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In this paper we present a set of wave flume experiments for a solitary wave reflecting
off a vertical wall. A particle tracking velocimetry (PTV) technique is used to measure
free-surface velocity and the velocity field in the vicinity of the moving contact
line. We observe that the free surface undergoes the so-called rolling motion as the
contact line moves up and down the vertical wall, and fluid particles on the free
surface almost always flow toward the wall except at the end of the reflection process.
As the contact line descends along the wall, wall boundary layer flows move in
a downward direction and therefore the boundary layer acts like a conduit through
which the surface-rolling-induced flow escapes from the meniscus. However, during
the last phase of the reflection process flow reversal occurs inside the wall boundary
layer. An approximate analytical solution is developed to explain the flow reversal
feature. Very good agreement between the approximate theory and measured data is
obtained. Because of the flow reversal, boundary layer flows collide with the surface-
rolling-induced flows. The collision gives rise to a jet ejecting from the meniscus into
the water body, which later evolves into a small eddy. It is noticed that the fluid
particles in different regions such as the free stream, the free-surface boundary layer
and the wall boundary layer, can be transported to other regions by passing through
the meniscus.

Key words: boundary layer structure, contact lines, solitary waves

1. Introduction
In a laboratory experiment for a surface solitary wave reflecting off a vertical wall

in a two-dimensional wave flume, for a wave height-to-water depth ratio (ε = H′/h′)
ranging from 0.11 to 0.45 in h′ = 10 cm, we observe that an eddy is formed near
the meniscus and left behind the reflected wave. In figure 1, we show the trajectory
of a seeding particle that is initially observed within the moving meniscus during the
descending phase of the reflection for the case with ε = 0.45. Note that the coordinate
system in figure 1(b) is such that the undisturbed water body without the capillary
effect would occupy the region where x′ 6 0 and z′ 6 0 (see also figure 4). At the
first instant of tracking, which is labelled (i) in figure 1(b), the particle is found within
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FIGURE 1. Tracking of a seeding particle marked by a circle in (a) during the reflection of a
solitary wave with ε = 0.45 in h′ = 10 cm. The circles in (b) denote instantaneous locations of
the particle during the final phase of the reflection process, which are numbered in the order
of time at every tenth of a second. At first, the particle is observed within the meniscus which
is moving downward (i). Near the end of reflection, the particle is ejected from the meniscus
(ii)–(iii) and later entrained in upward moving boundary layer flows (iv)–(v). Note that (a) is
taken at the moment corresponding to (iii) in (b).

the downward-moving meniscus. A tenth of a second later, when the solitary wave is
almost completely reflected, the particle is ejected out of the meniscus down into the
water body (ii). It travels further downwards and away from the wall (iii) before it is
entrained in the upward-moving wall boundary layer flow ((iv) and (v)). To explain the
origin of the eddy is the primary objective of this paper.

The range of H′/h′ in our experiments falls into the simple reflection regime
according to McHugh & Watt (1998), which is characterized by a lack of surface
disturbance, droplet or even spray that is seen during the reflection of waves
with higher amplitudes. Although the solitary waves under consideration are also
sufficiently large that the surface tension effects can be neglected in most situations,
those effects will be important near the meniscus where the eddy is observed. At this
point, it is useful to consider two relevant length scales. The problem involves the
boundary layer along the vertical wall with the length scale l′ν ≡ (ν ′T ′)1/2, where ν ′ is
the kinematic viscosity and T ′ is the time scale of reflection (for details see § 3). Also
included in the problem is the moving contact line, which is defined as the intersection
of the free surface and the solid boundary. There, capillary length may be chosen
as the length scale, that is, l′σ ≡ (σ ′/ρ ′g′)1/2, where σ ′ is the surface tension, ρ ′ is
the density of the fluid, and g′ is the gravitational acceleration. With T ′ = O(1 s) and
σ ′ = O(0.1 N m−1), both length scales are of O(1 mm) and comparable to each other.
Therefore one can expect that the interaction of the wall boundary layer flow with the
contact line dynamics plays an important role in the generation of the observed eddy.
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Reflection and collision of solitary waves have been studied extensively during
the last few decades. Chan & Street (1970) studied reflections of solitary waves at
a vertical wall by solving the Navier–Stokes equation with a free-surface tracking
scheme. The numerical result was consistent with the experimental data in terms
of run-up height, where the maximum run-up was larger than twice the initial
wave height. Maxworthy (1976) also observed in his experiments that the maximum
water surface elevation was larger than twice the wave height and there was a
time delay during the interaction. Those results have become recurring themes in
subsequent studies (see e.g. Craig et al. 2006). Another striking feature of the
solitary wave reflection/collision was added by Su & Mirie (1980), who observed
dispersive trailing waves behind the solitary waves after the collision from their third-
order perturbation solution for the Boussinesq equation. Byatt-Smith (1988, 1989)
made similar observations by solving two weakly coupled KdV equations. He also
noticed slight changes in the heights of the solitary waves after interactions. The
aforementioned results have been confirmed in more recent theoretical works (e.g.
Cooker, Weidman & Bale 1997; Craig et al. 2006), in which the full Euler equation
for the potential fluid flow is solved. Note that neither viscosity nor capillarity has
been considered in this context.

A more relevant body of literature is found in the area of capillary–gravity waves.
Hocking suggested a simple wetting model, in which the dynamic contact angle
varies with the speed of the contact line relative to the boundary, and studied wave
generation at a vertically oscillating solid boundary (Hocking 1987b) and reflection at
a stationary boundary (Hocking 1987c). Later Miles (1990) expanded Hocking’s theory
by adding viscous effects to the analysis and allowing a phase difference between
the contact angle and the velocity of the contact line relative to the wall. To resolve
the singularity of unbound shear force at the moving contact line that arises if the
no-slip condition is applied there (see e.g. Dussan & Davis 1974), Miles (1990) used
a slip boundary condition in which the slip velocity is proportional to the shear stress
in the region very close to the contact line. Miles (1990) illustrated that Hocking’s
model is compatible with the slip boundary condition only if the amplitude of the
contact-line motion is negligibly small. For the waves considered in Miles’s (1990)
analysis, l′ν is much smaller than l′σ due to the high wave frequency, and the interaction
of the meniscus with viscous boundary layers was not investigated. Ting & Perlin
(1995) carried out a series of experiments on flows near the contact line at a vertically
oscillating plate. Although the amplitudes of the plate displacement were kept low
(0.5–6 mm) and the contact angle was always less than 90◦, the experimental cases
include both stick and stick–slip motion of the contact line relative to the moving
plate. It is noted that they also observed a vortex that changes its rotational direction
over the period of plate oscillation for the case with stick–slip contact line motion,
while no such vortex was present for the other case. However, no further description or
explanation of the flow in the vicinity of the meniscus was given.

Motivated by engineering applications such as thin-film coating on a solid surface,
most studies on the moving contact line have focused on steady flows of very
low velocities (for a review see Dussan 1979), which may be readily described by
lubrication theory (Eggers & Stone 2004). Hocking & Davis (2002) studied inertial
effects on a spreading drop when the radius of the drop approaches its terminal value
exponentially in time or when the drop is supported by a plate under an oscillatory
motion in its own plane. Those examples were chosen to retain the simplicity of
lubrication theory, and the focus of the study was to relate the macroscopic dynamic
contact angle to the speed of the contact line. Cox (1998) also investigated the effects
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of inertia on the contact angle in a situation where a liquid viscous boundary layer is
present even close to the contact line, while the inviscid region above the boundary
layer is stationary with respect to the steadily moving contact line.

Due to the highly unsteady nature of the flow in the present discussion, however, no
direct comparison with the previous theoretical works is possible. Instead a detailed
and quantitative description of the flow in the vicinity of the moving contact line has
been made to identify the origin of the eddy associated with the reflection of a solitary
wave. It will be shown that the moving contact line accompanies the rolling motion
of the free surface (Dussan & Davis 1974), and its interaction with the unsteady
boundary layer flow gives rise to the eddy.

The experimental setup is described in the following section. Both free-surface
motions and the wall boundary layer flow around the moving contact line were
measured by quantitative flow visualization techniques. In § 3, the measured boundary
layer flows are presented and compared with the theoretical prediction. Then the flow
induced by the moving contact line and its interaction with wall boundary layer flows
are discussed in § 4. Finally, concluding remarks are made in § 5.

2. Experiments
2.1. Experimental setup

The experiments were conducted in the wave flume (32 m long, 0.6 m wide and
0.9 m deep) in the DeFrees Hydraulics Laboratory at Cornell University. The flume
has glass sidewalls and a painted steel bottom. One section of the flume (∼14.5 m
from the initial position of the wave maker) is fitted with a 1 m long clear
acrylic bottom allowing the delivery of laser light from below for quantitative flow
visualization techniques. The flume is equipped with a newly constructed piston-type
wave maker consisting of a hydraulic cylinder (Parker HMI series) with a 4 m long
rod, which is controlled by a high-precision proportional DC valve (Parker D41FH).
The sensitivity of the valve is 0.05 % or 2 mm, and the maximum speed of the
piston exceeds 2 m s−1. Three ultrasonic wave gauges (Banner Engineering S18U)
were used to measure water surface profiles at a sampling rate of 100 Hz. A PIV/PTV
(particle image velocimetry, particle tracking velocimetry) system was employed for
the velocity measurements. The locations of measurements are shown in figure 2.

For the reflection experiments a glass wall was installed above the false bottom
(see figure 2b). A separate set of experiments on the head-on collision of two solitary
waves with equal heights was also carried out to obtain the velocity measurements (see
figure 2a), which are needed to calculate the boundary layer flow in §3.

Note that before each experiment the glass surfaces of the wave tank and the vertical
wall were thoroughly cleaned with a commercial cleaner. Then the tank was filled with
fresh tap water, and the experiment was carried out immediately to avoid any possible
free surface contamination. The equilibrium contact angle before each experiment was
below 85◦.

2.2. Generation of solitary waves
The solitary waves were generated using the method described by Goring (1979) with
Grimshaw’s (1971) third-order solution (for details see Liu et al. 2006). To generate
two solitary waves for the head-on collision experiment, a solitary wave was first
generated and allowed to reflect off the vertical glass wall installed at 20.75 m from
the initial position of the wave maker paddle (see figure 2), and the second solitary
wave was generated, which collided with the reflected wave at the desired location.
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FIGURE 2. Experimental setup (not to scale) for (a) the head-on collision experiments and
(b) the wall reflection experiments.

Here we only report the detailed experimental results for the solitary wave with
wave height H′ = 1.1 cm in water depth h′ = 10 cm. Experiments with H′/h′ = 0.45
were also carried out, which was the biggest solitary wave that could be generated
in the wave flume. Although the formation of a small eddy was also observed in
the large-amplitude case (see figure 1), only the smaller-amplitude case allows us to
obtain an image of the vertical region between the still water level and the maximum
elevation during the reflection in a single field of view (FOV), with a sufficiently high
resolution to measure the boundary layer flow along the vertical wall.

The profiles of solitary waves measured at 2 m before the point of
collision/reflection are shown in figure 3, in which η′ denotes the water surface
elevation, t′ is the time coordinate, and t′0 is the time when the crest of each solitary
wave passes the respective wave gauge. Notice that the two colliding solitary waves
in the collision experiment, measured at wave gauges C1 and C2, respectively, indeed
have the same height, which is also very close to the one used in the reflection
experiment, measured at gauge R (see figure 3). The measurements also show that
the experimentally generated solitary waves agree very well with the fully nonlinear
solution by Tanaka (1986) and the solution of the KdV equation.

2.3. Quantitative flow visualization techniques
The field of view (FOV) of the images was illuminated by a continuous argon ion laser
(Coherent Innova 90-6). By passing the laser beam through a cylindrical lens, a light
sheet was formed at 20 cm from the nearest sidewall. Two different sizes of FOV were
used: the larger FOV (20 cm × 25 cm) was able to capture the entire water column at
the moment of the highest elevation, while the smaller FOV (6.5 cm × 4.8 cm) was
used to resolve the boundary layer flow along the vertical wall during the reflection.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

28
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.280


312 Y. S. Park, P. L.-F. Liu and I-C. Chan

0

2

4

6

8

10

–1.0 0 1.0–0.5 0.5–1.5 1.5
–2

12

FIGURE 3. Solitary wave profiles measured at 2 m before the point of collision/reflection:©,
measured data at wave gauge C1; 4, measured data at wave gauge C2; �, measured data at
wave gauge R; ——, fully nonlinear theory by Tanaka (1986); – – – – –, the solution of the
KdV equation.

FIGURE 4. The coordinate system and the length scales that are used to non-dimensionalize
the coordinates (not to scale).

The images were captured using a high-speed/high-resolution digital camera (vision
research phantom V9.1, 1016 Hz at 1632×1200 pixels) at 250 Hz with 1 ms exposure.

With the images from the larger FOV, the velocity field data were obtained from
the successive cross-correlation analyses of two neighbouring images with a square
interrogation window (32× 32 pixels) yielding a resolution of 5 mm in both directions.
A more detailed description of the PIV technique can be found in Liu, Park & Cowen
(2007). On the other hand, a PTV technique was used to extract the particle motions
near the vertical wall from the images of the smaller FOV. For the PTV analysis, the
software package DigiFlow (Dalziel 2008) was employed.
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In addition, the free-surface profile was delineated in each image using the method
suggested by Zarruk (2005). Due to the severe interference of the laser light in
the meniscus, however, there is uncertainty of about ±5 pixels (=±0.1 mm) in
determining the location of the contact line in the images of the smaller FOV.
Therefore discussions of the contact line in the present paper must be understood
from a macroscopic perspective.

3. Boundary layer flow along the vertical wall
As a solitary wave is reflected from a vertical wall, the vertical velocity near

the wall scales with ε
√

g′h′. The corresponding time scale may be determined by
dividing the surface displacement of O(H′) by the vertical velocity scale, that is,
T ′ = H′/ε

√
g′h′ = h′/

√
g′h′. Then the boundary layer thickness near the vertical wall

can be estimated as l′ν =
√
ν ′T ′. Using l′ν and h′ as the horizontal and the vertical

length scales, respectively, the scale of the horizontal velocity can be deduced from the
continuity equation as ε

(
l′ν/h

′)√g′h′. The length scales and the coordinate system is
depicted in figure 4. Note that the boundary layer thickness is much smaller than the
water depth, i.e. l′ν/h

′ � 1, and that the horizontal velocity is one order smaller than
the vertical velocity.

The dimensionless momentum equation in the vertical direction can be expressed as

∂w

∂t
+ ε

(
u
∂w

∂x
+ w

∂w

∂z

)
=−∂pd

∂z
+ ∂

2w

∂x2
+ Re−1 ∂

2w

∂z2
, (3.1)

where (x, z) are dimensionless horizontal and vertical coordinates, respectively, with
the origin placed at the intersection of the still water level and the vertical wall,
(u,w) are the corresponding dimensionless velocity components, t is the dimensionless
time coordinate, pd = (p′ + ρ ′g′z′)/ρ ′g′H′ is the dimensionless dynamic pressure, and
Re = h′

√
g′h′/ν ′ is the Reynolds number. For a solitary wave with ε = 0.1 in water

depth h′ = 10 cm, Re−1 ≈ 10−5. We remark here that the leading-order momentum
equation in the horizontal direction results in uniform pressure across the boundary
layer. Also, the boundary layer approach breaks down in the meniscus.

For small ε and Re−1, we can linearize the boundary layer equation to obtain

∂w

∂t
=−∂pd

∂z
+ ∂

2w

∂x2
. (3.2)

Note that even for highly nonlinear solitary waves such as the one in figure 1, (3.2)
can still be applied as long as the wall boundary layer flow is uniform in the vertical
direction (see figure 4 and the associated discussion in Liu et al. 2007).

Now, let w= wi + wr, where wi is the inviscid free-stream velocity and satisfies

∂wi

∂t
=−∂pd

∂z
, x= 0 (3.3)

and wr is the leading-order boundary layer correction. Thus, inside the boundary layer,
we have

∂wr

∂t
= ∂

2wr

∂x2
, (3.4)

with the initial condition

wr = 0, t =−∞, (3.5)
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FIGURE 5. The velocity patterns obtained from the head-on collision of two identical solitary
waves experiment: (a) t = −1.6, (b) t = 1.8, where the dimensionless time t is zero at the
instant of the highest water surface displacement during the collision.

and the boundary conditions

wr =−wi, x= 0, wr = 0, x=−∞. (3.6)

The analytical solution for (3.4) with (3.5) and (3.6) is (Butkovsky 1982)

wr = x√
4π

∫ t

−∞

wi

(t − s)3/2
e−x2/4(t−s) ds. (3.7)

In the following, we shall report experimental measurements of the boundary layer
flow along the vertical wall during the solitary wave reflection process. The analytical
solution (3.7) will be compared with the experimental result.

3.1. The free-stream velocity
In calculating the analytical solution for wr in (3.7), we need information on the free-
stream velocity wi, which can be experimentally obtained from the head-on collision
experiment, since the collision of two identical solitary waves is equivalent to the
reflection of a solitary wave from a vertical wall without effects of wall boundary layer
and the contact line at the wall.

Typical velocity patterns from the PIV analysis of head-on collision experiments are
shown in figure 5. One can clearly observe that the vertical velocity near the free
surface at the line of symmetry (x′ = 0) is more or less uniform, and its magnitude
is comparable to that of the horizontal velocity in the region far from the line of
symmetry.

Figure 6 shows the time series of the vertical velocity at the line of symmetry
near the still water level during the head-on collision of two identical solitary waves
experiment. The flow is essentially uniform between z = −0.2 and z = −0.1, and the
least-squares-fitted curve, using the Fourier sine series with the first four terms, is
taken as the free-stream velocity to be used to calculate the theoretical solution (3.7).
Note that the origin of the dimensionless time coordinate is set at the instant when
wi crosses zero, which corresponds to the highest water surface elevation. Further, we
remark that the free-stream velocity data are available only up to t ≈ 5.
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0
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–0.1

–6 –4 –2 0 2 4–8 6

0.5

–0.5

FIGURE 6. The time series of the dimensionless vertical velocity along the line of symmetry
near the initial free surface: — ·—, z = −0.2; – – – – –, z = −0.1; ——, the least-squares-
fitted curve using the data between −0.26 z6−0.1.

Particle number x z Symbols in figures 7–9

1 −6.55 −0.15 ©
2 −5.26 −0.15 4
3 −3.74 −0.14 �
4 −3.16 −0.14 5
5 −1.87 −0.11 +
6 −1.75 −0.16 ×

TABLE 1. Initial dimensionless coordinates of the six particles of which the trajectories are
traced in figure 7. The particles are numbered in such a way that particle 1 is the farthest
from the wall and particle 6 is the nearest.

3.2. The boundary layer flow
The boundary layer flow along the vertical wall was measured by tracking individual
seeding particles. To illustrate, six particles were chosen, which were initially located
near the wall ∼1.5 cm below the still water level (table 1). Vertical and horizontal
trajectories of the six particles, whose initial locations are given in table 1, are shown
in figure 7. As expected, the horizontal displacements are negligible compared to the
vertical counterparts near the vertical wall.

Now the Lagrangian velocity of each particle in table 1 can be obtained by taking
the time derivative of each trajectory. As implied in (3.1), the change in the vertical
direction (i.e. ∂/∂z) within the boundary layer is smaller than in the horizontal
direction (i.e. ∂/∂x). Hence one may assume that the vertical component of the
boundary layer flow is uniform along the wall within the displacement of the particles
in table 1 as long as they are not very near the meniscus or the stagnation point at
the bottom corner. Then the Lagrangian velocity can be compared with the theoretical
solution (3.7) that is obtained in the Eulerian reference frame. Figure 8 shows the
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z
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–6 –4 –2 0 2 4 6–8 8
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(b)

(a)

FIGURE 7. Dimensionless trajectories of the six particles listed in table 1: (a) the horizontal
trajectories; (b) the vertical trajectories. Only every fifteenth data point is plotted. Note
that the horizontal displacements are normalized by l′ν = 0.3 mm and the vertical ones by
h′ = 10 cm, and that l′ν � h′.

0

0.4

0.3

0.2

0.1

–0.4

–0.3

–0.2

–0.1

0.5

–0.5
–6 –4 –2 0 2 4–8 86

FIGURE 8. The time series of the dimensionless vertical velocity near the wall during the
solitary wave reflection process: ©, PTV data of particle 1 in table 1; +, PTV data of
particle 5; ——, the theoretical solution with wr given by (3.7) at the initial horizontal
location of particle 1; – – – – –, the theoretical solution at the initial horizontal location of
particle 5. Note that the velocity for particle 5, which is closer to the vertical wall, becomes
positive during the last phase of the solitary wave reflection process (t ≈ 7).

time history of the vertical component of the Lagrangian velocity for the two particles
(1 and 5) compared with the theoretical Eulerian velocity. Despite the fact that several
simplifying approximations have been adopted in the theory, the agreement between
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FIGURE 9. The horizontal profiles of the dimensionless vertical velocity near the wall during
the solitary wave reflection process: symbols, PTV data of the particles listed in table 1;
——, the theoretical solution (3.7). (a) t = −1.80; (b) t = −0.02; (c) t = 1.81; (d) t = 3.67;
(e) t = 7.00. Note that the theoretical solution in (e) was calculated using the velocity of
particle 1 as the free-stream velocity, as the data from the head-on collision experiment is not
available for t > 5.

the experimental data and the theoretical prediction is very good. Also note that
the theoretical solution is calculated only up to t ≈ 5, beyond which the free-stream
velocity is not available.

Excellent agreement can also be demonstrated in the snapshots of the horizontal
profiles of the vertical velocity (figure 9). We remark here that the boundary layer
flow near the wall changes its direction from moving upwards to downwards sooner
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FIGURE 10. Dimensionless particle velocities on and near the free surface during the
ascending phase at t = −1.53: ——, the free-surface profile; 4, particles on the free surface;
©, particles below the free surface. (a) Locations of PTV data; (b) horizontal components
of particle velocities as a function of x; (c) vertical components of particle velocities as a
function of x.

than the free-stream flow does (see figure 9b). The boundary layer flow near the wall
reverses its direction once again near the end of the reflection process (t ≈ 7), as can
be seen in figures 8 and 9(e).

4. Flows near the moving contact line
4.1. Rolling motion of the free surface

In addition to the development of boundary layer flows, another important wall effect
can be revealed by observing particle velocities on the free surface. Figures 10
and 11 show the typical velocity data during the ascending and descending phases,
respectively. Figures 10(a) and 11(a) are snapshots of particle locations on and below
the free surface, where PTV velocity data are obtained, and panels (b) and (c) of each
figure are the corresponding horizontal and vertical velocity components of the same
particles identified in panel (a), plotted against the horizontal coordinate.

While the PTV particles denoted by the circles in the first panels spread over
3 cm in the vertical direction, the circles in figure 10(b,c) collapse into a single
line, indicating that the velocity field just below the free surface is uniform in the
vertical direction. On the other hand, the horizontal component of particle velocity
on the surface is noticeably different from the ones below the surface, resulting in
a strong horizontal shear that is apparently much more significant than one would
expect in the free-surface boundary layer. We did not observe this strong shear in the
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FIGURE 11. Dimensionless particle velocities on and near the free surface during the
descending phase at t = 2.45: ——, the free-surface profile; 4, particles on the free surface;
©, particles below the free surface. (a) Locations of PTV data; (b) horizontal components
of particle velocities as a function of x; (c) vertical components of particle velocities as a
function of x.

head-on collision experiments, and we maintain that the shear is not due to surface
contamination.

During the ascending phase (figure 10), the particles on the free surface approach
the wall much faster than those in the water body, implying that the wetting of the
wall is mainly contributed by the water particles on the free surface. In other words,
the free surface attaches itself to the vertical wall and the particles on the free surface
are pulled into the wall as if they were on a conveyor belt. This free-surface motion
is consistent with the surface rolling motion that was observed by Dussan & Davis
(1974). Furthermore, even in the descending phase (figure 11), the particles on the free
surface first move toward the wall, which is in the opposite direction from that of the
horizontal velocity below the free surface, and change their direction only at the end
of the reflection process. To the authors’ knowledge, ours is the first measurement of
the surface rolling in which the velocity and the displacement of the contact point are
large enough for the contact angle to change from an acute angle to an obtuse angle
and back to an acute angle.

We emphasize here again that, in the head-on collision experiments, both the
horizontal and the vertical velocity components were uniform in the vertical direction
near and on the free surface.

4.2. The contact angle
Due to multiple reflections and refraction of the laser light, it is difficult to accurately
identify the contact line location and the contact angle from PTV images. When
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FIGURE 12. Contact line motions. (a) ©, the time series of measured vertical locations of
the contact line; ——, a fitted curve using a sum of three Gaussian functions. (b) �, the time
series of the measured contact angle in degrees; ——, a fitted curve using a ratio of two
second-degree polynomials.

locating the contact line in each image, there was an uncertainty of ±5 pixels or ±0.1
mm in both x′- and z′-directions. Figure 12(a) shows a time series of measured vertical
locations of the contact line. A fitted curve, consisting of a sum of three Gaussian
functions with the coefficient of determination being 0.999, is also plotted.

The macroscopic contact angle was measured by approximating the free surface
near the contact line by a straight line between the contact point and the nearest
identifiable point on the free surface, where the distance between the two points are on
average ∼2 mm. During the ascending phase of contact line motion, the free surface
is a concave curve, hence the macroscopic contact angle tends to be underestimated.
Similarly we must have overestimated the contact angle during the descending phase
due to the convex free surface. The results are shown in figure 12(b), where θ ′
is the macroscopic contact angle in degrees. While the contact angle data exhibit
relatively larger errors (figure 12b), it appears that data scattering is smaller during
the descending phase. Again the data are fitted by a curve using a ratio of two
second-degree polynomials with the coefficient of determination being 0.91. As the
wave arrives at the wall, the contact angle gradually increases from below 85 to ∼110◦.
While the contact line lingers at the highest elevation, one can see the rapid decrease
of the contact angle. Then it gradually increases as the wave propagates away from the
wall.

The contact line velocity is estimated by taking the time derivative of the fitted
curve in figure 12(a), and is shown in figure 13. Also plotted is the free-stream
velocity, which was taken from the vertical velocity at the line of symmetry and
near the still water level during the head-on collision experiment (see figure 6). It is
interesting to note that the speed of the moving contact line has a larger amplitude
than the free-stream velocity. We also notice that the contact line stands still at the
highest elevation for ∼0.1 s.

As discussed in § 1, previous theoretical studies predict that under steady flow
conditions the macroscopic contact angle is a simple function of the speed of the
moving contact line. Since no such theory is known for unsteady flows with high
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FIGURE 13. The velocity of the moving contact line: ——, the time derivative of the fitted
curve in figure 12(a); – – – – –, the free-stream velocity shown in figure 6.

Reynolds numbers, we compare our results with the model suggested by Hocking
(1987b) (see figure 14), that is,

∂η′

∂t′
=


λ′a

(
−∂η

′

∂x′
− α′a

)
if − ∂η

′

∂x′
> α′a,

λ′r

(
−∂η

′

∂x′
− α′r

)
if − ∂η

′

∂x′
< α′r,

(4.1)

where

∂η′

∂x′
= tan(90◦ − θ ′). (4.2)

Note that, in plotting figure 14, the contact angle data are taken from the fitted curve
in figure 12(b).

It is remarkable that Hocking’s (1987b) model (4.1) works very well when the
moving contact line has positive acceleration. Considering that the contact angle is
underestimated in the ascending phase and overestimated in the descending phase, λ′a
is indeed overestimated, while λ′r is underestimated, therefore λ′a ≈ λ′r ≈ 0.2 m s−1.
On the other hand, the model fails to capture the hysteretic behaviour during the
deceleration of the contact line.

4.3. The capillary wave at the highest elevation of the free surface
Another interesting observation is the generation of capillary waves when the contact
line reaches its highest elevation and the contact angle rapidly decreases (figure 15). In
figure 15, the wavelength and the wave period are estimated to be 1 cm and 49 ms,
respectively, from the distributions of the vertical surface velocity at two closely
spaced times. The dispersion relation for capillary waves is

ω′2 = σ
′

ρ ′
k′3, (4.3)
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FIGURE 14. Plot of the rise velocity of contact line versus the contact angle. (a) ©, the
experimental data for ∂2η′/∂t′2 > 0 and ∂η′/∂t′ > 0; 4, ∂2η′/∂t′2 < 0; �, ∂2η′/∂t′2 > 0 and
∂η′/∂t′ < 0; the arrows denote the time evolution and are numbered in the order of time. (b)
�, the same as in (a); ——, a fitted linear line with λ′r = 0.17 m s−1 and α′r = −0.36 in (4.1).
(c)©, the same as in (a); ——, a fitted linear line with λ′a = 0.25 m s−1 and α′a = 0.06 in (4.1).
The coefficients of determination for the fitted lines in (b,c) are both 0.98.

in which ω′ is the wave frequency and k′ is the wavenumber. For a 1 cm wavelength,
(4.3) yields a wave period of 48 ms, which is very close to the observation. If it were
a gravity wave, the deep-water dispersion relation (ω′2 = g′k′) would have given 80 ms
for the wave period. These capillary waves are dissipated within five wavelengths. As
the contact line starts to descend, no more capillary waves are generated.

4.4. Trajectories of the particles near the moving contact line
So far, we have presented our observations of the flow field near the moving contact
line. The flow field is highly complex, as the wall boundary layer flow, the flow
induced by the surface rolling motion, the change of the contact angle and the surface
disturbance in the form of capillary waves all interact with one another in this region.
To illustrate the effects of the interaction, we have tracked trajectories of a few seeding
particles near the moving contact line (figures 16 and 17).

In figure 16, eight particles, which were initially located near the meniscus, have
been tracked during the reflection of the solitary wave. It is noted that one of the
particles (marked by ©) travels from the free-stream region, passing through the
meniscus about the instant of the highest elevation of the moving contact line, and
finally to the wall boundary layer, which suggests that the free-stream region and the
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(a)

FIGURE 15. Vertical velocity at the free surface versus x′ at two times during the reflection
process: (a) t = −0.49; (b) t = −0.06. The time lapse between (a) and (b) is 44 ms, during
which the waves travel by 0.9 cm, yielding a phase velocity of 20.45 cm s−1. The wavelength
is ∼1 cm and therefore the wave period is ∼49 ms.

(b) (c) (d)(a)

FIGURE 16. Snapshots of the raw PTV images. Eight particles which were initially near
the meniscus are tracked and marked with symbols: �, the particles that remain in the
free-stream region; 4, the particles that remain in the wall boundary layer; ©, the particle
that was initially in the free-stream region and was later entrained in the wall boundary layer.
(a) t =−4.93; (b) t =−2.47; (c) t =−0.02; (d) t = 2.48.

wall boundary layer communicate through the meniscus. We remark here that Mei
& Liu (1973) used an order-of-magnitude analysis to demonstrate that the meniscus
serves as a channel of energy flow from the core of the fluid flow to the sidewall
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(b) (c) (d)(a)

FIGURE 17. Snapshots of the raw PTV images: 4, the same particles that were in the wall
boundary layer in figure 16; �, the particles identified as the jet ejecting from the moving
contact line to the water body below. (a) t = 3.43, the first particle of the jet is seen at the
contact line; (b) t = 4.98, the earlier part of the jet leaves the meniscus for the free-stream
region; (c) t = 7.43, a particle of the later part of the jet is entrained in the surface boundary
layer flow; (d) t = 9.93, another particle of the later part of the jet is entrained in the wall
boundary layer flow, while a particle that belonged to wall boundary layer is being entrained
to surface boundary layer flow.

boundary layer. Although their analysis was not complete, in the sense that it did not
include surface tension which might contribute to wave damping (Hocking 1987a), it
was the first theoretical attempt to point out the interaction between surface dynamics
and wall boundary layer flows.

In the middle of the descending phase of the solitary wave reflection, a number
of particles are seen to be ejected from the moving contact line down into the water
body (figure 17). While the earlier part of the jet penetrates into the free-stream region,
the particles that eject later are entrained to the surface boundary layer or to the
wall boundary layer. Furthermore, one of the particles in the wall boundary layer is
observed to be entrained in the surface boundary layer flow at the end of the reflection.
Again, the meniscus seems to be the communication hub that connects the free-stream
region and the two boundary layers.

To summarize the above discussion, pathlines and trajectories of some of the tracked
particles are plotted in figures 18 and 19, respectively.

4.5. Formation of the eddy left behind the reflected wave
In § 4.4 it has been clearly shown that a jet is formed during the descending phase
of the solitary wave reflection. In this subsection, we look for an explanation by
combining all the observations we have reported in the present paper (see figure 20).

Figure 20(b) plots the horizontal velocity of the particle on the free surface at the
moving contact line. To obtain these values, it was first noted that the horizontal
velocities, both on the free surface and below the free surface, when plotted against
the horizontal coordinate can be approximated by a straight line, as can be seen in
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FIGURE 18. The pathlines of the particles tracked in figures 16 and 17. Each pathline starts
from the location marked with the respective symbol: �, one of the particles that remained in
the free-stream region; 4, the particle that was in the wall boundary layer and entrained in the
surface boundary layer at the end of the reflection process;©, the particle that was initially in
the free-stream region and was later entrained in the wall boundary layer; �, the particles of
the jet ejected from the moving contact line.

figures 10 and 11. The values were then taken at the intersection of the line with
x′ = 0. With this velocity as the boundary condition, the flow induced by the surface
rolling motion has been calculated using the similar procedure described in § 3 and
integrated along the z′-coordinate to obtain the curve in figure 20(c). Also shown
in the same panel is the rotational component of the wall boundary layer flow (w′r)
integrated along the x′-coordinate.

The reflection process can be divided into seven regimes.

I (t′ < −0.6 s; t < −6). As the wave arrives, the wall boundary layer starts to develop.
The contact line lags behind the free-stream velocity near the centreline, which
compensates for the flow deficit due to the wall boundary layer near the meniscus.
The lag of the moving contact line also contributes to the increase of the contact angle,
or equivalently, the expansion of the meniscus.

II (−0.6 < t′ < −0.2 s; −6 < t < −2). The contact angle reaches its maximum and
maintains it. As the free-stream flow accelerates, so does the speed of the moving
contact line. This in turn induces increasing horizontal velocity at the contact line.
This in-flow contributes to the further upward motion of the contact line, and its speed
overtakes that of the free-stream flow. The flow deficit in the wall boundary layer near
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FIGURE 19. Dimensionless trajectories of the particles in figure 18(a) and the first particle of
the jet in figure 18(b): (a) the horizontal trajectories; (b) the vertical trajectories. Note that the
horizontal displacements are normalized by l′ν = 0.3 mm and the vertical by h′ = 10 cm, and
that l′ν � h′.

the meniscus is also compensated by the horizontal in-flow due to the surface rolling
motion.

III (−0.2 < t′ < 0 s; −2 < t < 0). The free-stream velocity decelerates to zero, which
induces deceleration of the contact line and the horizontal velocity on the free surface.
Though the horizontal in-flow at the contact line is still positive, the flow deficit in
the wall boundary layer attains its peak during this period and the horizontal in-flow
does not seem to be enough to cover this deficit. Instead, some flow is drawn from
the meniscus, resulting in faster deceleration of the contact line compared to the free-
stream velocity. This sudden deceleration of the contact line motion is accompanied by
noticeable capillary waves on the free surface, which propagate away from the wall.
No significant change in the contact angle is observed.

IV (0< t′ < 0.1 s; 0 < t < 1). The contact line maintains a more or less fixed location
at its maximum elevation while the free-stream velocity starts to accelerate (in a
downward direction). The rolling-motion-induced horizontal velocity at the contact
line decreases to zero, but the in-flow during this period seems to balance with the
decreasing flow deficit in the wall boundary layer. The contact angle decreases to
become almost horizontal. The PTV particle marked by © in figures 16, 18 and 19 is
transported from the free-stream region to the wall boundary layer during this period.

V (0.1 < t′ < 0.2 s; 1 < t < 2). As the wave reflects away from the wall, the contact
angle rapidly decreases and the meniscus shrinks. The contact line also accelerates in
a downward direction, which induces the rolling motion of the free surface again. This
positive horizontal flow due to the rolling motion seems to compensate the flow deficit
in the wall boundary layer.

VI (0.2 < t′ < 0.35 s; 2 < t < 3.5). The wall boundary layer flow changes sign and
directs upward, while the negative vertical velocity of the moving contact line and
the positive horizontal velocity at the contact line keeps accelerating. At the end of
this period, when the horizontal velocity is at its peak, the in-flow due to the surface
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FIGURE 20. The time histories of the experimental data. (a) ——, the speed of the moving
contact line, i.e. the time derivative of the fitted curve in figure 12(a); – – – – –, PTV data
of particle 1 in table 1, which was used as the free-stream velocity to plot figure 9(e);
— ·—, the difference between the two. (b) · , the horizontal velocity of the particle on the
free surface at the contact line. (c) ——, the flowrate due to the free-surface velocity in (b),
i.e.
∫

u′(0, z′) dz′; – – – – –, the deficit in flowrate in the wall boundary layer away from the
meniscus, i.e.

∫
w′r(x

′) dx′. (d) The contact angle measured from the horizontal.

rolling motion that enters the meniscus cannot exit through the wall boundary layer,
but bursts into the free-stream region, forming the jet. The contact angle gradually
increases with almost the same rate in phase I.

VII (t′ > 0.35 s; t > 3.5). As the positive wall boundary layer flow and the positive
surface-rolling-induced flow continue, the jet is maintained, though its strength
decreases and the particles that form the jet in this later period get entrained either
in the wall boundary layer or the free-surface boundary layer. These entrainments are
seen to be the eddy that was observed in § 1. Eventually the horizontal velocity at
the contact line changes its direction and the particles that were originally in the wall
boundary layer are observed to be entrained to the free-surface boundary layer.
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Boundary layer flow
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FIGURE 21. The interactions between the flow induced by the moving contact line and the
wall boundary layer flow. (a) Incoming wave (t < 0); (b) the instant of highest elevation
(t ≈ 0); (c) outgoing wave (t > 0); (d) collision of boundary layer flow and surface-rolling-
induced flow (t > 3.5).

To summarize these complex processes, a sketch is provided in figure 21.
Also, a movie that shows the formation of the jet as well as the induced

anticlockwise eddy is available as the supplementary material to this paper at journals.
cambridge.org/flm. Note that to reduce the file size we only include every fifth frame
in the movie, and it is ten times as slow as real time. At the frame in which the jet is
formed, the red half-circle in the movie indicates the locations of the jet.

5. Concluding remarks
In this paper we have reported a set of solitary wave reflection experiments

illustrating the interactions between the free-surface motion and the wall boundary
layer flow in the vicinity of the moving contact line.

As Dussan & Davis (1974) pointed out, the surface rolling motion as well as the
wall boundary layer flow is the consequence of the no-slip boundary condition at
the wall. However, the inertia and the dynamically changing contact angle create a
lag between the two flows. This lag causes remarkable features, especially during
the deceleration of the free-stream flow. For example, during the deceleration in the
ascending phase of the wave reflection, the increase in the flow deficit in the wall
boundary layer flow drains some water from the meniscus, which is accompanied
by relatively large-amplitude capillary waves. Later, when the free-stream flow again
decelerates in its descending phase, both the surface-rolling-induced surface flow and
the wall boundary layer flow direct toward the contact line, which gives rise to the
formation of the jet.

Another important observation is that the fluid particles in different regions such as
the free stream, the free-surface boundary layer and the wall boundary layer can be
transported to other regions by passing through the meniscus.

This work provides a way to couple the dynamics of the contact line to large-
scale flow at high Reynolds numbers, which could be crucial in many industrial

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

28
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
http://www.journals.cambridge.org/flm
https://doi.org/10.1017/jfm.2012.280


Reflection of a solitary wave 329

and environmental flow problems involving sloshing of a bounded liquid with a free
surface.
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