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Abstract We study non-autonomous parabolic equations with critical exponents in a scale of Banach
spaces Eσ , σ ∈ [0, 1 + μ). We consider a suitable E1+ε-solution and describe continuation properties of
the solution. This concerns both a situation when the solution can be continued as an E1+ε-solution
and a situation when the E1+ε-norm of the solution blows up, in which case a piecewise E1+ε-solution
is constructed.
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1. Introduction

In this paper, given a family of unbounded linear operators in the Banach space E0,
A(t) : DE0 ⊂ E0 → E0, t ∈ R, we focus on the well-posedness of a Cauchy problem of
the form

u̇(t) + A(t)u(t) = F (t, u(t)), t > τ, u(τ) = uτ , (1.1)

where the linear main part operator depends on the time variable.
Following the pioneering work of Sobolevskĭı [26], such problems have been consid-

ered by many authors in wide generality and many results have been obtained (see, for
example, the monographs [7,20,22,23,27,30] and references therein). Here, our main
concern will be critically growing nonlinearities, that is, roughly speaking we will allow
F (t, u(t)) to exhibit the same order of magnitude as the linear main part operator A(t)
(see [9,13,15,29]).

For subcritical nonlinearities, continuation of solutions is satisfactorily described for
both autonomous and non-autonomous problems (see, for example, [4]). As observed
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in [29], this is no longer the case for nonlinearities satisfying a critical growth condition
(see also [13]). On the other hand, some previous results concerning continuation prop-
erties of solutions of autonomous problems [13] cannot be directly applied to (1.1) and
require essential modifications. This is our main goal in the present paper.

To describe our results, we start from the following two general assumptions. Condi-
tions sufficient for them in terms of the operators A(t) will be discussed in detail in § 3.

Assumption 1.1. Given a family of Banach spaces {Eα, α ∈ [0, 1 + μ)}, there exists
a continuous process {U(t, τ) : t � τ ∈ R} ⊂ L(E0) in E0 such that, given τ ∈ R and
uτ ∈ E0, the map [τ, ∞) � t → u(t) = U(t, τ)uτ ∈ E0 is a classical solution of the linear
problem

u̇(t) + A(t)u(t) = 0, t > τ, u(τ) = uτ .

Furthermore, given any point t0 ∈ R, there is a time interval I ⊂ R centred at t0 such
that for any 1 + μ > σ � ζ � 0 a constant M > 0 exists for which

‖U(t, τ)‖L(Eζ ,Eσ) � M(t − τ)ζ−σ, t, τ ∈ I, t > τ. (1.2)

Assumption 1.2. Given t0 ∈ R, there is also a time interval I ⊂ R centred at t0 such
that whenever 1 + μ > ζ > σ � 0, 1 � ζ − σ > 0, a constant M > 0 exists for which

‖U(t, τ) − Id‖L(Eζ ,Eσ) � M(t − τ)ζ−σ, t, τ ∈ I, t > τ. (1.3)

Concerning the right-hand side in (1.1), we will assume that F belongs to a class of
maps L(ε, ρ, γ(ε), η, Cη) satisfying a suitable Lipschitz condition relative to {Eα, α ∈
[0, 1 + μ)}. Note that any such F falls, in particular, into the class of ε-regular maps
considered in [9].

Definition 1.3. We say that a continuous function F : R × E1+ε → Eγ(ε) is of the
class L(ε, ρ, γ(ε), η, Cη) of Lipschitz maps relative to {Eα, α ∈ [0, 1+μ)}, with constants
ρ > 1, 0 < ε < min{1/ρ, μ}, γ(ε) ∈ [ρε, 1), η > 0 and Cη > 0, if and only if for any
bounded time interval I ⊂ R there exists c > 0 such that for each v, w ∈ E1+ε and t ∈ I

we have

‖F (t, v) − F (t, w)‖Eγ(ε) � c‖v − w‖E1+ε(η‖v‖ρ−1
E1+ε

+ η‖w‖ρ−1
E1+ε

+ Cη) (1.4)

and
‖F (t, v)‖Eγ(ε) � c(η‖v‖ρ

E1+ε
+ Cη). (1.5)

We single out for special attention the case when in (1.4) and (1.5) one has γ(ε) = ρε

and not γ(ε) ∈ (ρε, 1) as it exhibits criticality of F relative to (E1, E0) (see [9]).

Definition 1.4. For the case in which, for a certain η > 0, (1.4) and (1.5) hold with
γ(ε) ∈ (ρε, 1), we say that F is subcritical. When, for a certain η > 0, (1.4) and (1.5)
hold with γ(ε) = ρε but not with γ(ε) ∈ (ρε, 1), F is called critical and ρ is called a
critical exponent. For the case in which F is critical and (1.4) and (1.5) hold with any
η > 0, we say that F is an almost critical map.
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We will consider the following solution of (1.1) as in Definition 1.5 (see [15] and
also [9,13]).

Definition 1.5. Given F of the class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1+μ)},
τ > 0 and uτ ∈ E0, we say that u : [τ, T ] → E0 ∪ E1+ε is a mild E1+ε-solution (an
E1+ε-solution for short) of (1.1) on the interval [τ, T ] if and only if u ∈ L∞

loc((τ, T ], E1+ε),
there exists the limit limt→τ+(t − τ)ε‖u(t)‖E1+ε

= 0, u(τ) = uτ and for t ∈ (τ, T ] we
have

u(t) = U(t, τ)uτ +
∫ t

τ

U(t, s)F (s, u(s)) ds. (1.6)

If, given a ∈ (τ, ∞], u is an E1+ε-solution of (1.1) on [τ, T ] for any T ∈ (τ, a), then we
say that u is an E1+ε-solution on the interval [τ, a).

With these assumptions, the E1+ε-solution will be unique and Hölder continuous away
from τ .

Theorem 1.6. Suppose that Assumptions 1.1 and 1.2 hold, F is of the class
L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + μ)}, τ ∈ R and uτ ∈ E0.

There then exists at most one E1+ε-solution u = u(·, τ, uτ ) of (1.1) on [τ, T ] and
u ∈ Cν

loc((τ, T ], E1+θ) for any 0 < θ < min{γ(ε), μ}, 0 < ν < ν∗ = min{γ(ε), μ} − θ.

To describe a set of initial data for which (1.1) has a unique E1+ε-solution, we will
consider a linear subspace Eτ

ε of E0,

E
τ
ε =

{
ϕ ∈ E0 : there exists lim

t→τ+
(t − τ)ε‖U(t, τ)ϕ‖E1+ε = 0

}
.

We also define, for some δ > 0,

‖ϕ‖E
τ
ε

δ = sup
t∈(τ,τ+δ]

(t − τ)ε‖U(t, τ)ϕ‖E1+ε , ϕ ∈ E
τ
ε ,

and
Bδ

Eτ
ε
(w0, r) = {ϕ ∈ E

τ
ε : ‖ϕ − w0‖E

τ
ε

δ < r}, w0 ∈ E
τ
ε .

With the above set-up, we first state the local well-posedness result, which complements
the earlier considerations of [9, Theorem 1], [13, Theorem 2.1] and [15, Theorem 3.1]. In
what follows, B(a, b) =

∫ 1
0 sa−1(1 − s)b−1 ds, a, b > 0, denotes Euler’s beta function and

Bε,ρ := max{B(1 − ρε, γ(ε) − ε), B(γ(ε) − ε, 1 − ε)} = B(1 − ρε, γ(ε) − ε). (1.7)

Theorem 1.7. Suppose that Assumptions 1.1 and 1.2 are satisfied and that F is of
the class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + μ)}.

The following then hold.

(i) Given t0 ∈ R, w0 ∈ Eτ
ε and given τ in a certain interval J ⊂ R centred at t0, there

exist δ̄0 ∈ (0, 1] and r̄0 = 1/4(8cηMBε,ρ)1/(ρ−1), where M = M(1 + ε, γ(ε),J ) and
Bε,ρ are as in (1.2) and (1.7), such that for any initial condition uτ satisfying

uτ ∈ Bδ0
Eτ

ε
(w0, r) (1.8)
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with
δ0 ∈ (0, δ̄0] and r ∈ (0, r̄0], (1.9)

there exists a unique E1+ε-solution u = u(·, τ, uτ ) of (1.1) on [τ, τ + δ0].

(ii) When F is subcritical or F is almost critical, the time of existence δ0 can be
chosen uniformly with respect to the initial condition uτ ∈ BEτ

ε
(w0, r) for arbitrarily

large r.

(iii) For any 0 � θ < min{γ(ε), μ} we have

lim
t→τ+

(t − τ)θ‖u(t, τ, uτ )‖E1+θ
= 0, uτ ∈ Bδ0

Eτ
ε
(w0, r) ∩ E

τ
θ , (1.10)

and

sup
t∈[τ,τ+δ0]

(t − τ)θ‖u(t, τ, u1
τ ) − u(t, τ, u2

τ )‖E1+θ

� C(θ)(‖u1
τ − u2

τ‖E
τ
θ

δ0
+ ‖u1

τ − u2
τ‖E

τ
ε

δ0
),

u1
τ , u2

τ ∈ Bδ0
Eτ

ε
(w0, r) ∩ E

τ
θ . (1.11)

(iv) Whenever 0 � θ < min{γ(ε), μ} and uτ ∈ Bδ0
Eτ

ε
(w0, r), we have

lim
t→τ+

(t − τ)θ‖U(t, τ)uτ − uτ‖E1+θ
= 0

=⇒ lim
t→τ+

(t − τ)θ‖u(t, τ, uτ ) − uτ‖E1+θ
= 0. (1.12)

Although so far we have not used embedding properties, it is typical for applications
that

Eβ is densely embedded in Eα whenever 0 � α � β < 1 + μ. (1.13)

Remark 1.8.

(i) Under Assumption 1.1 and (1.13), E1 ⊂ Eτ
ε , ‖ · ‖E

τ
ε

δ is the norm in Eτ
ε and Bδ

Eτ
ε
(w0, r)

contains a ball in E1 centred at w0 and of radius r/M .

(ii) If (1.13) holds, then Theorem 1.7 can be applied with w0 ∈ E1 and the time of
existence δ0 can then be chosen uniformly with respect to τ ∈ J .

Remark 1.9. With (1.13) and the assumptions of Theorem 1.6, if u = u(·, τ, uτ ) is
an E1+ε-solution of (1.1) as in this theorem, then the following hold.

(i) u ∈ C([τ, τ + δ0], Eα) ∩ Cν
loc((τ, τ + δ0], E1+θ) whenever uτ ∈ Eα, α ∈ [0, 1], 0 <

θ < min{γ(ε), μ} and 0 < ν < min{γ(ε), μ} − θ.

(ii) u ∈ C([τ, τ + δ0], E1+ε) ∩ Cν
loc((τ, τ + δ0], E1+θ) whenever uτ ∈ E1+ε.

(iii) u(t, τ, uτ ) is continuous in E1 with respect to (t, uτ ) ∈ [τ, τ + δ0] × E1.
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Given τ ∈ R and uτ ∈ Eτ
ε , we next define

I(uτ ) := {T ∈ (τ, ∞) : there exists a unique E1+ε-solution of (1.1) on [τ, T ]}.

Under the assumptions of Theorem 1.7, I(uτ ) is non-empty, in which case we define

Tuτ
:= sup I(uτ ) (1.14)

and call [τ, Tuτ
) the maximal interval of existence of the E1+ε-solution.

Since in applications E1 often plays the role of a space in which (1.1) is expected to
define a continuous process, we now state the theorem that involves characterization of
the maximal time of existence of the E1+ε-solution in terms of the E1-norm even in a
certain critical case. This is significant for applications as any ‘better’ estimate may often
be impossible to find.

Theorem 1.10. Suppose that Assumptions 1.1 and 1.2 hold, F is of the class
L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + μ)}, τ ∈ R, uτ ∈ Eτ

ε and u = u(·, τ, uτ )
is the E1+ε-solution of (1.1) on a maximal interval of existence [τ, Tuτ

). Assume also
that (1.13) holds.

(i) If F is subcritical or F is almost critical, then

Tuτ < ∞ implies that lim sup
t→T −

uτ

‖u(t, τ, uτ )‖E1 = ∞.

(ii) In either case, when F is subcritical, almost critical or critical, Tuτ < ∞ implies
that there does not exist even one sequence tn → T−

uτ
for which {u(tn, τ, uτ )} con-

verges in E1; in particular, the map [τ, Tuτ ) � t → u(t) ∈ E1 cannot be uniformly
continuous.

Note that in Theorem 1.10 for F subcritical, almost critical or critical, we have that

Tuτ < ∞ implies that lim sup
t→T −

uτ

‖u(t)‖E1+ε = ∞. (1.15)

However, the E1+ε-estimate may not be easy to find in applications.
It is next reasonable to generalize the notion of an E1+ε-solution and investigate the

possibility of a continuing E1+ε-solution even though its E1+ε-norm may blow up.

Definition 1.11. Suppose that F is of the class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈
[0, 1 + μ)}, τ > 0, v0 ∈ Eτ

ε and Iτ ⊂ R is an interval of the form [τ, a).
We say that U : Iτ → E0 ∪ E1+ε is a piecewise E1+ε-solution of (1.1) on Iτ if and only

if U(τ) = uτ and, for each T ∈ Iτ \ {τ}, there exist a number NT ∈ N and a partition
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τ = τ0 < τ1 < · · · < τNT
< T = τNT +1 of [τ, T ] such that

‖U(t) − U(τi−1)‖E0

t→τ−
i−1−−−−−→ 0, i = 2, . . . , NT + 1, (1.16)

lim sup
t→τ−

i−1

‖U(t)‖E1+ε
= ∞, i = 2, . . . , NT + 1, (1.17)

U ∈ L∞
loc((τi−1, τi), E1+ε), i = 1, . . . , NT + 1, (1.18)

(t − τi−1)ε‖U(t)‖E1+ε

t→τ+
i−1−−−−−→ 0, i = 1, . . . , NT + 1, (1.19)

U(τi−1) = uτi−1 , i = 1, . . . , NT + 1, (1.20)

U(t) = U(t, τi−1)uτi−1 +
∫ t

τi−1

U(t, s)F (s,U(s)) ds, t ∈ (τi−1, τi), i = 1, . . . , NT + 1.

(1.21)

If the interval Iτ = [τ, a) is finite, U : [τ, a) → E0 ∪ E1+ε is a piecewise E1+ε-solution
of (1.1) on Iτ = [τ, a) and a is the limit of a strictly increasing sequence {τi, i ∈ N} of
times such that lim supt→τ−

i
‖U(t)‖E1+ε = ∞, then a is called an accumulation time of

singular times.

In the theorem below, the E1+ε-solution will be continued as a piecewise E1+ε-solution.

Theorem 1.12. Suppose that Assumptions 1.1 and 1.2 are satisfied and F is of the
class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1+μ)}. Suppose additionally that (1.13)
holds, E1 is reflexive and, given any τ ∈ R, uτ ∈ Eτ

ε ,

sup
t∈[τ,T )

‖u(t)‖E1 < ∞ (1.22)

whenever T ∈ (τ, ∞) and an E1+ε-solution u = u(·, τ, uτ ) of (4.13) exists for all t ∈ [τ, T ).
Finally, suppose that

when τ ∈ R, uτ ∈ E1 and Tuτ < ∞, the map [τ, Tuτ ) � t → u(t) ∈ E0,

where u = u(·, τ, uτ ) is a E1+ε-solution of (1.1), is uniformly continuous. (1.23)

Under these assumptions, given τ ∈ R, uτ ∈ E1 and having a unique E1+ε-solution
u = u(·, τ, Tuτ ) of (1.1) for which Tuτ < ∞, there exist a ∈ (Tuτ ,∞] and the unique
extension U : [τ, a) → E1 of u such that U is a piecewise E1+ε-solution of (1.1) on [τ, a)
and either a = ∞ or a is an accumulation time of singular times.

To enhance the accessibility of the above-mentioned abstract results and assumptions,
let us consider an illustrative problem of the form⎧⎪⎨

⎪⎩
ut + θ(t)(−Δ)mu = f(t, x, u), t > τ, x ∈ Ω,

∂ju

∂νj

∣∣∣
∂Ω

= 0, j = 0, . . . , m − 1, u(τ, ·) = uτ ∈ L2(Ω) = E1,

(1.24)
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where Ω ⊂ R
N is a bounded C2m-domain, θ ∈ Cμ

loc(R, (0,∞)) for some μ ∈ (0, 1] and
the θ(t)(−Δ)m =: A(t) are self-adjoint positive definite operators in L2(Ω).

Dealing with (1.24), on the one hand, one can relate Eα to the complex interpola-
tion space ([L2(Ω), H2m(Ω) ∩ Hm

0 (Ω)]1−α)′ when α ∈ (0, 1) and to [L2(Ω), H2m(Ω) ∩
Hm

0 (Ω)]α−1 when α ∈ (1, 2). On the other hand, Eα can be viewed as the extrapolated
fractional scale generated by (L2(Ω), A(t)).

Since sup‖φ‖E1=1 ‖(A(t) − A(s))φ‖E0 can be bounded from above by |θ(t) − θ(s)| and
thus, for t, s ∈ I, by a multiple of |t − s|μ, we have

A(·) ∈ Cμ
loc(R, L(E1, E0)) with E1 = L2(Ω), E0 = (H2m(Ω) ∩ Hm

0 (Ω))′.

There then exists a continuous process {U(t, τ) : (t, τ) ∈ R
2, t � τ ∈ R} ⊂ L(E0)

associated with the Dirichlet initial boundary-value problem for

ut + θ(t)(−Δ)mu = 0, t > τ, x ∈ Ω,

which possesses smoothing properties as in (1.2) and (1.3).
The above-mentioned properties of the linear process enable a satisfactory treatment

of (1.24) in L2(Ω) including the case of critical exponent, which for m = 1 is

ρc =
N + 4

N
. (1.25)

A crucial ingredient in this consideration is that the nonlinear right-hand side in (1.24)
will then belong to the class L(ε, ρ, γ(ε), η, Cη) of Lipschitz maps relative to {Eα, α ∈
[0, 1 + μ)}.

Coming back to (1.24) and following Remark 1.8, we can now apply Theorem 1.7 with
w0 ∈ E1 = L2(Ω). Consequently, (1.24) is locally well posed in L2(Ω) up to the critical
case, which for m = 1 involves the exponent ρc as in (1.25).

It does happen that we often have an a priori -like L2(Ω)-bound on the solution
of (1.24);

‖u(t)‖2
L2(RN ) � g(τ, ‖uτ‖L2(Ω), T ), t ∈ [τ, T ). (1.26)

The estimate in (1.26) can be derived by taking the L2(Ω)-product of both sides of the
equation with u if f in (1.24) is a logistic-type map of the form u − u|u|ρc−1 or, more
generally, when f satisfies a structure condition uf(t, x, u) � C(t, x)u2+D(t, x), for some
C ∈ L∞

loc(R × R
N , R) and D ∈ L1

loc(R, L1(Ω)), that does not involve any monotonicity
condition.

If f is almost critical, that is, if |f | is estimated by a power function c(Cη + η|u|ρc)
with η suitably small, then, due to Theorem 1.10, (1.26) implies that the solution exists
globally in time, which, however, may not be true in the critical case.

For continuation of the solution in the critical case, besides (1.26) some additional
information becomes needed. This could be an a priori -like bound in L∞(Ω) or in H1(Ω),
which, however, can rarely be found for (1.24) without more specific assumptions or
techniques.
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Even though no such ‘better’ estimate on the solutions of (1.24) can be provided, we
can obtain the information that

u ∈ W 1,1((τ, T ), (H2m(Ω) ∩ Hm
0 (Ω))′). (1.27)

Then viewing u as a uniformly continuous map in E0 = (H2m(Ω) ∩ Hm
0 (Ω))′, we can

construct continuation of the solution as in Theorem 1.12.
Since in applications characterization of the scale in terms of suitable function spaces

plays an important role, we finally mention that a situation does arise when the length of a
scale interval for which such an effective characterization applies shrinks to 1. An example
of the operator A can be found in [18] such that the associated scale can be characterized
with the aid of Bessel potentials spaces H4σ

p (RN ) as long as σ ∈ [−1−N/4p′ +N/4r, 1+
N/4p − N/4r]. Consequently, although the associated process U(t, s) = e−(t−s)A, ∞ >

t � s > −∞, satisfies, for some ω ∈ R, estimates of the form

‖U(t, s)‖L(H4σ
p (RN ),H4ξ

p (RN )) � Me−ω(t−s)/(t − s)ξ−σ, t > s,

this can be ensured only for σ ∈ [−1 − N/4p′ + N/4r, 1 + N/4p − N/4r]. Furthermore,
the length of the latter interval is equal to 2 + N/4 − N/2r and it actually tends to one
as r ↘ N/4 and N = 4.

The proofs of the above-mentioned abstract results will be given in § 2. In § 3 we discuss
sufficient conditions for Assumptions 1.1 and 1.2 in terms of A(t). In § 4 we show from a
broader perspective how the abstract results work in applications.

2. Proofs of abstract results

2.1. Uniqueness and Hölder continuity of the E1+ε-solution: proof of
Theorem 1.6

Given −∞ < τ < T < ∞ we define

M
T
τ :=

{
ψ ∈ L∞

loc((τ, T ], E1+ε) : lim
t→τ+

(t − τ)ε‖ψ(t)‖E1+ε = 0
}

. (2.1)

Theorem 1.6 is a consequence of the following two lemmas.

Lemma 2.1. Suppose that Assumptions 1.1 and 1.2 hold, F is of the class
L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1+μ)}, u ∈ MT

τ and (1.6) is valid for t ∈ (τ, T ]
with some uτ ∈ E0.

Then u ∈ Cν([δ, T ], E1+θ) for any δ ∈ (τ, T ), ν ∈ (0, ν∗) and ν∗ = min{γ(ε), μ}−θ > 0.

Proof. Due to Assumptions 1.1 and 1.2, given a bounded time interval [−T, T ] ⊂ R

and any 0 � ζ � σ < 1 + μ, one can choose a positive constant M for which we have

‖U(t, τ)‖L(Eζ ,Eσ) � M(t − τ)−(σ−ζ), T � t > τ � −T, (2.2)

and, if 1 � σ − ζ � 0,

‖U(t, τ) − Id‖L(Eσ,Eζ) � M(t − τ)σ−ζ , T � t > τ � −T. (2.3)
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On the other hand, since u ∈ MT
τ , for any δ > τ close enough to τ we have that

‖u(t)‖E1+ε � (t− τ)−ε for t ∈ (τ, δ), and letting c̃ = c(η +Cη) we deduce from (1.5) that

‖F (s, u(s))‖Eγ(ε) � c̃((s − τ)−ερ + 1), t ∈ (τ, δ). (2.4)

Without loss of generality, we assume that δ > τ is close enough to τ and (2.4) holds.
Since u ∈ MT

τ and δ > τ , it follows that ‖u‖L∞((δ,T ),E1+ε) � cδ and by (1.5) we conclude
that

mδ := ‖F (t, u(t))‖L∞((δ,T ),Eγ(ε)) < ∞. (2.5)

For τ < δ � t � t + h � T , from the variation of constants formula we infer that

‖u(t + h) − u(t)‖E1+θ
� ‖(U(t + h, τ) − U(t, τ))uτ‖E1+θ

+
∫ t+h

t

‖U(t + h, s)F (s, u(s))‖E1+θ
ds

+
∫ t

δ

‖(U(t + h, s) − U(t, s))F (s, u(s))‖E1+θ
ds

+
∫ δ

τ

‖(U(t + h, s) − U(t, s))F (s, u(s))‖E1+θ
ds

=: J1 + J2 + J3 + J4.

Choosing arbitrary
ε̂ ∈ (θ, μ) ∩ (θ, γ(ε)) (2.6)

and applying (2.2) and (2.3), we obtain for J1 = ‖(U(t + h, t) − Id)U(t, τ)uτ‖E1+θ
that

J1 � ‖U(t + h, t) − Id‖L(E1+ε̂,E1+θ)‖U(t, τ)‖L(E0,E1+ε̂)‖uτ‖E0

� M2hε̂−θ(t − τ)−1−ε̂‖uτ‖E0

� M2hε̂−θ(δ − τ)−1−ε̂‖uτ‖E0 .

Using (2.2), (2.5) and (2.6) we get J2 �
∫ t+h

t
‖U(t+h, s)‖L(Eγ(ε),E1+θ)‖F (s, u(s))‖Eγ(ε) ds

and

J2 � Mmδ

∫ t+h

t

(t + h − s)γ(ε)−θ−1 ds � Mmδ(γ(ε) − θ)−1(T − τ)γ(ε)−ε̂hε̂−θ.

On the other hand, by (2.3), (2.5) and (2.6), we have

J3 �
∫ t

δ

‖U(t + h, t) − Id‖L(E1+ε̂,E1+θ)‖U(t, s)‖L(Eγ(ε),E1+ε̂)‖F (s, u(s))‖Eγ(ε) ds

� M2mδ

∫ t

δ

hε̂−θ(t − s)γ(ε)−1−ε̂ ds

� M2(γ(ε) − ε̂)−1mδh
ε̂−θ(T − τ)γ(ε)−ε̂,
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whereas due to (2.4) we get

J4 �
∫ δ

τ

‖U(t + h, t) − Id‖L(E1+ε̂,E1+θ)‖U(t, s)‖L(Eγ(ε),E1+ε̂)‖F (s, u(s))‖Eγ(ε) ds

� c̃M2
∫ δ

τ

hε̂−θ(t − s)γ(ε)−1−ε̂((s − τ)−ερ + 1) ds

� c̃M2hε̂−θ

(
B(γ(ε) − ε̂, 1 − ερ)

(Tuτ − τ)γ(ε)−ε̂

(δ − τ)ερ
+ (γ(ε) − ε̂)−1(Tuτ − τ)γ(ε)−ε̂

)
.

Hence, for any δ > τ close enough to τ there is a c̄ > 0 such that ‖u(t+h)−u(t)‖E1+θ
�

c̄hε̂−θ for each δ � t � t+h � T . Since ε̂ could be any number satisfying (2.6), we obtain
the result. �

Lemma 2.2. If ϕ, ϕ̃ ∈ MT
τ , uτ ∈ E0 and (1.6) is valid in (τ, T ] both for u = ϕ and

u = ϕ̃, then ϕ and ϕ̃ are identical on (τ, T ].

Proof. By assumption, we have

‖ϕ(t) − ϕ̃(t)‖E1+ε

� cCηM

∫ t

τ

(t − s)γ(ε)−1−ε‖ϕ(s) − ϕ̃(s)‖E1+ε ds

+ cηM

∫ t

τ

(t − s)γ(ε)−1−ε‖ϕ(s) − ϕ̃(s)‖E1+ε(‖ϕ(s)‖ρ−1
E1+ε

+ ‖ϕ̃(s)‖ρ−1
E1+ε

) ds,

t ∈ (τ, T ].

Since ϕ, ϕ̃ ∈ MT
τ , given ξ ∈ (0, 1), there is a certain h ∈ (0, ξ) such that

(t − τ)ε‖ϕ(t)‖E1+ε + (t − τ)ε‖ϕ̃(t)‖E1+ε
� ξ, t ∈ (τ, τ + h).

Using this and restricting t to the interval (τ, τ + h), where h ∈ (0, ξ), we obtain

(t − τ)ε‖ϕ(t) − ϕ̃(t)‖E1+ε

� cCηMB(γ(ε) − ε, 1 − ε)ξγ(ε)−ε sup
s∈(τ,τ+h)

(s − τ)ε‖ϕ(s) − ϕ̃(s)‖E1+ε

+ ξρ−1+γ(ε)−ερ2cηMB(1 − ερ, γ(ε) − ε) sup
s∈(τ,τ+h)

(s − τ)ε‖ϕ(s) − ϕ̃(s)‖E1+ε .

We remark that the inequality above will hold true if we replace its left-hand side by
sups∈(τ,τ+h)(s−τ)ε‖ϕ(s)− ϕ̃(s)‖E1+ε . On the other hand, recalling that ρ > 1, γ(ε) � ρε

and choosing ξ > 0 small enough, we can ensure that the right-hand side above is less
than 1

2 sups∈(τ,τ+h)(s− τ)ε‖ϕ(s)− ϕ̃(s)‖E1+ε . Consequently, sups∈(τ,τ+h)(s− τ)ε‖ϕ(s)−
ϕ̃(s)‖E1+ε = 0, and thus ϕ = ϕ̃ in [τ, τ + h] for some h > 0.

Now, if τ∗ ∈ (τ, τ + h] is such that ϕ(τ∗) = ϕ̃(τ∗), then, applying the variation of
constants formula with the initial time τ∗ and with the initial value ϕ(τ∗) = ϕ̃(τ∗), we
obtain

ϕ(t) − ϕ̃(t) =
∫ t

τ∗
U(t, s)(F (s, ϕ(s)) − F (s, ϕ̃(s))) ds in [τ∗, T ].
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Hence, letting c∗ = sups∈[τ∗,T ](‖ϕ(s)‖ρ−1
E1+ε

+ ‖ϕ̃(s)‖ρ−1
E1+ε

),

‖ϕ(t) − ϕ̃(t)‖E1+ε � cM(Cη + ηc∗)
∫ t

τ∗
(t − s)γ(ε)−1−ε‖ϕ(s) − ϕ̃(s)‖E1+ε

ds in [τ∗, T ],

and by the singular version of Gronwall’s inequality we conclude that ϕ and ϕ̃ coincide.
�

2.2. Proof of Theorem 1.7

Let us fix an interval I = (t0 − ξ, t0 + ξ) around t0 such that (1.2) holds with ζ = γ(ε)
and σ = 1+ ε. Let us also choose an interval J centred at t0 such that I \J is the union
of two intervals of length l > 0.

We first note that if δ∗ ∈ (0, l), τ ∈ J , δ ∈ (0, 1] ∩ (0, δ∗), v ∈ C((τ, τ + δ], E1+ε),
λ(v, t) := sups∈(τ,t]{(s − τ)ε‖v(s)‖E1+ε}, R > 0, t ∈ (τ, τ + δ] and λ(v, t) � R, then, by
Assumption 1.1 and (1.5), we have

‖U(t, s)F (s, v(s))‖E1+ε � ‖U(t, s)‖L(Eγ(ε),E1+ε)‖F (s, v(s))‖Eγ(ε)

and
‖U(t, s)F (s, v(s))‖E1+ε � M(t − s)−1+γ(ε)−εc(η‖v(s)‖ρ

E1+ε
+ Cη).

Consequently,

(t − τ)ε

∥∥∥∥
∫ t

τ

U(t, s)F (s, v(s)) ds

∥∥∥∥
E1+ε

� cCηM(t − τ)ε

∫ t

τ

(t − s)−1+γ(ε)−ε ds

+ cηM(t − τ)ε

∫ t

τ

(t − s)−1+γ(ε)−ε(s − τ)−ρε[(s − τ)ε‖v(s)‖E1+ε
]ρ ds

� cMB(1 − ρε, γ(ε) − ε)[Cη(t − τ)γ(ε) + ηλρ(v, t)]

� cMBε,ρ[Cη(t − τ)γ(ε) + ηRρ]. (2.7)

Also, if v, ṽ ∈ C((τ, τ + δ], E1+ε), t ∈ (τ, τ + δ], λ(v, t) � R and λ(ṽ, t) � R, then, with
a similar usage of Assumption 1.1 and (1.4), we obtain

(t − τ)ε

∥∥∥∥
∫ t

τ

U(t, s)[F (s, v(s)) − F (s, ṽ(s))] ds

∥∥∥∥
E1+ε

� cCηM(t − τ)ε

∫ t

τ

(t − s)−1+γ(ε)−ε(s − τ)−ε(s − τ)ε‖v(s) − ṽ(s)‖E1+ε
ds

+ cηM(t − τ)ε

∫ t

τ

(t − s)−1+γ(ε)−ε(s − τ)−ρε

× (((s − τ)ε‖v(s)‖E1+ε
)ρ−1 + ((s − τ)ε‖ṽ(s)‖E1+ε

)ρ−1)

× (s − τ)ε‖v(s) − ṽ(s)‖E1+ε ds.
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Hence, letting
Γε(t) := cMBε,ρ[Cη(t − τ)γ(ε)−ε + 2ηRρ−1], (2.8)

we conclude that

(t − τ)ε

∥∥∥∥
∫ t

τ

U(t, s)[F (s, v(s)) − F (s, ṽ(s))] ds

∥∥∥∥
E1+ε

� Γε(t) sup
s∈(τ,t]

{(s − τ)ε‖v(s) − ṽ(s)‖E1+ε}. (2.9)

We now choose R0 � R > 0 and δ ∈ (0, 1] ∩ (0, δ∗) such that

cηMBε,ρR
ρ−1
0 = 1

8 and cCηMBε,ρδ
γ(ε)−ε = min{ 1

8R, 1
4}. (2.10)

We also set
r := 1

4R � 1
4R0 =

1
4(8cηMBε,ρ)1/(ρ−1)

and, since limt→τ+ ‖(t − τ)εU(t, τ)w0‖E1+ε
= 0, we choose δ̄0 ∈ (0, δ] such that

‖(t − τ)εU(t, τ)w0‖E1+ε � 1
2R, τ < t � τ + δ̄0. (2.11)

For any fixed δ0 ∈ (0, δ̄0], uτ ∈ Bδ0
Eτ

ε
(w0, r), we then define

K(R, τ) =
{

v ∈ C((τ, τ + δ0], E1+ε), sup
t∈(τ,τ+δ0]

{(t − τ)ε‖v(t)‖E1+ε
} � R

}

and let d(v, ṽ) = supt∈(τ,τ+δ0]{(t − τ)ε‖v(t) − ṽ(t)‖E1+ε} for v, ṽ ∈ K(R, τ).
(K(R, τ), d) is a complete metric space and we next consider the map

(T v)(t) = U(t, τ)uτ +
∫ t

τ

U(t, s)F (s, v(s)) ds, v ∈ K(R, τ), t ∈ (τ, τ + δ0].

Adapting Lemma 2.1, one can see that T v ∈ C((τ, τ + δ0], E1+ε) for v ∈ K(R, τ).
It then follows from (1.8), (2.7), (2.10) and (2.11) that

‖(t − τ)ε(T v)(t)‖E1+ε

� (t − τ)ε

∥∥∥∥U(t, τ)uτ +
∫ t

τ

U(t, s)F (s, v(s)) ds

∥∥∥∥
E1+ε

� ‖(t − τ)εU(t, τ)uτ‖E1+ε + cM(t − τ)ε

∫ t

τ

(t − s)−1+γ(ε)−ε(η‖v(s)‖ρ
E1+ε

+ Cη) ds

� ‖(t − τ)εU(t, τ)(uτ − ω0)‖E1+ε + ‖(t − τ)εU(t, τ)ω0‖E1+ε + cMηBε,ρR
ρ

+ cMCηBε,ρδ
γ(ε)
0

� r + ‖(t − τ)εU(t, τ)ω0‖E1+ε + cMηBε,ρR
ρ + cMCηBε,ρδ

γ(ε)−ε
0 δε

0

� R,
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which yields that T takes K(R, τ) into K(R, τ). On the other hand, applying (2.8)–(2.10),
we get d(T v1, T v2) � 1

2d(v1, v2).
Consequently, due to the Banach fixed-point theorem, we infer that T a unique fixed

point u = u(·, τ, uτ ) in K(R, τ) and we now show that limt→τ+ ‖(t − τ)εu(t)‖E1+ε = 0.
Adapting (2.7), we have for each t ∈ (τ, τ + δ0] and the above fixed point u,

(t − τ)ε‖u(t)‖E1+ε
� (t − τ)ε‖U(t, τ)uτ‖E1+ε + cMBε,ρ[Cη(t − τ)γ(ε) + ηRρ−1λ(u, t)],

where, by assumption, given any ξ > 0 we can choose h ∈ (0, ξ) such that for t ∈ (τ, τ +h)
we have (t − τ)ε‖U(t, τ)uτ‖E1+ε < ξ. Hence, we obtain

(t − τ)ε‖u(t)‖E1+ε � ξ + cMBε,ρ[Cηξγ(ε) + ηRρ−1λ(u, t)], t ∈ (τ, τ + h).

Since the right-hand side above is a non-decreasing function of t, we obtain

λ(u, t) � ξ + cMBε,ρ[Cηξγ(ε) + ηRρ−1λ(u, t)], t ∈ (τ, τ + h),

and, via (2.10), 7
8λ(u, t) � ξ + cMBε,ρCηξγ(ε), t ∈ (τ, τ + h). This yields

λ(u, t) = sup
s∈(τ,t]

{(s − τ)ε‖u(s)‖E1+ε} → 0 as t → τ+, (2.12)

which ensures that (t − τ)εu(t) → 0 in E1+ε as t → τ+.
Finally, letting u(τ) = uτ , we extend the fixed point u = u(·, τ, uτ ) constructed above

to the interval [τ, τ + δ0] and obtain the E1+ε-solution of (1.1). Since the uniqueness
follows from Theorem 2.2, part (i) of Theorem 1.7 is proved.

Part (ii) now follows from Corollary 2.3 (see also Remark 2.4).

Corollary 2.3. Suppose that Assumptions 1.1 and 1.2 hold, F : R × E1+ε → Eγ(ε)

is continuous and constants ρ > 1, 0 < ε < min{1/ρ, μ}, γ(ε) ∈ [ρε, 1) exist such that
for each η > 0 there exists Cη > 0 and, moreover, for any bounded time interval I there
exists c > 0 for which

‖F (t, v)−F (t, w)‖Eγ(ε) � c‖v−w‖E1+ε(η‖v‖ρ−1
E1+ε

+η‖w‖ρ−1
E1+ε

+Cη), v, w ∈ E1+ε, t ∈ I,

and
‖F (t, v)‖Eγ(ε) � c(η‖v‖ρ

E1+ε
+ Cη), v, w ∈ E1+ε, t ∈ I.

Then, given any t0 ∈ R, τ in a certain interval J ⊂ R centred at t0 and given any
r0 > 0, there exists δ0 > 0 such that for any initial condition uτ ∈ Bδ0

Eτ
ε
(0, r0) there exists

a unique E1+ε-solution u = u(·, τ, uτ ) of (1.1) on [τ, τ + δ0].

Proof. Letting w0 = 0, observe via Theorem 1.7 that given r0 > 0 one can now choose
η > 0 such that r in (1.9) satisfies r > r0. Proceeding as in the proof of Theorem 1.7, we
obtain for any uτ ∈ Bδ0

Eτ
ε
(0, r) the existence of an E1+ε-solution u = u(·, τ, uτ ) of (1.1)

on [τ, τ + δ0]. �
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Remark 2.4. For subcritical F , without loss of generality one can assume that η > 0
in (1.4) and (1.5) can be chosen arbitrarily small. Indeed, given ρ > 1, ε ∈ (0, 1/ρ),
ε < μ, γ(ε) ∈ (ρε, 1), we can choose ρ̃ > ρ close enough to ρ and have ε ∈ (0, 1/ρ̃) and
γ(ε) ∈ (ρ̃ε, 1). Then η‖w‖ρ−1

E1+ε
can be estimated by η̃‖w‖ρ̃−1

E1+ε
+ cη̃,η, which yields (1.4)

and (1.5) with ε and γ(ε) as before, ρ replaced by ρ̃ suitably close to ρ and η replaced
by η̃, which we can fix as small as we wish. Parameters ε, γ(ε) and c in (1.4) and (1.5)
will remain the same and the only difference will come from the replacement of Cη by
Cη + cη̃,η, which will not influence the heart of our consideration.

Proof. We now prove conditions (1.10)–(1.12). As in (2.7), for θ ∈ (0, γ(ε)) ∩ (0, μ)
and for the unique E1+ε-solution u = u(·, τ, uτ ) of (1.1) we obtain

(t − τ)θ‖u(t)‖E1+θ
� (t − τ)θ‖U(t, τ)uτ‖E1+θ

+ (t − τ)θ

∫ t

τ

‖U(t, s)F (s, u(s))‖E1+θ
ds

� (t − τ)θ‖U(t, τ)uτ‖E1+θ
+ cMCη(γ(ε) − θ)−1(t − τ)γ(ε)

+ ηcMB(1 − ερ, γ(ε) − θ)
(

sup
τ<s�t

{(s − τ)ε‖u(s)‖E1+ε}
)ρ

.

Recalling that uτ ∈ Bδ0
Eτ

ε
(w0, r) ∩ Eτ

θ and by using (2.12), we conclude that (t −
τ)θ‖u(t)‖E1+θ

→ 0 as t → τ+, which proves (1.10).
For θ ∈ (0, γ(ε)) ∩ (0, μ), as in (2.9) we next have

(t − τ)θ‖u(t, τ, u1
τ ) − u(t, τ, u2

τ )‖E1+θ

� (t − τ)θ‖U(t, τ)(u1
τ − u2

τ )‖E1+θ

+ (t − τ)θ

∫ t

τ

‖U(t, s)[F (s, u(s, τ, u1
τ )) − F (s, u(s, τ, u2

τ ))]‖E1+θ
ds

� (t − τ)θ‖U(t, τ)(u1
τ − u2

τ )‖E1+θ

+ Γθ(t) sup
τ<s�τ+δ0

{(s − τ)ε‖u(s, τ, u1
τ ) − u(s, τ, u2

τ )‖E1+ε}, (2.13)

where

Γθ(t) = cM(1 + θ, γ(ε), T ) max{B(γ(ε) − θ, 1 − ε), B(1 − ρε, γ(ε) − θ)}
× [Cη(t − τ)γ(ε)−θ + 2ηRρ−1].

Taking θ = ε we have

(t − τ)ε‖u(t, τ, u1
τ ) − u(t, τ, u2

τ )‖E1+ε

� (t − τ)ε‖U(t, τ)(u1
τ − u2

τ )‖E1+ε

+ Γε(t) sup
τ<s�τ+δ0

{(s − τ)ε‖u(s, τ, u1
τ ) − u(s, τ, u2

τ )‖E1+ε
}.
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Since, by (2.10), Γε(τ + δ0) � 1
2 and Γε(t) is increasing with respect to t, we conclude

that

sup
τ<s�τ+δ0

{(s − τ)ε‖u(s, τ, u1
τ ) − u(s, τ, u2

τ )‖E1+ε}

� 2 sup
τ<s�τ+δ0

(s − τ)ε‖U(s, τ)(u1
τ − u2

τ )‖E1+ε .

Consequently, using the above inequality and (2.13), we obtain (1.11).
Assuming that 0 � θ < min{γ(ε), μ} and limt→τ+(t − τ)θ‖U(t, τ)uτ − uτ‖E1+θ

= 0,
we now show that limt→τ+(t − τ)θ‖u(t, τ, uτ ) − uτ‖E1+θ

= 0, for which we first use the
variation of constants formula, (1.2) and (1.5) to obtain for each t ∈ (τ, τ + δ0],

(t − τ)θ‖u(t) − uτ‖E1+θ

� (t − τ)θ‖U(t, τ)uτ − uτ‖E1+θ
+ (t − τ)θ

∫ t

τ

‖U(t, s)F (s, u(s))‖E1+θ
ds

� (t − τ)θ‖U(t, τ)uτ − uτ‖E1+θ

+ cM(t − τ)θ

∫ t

τ

(t − s)γ(ε)−1−θ(Cη + η(s − τ)−ερ‖(s − τ)εu(s)‖ρ
E1+ε

) ds

� (t − τ)θ‖U(t, τ)uτ − uτ‖E1+θ
+ cCηMB(1 − ρε, γ(ε) − θ)(t − τ)γ(ε)

+ cMηB(1 − ρε, γ(ε) − θ)λρ(u, t). (2.14)

Thus, (1.12) is a consequence of (2.12) and (2.14). The proof of Theorem 1.7 is complete.
�

2.3. Proof of Remark 1.8

Note first that E1+ε ⊂ Eτ
ε because whenever ϕ ∈ E1+ε, by Assumption 1.1, we have

(t − τ)ε‖U(t, τ)ϕ‖E1+ε
� M(t − τ)ε‖ϕ‖E1+ε

→ 0 as t → τ+.

Now, if ψ ∈ E1 and E1+ε � ϕn
E1−−→ ψ, then, again using Assumption 1.1, we obtain

(t − τ)ε‖U(t, τ)ψ‖E1+ε � M‖ψ − ϕn‖E1 + (t − τ)ε‖U(t, τ)ϕn‖E1+ε

and for each ζ > 0 we can choose n ∈ N and hζ > 0 such that the right-hand side of
the above inequality becomes less than ζ uniformly for t ∈ (τ, τ + hζ). This proves that
E1 ⊂ Eτ

ε .
By assumption, ‖ϕ‖E

τ
ε

δ = 0 implies that 0 = ‖U(t, τ)ϕ‖E0 → ‖ϕ‖E0 as t → τ+ and we
get ϕ = 0. It then follows easily that ‖ · ‖E

τ
ε

δ is the norm in Eτ
ε .

Finally, if ψ ∈ {φ ∈ E1 : ‖φ − w0‖E1 � r/M}, then sups∈(τ,τ+δ](s − τ)ε‖U(s, τ)(ψ −
w0)‖E1+ε

� M‖ψ−w0‖E1 � r and, evidently, ψ ∈ Bδ
Eτ

ε
(w0, r), which completes the proof

of part (i).
We can now apply Theorem 1.7 with w0 ∈ E1 and ensure that the time of existence δ0

can be chosen uniformly in a certain neighbourhood of a given point t0 ∈ R. Actually,
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following the proof of the existential part of Theorem 1.7, it suffices to ensure that the
number δ̄0(R) in (2.11) can be chosen uniformly with respect to τ ∈ J .

Choose w0 ∈ E1 and recall that E1+ε is dense in E1. Using (1.2) for any φ ∈ E1+ε we
have

sup
τ<t�τ+δ̄0

‖(t − τ)εU(t, τ)w0‖E1+ε � sup
τ<t�τ+δ̄0

‖(t − τ)εU(t, τ)(w0 − φ)‖E1+ε

+ sup
τ<t�τ+δ̄0

‖(t − τ)εU(t, τ)φ‖E1+ε

� M‖w0 − φ‖E1 + δ̄ε
0M‖φ‖E1+ε , τ ∈ J .

Note that φ can be chosen such that M‖w0−φ‖E1 � R/4 and δ̄0 such that δ̄ε
0M‖φ‖E1+ε

�
R/4, in which case supτ<t�τ+δ̄0

‖(t − τ)εU(t, τ)w0‖E1+ε
� R/2 for any τ ∈ J . �

Proof of Remark 1.9. We first prove that

lim
t→τ+

‖(U(t, τ) − I)ψ‖Eα = 0 for ψ ∈ Eα, α ∈ [0, 1 + μ). (2.15)

For this, observe that

‖(U(t, τ) − I)φ‖Eα � M(t − τ)β−α‖φ‖Eβ
→ 0 as t → τ+

whenever φ ∈ Eβ , 0 � α < β < 1 + μ. On the other hand, if Eβ � φn
Eα−−→ ψ ∈ Eα, then

‖(U(t, τ) − I)ψ‖Eα � (M + 1)‖ψ − φn‖Eα + ‖(U(t, τ) − I)φn‖Eα .

For ζ > 0 one can thus choose n ∈ N and hζ > 0 such that the right-hand side of the
above inequality will be less than ζ uniformly for t ∈ (τ, τ + hζ), which proves (2.15).

We next infer that

lim
t→τ+

‖u(t) − U(t, τ)uτ‖Eα
= 0 for α ∈ [0, 1), uτ ∈ Eα. (2.16)

Indeed, since u is an E1+ε-solution, for δ > τ close enough to τ and t ∈ (τ, δ) we have
‖u(t)‖E1+ε � (t − τ)−ε. Via (1.5), ‖F (s, u(s))‖Eγ(ε) � c̃((s − τ)−ερ + 1) for t ∈ (τ, δ).
Whenever γ(ε) � α < 1 and t ∈ (τ, δ), we can thus estimate ‖u(t) − U(t, τ)uτ‖Eα by∫ t

τ
‖U(t, s)‖L(Eγ(ε),Eα)‖F (s, u(s))‖Eγ(ε) ds and obtain

‖u(t) − U(t, τ)uτ‖Eα �
∫ t

τ

M(t − s)γ(ε)−αc̃((s − τ)−ερ + 1) ds

� c̃M((t − τ)1+γ(ε)−α−ερB(1 + γ(ε) − α, 1 − ερ)

+ (1 + γ(ε) − α)−1(t − τ)1+γ(ε)−α),

where the right-hand side tends to 0 as t → τ+. Connecting (2.15) and (2.16), we obtain
that limt→τ+ ‖u(t) − uτ‖Eα = 0 whenever uτ ∈ Eα and α ∈ [0, 1). By (1.12) and (2.15),
the latter is also true for α = 1 and using Theorem 1.6 we obtain (i).
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For the proof of (ii), note that given uτ ∈ E1+ε one can actually find a fixed point of
(T v)(t) = U(t, τ)uτ +

∫ t

τ
U(t, s)F (s, v(s)) ds in a complete metric space

Kξ(R, τ) = {v ∈ C([τ, τ + ξ], E1+ε) : |‖v − uτ |‖ � R}

with some R > 0, ξ > 0 and |‖v|‖ = supt∈[τ,τ+ξ] ‖v(t)‖E1+ε . Indeed, given v ∈ Kξ(R, τ),
we have by (2.15), (1.2) and (1.5) that for a suitably small ξ > 0,

‖(Tv)(t) − uτ‖E1+ε

� ‖U(t, τ)uτ − uτ‖E1+ε
+

∫ t

τ

‖U(t, s)‖L(Eγ(ε),E1+ε)‖F (s, v(s))‖Eγ(ε) ds

� ‖U(t, τ)uτ − uτ‖E1+ε + M

∫ t

τ

(t − s)γ(ε)−1−εc(η‖v(s)‖ρ
E1+ε

+ Cη) ds

� ‖U(t, τ)uτ − uτ‖E1+ε + c(ηRρ + Cη)M(γ(ε) − ε)−1ξγ(ε)−ε

� R, t ∈ [τ, τ + ξ].

Hence, T takes Kξ(R, τ) into itself. On the other hand, (1.2) and (1.4) imply that, for
v, ṽ ∈ Kξ(R, τ),

‖(Tv)(t) − (T ṽ)(t)‖E1+ε

�
∫ t

τ

‖U(t, s)‖L(Eγ(ε),E1+ε)‖F (s, v(s)) − F (s, ṽ(s))‖Eγ(ε) ds

� c(2ηRρ−1 + Cη) sup
t∈[τ,τ+ξ]

‖v(t) − ṽ(t)‖E1+εM(γ(ε) − ε)−1ξγ(ε)−ε, t ∈ [τ, τ + ξ],

so that for ξ > 0 small enough, T : Kξ(R, τ) → Kξ(R, τ) is a contraction. By uniqueness,
this ensures that an E1+ε-solution of (1.1) can be viewed as a fixed point of T in Kξ(R, τ),
and hence it is right-continuous in E1+ε at τ . Combining this with Theorem 1.6, we
get (ii).

Finally, applying (ii) and (1.11) with θ = 0, we obtain (iii). �

2.4. Proofs of continuation results

In what follows we prove Theorems 1.10 and 1.12.

Proof of Theorem 1.10 (i). Recalling Remark 1.8, we assume that Tuτ < ∞,
lim supt→T −

uτ
‖u(t, τ, uτ )‖E1 < r∗ for some r∗ > 0 and for any n ∈ N large enough

we define τn := Tuτ − 1/n, uτn := u(Tuτ
− 1/n, τ, uτ ). We then consider the Cauchy

problem
u̇(t) + A(t)u(t) = F (t, u(t)), t > τn, u(τn) = uτn

, (2.17)

where the initial conditions uτn
belong both to E1+ε and to a ball BE1(0, r∗) in E1 of

radius r∗. Also, the initial times τn converge to Tuτ .
We then have sups∈(τn,τn+δ](s−τn)ε‖U(s, τn)uτn

‖E1+ε
� M‖uτn

‖E1 � Mr∗, and hence
uτn

∈ Bδ
E

τn
ε

(0, Mr∗).
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Due to Theorem 1.7 (i) and (ii), there is a unique E1+ε-solution of (2.17) on [τn, τn+δ0],
where δ0 does not depend on n (see Remark 1.8 (ii)). By uniqueness, the solution coincides
with u(·, τ, uτ ) on [τn, Tuτ

] for all sufficiently large n. By concatenation, u = u(·, τ, uτ ) can
thus be continued as an E1+ε-solution onto [τ, Tuτ

+ δ0), which contradicts the definition
of Tuτ . �

Proof of Theorem 1.10 (ii). Assume that Tuτ < ∞ and let τn → T−
uτ

be such
that u(τn, τ, uτ ) → w0 in E1 as n → ∞. Then sups∈(τn,τn+δ](s − τn)ε‖U(s, τn)(uτn −
w0)‖E1+ε

� M‖uτn
− w0‖E1 . Hence, if r is chosen as in Theorem 1.7 relative to w0 and

N ∈ N is such that ‖uτn
− w0‖E1 � r/M for n � N , then uτn

∈ Bδ
E

τn
ε

(ω0, r) for n � N

and δ > 0 close to zero.
Due to Theorem 1.7 (see Remark 1.8 (ii)) there is a unique E1+ε-solution of (2.17) on

[τn, τn +δ0], where δ0 does not depend on n. Again, by uniqueness, this solution coincides
with u(·, τ, uτ ) on [τn, Tuτ

] for each n sufficiently large, and thus u = u(·, τ, uτ ) can be
continued as an E1+ε-solution of (1.1) onto [τ, Tuτ + δ0), which contradicts the definition
of Tuτ

. �

Proof of (1.15). Assume that Tuτ < ∞ and let lim supt→T+
uτ

‖u(t, τ, uτ )‖E1+ε < r∗

for some r∗ > 0. For any n ∈ N large enough, define τn := Tuτ − 1/n, uτn := u(Tuτ −
1/n, τ, uτ ) and consider the Cauchy problem (2.17).

Since uτn belongs to a ball BE1+ε(0, r∗) in E1+ε of radius r∗ > 0 around zero, for any
δ > 0 small enough, we have sups∈(τn,τn+δ](s−τn)ε‖U(s, τn)uτn‖E1+ε � δεM‖uτn‖E1+ε �
δεMr∗. Hence, if r > 0 is chosen relatively to w0 = 0 as in Theorem 1.7 and δε ∈
(0, r/r∗M), we observe that uτn belongs to Bδ

E
τn
ε

(0, r).
As a consequence of Theorem 1.7 (see Remark 1.8 (ii)), problem (2.17) has a unique

E1+ε-solution on [τn, τn+δ0], where δ0 does not depend on n. By uniqueness, the solution
coincides with u(·, τ, uτ ) on [τn, Tuτ ] for each n large enough and u = u(·, τ, uτ ) can be
continued as an E1+ε-solution of (1.1) onto [τ, Tuτ + δ0), which leads to a contradiction.

�

Proof of Theorem 1.12. By assumption, given τ ∈ R and uτ ∈ Eτ
ε , we obtain from

Theorem 1.7 that there exists a unique E1+ε-solution u of (1.1) on the maximal interval
of existence [τ, Tuτ

) and we define u0 := uτ , Tu0 := Tuτ
.

If Tu0 < ∞, then, using (1.22), (1.23) and the reflexivity of E1, we conclude that there
exists a certain u1 ∈ E1 such that

lim
t→T −

u0

‖u(t, τ, uτ ) − u1‖E0 = 0 and u(t, τ, uτ )
t→T −

u0−−−−⇀ u1

weakly in E1. Thus, u(t, τ, uτ ) can be extended to a function U0 defined on [τ, Tu0 ] and
satisfying the conditions U0 ∈ L∞

loc((τ, Tu0), E1+ε), U0(τ) = uτ = u0, U0(t)
E0−−→U0(Tu0) =

u1 ∈ E
Tu0
ε as t → T−

u0
and

U0(t) = U(t, τ)u0 +
∫ t

τ

U(t, s)F (s,U0(s)) ds for t ∈ (τ, Tu0).
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By Theorem 1.7, there exists a unique E1+ε-solution u(·, Tu0 , u1) of the Cauchy prob-
lem

u̇(t) + A(t)u(t) = F (t, u(t)), t > Tu0 , u(Tu0) = u1,

which can be continued on the maximal interval of existence [Tu0 , Tu1). Now, if Tu1 < ∞,
repeating the above argument we find u2 ∈ E1 such that

lim
t→T −

u1

‖u(t, Tu0 , u1) − u2‖E0 = 0 and u(t, Tu0 , u1)
t→T −

u1−−−−⇀ u2

weakly in E1. Thus, u(t, Tu0 , u1) can be extended to a function U1 defined on [Tu0 , Tu1 ]
and satisfying U1 ∈ L∞

loc((Tu0 , Tu1), E1+ε), U1(Tu0) = u1, U1(t)
E0−−→U1(Tu1) = u2 ∈ E

Tu1
ε

as t → T−
u1

and

U1(t) = U(t, Tu0)u1 +
∫ t

Tu0

U(t, s)F (s,U1(s)) ds for t ∈ (Tu0 , Tu1).

If in the (k + 1)th step we have Tuk
= ∞, then function U defined on [τ, ∞) by

concatenations of Uj , j = 0, . . . , k + 1, is an extension of u to a piecewise E1+ε-solution
on [τ, ∞).

Otherwise, proceeding inductively we obtain a sequence of maps Uj on [τ, Tuj ], j =
0, 1, . . . , and by concatenations we define a piecewise E1+ε-solution on [τ, a) with a :=∑∞

j=0Tuj . Now either a = ∞ or, if a < ∞, a is an accumulation time of singular times
Tj :=

∑j
l=0Tul

, j ∈ N.
The above construction ensures that the extension of a E1+ε-solution to a piecewise

E1+ε-solution is uniquely defined, and hence the proof is complete. �

3. Linear non-autonomous parabolic problems

In what follows we discuss sufficient conditions for Assumptions 1.1 and 1.2 in terms
of A(t).

Definition 3.1. The family {A(t) : t ∈ R} of closed operators A(t) : DX ⊂ X →
X, which are defined on the same dense subset DX of the Banach space X, is locally
uniformly sectorial (of the class LUS(DX , X) for short) if and only if for each t ∈ R the
complex half-plane {λ ∈ C : Re λ � 0} is contained in the resolvent set ρ(A(t)) of A(t)
and for any bounded time interval I ⊂ R there exists a certain M > 0 such that

‖(λI − A(t))−1‖L(X) � M

1 + |λ| , Re λ � 0, t ∈ I.

If {A(t) : t ∈ R} is of the class LUS(DX , X), then, for each s ∈ R, −A(s) generates
the asymptotically decaying C0-analytic semigroup {e−A(s)t : t � 0} in X. Actually, for
a family {A(t) : t ∈ R} of the class LUS(DX , X), we have that Re σ(A(s)) > a > 0 and

‖e−A(t)s‖L(X) � Ce−as, s � 0, ‖A(t)e−A(t)s‖L(X) � C1

s
e−as, s > 0,
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where a, C, C1 > 0 are independent of s > 0 and t in bounded time intervals (see
[26, § 1.1]). Consequently, fractional powers Aα(t) can be defined as the inverse of
A−α(t) : X → R(X),

A−α(t) =
1

Γ (α)

∫ ∞

0
sα−1e−A(t)s ds, α > 0. (3.1)

Also, one can consider the associated fractional power spaces Xα(t), α � 0,

Xα(t) := D(Aα(t)) with the norm ‖φ‖Xα(t) = ‖Aα(t)φ‖X for φ ∈ Xα, α > 0,

where for α = 0 we set A0(t) := Id, X0(t) := X. As in [26, § 1.9, (1.56)], we then have

‖Aα(t)e−A(t)s‖L(X) � cαe−ass−α, s > 0, (3.2)

where cα neither depends on s > 0 nor on t varying on bounded time intervals.
Since A(t) coincides with the inverse of A−1(t), it follows that X1(t) coincides as a set

with DX for every t ∈ R. Concerning topologies we have the following result.

Proposition 3.2. If {A(t) : t ∈ R} is of the class LUS(DX , X) and I ⊂ R is such that

sup
t,s∈I

‖A(t)A−1(s)‖L(X) < ∞, (3.3)

then the X1(t) are independent of t except for norms, which are uniformly equivalent
on I.

Proof. We have ‖φ‖X1(t) = ‖A(t)A−1(s)A(s)φ‖X � c‖A(s)φ‖X = c‖φ‖X1(s), t, s ∈ I.

�

If A(t) is a positive operator satisfying

∃ε>0 sup
s∈[−ε,ε]

‖Ais(t)‖L(X) < ∞, (3.4)

then fractional power spaces can be characterized as (see [28], also [5])

X(1−θ)α+θβ(t) = [Xα(t), Xβ(t)]θ, 0 < θ < 1, 0 � α < β < ∞.

Remark 3.3. It is known that (3.4) holds in many applications (see [8,11,19,24,25,
28]).

Definition 3.4. We will say that the family of positive operators {A(t) : t ∈ R} is of
the class BIP(X), that is, it consists of operators possessing bounded imaginary powers,
if and only if, given any t ∈ R, A(t) has the property (3.4).

Corollary 3.5. If {A(t) : t ∈ R} is of the class LUS(DX , X) ∩ BIP(X) and I ⊂ R

is such that (3.3) holds, then the Xθ(t), θ ∈ [0, 1], are independent of t ∈ I except for
norms, which are uniformly equivalent on I.
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Following [7], given {A(t) : t ∈ R} of the class LUS(DX , X), we consider the
extrapolated space X−1(t) generated by (X, A(t)), where X−1(t) is the completion of
(X, ‖A−1(t)·‖X). We extend A(t) to a closed operator in X−1(t) (with the same notation).

Whenever t, s ∈ R are such that A−1(s)A(t), A−1(t)A(s) : DX ⊂ X → X are bounded
operators (which happens, in particular, when the domains of the adjoint operators A′(t)
and A′(s) are the same), X−1(t) coincides with X−1(s) as, for some c1, c2 > 0, we have

c1‖A−1(s)x‖X � ‖A−1(t)x‖X � c2‖A−1(s)x‖X , x ∈ X

(see [6]). This leads to the following counterpart of Proposition 3.2 for extrapolated
spaces.

Proposition 3.6. If {A(t) : t ∈ R} is of the class LUS(DX , X) and

sup
t,s∈I

‖A−1(t)A(s)‖L(X) < ∞, (3.5)

then the X−1(t) are independent of t ∈ I except for norms, which are uniformly equivalent
on I.

Due to [7, Proposition V.1.3.1], if {A(t) : t ∈ R} is of the class LUS(DX , X), then
(the closed extension of) A(t) belongs to a class Lis(X, X−1(t)) of linear isomorphisms
from X into X−1(t). Furthermore, {λ ∈ C : Re λ � 0} ⊂ ρ(A(t)) and, given any bounded
time interval I,

‖(λI − A(t))−1‖L(X−1(t)) � M

1 + |λ| , Re λ � 0, t ∈ I, (3.6)

for some M > 0. Letting Y (t) = X−1(t) and applying (3.1), one can associate with
(Y (t), A(t)) the fractional power scale {Y α(t) : α � 0} and consider, as in [7, p. 266],

Xα(t) := Y α+1(t), α ∈ [−1,∞),

which is the extrapolated fractional power scale of order 1 generated by (X, A(t)).

Corollary 3.7. If {A(t) : t ∈ R} is of the class LUS(DX , X) ∩ BIP(X) and I ⊂ R is
such that (3.3) and (3.5) hold, then for each θ ∈ [−1, 1] the spaces Y θ+1(t) = Xθ(t) are
independent of t ∈ I, except for norms which are uniformly equivalent on I; that is, for
every θ ∈ [−1, 1],

‖φ‖Xθ(t) � c‖φ‖Xθ(s), s, t ∈ I,

for some c > 0 and every φ from the set Xθ(t) = Xθ(s).

Given t0 ∈ R, α0 ∈ [0, 1) and letting μ0 := 1 − α0, we next define

Eα := Y α+α0(t0), ‖ · ‖Eα = ‖Aα+α0(t0) · ‖Y (t0), α ∈ [0, 1 + μ0]. (3.7)
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Lemma 3.8. Suppose that {A(t) : t ∈ R} is of the class LUS(DX , X)∩BIP(X), (3.3)
and (3.5) hold on each bounded time interval I and {Eα, α ∈ [0, 1 + μ0]} is as in (3.7),
where μ0 > 0. Then

(i) {A(t) : t ∈ R} is of the class LUS(DE0 , E0) with DE0 = E1;

(ii) for any bounded time interval I ⊂ R and σ ∈ [0, 1 + μ0], there exist constants
c, c′, c′′ > 0 such that for each t, s ∈ I we have

‖φ‖Eσ � c′′‖Aσ(t)φ‖E0 � c‖Aσ(s)φ‖E0 � c′‖φ‖Eσ
, φ ∈ Eσ. (3.8)

Proof. Recall that {Y α(t) : α � 0} is the fractional power scale generated by
(Y (t), A(t)). Hence, A(t) can be viewed as a closed densely defined operator in Y α0(t)
with the domain Y α0+1(t). The resolvent set of A(t) in this setting will still contain
{λ ∈ C : Re λ � 0}, and for each bounded time interval I there will be a constant M > 0
such that

‖(λI − A(t))−1φ‖Y α0 (t) � M

1 + |λ| ‖φ‖Y α0 (t), Re λ � 0, t ∈ I, φ ∈ Y α0(t).

Part (i) is thus a consequence of Corollary 3.7 and (3.6).
Concerning part (ii), we first observe that, due to Corollary 3.7, if φ ∈ Eσ, then φ

belongs to both of the sets Y σ+α0(t) and Y σ+α0(s) as these sets coincide for t, s ∈ R

and Aσ(t)φ and Aσ(s)φ are the elements of E0 = Y α0(t0). Actually, Aσ(t) and Aσ(s)
are one-to-one from Eσ onto E0.

Given a bounded time interval I ⊂ R, we can thus use the equivalence of norms stated
in Corollary 3.7 to obtain, for some constants c̄, c̃ and ĉ depending on I but not on
t, s ∈ I, that

‖Aσ(t)φ‖E0 = ‖Aσ(t)φ‖Y α0 (t0) � c̄‖Aσ(t)φ‖Y α0 (t) = c̄‖φ‖Y σ+α0 (t)

� c̃‖φ‖Y σ+α0 (s) = c̃‖Aσ(s)φ‖Y α0 (s)

� ĉ‖Aσ(s)φ‖Y α0 (t0) = ĉ‖Aσ(s)φ‖E0

whenever t, s ∈ I. Similarly, using again the equivalence of norms, we also have

‖φ‖Eσ = ‖φ‖Y σ+α0 (t0) � c̃‖φ‖Y σ+α0 (t) = c̃‖Aσ(t)φ‖Y α0 (t)

� ĉ‖Aσ(t)φ‖Y α0 (t0) = ĉ‖Aσ(t)φ‖E0 ,

‖Aσ(s)φ‖E0 = ‖Aσ(s)φ‖Y α0 (t0) � c̃‖Aσ(s)φ‖Y α0 (s) = c̃‖φ‖Y σ+α0 (s)

� ĉ‖φ‖Y σ+α0 (t0) = ĉ‖φ‖Eσ ,

which proves (ii). �

Corollary 3.9. Under the assumptions of Lemma 3.8, we have that for any bounded
time interval I ⊂ R and σ ∈ [0, 1 + μ0] there exists a constant c > 0 such that

‖Aσ(t)A−σ(s)‖L(E0) � c for each t, s ∈ I.
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Proof. It suffices to note that Aσ(t) and Aσ(s) are one-to-one from Eσ onto E0 and
use (3.8). �

We will next assume that {A(t) : t ∈ R} is of the class LUS(DX , X) and, in addition,

∃μ∈(0,1]∀T>0∃C>0∀t,τ,s∈[−T,T ]‖(A(t) − A(τ))A−1(s)‖L(X) � C|t − τ |μ. (3.9)

Following [7,15,20,23,26], we consider in X a non-autonomous linear problem

u̇(t) + A(t)u(t) = 0, t > τ, u(τ) = uτ . (3.10)

Recall that a continuous function [τ, ∞) � t → u(t) ∈ X is a classical solution of (3.10)
if it is continuously differentiable in (τ, ∞), u(t) ∈ DX for each t > τ and u satisfies
(3.10). Recall also that a two parameter family {U(t, τ) : (t, τ) ∈ R

2, t � τ} of maps
U(t, τ) : X → X is a continuous process in X provided that U(τ, τ) = Id, U(t, σ)U(σ, τ) =
U(t, τ) for t � σ � τ ∈ R and {(t, s) ∈ R

2 : t � s} × X � (t, τ, v) �→ U(t, τ)v ∈ X is a
continuous map.

The following result is known (see [15, § 2] for the proof).

Proposition 3.10. If {A(t) : t ∈ R} is of the class LUS(DX , X) and (3.9) holds, then
there exists a continuous process {U(t, τ) : t � τ ∈ R} ⊂ L(X) in X such that, given
τ ∈ R and uτ ∈ X, the map [τ, ∞) � t → u(t) = U(t, τ)uτ ∈ X is a classical solution
of (3.10).

To describe smoothing properties of the process we state the following result.

Proposition 3.11. Under the assumptions of Proposition 3.10, for each bounded time
interval I = [−T, T ] there is a positive constant N such that, with μ as in (3.9), we have

‖Aσ(t)U(t, τ)A−ζ(τ)‖L(X) � N(t−τ)ζ−σ, 0 � ζ � σ < 1+μ, −T � τ < t � T. (3.11)

For the proof of (3.11) we refer the reader to [26] (see also [15, Theorem 2.2]). To
obtain another smoothing property we will need the additional assumption

∀1+μ>ξ>0∀T>0∃c>0∀t,τ∈[−T,T ]‖Aξ(t)A−ξ(τ)‖L(X) � c. (3.12)

Proposition 3.12. If {A(t) : t ∈ R} is of the class LUS(DX , X) and (3.9) holds, then

∀T>0∀ 1�ζ>σ�0,
1>ζ−σ>δ>0

∃N>0∀−T�τ�t�T ‖Aσ(t)[U(t, τ) − Id]A−ζ(τ)‖L(X) � N(t − τ)δ.

If (3.12) is also satisfied, then

∀T>0∀1+μ>ζ>σ�0,
1>ζ−σ

∃N>0∀−T�τ�t�T ‖Aσ(t)[U(t, τ) − Id]A−ζ(τ)‖L(X) � N(t − τ)ζ−σ.

(3.13)
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Proof. From [26, (1.53)] we infer that

U(t, τ)A−ζ(τ) = e(t−τ)A(t)A−ζ(τ) +
∫ t

τ

e(t−s)A(t)[A(s) − A(t)]U(s, τ)A−ζ(τ) ds.

We next rewrite Aσ(t)[U(t, τ) − Id]A−ζ(τ) as a sum J1 + J2, where

J1 = Aσ(t)[e(t−τ)A(t) − Id]A−ζ(τ)

and

J2 =
∫ t

τ

Aσ(t)e(t−s)A(t)[A(s) − A(t)]U(s, τ)A−ζ(τ) ds.

Due to (3.9), (3.3) holds on any bounded time interval I and, assuming that {A(t) : t ∈
R} is of the class LUS(DX , X) and (3.9) holds, one obtains as in [26, § 1.9, (1.59)] that

∀1�ζ>ξ�0∀T>0∃c>0∀t,τ∈[−T,T ]‖Aξ(t)A−ζ(τ)‖L(X) � c. (3.14)

If 1 � ζ > σ � 0 and 0 < δ < ζ −σ < 1, then with [21, Theorem 1.4.3] we can estimate
‖J1v‖X by (1/δ)c1−δ(t − τ)δ‖Aδ+σ(t)A−ζ(τ)v‖X , which, via (3.14), can be bounded on
[−T, T ] by (1/δ)cc1−δ(t − τ)δ‖v‖X .

If 1 + μ > ζ > σ � 0 and (3.12) holds, then, choosing δ̃ = ζ − σ and using [21,
Theorem 1.4.3], we estimate ‖J1v‖X by

1
δ
c1−δ̃(t − τ)δ̃‖Aδ̃+σ(t)A−ζ(τ)v‖X =

1
ζ − σ

c1−ζ+σ(t − τ)ζ−σ‖Aζ(t)A−ζ(τ)v‖X ,

which, via (3.12), is bounded on [−T, T ] by (1/(ζ − σ))cc1−ζ+σ(t − τ)ζ−σ‖v‖X .
Consequently, by not assuming (3.12) we obtain that ‖J1‖L(X) � (1/δ)cc1−δ(t − τ)δ,

0 < δ < ζ −σ, whereas by assuming (3.12) we obtain ‖J1‖L(X) � (1/(ζ −σ))cc1−ζ+σ(t−
τ)ζ−σ.

The integral J2 is equal to∫ t

τ

Aσ(t)e(t−s)A(t)[(A(s) − A(t))A−1(s)]A(s)U(s, τ)A−ζ(τ) ds,

where by (3.2) and (3.9) we have

‖Aσ(t)e(t−s)A(t)[(A(s) − A(t))A−1(s)]‖L(X) � c(t − s)−σ(t − s)μ.

Note that if 0 � ζ � 1, we obtain from (3.11) that ‖A(s)U(s, τ)A−ζ(τ)‖L(X) � c(s −
τ)ζ−1, whereas if 1 + μ > ζ > 1, then A(s)U(s, τ)A−ζ(τ) = A(s)U(s, τ)A−1(τ)A1−ζ(τ)
and

‖A(s)U(s, τ)A−ζ(τ)‖L(X) � ‖A(s)U(s, τ)A−1(τ)‖L(X)‖A1−ζ(τ)‖L(X) � c,

as in this case

A1−ζ(τ) = A−(ζ−1)(τ) =
1

Γ (ζ − 1)

∫ ∞

0
sζ−2e−A(τ)s ds
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is a bounded operator and

‖A1−ζ(τ)‖L(X) � C

Γ (ζ − 1)

∫ ∞

0
sζ−2e−as ds = Ca1−ζ .

Since t and τ vary in a bounded interval, we thus infer that for 0 � ζ � 1,

‖J2‖L(X) � c̃

∫ t

τ

(t − s)μ−σ(s − τ)ζ−1 ds

� c̃(t − τ)μ−σ+ζB(1 + μ − σ, ζ)

= c̃B(1 + μ − σ, ζ)(t − τ)μ(t − τ)ζ−σ

� c̄(t − τ)ζ−σ,

whereas for 1 + μ > ζ > 1,

‖J2‖L(Xα) � c̃

∫ t

τ

(t− s)μ−σ ds = ĉ(t− τ)1+μ−σ = ĉ(t− τ)1+μ−ζ(t− τ)ζ−σ � c̄(t− τ)ζ−σ.

Combining the above estimates, we obtain the result. �

Theorem 3.13. Suppose that {A(t) : t ∈ R} is of the class LUS(DX , X) ∩ BIP(X),
conditions (3.3) and (3.5) hold on each bounded time interval I ⊂ R, and {Eα, α ∈
[0, 1 + μ0]} is defined as in (3.7). Suppose furthermore that

∃μ∈(0,μ0]∀T>0∃C>0∀t,τ,s∈[−T,T ]‖(A(t) − A(τ))A−1(s)‖L(E0) � C|t − τ |μ. (3.15)

Under these assumptions the following hold.

(i) There exists a continuous process {U(t, τ) : t � τ ∈ R} ⊂ L(E0) defined by (3.10)
in E0 such that, given τ ∈ R and uτ ∈ E0, the map [τ, ∞) � t → u(t) = U(t, τ)uτ ∈
E0 is a classical solution of (3.10).

(ii) ‖U(t, τ)‖L(Eζ ,Eσ) � M(t − τ)ζ−σ, 0 � ζ � σ < 1 + μ, −T � τ < t � T .

(iii) ‖U(t, τ) − Id‖L(Eζ ,Eσ) � M(t − τ)ζ−σ, 1 + μ > ζ > σ � 0, 1 � ζ − σ > 0,
−T � τ < t � T ,

where the constant M in (ii) and (iii) can depend on ζ, σ and T but does not depend on
t, τ ∈ [−T, T ].

Proof. From Lemma 3.8 we obtain that {A(t) : t ∈ R} is of the class LUS(DE0 , E0)
with DE0 = E1. From this and (3.15) we obtain (i) by applying Proposition 3.10 with
X = E0.

Due to Proposition 3.11, for each bounded time interval I there exists N > 0 such that

‖Aσ(t)U(t, τ)A−ζ(τ)‖L(E0) � N(t − τ)ζ−σ, 0 � ζ � σ < 1 + μ, t ∈ I. (3.16)

Since Aζ(τ) is one-to-one from Eσ onto E0, (3.16) can be rewritten equivalently as

‖Aσ(t)U(t, τ)φ‖E0 � N(t − τ)ζ−σ‖Aζ(τ)φ‖E0 , φ ∈ Eζ ,

and by (3.8) also as ‖U(t, τ)φ‖Eσ � M(t − τ)ζ−σ‖φ‖Eζ
, φ ∈ Eζ , which gives (ii).

https://doi.org/10.1017/S001309151400039X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151400039X


42 A. N. Carvalho, J. W. Cholewa and M. J. D. Nascimento

Finally, by Corollary 3.9 we can use Proposition 3.12 with X = E0 and obtain
from (3.13),

∀T>0∀1+μ>ζ>σ�0,
1>ζ−σ

∃N>0∀−T�τ�t�T ‖Aσ(t)[U(t, τ) − Id]A−ζ(τ)‖L(E0) � N(t − τ)ζ−σ.

(3.17)
Inequality (3.17) can be rewritten equivalently as

‖Aσ(t)[U(t, τ) − Id]φ‖E0 � N(t − τ)ζ−σ‖Aζ(τ)φ‖E0 , φ ∈ Eζ ,

and by (3.8) also as ‖[U(t, τ)−Id]φ‖Eσ � M(t−τ)ζ−σ‖φ‖Eζ
, φ ∈ Eζ , which gives (iii). �

An equivalent form of (3.15) is expressed in the following proposition.

Proposition 3.14. Suppose that {A(t) : t ∈ R} is of the class LUS(DX , X)∩BIP(X),
(3.3) and (3.5) hold on each bounded time interval I ⊂ R and {Eα, α ∈ [0, 1 + μ0]} is as
in (3.7).

Then (3.15) is equivalent to

A(·) ∈ Cμ
loc(R, L(E1, E0)).

Proof. For any bounded time interval I ⊂ R, (3.15) implies that

‖(A(t) − A(τ))φ‖E0 � C|t − τ |μ‖A(s)φ‖E0 and ‖A(t)φ‖E0 � c‖A(s)φ‖E0

whenever t, τ, s ∈ I and φ ∈ DE0 . Due to (3.8), we then have ‖(A(t) − A(τ))φ‖E0 �
C̃|t − τ |μ‖φ‖E1 for t, τ ∈ I, which proves that A(·) ∈ Cμ(I, L(E1, E0)). On the other
hand, if A(·) ∈ Cμ

loc(I, L(E1, E0)), then, given a bounded time interval I, we have that
A(·) ∈ Cμ(I, L(E1, E0)). Combining this with (3.8), we obtain ‖(A(t) − A(τ))ψ‖E0 �
C|t − τ |μ‖ψ‖E1 � C̃|t − τ |μ‖A(s)ψ‖E0 , t, τ, s ∈ I, ψ ∈ E1. Letting φ = A−1(s)ψ we
obtain (3.15). �

Under the assumptions of Theorem 3.13, both Theorems 1.6 and 1.7 apply provided
that the required assumption on F holds. In applications we often have some ν0 ∈ (0, 1)
such that for each bounded time interval I ⊂ R and B bounded in E1+ε there is a c > 0
such that

‖F (t, v) − F (s, w)‖E0 � c(|t − s|ν0 + ‖v − w‖E1+ε), t, s ∈ I, v, w ∈ B. (3.18)

Then the E1+ε-solution will have the properties of a classical solution; see Proposi-
tion 3.15.

Proposition 3.15. Suppose that {A(t) : t ∈ R} is of the class LUS(DX , X)∩BIP(X)
and that (3.3) and (3.5) hold on any bounded time interval I. Assume also that (3.15)
and (3.18) hold and that F is of the class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 +
μ)}, where the Eα are as in (3.7).

Then {A(t) : t ∈ R} is of the class LUS(DE0 , E0) with DE0 = E1 and Theorems 1.6
and 1.7 apply. The unique E1+ε-solution, u = u(·, τ, uτ ), is of the class C1((τ, τ +δ0], E0),
u(t) ∈ DE0 for t ∈ (τ, τ + δ0] and u̇(t) + A(t)u(t) = F (t, u(t)) for each t ∈ (τ, τ + δ0].
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Proof. By Theorem 3.13, we know that Theorems 1.7 and 1.6 apply. Hence, there
is a unique E1+ε-solution of (1.1), u = u(·, τ, uτ ) and u ∈ Cν

loc((0, Tuτ ), E1+ε) for some
ν ∈ (0, 1). The last property and (3.18) yield that F (·, u(·)) ∈ Cσ

loc((0, Tuτ ), E0) for
σ = min{ν0, ν}. The result now follows as in [23, § 5.7, Theorem 7.1] and [15, § 2.3]. �

Remark 3.16. Under the assumptions of Proposition 3.15, following [30, Theo-
rem 3.10] and letting F1,σ((τ, τ + δ0], E0) as in [30, p. 5], we have for the E1+ε-solution
u = u(·, τ, uτ ) of (1.1),

A(·)u(·) ∈ C((τ, τ + δ0], E0),
d
dt

u(·) ∈ F1,σ((τ, τ + δ0], E0).

4. Applications

In what follows we show how the abstract results apply in sample problems.

4.1. Non-autonomous wave equation with structural damping

In this example, following [11–13,16], we consider the initial boundary-value problem
of the form:

utt + η(t)(−Δ)1/2ut + νut + (−Δ)u = f(t, u), t > τ, x ∈ Ω,

u(τ, x) = uτ (x), x ∈ Ω, ut(τ, x) = vτ (x), x ∈ Ω, u|∂Ω
= 0,

}
(4.1)

where (uτ , vτ ) ∈ H1
0 (Ω) × L2(Ω) and −Δ is the negative Dirichlet Laplacian in L2(RN ).

Assumption 4.1. Suppose that Ω is a bounded smooth domain in R
N , N � 3, ν � 0

and
η ∈ Cμ

loc(R, (0,∞)) for some μ ∈ (0, 1]. (4.2)

We remark that due to (4.2), given any bounded time interval I ⊂ R, there are con-
stants κ1, κ2 > 0 such that η(t) ∈ [κ1, κ2] for each t ∈ I. Letting v = u̇, we rewrite (4.1)
in the form

d
dt

[
u

v

]
+ A(t)

[
u

v

]
= F

(
t,

[
u

v

] )
, t > τ,

[
u

v

]
t=τ

=

[
uτ

vτ

]
, (4.3)

where A(t) and F (t, [ u
v ]) can be viewed in matrix form as

A(t) =

[
0 −I

−Δ η(t)(−Δ)1/2 + νI

]
, F

(
t,

[
u

v

] )
=

[
0

fe(t, u)

]
(4.4)

and fe denotes a Nemitskĭı operator associated with f .
In this example we set X = H1

0 (Ω) × L2(Ω), DX = (H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω)
and, referring to [14, proof of Lemma 1 (iii)] and [11, Proposition 1], we conclude that
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{A(t) : t ∈ R} is of the class LUS(DX , X) ∩ BIP(X). Furthermore, for any t, s ∈ R we
obtain

A(t)A−1(s) =

[
I 0

(η(s) − η(t))(−Δ)1/2 I

]
,

A−1(s)A(t) =

[
I (η(s) − η(t))(−Δ)−1/2

0 I

]
.

Hence, for any bounded time interval I, we obtain the counterparts of (3.3) and (3.5):

sup
t,s∈I

‖A(t)A−1(s)‖L(X) = sup
t,s∈I

sup∥∥∥[
φ
ψ

]∥∥∥
X

=1

∥∥∥∥∥
[

φ

(η(s) − η(t))(−Δ)1/2φ + ψ

]∥∥∥∥∥
X

� (1 + 2κ2),

sup
t,s∈I

‖A−1(s)A(t)‖L(X) = sup
t,s∈I

sup∥∥∥[
φ
ψ

]∥∥∥
X

=1

∥∥∥∥∥
[
φ + (η(s) − η(t))(−Δ)−1/2ψ

ψ

]∥∥∥∥∥
X

� (1 + 2κ2).

Let {Zα, α � −1} be the extrapolated fractional power scale generated by
(L2(Ω),−Δ). As in (3.7), choosing α0 = 0 we define the spaces Eα, α ∈ [0, 2]. Due
to [11, Theorem 2]:

Eα := Y α+α0(t0) = Zα/2 × Z(α−1)/2, α ∈ [0, 2].

By [7], Z−α(t), α ∈ (0, 1), is viewed as the completion of (L2(Ω), ‖(−Δ)−α · ‖L2(Ω)).
With this set-up, we observe that

A(·) ∈ Cμ
loc(R, L(E1, E0)) with E1 = H1

0 (Ω) × L2(Ω) and E0 = L2(Ω) × H−1(Ω),
(4.5)

where μ is as in (4.2) because, given t, s ∈ [−T, T ], we have

sup∥∥∥[
φ
ψ

]∥∥∥
E1

=1

∥∥∥∥∥[A(t) − A(s)]

[
φ

ψ

]∥∥∥∥∥
E0

= |η(t) − η(s)| sup∥∥∥[
φ
ψ

]∥∥∥
E1

=1

‖(−Δ)1/2ψ‖Z−1/2 � c|t − s|μ.

Due to Proposition 3.14, (4.5) is equivalent to (3.15) and we can apply Theorem 3.13.

Proposition 4.2. Suppose that Assumption 4.1 holds and let Eα = Zα/2 × Z(α−1)/2

for α ∈ [0, 1 + μ), where μ is as in (4.2).
There then exists a continuous process {U(t, τ) : (t, τ) ∈ R

2, t � τ ∈ R} ⊂ L(E0) in
E0 = L2(Ω) × H−1

0 (Ω) associated with

d
dt

[
u

v

]
+

[
0 −I

−Δ η(t)(−Δ)1/2 + νI

] [
u

v

]
= 0, t > 0,

[
u

v

]
t=τ

=

[
uτ

vτ

]
,

and {U(t, τ) : (t, τ) ∈ R
2, t � τ ∈ R} enjoys the smoothing properties (1.2) and (1.3).
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Remark 4.3. Besides (4.5) we also have that A(·) ∈ Cμ
loc(R, L(E2, E1)) with E2 =

H2(Ω) ∩ H1
0 (Ω) × H1

0 (Ω) and E1 = H1
0 (Ω) × L2(Ω) as whenever t, s ∈ [−T, T ], (4.2)

yields

sup∥∥∥[
φ
ψ

]∥∥∥
E2

=1

∥∥∥∥∥[A(t) − A(s)]

[
φ

ψ

]∥∥∥∥∥
E1

= |η(t) − η(s)| sup∥∥∥[
φ
ψ

]∥∥∥
E2

=1

‖(−Δ)1/2ψ‖Z0 � c|t − s|μ.

Assuming that N � 3 we now define

ρc =
N + 2
N − 2

,

which in this example plays the role of a critical exponent for initial data in H1
0 (Ω) ×

L2(Ω).

Remark 4.4. To keep the notation short, we adapt the Landau symbols O(ϕ) and
o(ϕ). We will write h(t, x, s) = O(ϕ(s)) if, given a bounded time interval I, |h(t, x, s)| �
c|ϕ(s)| for some c > 0 independent of s ∈ R, x ∈ Ω and t ∈ I. We will write h(t, x, s) =
o(ϕ(s)) if, given a bounded time interval I, lim|s|→∞ |h(t, x, s)|/ϕ(s) = 0 uniformly with
respect to x ∈ Ω and t ∈ I.

Proposition 4.5. Suppose that N � 3, f ∈ C(R2, R) has partial derivative f ′
u ∈

C(R × R, R) and Eα = Zα/2 × Z(α−1)/2 for α ∈ [0, 1 + μ), where μ is as in (4.2).

(i) If f ′
s(t, s) = O(cη + η|s|ρ−1) for some η > 0 and ρ ∈ (1, ρc), then the map F (t, [ u

v ])
in (4.4) is of the class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + μ)} and is
subcritical.

(ii) If f ′
s(t, s) = O(cη + η|s|ρc−1) for some η > 0 and (i) does not apply, then the map

F (t, [ u
v ]) in (4.4) is of the class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + μ)}

and is critical.

(iii) If f ′
s(t, s) = o(|s|ρc−1) and (i) does not apply, then F (t, [ u

v ]) in (4.4) is of the class
L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + μ)} and is almost critical.

Proof. Parts (i) and (ii) follow in a similar manner to that found in [11, Lemma 3 and
Corollary 2]. Also, (iii) can be proved analogously to [13, Lemma 3.1 and Corollary 3.1].
We thus omit the details. �

Corollary 4.6. Suppose that Assumption 4.1 holds and let Eα = Zα/2 ×Z(α−1)/2 for
α ∈ [0, 1+μ), where μ is as in (4.2). Suppose also that the assumptions of Proposition 4.5
are satisfied; in particular, f ′

s(t, s) = O(cη + η|s|ρc−1) for some η > 0.
Then Theorem 1.7 applies and, given τ ∈ R, [ uτ

vτ
] ∈ H1

0 (Ω)×L2(Ω), (4.1) has a unique
E1+ε-solution [ u

v ] = [ u
v ](·, τ, [ uτ

vτ
]) defined on the maximal interval of existence [τ, Tuτ ,vτ

).

With an assumption on f as in Lemma 4.7, there will be a functional decreasing along
[ u

v ](t, τ, [ uτ
vτ

]),

L
( [

w1

w2

] )
= 1

2‖w2‖2
L2(Ω) + 1

2‖(−Δ)1/2w1‖2
L2(Ω) −

∫
Ω

∫ w1

0
f(s) ds dx,

[
w1

w2

]
∈ E1.

(4.6)
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Lemma 4.7. If f does not depend on t, that is, f = f(u), then L in (4.6) takes bounded
subsets of E1 into bounded subsets of R and, given the E1+ε-solution [ u

v ] of (4.3) on the
interval Iτ , L([ u

v ]) is non-increasing for t ∈ Iτ .
If λ1 denotes the first positive eigenvalue of the negative Dirichlet Laplacian in L2(Ω)

and

lim sup
|s|→∞

f(s)
s

< λ1, (4.7)

then L is also bounded from below and, for some constants d1, d2 > 0,∥∥∥∥∥
[
u

v

] (
t, τ,

[
uτ

vτ

] )∥∥∥∥∥
E1

� d1L
( [

uτ

vτ

] )
+ d2. (4.8)

Proof. Multiplying the first equation in (4.1) by v = ut, we have

d
dt

(
L

( [
u

v

] ))
= −η(t)‖(−Δ)1/4v‖2

L2(Ω) − ν‖v‖2
L2(Ω) � 0,

which yields that L([ u
v ]) � L([ uτ

vτ
]) as long as the solution exists. On the other hand,

using (4.7) we obtain that −
∫

Ω

∫ w1

0 f(s) ds dx is bounded from below by −((λ1 −
δ)/2)‖w1‖2

L2(Ω) − Nδ|Ω| for some Nδ > 0 and δ > 0 small enough. Consequently,

L
( [

w1

w2

] )
� δ

2λ1
‖(−Δ)1/2w1‖2

L2(Ω) + 1
2‖w2‖2

L2(Ω) − Nδ|Ω|,
[
w1

w2

]
∈ E1,

and the result follows easily. This proves (4.8) for smooth solutions, that is, for solutions
with smooth initial data that can be obtained with [26, Theorem 7] due to Remark 4.3.
With (1.11)θ=0 (see Remark 1.9 (iii)) it then extends to E1+ε-solutions and the proof is
complete. �

Theorem 1.10 now leads to the following conclusion.

Corollary 4.8. Suppose that Assumption 4.1 holds and assume that f ∈ C1(R, R)
does not depend on a time variable, (4.7) is satisfied and f ′

s(s) = o(|s|ρc−1). Then, given
τ ∈ R and [ uτ

vτ
] ∈ E1 = H1

0 (Ω) × L2(Ω), there exists a unique global E1+ε-solution
of (4.1).

Suppose finally that we have f ′
s(s) = O(1 + |s|ρc−1) but not f ′

s(s) = o(|s|ρc−1). Note
that (1.15) is rather difficult to verify, as an E1+ε-estimate remains unknown. Nonethe-
less, since we know (4.8) and, in addition,

(−Δ)−1/2v̇ + η(t)v + ν(−Δ)−1/2v + (−Δ)1/2u = (−Δ)−1/2f(u),

we infer that u ∈ W 1,1((0, Tuτ ,vτ
), L2(Ω)), u̇ ∈ W 1,1((0, Tuτ ,vτ

), H−1(Ω)) whenever
Tuτ ,vτ < ∞ and the map

[0, Tuτ ,vτ ) � t →
[
u(t, uτ , vτ )
v(t, uτ , vτ )

]
∈ E0 = L2(Ω) × H−1(Ω)
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is uniformly continuous (see [10, Theorem I.2.2]). Thus, (1.22) and (1.23) hold and
Theorem 1.12 applies.

Corollary 4.9. Suppose that Assumption 4.1 holds, f ∈ C1(R, R) does not depend
on a time variable, f ′

s(s) = O(1 + |s|ρc−1) and (4.7) is satisfied.
Whenever τ ∈ R and [ uτ

vτ
] ∈ E1 are such that Tuτ ,vτ

is finite, there exist an a ∈
(Tuτ ,vτ

,∞] and an extension U : [τ, a) → E1 of a maximally defined E1+ε-solution of (4.1)
such that U is a piecewise E1+ε-solution on [τ, a) and a = ∞ or a is an accumulation
time of singular times.

4.2. Non-autonomous parabolic problems

Given

A(t) = (−1)m
∑

|σ|�2m

aσ(t, x)Dσ, t ∈ R, x ∈ Ω, (4.9)

Bj =
∑

|σ|�mj

bj
σ(x)Dσ, where j = 1, . . . , m, mj ∈ {0, 1, . . . , 2m − 1}, x ∈ ∂Ω,

and, adapting the notion of a regular parabolic initial boundary-value problem, we say
that {(A(t), {Bj}, Ω, ∂Ω), t ∈ R} is of the class RPIBVP of regular parabolic initial
boundary-value problems of order 2m if (A(t), {Bj}, Ω, ∂Ω, α) is a strongly α-regular
elliptic boundary-value problem of class C0 and order 2m for every t ∈ R as in [3, p. 655]
and, in addition,

there exists μ ∈ (0, 1] such that for each bounded time interval I ⊂ R

and for any |σ| � 2m the map I � t → aσ(t, ·) ∈ C(Ω̄, R) is of the class
Cμ(I, C(Ω̄, R)); in addition, whenever |σ| = 2m, the modulus of continuity
of the maps Ω̄ � x → aσ(t, x) ∈ R can be chosen uniformly for t ∈ I.

(4.10)

We will next consider spaces Hs
p(Ω) as in [28]. For p = 2 they are Hilbert spaces and

will be denoted by Hs(Ω). Following [28] we also define

Hs
p,{Bj}(Ω) = {φ ∈ Hs

p(Ω) : ∀i∈{j : mj<s−1/p}Biφ|∂Ω
= 0}.

Assuming that {(A(t), {Bj}, Ω, ∂Ω), t ∈ R} is of the class RPIBVP, we have the
estimate

‖ϕ‖H2m
p (Ω) � c∗(‖A(t)ϕ‖Lp(Ω) + ‖ϕ‖Lp(Ω)), ϕ ∈ H2m

p,{Bj}(Ω), t ∈ I, (4.11)

where I ⊂ R is an arbitrarily chosen bounded time interval. We emphasize that c∗ > 0
actually depends on Ω, m, N , p, α, the moduli of continuity of the top order coefficients
of A(t) with t ∈ I, the coefficients of boundary operators Bj and certain constants
related to the notion of α-regular elliptic boundary-value problems, which are specified
in [3, Theorems 12.1] (see also [1,2]). Thus, the constant c∗ in (4.11) is independent of t

in a bounded time interval I ⊂ R.
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We remark that, due to (4.9), (4.10) and properties of the H2m
p (Ω)-norm, we also have

‖A(t)ϕ‖Lp(Ω) � c∗‖ϕ‖H2m
p (Ω), ϕ ∈ H2m

p (Ω), t ∈ I, (4.12)

where c∗ depends on Ω, m and L∞(I, C(Ω̄, R))-norms of coefficients of A(t).
With the above set-up, we consider the 2mth-order problem

ut + (−1)m
∑

|ξ|,|ζ|�m

Dζ(aξ,ζ(t, x)Dξu) = f(t, x, u), t > τ, x ∈ Ω ⊂ R
N ,

B0u = · · · = Bm−1u = 0 on ∂Ω, u(τ, x) = uτ (x), x ∈ Ω.

⎫⎪⎬
⎪⎭ (4.13)

Letting
A(t)u = (−1)m

∑
|ξ|,|ζ|�m

Dζ(aξ,ζ(t, x)Dξu),

we summarize the conditions on (4.13).

Assumption 4.10. N > 2m, Ω ⊂ R
N is a bounded C2m-domain, the coefficients

aξ,ζ(t, ·) ∈ Cm(Ω̄, R) (|ξ| � m, |ζ| � m) of A(t) are such that the maps I � t →
Dβaξ,ζ(t, ·) ∈ C(Ω̄, R) (|β| � m) belong to the class Cμ(I, C(Ω̄, R)), and after rewriting
A(t) in the form (4.9), we have that {(A(t), {Bj}, Ω, ∂Ω), t ∈ R} is of the class RPIBVP.

Assumption 4.11. All A(t) are self-adjoint in L2(Ω) and, given a bounded time
interval I,

〈A(t)φ, φ〉L2(Ω) � s∗‖φ‖2
L2(Ω), t ∈ I, (4.14)

where s∗ > 0 can depend on I but not on t ∈ I.

Proposition 4.12. Suppose that Assumptions 4.10 and 4.11 hold and

Eα =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(H2m
{Bj}(Ω))′, α = 0,

([L2(Ω), H2m
{Bj}(Ω)]1−α)′, α ∈ (0, 1),

L2(Ω), α = 1,

[L2(Ω), H2m
{Bj}(Ω)]α−1, α ∈ (1, 1 + μ).

(4.15)

There then exists a continuous process in E0 = (H2m
{Bj}(Ω))′ associated with

ut + A(t)u = 0, t > τ, x ∈ Ω ⊂ R
N ,

B0u = · · · = Bm−1u = 0 on ∂Ω, u(τ, ·) = uτ ∈ L2(Ω),

and possessing smoothing properties (1.2) and (1.3).

Proof. We will ensure that Theorem 3.13 applies with X = L2(Ω) and E0 =
(H2m

{Bj}(Ω))′.
As in [17, Proposition 1.3.3] we get ‖(λI − A(t))φ‖X � 2−1/2|λ − s∗| whenever φ ∈

H2
{Bj}(Ω), t ∈ I, Re(λ) � s∗. From this we conclude that {A(t) : t ∈ R} is of the class
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LUS(DX , X). Since purely imaginary powers are unitary operators, {A(t) : t ∈ R} is of
the class BIP(X).

We now fix a bounded time interval I ⊂ R and concentrate on points t ∈ I.
Using (4.14), Schwartz’s inequality and (4.11) we obtain, with s∗ as in (4.14),

‖ϕ‖H2m(Ω) � c∗(1 + s−1
∗ )‖A(t)ϕ‖L2(Ω), ϕ ∈ H2m

{Bj}(Ω), t ∈ I. (4.16)

Next, to obtain (3.3) we apply (4.12) with p = 2, ϕ = A−1(s)ψ, ψ ∈ L2(Ω), and
use (4.16) with t = s and ϕ = A−1(s)ψ to conclude that

‖A(t)A−1(s)ψ‖L2(Ω) � c∗‖A−1(s)ψ‖H2m(Ω)

� c∗c
∗(1 + s−1

∗ )‖ψ‖L2(Ω), ψ ∈ L2(Ω), t, s ∈ I.

In the proof of (3.5) we adapt the idea of [6, Remark 6.6 (c)]. Since (from above) we
have supt,s∈I ‖A(s)A−1(t)‖L(L2(Ω)) � N , using this and self-adjointness of the operators
we obtain

|〈φ, A−1(t)A(s)ψ〉L2(Ω)| � N‖φ‖L2(Ω)‖ψ‖L2(Ω), φ ∈ L2(Ω), ψ ∈ H2m
{Bj}(Ω), t, s ∈ I.

This ensures that the set {A−1(t)A(s)ψ : t, s ∈ I, ψ ∈ H2m
{Bj}(Ω), ‖ψ‖L2(RN ) � 1} is

bounded in L2(Ω), and hence ‖A−1(t)A(s)‖L(L2(Ω)) � c̄, where c̄ > 0 does not depend
on t, s ∈ I.

Letting α0 = 0, we define next spaces Eα, α ∈ [0, 1 + μ0] = [0, 2] as in (3.7), that are
characterized as in (4.15). To ensure that

A(·) ∈ Cμ
loc(R, L(E1, E0)) with E1 = L2(Ω) and E0 = (H2m

{Bj}(Ω))′, (4.17)

observe that

‖(A(t) − A(s))φ‖(H2m
{Bj}(Ω))′ = sup

‖ψ‖
H2m

{Bj}(Ω)=1

∣∣∣∣
∫

Ω

φ(A(t) − A(s))ψ
∣∣∣∣

for t, s ∈ R, φ ∈ L2(RN ). Hence, given t and s in a bounded time interval I and using (4.9)
and (4.10), we obtain

sup
‖φ‖E1=1

‖[A(t) − A(s)]φ‖E0

= sup
‖φ‖L2(Ω)=1

sup
‖ψ‖

H2m
{Bj}(Ω)=1

∣∣∣∣
∫

Ω

φ(A(t) − A(s))ψ
∣∣∣∣

� sup
‖φ‖L2(Ω)=1

sup
‖ψ‖

H2m
{Bj}(Ω)=1

∑
|σ|�2m

‖aσ(t, ·) − aσ(s, ·)‖C(Ω̄,R)‖φ‖L2(Ω)‖Dσψ‖L2(Ω)

� c|t − s|μ.

We can now apply Theorem 3.13 to get the result. �
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Remark 4.13. Besides (4.17), we also have A(·) ∈ Cμ
loc(R, L(E2, E1)) with E2 =

H2m
{Bj}(Ω) and E1 = L2(Ω) as, by (4.10), whenever φ ∈ E2, s and t vary in a bounded

time interval I,

‖(A(t) − A(s))φ‖E1 � ‖aσ(t, ·) − aσ(s, ·)‖C(Ω̄)

∑
|σ|�2m

‖Dσφ‖E1 � |t − s|μ‖φ‖E2 .

We now consider a nonlinear term, where we use the Landau symbols O(ϕ) and o(ϕ)
as in Remark 4.4. For (4.13) with initial data in L2(Ω), the role of a critical exponent is
played by

ρc =
N + 4m

N
.

Proposition 4.14. Assume that f, f ′
u ∈ C(RN+2, R), let Eα, α ∈ [0, 1 + μ), be as

in (4.15) and let
N > 4m. (4.18)

(i) If f ′
s(t, x, s) = O(cη + η|s|ρ−1) for some η > 0 and ρ ∈ (1, ρc), then the map F (t, u)

in (4.13) is of the class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + μ)} and is
subcritical.

(ii) If f ′
s(t, x, s) = O(cη +η|s|ρc−1) for some η > 0 and (i) does not apply, then the map

F (t, u) in (4.13) is of the class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + μ)}
and is critical.

(iii) If f ′
s(t, x, s) = o(|s|ρc−1) and (i) does not apply, then F (t, u) in (4.13) is of the

class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + μ)} and is almost critical.
Furthermore,

(iv) parts (i)–(iii) hold with ε > 0 as small as we wish. Actually, whenever t varies in a
bounded time interval I ⊂ R, there exists a certain c > 0 such that

‖F (t, φ)‖E0 � c(1 + ‖φ‖ρc
E1

), φ ∈ E1. (4.19)

Proof. Note that when restricting the time variable t to a bounded time interval I,
one needs to show that there are constants c > 0, Cη > 0 and ε ∈ (0, 1/ρ), ε < μ,
ρε � γ(ε) < 1 such that

‖F (t, v) − F (t, w)‖Eγ(ε) � c‖v − w‖E1+ε(Cη + η‖v‖ρ−1
E1+ε

+ η‖w‖ρ−1
E1+ε

), v, w ∈ E1+ε.

(4.20)
We now describe admissible triples (ρ, ε, γ(ε)) for which (4.20) holds and prove that the
map F is indeed critical for ρ = ρc, while it is subcritical for ρ ∈ (1, ρc).

Observe that due to (4.15) we have

E1+ε ↪→ Ls(Ω), ε ∈ [0, μ), 2mε − N

2
� −N

s
, s � 2,

Eγ(ε) ←↩ Lσ(Ω), γ(ε) ∈ [0, 1),
2N

N + 4m(1 − γ(ε))
� σ � 2, σ > 1,

⎫⎪⎪⎬
⎪⎪⎭ (4.21)

where 2N/(N + 4m(1 − γ(ε))) > 1 provided that γ(ε) > (4m − N)/4m =: γ̃.
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By (4.21), ‖F (t, v)−F (t, w)‖Eγ(ε) is bounded by ĉ‖F (t, v)−F (t, w)‖L2N/(N+4m(1−γ(ε)))(Ω)
and whenever f ′

s(t, x, s) = O(cη + η|s|ρ−1) we have

‖F (t, v)−F (t, w)‖Eγ(ε) � c̃‖|v −w|(cη + η|v|ρ−1 + η|w|ρ−1)‖L2N/(N+4m(1−γ(ε)))(Ω). (4.22)

Applying next Hölder’s inequality with q = (N +4m(1−γ(ε)))/(N −4mε) and q′ = (N +
4m(1−γ(ε)))/(4m(1−γ(ε)+ε)), recalling the embedding H2mε(Ω) ↪→ L2N/(N−4mε)(Ω),
and assuming that

H2mε(Ω) ↪→ LN(ρ−1)/(2m(1−γ(ε)+ε))(Ω), (4.23)

we obtain

‖F (t, v) − F (t, w)‖Eγ(ε)

� c̃‖v − w‖L2N/(N−4mε)(Ω)‖cη + η|v|ρ−1 + η|w|ρ−1‖LN/2m(1−γ(ε)+ε)(Ω)

� c‖v − w‖E1+ε
(Cη + η‖v‖ρ−1

E1+ε
+ η‖w‖ρ−1

E1+ε
), v, w ∈ E1+ε, (4.24)

where (4.23) requires that

γ̄ :=
(4mε − N)(ρ − 1) + 4m(1 + ε)

4m
� γ(ε) � 2m(1 + ε) − N(ρ − 1)

2m
=: γ. (4.25)

We remark that γ̄ > γ̃ and that for ρ ∈ (1, 1 + 4m/N ] and ε > 0 we have γ̄ > γ and
γ̄ � ερ. We also have 1 > γ̄ if ε ∈ (0, N(ρ − 1)/4mρ).

The above ensures that any triple (ρ, ε, γ(ε)), where ρ ∈ (1, 1 + 4m/N ], ε ∈
(0, min{μ, N(ρ−1)/4mρ}) and γ(ε) ∈ [ρε, γ̄]∩[max{0, γ}, γ̄]∩(γ̃, γ̄] =: I(ε) is admissible.

For any admissible triple (ρ, ε, γ(ε)), (4.25) implies that ρ � (N +4m−4mγ(ε))/(N −
4mε), and since γ(ε) � ρε, we have ρ � (N + 4m − 4mρε)/(N − 4mε), which holds if
and only if ρ � (N + 4m)/N = ρc. Thus, ρ = ρc cannot be attained for γ(ε) > ρcε, and
therefore ρ = ρc necessitates that γ(ε) = ερc. Note that γ̄|ρ=ρc = ερc, that is, for ρ = ρc

we have I(ε) = {ερc}. This completes the proof of (i) and (ii).
Note that having |f ′(t, x, s)| � O(cη + η|s|ρc−1) for each η > 0, we obtain (4.20) for

any η > 0, which leads to (iii).
In describing admissible triples, we have already ensured that ε > 0 can be chosen

arbitrarily close to zero. Actually, we also have

‖F (t, v) − F (t, 0)‖E0 � ĉ‖F (t, v) − F (t, 0)‖L2N/(N+4m)(Ω)

� c̃‖|v|(cη + η|v|ρ−1)‖L2N/(N+4m)(Ω),

which leads to (4.19) as L2(Ω) ↪→ L2Nρ/(N+4m)(Ω) for ρ ∈ (1, ρc]. �

Remark 4.15. Note that by not assuming (4.18) in Proposition 4.14, we may not
have (i)–(iii) satisfied for ε > 0 arbitrarily small, as stated in (iv) (see [18, § 3.1] for a
similar proof).

Corollary 4.16. Suppose that Assumptions 4.10 and 4.11 hold and the spaces Eα,
α ∈ [0, 1+μ), are as in (4.15). Suppose also that the assumptions of Proposition 4.14 are
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satisfied; in particular, f ′
s(t, x, s) = O(cη + η|s|ρc−1) for some η > 0. Then Theorem 1.7

applies and, given any τ ∈ R, uτ ∈ L2(Ω), the initial boundary-value problem (4.13)
has a unique E1+ε-solution u = u(·, τ, uτ ) defined on the maximal interval of existence
[τ, Tuτ ).

We now derive an L2(Ω)-estimate of the solutions.

Lemma 4.17. Suppose that

sf(t, x, s) � C(t, x)s2 + D(t, x), t ∈ R, x ∈ Ω, (4.26)

for some C ∈ L∞
loc(R × R

N , R) and D ∈ L1
loc(R, L1(Ω)).

If τ ∈ R, uτ ∈ L2(Ω), T ∈ (τ, ∞) and an E1+ε-solution u of (4.13) exists for t ∈ [τ, T ),
then

‖u(t, τ, uτ )‖2
L2(RN ) � g(τ, ‖uτ‖L2(Ω), T ), t ∈ [τ, T ), (4.27)

where g : R × [0,∞) × (0,∞) → [0,∞) is a certain continuous function.

Proof. We restrict the time variable to [τ, T ) here, which allows us to choose the
constant s∗ such that (4.14) holds uniformly for t ∈ [τ, T ). We also define C∗ :=
sup(t,x)∈[τ,T )×Ω 2|C(t, x)|.

From (4.13), (4.14) and (4.26) we obtain for any λ ∈ (0, s∗) an estimate of the form

1
2

d
dt

‖u(t)‖2
L2(Ω) + (s∗ − C∗)‖u(t)‖2

L2(Ω) � ‖D(t, ·)‖L1(Ω), t ∈ [τ, T ).

Solving the above inequality we get

‖u(t)‖2
L2(Ω) � ‖uτ‖2

L2(Ω)e
−2t(s∗−C∗) + 2

∫ t

τ

‖D(s, ·)‖L1(Ω)e−2(t−s)(s∗−C∗) ds, t ∈ [τ, T ).

This proves (4.27) for smooth solutions, that is, for solutions with smooth initial data,
which can be obtained with [26, Theorem 7] due to Remark 4.13. With (1.11)θ=0 (see
Remark 1.9 (iii)) it then extends to E1+ε-solutions, which completes the proof. �

Theorem 1.10 now implies the following result.

Corollary 4.18. Suppose that the assumptions of Corollary 4.16 and Lemma 4.17
hold.

If f ′
s(t, x, s) = o(|s|ρc−1), then, given any τ ∈ R and uτ ∈ L2(Ω), a unique E1+ε-solu-

tion of (4.13) exists globally in time.

Proof. With a finite maximal time of existence (i.e. Tuτ < ∞) we would have
sup[τ,Tuτ ) ‖u(t, τ, uτ )‖L2(RN ) < ∞ (see Lemma 4.17) and Theorem 1.10 (i) with E1 =
L2(Ω) would lead to a contradiction. �

In the critical case ρ = ρc, some better estimate of the solutions can be sometimes
obtained if additional conditions are imposed on (4.13). For example, in the autonomous
case, an H1(Ω)-estimate can be found as in [29]. Also, if m = 1 and the maximum
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principle applies, then an L∞(Ω)-estimate may be known. However, without any such
specific assumption, the estimate of the solutions of (4.13) in the E1+ε-norm, needed to
apply (1.15), remains unknown. On the other hand, Theorem 1.12 will yield the existence
of a piecewise E1+ε-solution on some larger time interval than the maximal interval of
existence of the E1+ε-solution.

Lemma 4.19. Suppose that the assumptions of Corollary 4.16 and Lemma 4.17 are
satisfied.

If τ ∈ R, uτ ∈ E1 = L2(Ω) and Tuτ
< ∞, the map [τ, Tuτ ) � t → u(t) ∈ E0 =

(H2m
{Bj}(Ω))′, where u is a E1+ε-solution of (4.13), is uniformly continuous.

Proof. From (4.13) we infer that

‖ut(t)‖(H2m
{Bj}(Ω))′ � ‖A(t)u(t)‖(H2m

{Bj}(Ω))′ + ‖f(t, ·, u)‖(H2m
{Bj}(Ω))′ , t ∈ (τ, Tuτ ).

Since

‖A(t)u‖(H2m
{Bj}(Ω)′) = sup

‖ψ‖
H2m

{Bj}(Ω)=1

∣∣∣∣
∫

Ω

uA(t)ψ
∣∣∣∣ � ‖u(t)‖L2(Ω) max

|σ|�2m
‖aσ(t, ·)‖C(Ω̄,R),

by (4.10) and (4.27) we get

‖A(t)u‖L∞((τ,Tuτ ),(H2m
{Bj}(Ω))′) � cg(τ, ‖uτ‖L2(Ω), Tuτ ).

From (4.19), ‖f(t, ·, u)‖(H2m
{Bj}(Ω))′ is bounded by a multiple of (1 + ‖u(t)‖ρc

L2(Ω)), and
hence, by (4.27),

‖f(t, ·, u)‖L∞((τ,Tuτ ),(H2m
{Bj}(Ω))′) � c(1 + [g(τ, ‖uτ‖L2(Ω), Tuτ

)]ρc).

The above estimates ensure that u(·, τ, uτ ) ∈ W 1,1((τ, T ), (H2m
{Bj}(Ω))′) and the proof

is complete (see [10, Theorem I.2.2]). �

Theorem 1.12 and Lemmas 4.17 and 4.19 now lead to the following conclusion.

Corollary 4.20. Suppose that the assumptions of Corollary 4.16 and Lemma 4.17
hold.

Whenever τ ∈ R and uτ ∈ L2(Ω) are such that Tuτ < ∞, there exist an a ∈ (Tuτ ,∞]
and an extension U of the maximally defined E1+ε-solution of (4.13) such that U is a
piecewise E1+ε-solution on [τ, a) and either a = ∞ or a is an accumulation time of
singular times.
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