension (Woodin; see Larson [8, Theorem 1.5.12]).
Unlike these two theorems, our method only gives κ-absolute complementation,
not <κ-weak homogeneity. Although we will not have a <κ-weak homogeneity
system to work with, something like a Martin–Solovay construction (see Steel [17,
Section 2]) will still produce an absolutely complementing tree. A similar argument
is used in another theorem of Woodin (see Steel [17, Theorem 4.5]).
Another difference from the results mentioned above is that because our large
cardinal hypothesis of measurability is so weak, we will need to augment it with a
smallness assumption about the tree, namely that not toomany sets are constructible
from it; this is made precise in the statement of the lemma. A related argument
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appears in Wilson [18, Lemma 9.4], where the large cardinal hypothesis is weak
compactness and the smallness assumption is about a pointclass called the envelope.
The absolutely complementing tree constructed in the proof of the lemma will
be the tree of a semiscale, so we will briefly review the essential properties of
semiscales and their trees. For more information, see Kechris and Moschovakis [7]
or Moschovakis [10].
First, a norm on a set of reals A is a function 	 : A→ Ord. A sequence of norms
	 = (	i : i < �) on A can be used to define a strong notion of convergence as
follows. For a sequence of reals (xn : n < �) in A and a real y, we write xn → y
(mod 	) to mean that (xn : n < �) converges to y in the usual topology of the
Baire space �� and for every i < � the sequence of ordinals (	i(xn) : n < �) is
eventually constant.
A semiscale on A is a sequence of norms 	 on A such that for every sequence of
reals (xn : n < �) in A and every real y, if xn → y (mod 	), then y ∈ A. If a set
of reals admits a semiscale, then it is Suslin. More specifically, given a semiscale 	
on a set of reals A we have p[T	] = A where

T	 =
{(
x � i,

(
	0(x), . . . , 	i−1(x))

)
: x ∈ A and i < �} .

The tree T	 defined in this manner is called the tree of the semiscale 	.

Lemma 3.1. Let T be a tree on � × � for some ordinal �. Let κ be a measurable
cardinal and suppose there is a normal measure on κ concentrating on the set of
α < κ such that

|℘(Vα) ∩L(T,Vα)| = α.
Then there is a generic extension V [g] of V by a poset of cardinality less than κ in
which T is κ-absolutely complemented.

Proof. Consider an elementary embedding j : V → M that is the ultra-
power map by such a normal measure on κ, so by Łoś’s theorem, we have
|℘(Vκ) ∩L(j(T ), Vκ)| = κ in M and equivalently in V . Take a V -generic filter
G ⊂ Col(�,<κ) and extend j to an elementary embedding

ĵ : V [G ]→M [H ],
whereH ⊂ Col(�,<j(κ)) is anM -generic filter. Note that in V [G ] the trees T and
j(T ) have the same projection by the elementarity of ĵ and the absoluteness of well
foundedness. In V [G ], define the set of reals

A = ��\ p[T ] = ��\ p[j(T )].
For every finite sequence of ordinals t ∈ j(�)<� , we define a norm ϕt on A by

ϕt(x) =

{
rankj(T )x (t) if t ∈ j(T )x,
0 if t /∈ j(T )x.

Note that inM [H ], we have

ĵ(A) = ��\ p[j(T )] = ��\p[j(j(T ))]
by the elementarity of ĵ. We can define a collection of norms on ĵ(A) by

C = {ĵ(ϕt) : t ∈ j(�)<�} .
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Note that C is in M [H ] and is countable there: every norm ϕt has a Col(�,<κ)-
name inL(j(T ), Vκ), and the number of such names is at most κ by our hypothesis,
so the pointwise image of the set of names is in M and has cardinality at most κ
there.7 InM [H ], take an enumeration 	 of C in order type �.
Claim. 	 is a semiscale on the set of reals ĵ(A).

Assuming for now that the claim holds, working in M [H ], we define T̃ = T	 ,
the tree of the semiscale 	. Then T̃ is definable from 	 and projects to ĵ(A), which
by definition is the complement of the projection of j(T ).
Because each norm in the collection C is definable in the modelM [H ] from the
tree j(j(T )) ∈ M and a finite sequence of ordinal parameters of the form j(t)
where t ∈ j(�)<� , the semiscale 	 and its tree T̃ are definable in M [H ] from
j(j(T )) and a countable sequence of ordinal parameters. Therefore by a standard
argument using the inaccessability of j(κ) inM and the homogeneity of the Levy
collapse forcing, we have T̃ ∈M [H � α] for some α < j(κ).
In this intermediate modelM [H � α] the tree T̃ is a j(κ)-absolute complement
for j(T ). By the elementarity of ĵ it follows that the tree T itself is κ-absolutely
complemented in some small forcing extension of V , as desired.
It remains to prove the claim. Assume toward a contradiction that in M [H ]
there is a sequence of reals (xn : n < �) in ĵ(A) such that xn → y (mod 	) for
some real y, but y /∈ ĵ(A). Because y /∈ ĵ(A), we have y ∈ p[j(T )] as witnessed
by a sequence of ordinals f ∈ j(�)� such that (y,f) ∈ [j(T )]. We will obtain a
contradiction by considering, for each i < �, the norm ĵ(ϕf�i) ∈ C and the eventual
value of the corresponding sequence of ordinals:

�i = lim
n<�
ĵ(ϕf�i )(xn).

By the definition of the norm ϕf�i and the elementarity of ĵ, we can characterize
the norm ĵ(ϕf�i) by

ĵ(ϕf�i)(x) =

{
rankj(j(T ))x(j(f � i)) if j(f � i) ∈ j(j(T ))x,
0 if j(f � i) /∈ j(j(T ))x.

Consider any fixed i < �. By our choice of the sequence of ordinals f, we have
(y � i, f � i) ∈ j(T ). Because of the convergence xn → y, for all sufficiently large
n < � we have xn � i = y � i and therefore (xn � i, f � i) ∈ j(T ), and so by
the elementarity of j, we have (xn � i, j(f � i)) ∈ j(j(T )), or in other words
j(f � i) ∈ j(j(T ))xn . Therefore for all sufficiently large n < �, we are in the first
case of the above characterization of the norm ĵ(ϕf�i ) as applied to the real xn, not
the trivial second case where the norm is defined to be zero, so we have

�i = lim
n<�
rankj(j(T ))xn (j(f � i)).

Considering this characterization of �i and �i+1 for any sufficiently large n, we
see that �i+1 is less than �i because they are the ranks of the node j(f � (i+1)) and
7If κ were supercompact, then we could take the set {j(t) : t ∈ j(�)<�} itself to be in M and we

would not need the hypothesis that j(T ) does not construct too many sets.
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its predecessor j(f � i), respectively, in the well founded tree j(j(T ))xn . Therefore
we obtain an infinite decreasing sequence of ordinals

�0 > �1 > �2 > · · · .
This contradiction completes the proof of the claim and the lemma. �
The consequences of Lemma 3.1 that we will use in our applications to generic
absoluteness are stated below.

Lemma 3.2. Let T be a tree on � × � for some ordinal �. Let κ be a measurable
cardinal. Assume that every generic extension of V by a poset of cardinality less than
κ satisfies “R∩L[T, x] is countable for every real x.” Then some generic extension of
V by a poset of cardinality less than κ satisfies “T is κ-absolutely complemented.”
Proof. Let α < κ be a cardinal such that |Vα| = α. After forcing with Col(�,α)
we get a real x coding Vα . By our hypothesis, the set R ∩ L[T, x] is countable in
this generic extension, so we have |℘(Vα) ∩ L(T,Vα)| = α in the ground model.
Because every normal measure concentrates on cardinals α such that |Vα| = α, the
desired conclusion follows from Lemma 3.1. �
We can weaken the hypothesis of Lemma 3.2 by a standard argument using
Solovay’s almost disjoint coding method. (This gives a stronger lemma, but it is not
essential to prove our main generic absoluteness results.)

Lemma 3.3. Let T be a tree on � × � for some ordinal �. Let κ be a measurable
cardinal. Assume that every generic extension of V by a poset of cardinality less than
κ satisfies “for every real x there is a real y such that y /∈ L[T, x].” Then some
generic extension ofV by a poset of cardinality less than κ satisfies “T is κ-absolutely
complemented.”
Proof. By Lemma 3.2 it suffices to show that if some generic extension V [g0] of
V by a poset of cardinality less thanκ satisfies “R∩L[T, x0] is uncountable for some
real x0,” then some further generic extensionV [g] ofV [g0] by a poset of cardinality
less than κ satisfies “R ⊂ L[T, x] for some real x.”
Take a small forcing extension V [g0] containing a real x0 and satisfying
“R ∩ L[T, x0] is uncountable.” By forcing with Col(�1,R) if necessary to ensure
CH, we may assume that

V [g0] |= |R| = |R ∩ L[T, x0]| = �1.
In V [g0], we have a subset X1 of �1 coding HC. Forcing over V [g0], we will use
Solovay’s almost disjoint coding to code our subset X1 of �1 by a real x1. This is a
standard argument, which we include for the reader’s convenience. We let

a = (a� : � < �
V [g0]
1 ) ∈ L[T, x0]

be a family of almost disjoint subsets of � and let Pa,X1 denote the forcing notion
consisting of partial functionsp : � → 2 such thatp−1({1}) is finite anddom(p)∩a�
is finite for every � ∈ X1.
Let g1 be a V [g0]-generic filter for Pa,X1 and let x1 ⊂ � be the correspond-
ing generic real, meaning that for every n < �, we have n ∈ x1 if and only if(⋃
g1
)
(n) = 1. Then x1 codes X1 relative to a in the sense that for every � < �1, we

have � ∈ X1 if and only if a� ∩ x1 is infinite. We have x1, a ∈ L[T, x0, x1] so we have
X1,Pa,X1 ∈ L[T, x0, x1] as well.
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In the model V [g0] the forcing Pa,X1 is a subset of HC and has the countable
chain condition, so every real y ∈ V [g0][g1] is the interpretation of a hereditarily
countable Pa,X1 -name ẏ ∈ V [g0] by the generic filter g1. The set X1 codes the name
ẏ, among other elements of HCV [g0], so we have ẏ ∈ L[T, x0, x1]. But the model
L[T, x0, x1] contains the generic filter g1, so we have y ∈ L[T, x0, x1]. This shows
that, letting V [g] = V [g0][g1] and x = 〈x0, x1〉, we have V [g] |= R ⊂ L[T, x] as
desired. �

§4. Two-step ∃R(
˜
Π21)

uB� generic absoluteness. In this section we consider the
following generic absoluteness principle, which is a strengthening of one-step
∃R(
˜
Π21)

uB� generic absoluteness.

Definition 4.1. Two-step ∃R(
˜
Π21)

uB� generic absoluteness below �, where � is a
limit of Woodin cardinals, is the statement that every generic extension V [g] of V
by a poset of cardinality less than � satisfies one-step ∃R(

˜
Π21)

uB� generic absoluteness
below �.

The essential difference between one-step and two-step generic absoluteness is
that in the definition of two-step generic absoluteness we allow real parameters
x from V [g] and not just from V . For the lightface pointclass ∃R(Π21)uB� or its
relativization to any particular real x ∈ V , two-step generic absoluteness follows
automatically from one-step generic absoluteness. The distinction between one-step
and two-step generic absoluteness only exists for the boldface versions.
Applying Proposition 2.8 in generic extensions, we get a characterization of
two-step ∃R(

˜
Π21)

uB� generic absoluteness in terms of a closure property of uB� in
generic extensions.

Proposition 4.2. For any limit of Woodin cardinals �, the following statements
are equivalent.

1. Two-step ∃R(
˜
Π21)

uB� generic absoluteness holds below �.
2. In every generic extension V [g] of V by a poset of cardinality less than �, every
(
˜
Δ21)

uB� set of reals is �-universally Baire.

One can obtain two-step ∃R(
˜
Π21)

uB� generic absoluteness from trees for (Π21)
uB�

formulas by a standard argument using the absoluteness of well foundedness.
By “trees for (Π21)

uB� formulas,” we mean trees T̃ϕ that are analogous to the trees
Tϕ for (Σ21)

uB� formulas given by Corollary 1.5. To be precise:

Definition 4.3. We say there are trees for (Π21)
uB� formulas if for every formula

ϕ(v) there is a tree T̃ϕ such that for every generic extension V [g] of V by a poset
of cardinality less than � and every real x ∈ V [g] we have

x ∈ p[T̃ϕ ] ⇐⇒ ∀B ∈ uBV [g]� (HCV [g];∈, B) |= ¬ϕ[x].
(We negate the formula ϕ so that the tree T̃ϕ will be a �-absolute complement of
the tree Tϕ from Corollary 1.5.)

Remark 4.4. If � is a limit of Woodin cardinals and 
 < � is a <�-strong
cardinal, then trees for (Π21)

uB� formulas appear after forcing with Col(�, 22



).
This is implicit in Woodin’s proof from the same large cardinal hypothesis that
L(Hom∗

� ,R
∗
�) satisfiesAD+“every ˜

Π21 set of reals is Suslin” (see Steel [17, Section 9]).
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The existence of trees for (Π21)
uB� formulas can be shown to be equivalent to some

of its obvious consequences:

Proposition 4.5. For any limit of Woodin cardinals �, the following statements
are equivalent.

1. There are trees for (Π21)
uB� formulas.

2. In every generic extension V [g] of V by a poset of cardinality less than �, every
(
˜
Σ21)

uB� set of reals is �-universally Baire.
3. Every (Σ21)

uB� set of reals is �-universally Baire.

Proof. (1) =⇒ (2): The trees T̃ϕ for (Π21)
uB� formulas are �-absolute comple-

ments of the trees Tϕ for (Σ21)
uB� formulas given by Corollary 1.5. Therefore in V

and in every generic extension by a poset of cardinality less than �, the pair (Tϕ, T̃ϕ)
witnesses that the corresponding (Σ21)

uB� set of reals is �-universally Baire. Every
(
˜
Σ21)

uB� set of reals is a section of a (Σ21)
uB� set of reals, making it �-universally Baire

as well. The implication (2) =⇒ (3) is trivial.
(3) =⇒ (1): Let ϕ(v) be a formula in the language of set theory expanded by a
unary predicate symbol. By Corollary 1.5 there is a tree Tϕ ∈ V that projects to the
(Σ21)

uB� set of reals defined by ϕ in every generic extension by a poset of cardinality
less than �. We will show that the treeTϕ is �-absolutely complemented. The (Σ21)

uB�

set
A = p[Tϕ ] = {y ∈ R : ∃B ∈ uB� (HC;∈, B) |= ϕ[y]}

is �-universally Baire by our hypothesis, so there is some �-absolutely complement-
ing pair of trees (T, T̃ ) such that p[T ] = p[Tϕ ].
We claim that the pair (Tϕ, T̃ ) is also �-absolutely complementing, or equivalently
that for every generic extension V [g] of V by a poset of cardinality less than �
we have

V [g] |= p[Tϕ ] = p[T ].
We have p[Tϕ ]∩p[T̃ ] = ∅ in V , so by the usual argument this holds in V [g] as well,
giving V [g] |= p[Tϕ ] ⊂ p[T ]. For the reverse inclusion let y �→ B(y) be the partial
function given by Lemma 1.8 that chooses (Δ21(y))

uB� witnesses B(y) uniformly for
reals y ∈ A. Then the relation

W = {(y, z) ∈ R× R : y ∈ A & z ∈ B(y)}
is (Σ21)

uB� , and we have

∀y ∈ A (HC;∈,Wy) |= ϕ[y],
whereWy = B(y) is the corresponding section ofW . By our hypothesis, the relation
W is �-universally Baire. Let AV [g] andWV [g] denote the canonical extensions of
A andW , respectively, to V [g]. Then we have

(HC;∈, A,W ) ≺ (HCV [g];∈, AV [g],W V [g]),

and it follows that

∀y ∈ AV [g] (HCV [g];∈, (Wy )V [g]) |= ϕ[y],
which shows that V [g] |= p[T ] ⊂ p[Tϕ]. This completes the proof that T̃ is a
�-absolute complement of the tree Tϕ . Accordingly, we write T̃ϕ = T̃ . �
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A natural question is whether two-step ∃R(
˜
Π21)

uB� generic absoluteness below �
can be added to the list of equivalences in 4.5, rather than being strictly weaker.
A positive answer to this question could be seen as an explanation of this generic
absoluteness principle in terms of a continuous reduction to the absoluteness of well
foundedness.

Question 4.6. Let � be a limit ofWoodin cardinals and assume two-step∃R(
˜
Π21)

uB�

generic absoluteness below �. Must trees for (Π21)
uB� formulas exist?

If there are trees for (Π21)
uB� formulas then the model L(Hom∗

� ,R
∗
�) satisfies

(in addition to AD) the statement “every
˜
Π21 set of reals is Suslin,” as noted in Steel

[17, Section 9]. This conclusion follows even if the trees for (Π21)
uB� formulas do not

appear in V but only in small forcing extensions of V , because small forcing does
not affect Hom∗

� or R
∗
� . Accordingly, one might ask the weaker question:

Question 4.7. Let � be a limit ofWoodin cardinals and assume two-step∃R(
˜
Π21)

uB�

generic absoluteness below �. Must L(Hom∗
� ,R

∗
�) satisfy “every ˜

Π21 set of reals is
Suslin”?

In the case where � is measurable we may apply Lemma 3.2 to get a positive
answer, yielding a proof of Theorem 0.1. The proof is similar to that of “every set
has a sharp” from two-step

˜
Σ13 generic absoluteness (Woodin [20, Lemma 1]) except

that it uses Lemma 3.2 in place of Jensen’s covering lemma for L.

Proof of Theorem 0.1. Assume that � is a measurable limit of Woodin cardinals
and two-step ∃R(

˜
Π21)

uB� generic absoluteness holds below �. We will show that the
model L(Hom∗

� ,R
∗
�) satisfies “every ˜

Π21 set of reals is Suslin.”
Fix a formula ϕ(v) and let Tϕ be the tree for the corresponding (Σ21)

uB� formula
as given by Corollary 1.5.We will use Lemma 3.2 to obtain an absolute complement
for Tϕ . Given any generic extension V [g] of V by a poset of cardinality less than
� and any real x ∈ V [g], we want to show R ∩ L[Tϕ, x] is countable in V [g].
Because the tree Tϕ (as it is obtained from Theorem 1.4) is definable without
parameters in the model L(Hom∗

� ,R
∗
�), we have R ∩L[Tϕ, x] ⊂ Cx where

Cx = (R ∩ODx)L(Hom∗
� ,R

∗
� ).

Therefore it suffices to show that Cx is countable in V [g]. (Note that Cx is in V [g]
by the homogeneity of the Levy collapse forcing.)
In the model L(Hom∗

� ,R
∗
�), the set of reals Cx can be shown to be Σ

2
1(x) using

Woodin’s Σ1-reflection theorem. (See Steel andTrang [15] for a proof of the reflection
theorem.Alternatively,we could use amore local version of ordinal-definability as in
Steel [17, Remark 8.4].) Therefore by Woodin’s generic absoluteness (Theorem 1.3)
the set of realsCx is (Σ21(x))

uB� uniformly in all generic extensions ofV [g] by posets
of cardinality less than �.
The statement “Cx is countable” means there is a single real coding all reals in
Cx , so it is an ∃R(Π21(x))uB� statement uniformly in all generic extensions of V [g]
by posets of cardinality less than �. This ∃R(Π21(x))uB� statement becomes true after
forcing over V [g] to collapse Cx (or simply RV [g] itself) to be countable, so by our
generic absoluteness hypothesis, Cx is already countable in V [g].
Therefore the setR∩L[Tϕ, x], which is contained inCx , is also countable, and by
Lemma 3.2 the treeTϕ has a �-absolute complement in some small forcing extension
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of V . As noted in Steel [17, Section 9], the existence of such absolute complements
implies that the model L(Hom∗

� ,R
∗
�) satisfies “every ˜

Π21 set of reals is Suslin.” �
We can weaken the hypothesis of Theorem 0.1 by using Lemma 3.3 instead of
Lemma 3.2. A similar argument is used by Caicedo and Schindler [2] to construct a
projective well ordering of the reals from an anti-large-cardinal hypothesis. Recall
that two-step ∃R(

˜
Π21)

uB� generic absoluteness below � is equivalent to the statement
that, in every generic extension by a poset of cardinality less than �, every (

˜
Δ21)

uB�

set of reals is �-universally Baire. Note that in particular this statement rules out the
existence of a (

˜
Δ21)

uB� well ordering of the reals in a small forcing extension.
Proposition 4.8. If � is a measurable limit of Woodin cardinals and every generic
extension by a poset of cardinality less than � satisfies “there is no (

˜
Δ21)

uB� well ordering
of the reals,” then the model L(Hom∗

� ,R
∗
�) satisfies AD + “every ˜

Π21 set of reals is
Suslin.”
Proof. Fix a formula ϕ(v) and let Tϕ be the tree for the corresponding (Σ21)

uB�

formula as given by Corollary 1.5. We will use Lemma 3.3 to obtain an absolute
complement forTϕ . Given any generic extensionV [g] ofV by a poset of cardinality
less than � and any real x ∈ V [g], we want to show that there is a real y ∈ V [g]
such that y /∈ L[Tϕ, x].
Because the tree Tϕ (as it is obtained from Theorem 1.4) is definable without
parameters in the model L(Hom∗

� ,R
∗
�), we have R ∩ L[Tϕ, x] ⊂ Cx where

Cx = (R ∩ODx)L(Hom∗
� ,R

∗
� ).

Therefore it suffices to show that there is a real y ∈ V [g] such that y /∈ Cx . (Note
that Cx is in V [g] by the homogeneity of the Levy collapse forcing.)
In themodelL(Hom∗

� ,R
∗
�), the set of realsCx is Σ

2
1(x) andmoreover it has a Σ

2
1(x)

well ordering (both facts can be shown using Woodin’s Σ1-reflection theorem). So
by absoluteness, in V [g] the set Cx is (Σ21(x))

uB� and has a (Σ21(x))
uB� well ordering.

By our assumption, V [g] has no (Δ21(x))
uB� well ordering of its reals, so there must

be some real y ∈ V [g] that is not in the domain of this partial well ordering.
In other words y /∈ Cx , so y /∈ L[Tϕ, x] as desired.
Therefore by Lemma 3.3 the tree Tϕ has a �-absolute complement in some small
forcing extension of V . As noted in Steel [17, Section 9], the existence of such
absolute complements implies that the model L(Hom∗

� ,R
∗
�) satisfies “every ˜

Π21 set
of reals is Suslin.” �

§5. The theory of L(uB�,R). In this section, we consider the principle of generic
absoluteness for the theory of L(uB�,R). The following theorem of Woodin (see
Larson [8, Theorems 3.4.18,19] for a proof of a slightly more general version) gives
an upper bound in terms of large cardinals for the consistency strength of this
generic absoluteness principle. It also says something about what the generically
absolute theory is in this situation.
Theorem 5.1 (Woodin). If � is a limit of Woodin cardinals and 
 < � is
<�-supercompact, then letting g ⊂ Col(�, 2
) be a V -generic filter we have

L(uB�,R)V [g] ≡ L(uB�,R)V [g][h]
for every generic extension V [g][h] of V [g] by a poset of cardinality less than �, and
the model L(uB�,R)V [g] satisfies AD+DC+ “every set of reals is Suslin.”
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In order to establish Theorem 0.2, which gives a lower bound for the consistency
strength of generic absoluteness of the theory of L(uB�,R) in the case that � is
measurable as well as being a limit of Woodin cardinals, we first apply a relativized
version of Proposition 4.8 to all �-universally Baire sets appearing in all small forcing
extensions of V , obtaining the following result.

Proposition 5.2. If � is a measurable limit of Woodin cardinals and for every
generic extension V [g] by a poset of cardinality less than � we have

L(uB�,R)V [g] |= “there is no well ordering of the reals,”

then the model L(Hom∗
� ,R

∗
�) satisfies AD+ DC+ “every set of reals is Suslin.”

Proof. To show thatL(Hom∗
� ,R

∗
�) satisfies “every set of reals is Suslin,” it suffices

by the argument of Steel [17, Section 9] to show that every
˜
Π21(A

∗) set of reals is
Suslin for every set of reals A∗ ∈ Hom∗

� .
LetA∗ ∈ Hom∗

� . By increasing the complexity ofA
∗, we may assume that there is

a homogeneity system for A∗ that is definable from A∗ in the model L(Hom∗
� ,R

∗
�).

(Because every set in Hom∗
� has a homogeneity system coded by a set of reals in

Hom∗
� and the pointclass Hom

∗
� is closed under countable joins, we can obtain a set

with the desired property in�many steps.) This property allowsWoodin’s results on
the scale and basis properties for the pointclass Σ21 to be relativized to the pointclass
Σ21(A

∗); see Steel [17, Lemma 8.2].8

By passing to a small forcing extension, we may assume that A∗ is the canonical
extension of some set of reals A ∈ uB�. For every generic extension V [g] by a
poset of cardinality less than �, every (

˜
Δ21(A

V [g]))uB� set of reals is an element of
the modelL(uB�,R)V [g], so by our hypothesis there cannot be a (

˜
Δ21(A

V [g]))uB� well
ordering of the reals. Then by a straightforward relativization of Proposition 4.8,
every

˜
Π21(A

∗) set of reals is Suslin in L(Hom∗
� ,R

∗
�) as desired.

Now we get DC by a standard argument using the inaccessibility of �. Work in
V [G ] where G ⊂ Col(�,<�) is a generic filter realizing R∗

� and Hom
∗
� . Because

� is inaccessible, every countable sequence of sets in Hom∗
� is coded by a set in

Hom∗
� . Therefore the fragment of DC for binary relations on Hom

∗
� is down-

ward absolute from V [G ] to L(Hom∗
� ,R

∗
�). In the model L(Hom

∗
� ,R

∗
�), every

set is ordinal-definable from a set in Hom∗
� , so this fragment of DC implies

full DC. �
The other ingredient that we will need to prove Theorem 0.2 is the following
lemma, which is obtained by a straightforward reflection argument using the mea-
surability of �. (The Woodin cardinals in the hypothesis of the lemma are only
needed because our definition of Hom∗

G required them.)

Lemma 5.3. Let � be a measurable limit ofWoodin cardinals and let ϕ be a formula
in the language of set theory. If L(uB�,R)V [g] |= ϕ for every generic extension V [g]
of V by a poset of cardinality less than �, then L(Hom∗

� ,R
∗
�) |= ϕ.

8The author thanks Nam Trang for pointing out to him that some condition is necessary for this
relativization because if A∗ is a complete Π21 set then Σ

2
1(A

∗) cannot have the scale property. The
author also thanks Martin Zeman for a helpful conversation about conditions on A∗ sufficient for
relativization.
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Proof. Assume that L(uB�,R)V [g] |= ϕ for every generic extension V [g] of V
by a poset of cardinality less than �. Let j : V → M be an elementary embed-
ding witnessing the measurability of � and let G ⊂ Col(�,<�) be a filter that is
V -generic, hence alsoM -generic. By our assumption and the elementarity of j, we
have L(uBj(�),R)M [G ] |= ϕ. We want to show that L(Hom∗

G ,R
∗
G) |= ϕ. In fact, we

will show that
L(Hom∗

G,R
∗
G) = L(uBj(�),R)

M [G ].

We have R∗
G = R

V [G ] = R
M [G ], so it remains to show that

Hom∗
G = uB

M [G ]
j(�) .

Let A ∈ Hom∗
G . By passing from V to a small forcing extension and extending j

to this small forcing extension, we may assume thatA = p[T ] for some �-absolutely
complementing pair of trees (T, T̃ ) ∈ V . Then (j(T ), j(T̃ )) is a j(�)-absolutely
complementing pair of trees in M by elementarity of j, and mapping branches
pointwise by j gives p[T ] ⊂ p[j(T )] and p[T̃ ] ⊂ p[j(T̃ )] in any model containing
these trees.
With respect to the common set of reals R∗

G = R
V [G ] = R

M [G ], both pairs
of trees (T, T̃ ) and (j(T ), j(T̃ )) project to complements and so the inclusions
imply equality: p[T ] = p[j(T )] and p[T̃ ] = p[j(T̃ )]. Therefore A = p[j(T )] and
the j(�)-absolutely complementing pair of trees (j(T ), j(T̃ )) witnesses that A is
j(�)-universally Baire inM [G ], as desired.
Conversely, let A be a j(�)-universally Baire set of reals in M [G ] and take a
j(�)-absolutely complementing pair of trees (T, T̃ ) ∈M [G ] with p[T ] = A. Extend
j to an elementary embedding ĵ : V [G ] → M [H ] where H ⊂ Col(�,<j(�)) is a
V -generic filter. Mapping branches pointwise by j, we have p[T ] ⊂ p[ĵ(T )] and
p[T̃ ] ⊂ p[ĵ(T̃ )] in any model containing these trees.
With respect to the set of reals ĵ(R∗

G) = R
∗
H , both pairs of trees (T, T̃ )

and (ĵ(T ), ĵ(T̃ )) project to complements and so the inclusions imply equality:
p[T ] = p[ĵ(T )] and p[T̃ ] = p[ĵ(T̃ )]. Therefore p[T ] = ĵ(A) and the j(�)-absolutely
complementing pair of trees (T, T̃ ) ∈ M [G ] witnesses that ĵ(A) ∈ Hom∗

H . By the
elementarity of ĵ, it follows that A ∈ Hom∗

G as desired. �
Now it is a simple matter to prove the theorem.

Proof of Theorem 0.2. Assume that � is a measurable limit of Woodin cardinals
and L(uB�,R) ≡ L(uB�,R)V [g] for every small forcing extension V [g]. We want to
show that the models L(Hom∗

� ,R
∗
�) and L(uB�,R) both satisfy AD+ DC+ “every

set of reals is Suslin.”
The model L(Hom∗

� ,R
∗
�) has no well ordering of its reals by AD, or more simply

by the argument of Solovay [13]. By Lemma 5.3, it follows that there is some small
forcing extensionV [g] such thatL(uB�,R)V [g] has no well ordering of its reals, and
by our generic absoluteness hypothesis, for every small forcing extension V [g] the
model L(uB�,R)V [g] has no well ordering of its reals.
By Proposition 5.2, it follows that L(Hom∗

� ,R
∗
�) satisfies AD + DC + “every set

of reals is Suslin.” By Lemma 5.3 again, there is some small forcing extension V [g]
such thatL(uB�,R)V [g] satisfies AD+DC+“every set of reals is Suslin,” and by our
generic absoluteness hypothesis again, L(uB�,R) itself satisfies AD+ DC+ “every
set of reals is Suslin.” �
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One might hope to improve the consistency strength lower bound given by
Theorem 0.2. The next natural target would be the theory ADR + “Θ is regular.”
(By convention, we write ADR here instead of the equivalent theory AD + “every
set of reals is Suslin.”)

Question 5.4. Assume that � is a measurable limit of Woodin cardinals and
L(uB�,R) ≡ L(uB�,R)V [g] for every generic extension V [g] by a poset of cardinality
less than �.

1. Does L(uB�,R) satisfy ADR + “Θ is regular”?
2. Does L(Γ,R) satisfy ADR + “Θ is regular” for some pointclass Γ ⊂ uB�?
In unpublished work, Woodin strengthened the conclusion of Theorem 5.1 to
get ADR + “Θ is regular” in the model L(uB�,R)V [g], making a positive answer
to 5.4(1) plausible. However, 5.4(2) might be a more reasonable target for current
inner-model-theoretic techniques such as those developed by Sargsyan [12]. One
might also hope to do without the hypothesis that � is measurable.

§6. Note. Ralf Schindler pointed out an error in the proof of Proposition 2.4.
We proved the consistency of a schema, but the principle of ∃R(Π21)uB� generic
absoluteness was defined as a single statement quantifying over formulas. We give
a correct proof using forcing instead of compactness. Let G ⊂ Col(�,<�) be a
V -generic filter. In L(Hom∗

G ,R
∗
G), use countable choice (which follows from AD)

to choose reals witnessing all true ∃RΠ21 statements. The real coding the sequence
of witnesses appears in V [G � α] for some α < �, and V [G � α] satisfies ∃R(Π21)uB�
generic absoluteness below �.

§7. Acknowledgments. The author would like to thank John Steel, Nam Trang,
Martin Zeman, and the referees for their many helpful comments on the article. The
author gratefully acknowledges support from NSF grant DMS-1044150.
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